结构力学朱慈勉第6章课后答案解析全解

合集下载

最新完整的结构力学答案-同济大学朱慈勉

最新完整的结构力学答案-同济大学朱慈勉

C 10kN
D
A
40kN·m
6m
精品文档
3m
精品文档
M 30
30 30
Q 10
210
(c)
2kN/m 4kN
B
C
6kN
A
D
6m
M 6
6
3m
3m
10 110
Q
5
4
7
2
2m 2m
(d)
4kN·m 2kN
C
D
E 2kN
A
B
6m
精品文档
精品文档
M 4
4 N
0
Q
4 4 4 4/3
0
0
(e)
C
1kN/m 4m
2
qa 2
q
G
H
qa2 IJ
B
C
a
a
3qa 2 2
qa 2
a
3qa 2 2
qa 2 2
a
对H点求矩:
qa 2
qa 2 2
HC
a
HC
1.5qa()
对F点求矩:
qa 1.5a H A a 0 H A 1.5qa() H D 0, MGF qa2, MGH 1.5qa2
qa 2
qa 2 2
xB
1 EI
M ( )M ( )ds
1
2
qR2(1 cos )R sin Rd
1
qR 4 ()
EI 0
2EI
5-7 试用图乘法计算图示梁和刚架的位移:(a) ΔyC ;(b) ΔyD ;(c) ΔxC ;(d) ΔxE ;(e) D ;(f) ΔyE 。 (a)

朱慈勉结构力学力法

朱慈勉结构力学力法

6.46 EA
kN
(
)
2 5 m 1 15
2 5 m 1 15
C2E 4.A 23kNm
θD
6.46kN EA
1 m 1 1 m 1 35 35
例6-12 求图示组合结构C点的竖向位移ΔC和AD与BD杆间的相对转角
ΔθD。忽略受弯杆的轴向变形。 已知AD和BD杆:EA EI m2
2次超静定
9
选取基本结构为切断竖杆:
X 1h
t0
1 EA
1 kl
§6-7超静定结构的位移计算
F E N F N d A s k 0 F G Q F Q d A s M E M d I s F R c
1)载作用下的位移计算
F N F Nd P s EA
k 0F G Q F Qd P A s
M M P ds EI
求超静定结构因温度改变、支座移动产生的位移时, 若选原结构建立虚拟力状态,计算将会更简单。
EI, l,t0 ,Δt

M、Q、N
EMIht、ENAt0、G kQA
P=1

T 2 1 1 R *c W 21
c M * E M I h t d s N * E N A t0 d s Q * G kd Q
2次超静定
9
解:⑴ 确定超静定次数;
⑵ 用力法求解, 并作M图和FN图; ⑶ 选取基本结构为铰结体系求位移;
⑷ 求AD杆与BD间的相对转角:
⑸ 施加单位荷载并求各杆轴力:
D
FN1FN l EA
1 m 1
35m 25m 1 1 .8 9 k N 1 .3 4 k N 3 5
E A 1 5
1 m 1 35
b h

结构力学第06章

结构力学第06章

荷载作用;
温度变化和材料胀缩; 支座沉降和制造误差。
AB
绝对位移
截面A角位移 A A点线位移 A 包含: 水平线位移 AH 竖向线位移 AV
相对位移
CD两点的水平相对线位移:
( CD ) H C D
AB两截面的相对转角:
AB A B
M M dx A y A y
i k 1 1 2
2
A3 y3
二.几种常见图形的面积和形心位置
【例6.5】求图示矩形截面悬臂梁在A端的竖向位移。
解:
先求实际荷载作用下结构的内力图,再求虚设单位荷 载作用下结构的内力图。 q FP 1
L
A
B
1 2 ql 2
A
B
L
实际荷载作用下的内力图
轴力 FNP 、F N —— 以拉力为正; 剪力 FQP 、F Q —— 使微段顺时针转动者为正;
弯矩 M P 、 —— 只规定乘积 M P M 的正负号。当M M 与 M P 使杆件同侧纤维受拉时,其乘积取正值。
二.各类结构的位移计算公式
Байду номын сангаас和刚架 在梁和刚架中,位移主要是弯矩引起的,轴力和剪力的影 响较小,因此位移公式可简化为
(a x l )
虚设单位荷载作用下的内力为 M 1
相对转角
(0 x l )

MMP ds EI

a
0
FP b xdx EIl

FP a x FP ab 1 dx a EI l 2 EI
l
刚架的位移
【例6.3】求图示刚架C端的角位移。已知抗弯刚度为EI。
1

结构力学课后习题答案(朱慈勉)

结构力学课后习题答案(朱慈勉)
2
取虚线所示的两个隔离体有:
M B 0,
2 2
FN
2
a
FN 1
a
Fx 0, FN1
2 2
FN
2
4 3
a
2a
联立方程解得:FN1
a 3
,
FN 2
2a 3
杆3的内力可以通过D节点求得
a
a
a
a
FN 3 P
(c)
先去除结构中的零力杆
2
再求出支座反力
1
在A, B点用节点法可求得
43
FN1
13 2
1.5qa
FP
)
FP
FP
FP
FP

3-12 试求图示桁架各指定杆件的内力。 (b)
3m
3 ×3m
D
1
1
B
3
2KN
4m
7.5KN
4m
2kN
E
2 3kN
1
A F3
10.5KN
4m
然后再依次隔离A, B, D点不难求得 F2 7.5KN (), FBD 3KN , F1 4KN ()
先求出支座反力,如图所示。零杆亦示于图中。 取1-1截面以上部分分析
$
2-3 试分析图示体系的几何构造。 (a)
(ⅠⅢ) (ⅠⅡ)



几何不变
(Ⅱ Ⅲ)
,
(b)
(ⅠⅡ) Ⅰ
(ⅡⅢ) Ⅱ
(ⅠⅢ)

几何不变
<
2-4 试分析图示体系的几何构造。
(a)
(ⅠⅢ)
·
(b)


(ⅠⅡ)

最新完整的结构力学答案-同济大学朱慈勉

最新完整的结构力学答案-同济大学朱慈勉

对B点求矩
20 9 (4.5 3) RF 6 RF 45() M E 0.5 20 92 45 9 405, RE 135() MCF 45 3 135, MCD 0.5 20 9 90 M BA 0.5 20 9 90
精品文档
精品文档
(b)
1
M
5.75
精品文档
精品文档
5FP
5FP
5FP
5 4
FP
5 4
FP
5FP
2FP
5 4
FP
2FP k
由节点法知:
对A节点 对E节点
FNAD =- 5FP
FNEC
5 4
FP
FNAE 2FP
FNEF
5 4
FP
1
由节点法知:
k
对A节点
FNAD =-
5 2
FNAE 1
yc
F N FNPl EA
1 EA
2
qa 2
q
G
H
qa2 IJ
B
C
a
a
3qa 2 2
qa 2
a
3qa 2 2
qa 2 2
a
对H点求矩:
qa 2
qa 2 2
HC
a
HC
1.5qa()
对F点求矩:
qa 1.5a H A a 0 H A 1.5qa() H D 0, MGF qa2, MGH 1.5qa2
qa 2
qa 2 2
xB
1 EI
M ( )M ( )ds
1
2
qR2(1 cos )R sin Rd
1
qR 4 ()
EI 0
2EI

同济大学 结构力学课后习题及答案解析(完整版)

同济大学 结构力学课后习题及答案解析(完整版)

(c) (d)
(e) (f)
(g) (h)
2-5 试从两种不同的角度分析图示体系的几何构造。 (a)
(b)
同济大学朱慈勉 结构力学 第 3 章习题答案 3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a) A
FP
B
C
FPa
D
E
F
a
a
a
a
a
(b) 2kN/m
10kN
A
2m
6m
B
C
2m
D
4m
2m
1
1
2a
1
2
2
M1
6-4 试用力法计算图示结构,并绘其内力图。 (a)
6m
20kN/m
B
1.75EI
C
D
EI
A
6m
3m
解:基本结构为:
20kN/m
X1
6 1
M1
6 810
810
Mp
11X1 1p 0
M M1X1 M p
(b) E
2a
4a
C
D
q
EI=常数
A
B
4a
4a
解:基本结构为:
X1
计算 M 1 ,由对称性知,可考虑半结构。
(c)
15kN
20kN/m
A
B
C
D
E
F
2m 2m 3m
3m
3m
4m
(d)
6kN·m
4kN·m
A 3m
B
C
D
2m 2m
E 2m 2m
A
4kN
FG
H
2m 2m 2m

同济大学朱慈勉结构力学课后习题答案

同济大学朱慈勉结构力学课后习题答案

更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研

同济大学朱慈勉 结构力学 第6章习题答案

同济大学朱慈勉 结构力学 第6章习题答案

同济大学朱慈勉 结构力学 第6章习题答案6-1 试确定图示结构的超静定次数。

(a)(b)(d)(f)(g) 所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定刚片I 与大地组成静定结构,刚片II 只需通过一根链杆和一个铰与I 连接即可,故为4次超静定(h)6-2 试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义? 6-3 试用力法计算图示超静定梁,并绘出M 、F Q 图。

(a) 解:上图=l1M p M01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EIl F X EI l p p F X 211=p M X M M+=11l F p 61l F p 612l 3l 3 题目有错误,为可变体系。

+ p lF 2 1=1M 图p Q X Q Q +=11p F 21p F 2(b) 解:基本结构为:l 1Ml l 2Ml F p 21p Ml F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδp M X M X M M ++=2211p Q X Q X Q Q ++=22116-4 试用力法计算图示结构,并绘其内力图。

(a)l2l 2 l2l l 2Q 图12解:基本结构为:1Mp M 01111=∆+p X δ p M X M M +=11(b)解:基本结构为:4a 2a4a4a3m6m 6m810 810计算1M,由对称性知,可考虑半结构。

朱慈勉结构力学第六章 力法1

朱慈勉结构力学第六章 力法1

变量。 ⑶ 力法的基本方程 ①如果X1 过大,则梁的B 端往上翘; ②如果X1 过小,则梁的B 端往下垂。 ③只有当B 端的竖向位移等于零时,基本体系中的变力X1 才与超静定结构中的常力X1 相等,这时基本体系才真正 转化为原来的超静定结构。 1 0 转化条件:
⒈ 撤除支座处的一根支杆或切断一根链杆, 相当于去除一个约束。
§6-2 超静定次数与力法基本结构
超静定结构是有多余约束的几何不变图系。一个超静定结构有多少 个多余约束, 相应地便有多少个多余约束力, 也就需要建立同样数目的变 形协调方程, 才能把多余约束力解算出来。因此, 用力法计算超静定结构 时, 首先必须确定多余约束的数目, 这一数目就称为结构的超静定次数。
FyA
A
EI
MP 图
y
B
q
l
X1
l
X1 1
绘制弯矩图:
ql 2 8 A
B 3ql 计算各控制截面的弯矩: X1 8 ql 2 3ql l
MA
B
8
l ql
2

8
(上拉)
ql 2 16
2 ql 3ql l l l (下拉) M AB中 q 8 2 2 4 16
⒈ 撤除支座处的一根支杆或切断一根链杆, 相当于去除一个约束。
2次
X1 X2
4次
X3 X4
X1
X2
⒉ 撤除一个铰支座或撤除一个单铰, 相当于撤除两个约束。
X1
X2 X2 X2
X1
2次
X1
2次
⒊ 撤除一个固定支座或切断一根刚架杆件, 相当于撤除三个约束。
X1 X3 X2 X4 X6 X5 X2 X4 X5 X1

朱明zhubob结构力学6-5_1对称性的利用

朱明zhubob结构力学6-5_1对称性的利用

反对称弯矩
朱明工作室 zhubob

反对称荷载
对称荷载作用 对称荷载
反对称荷载 反对称内力
反对称内力
授人以鱼不如授人以渔
反对称荷载作用 对称内力
对称内力
对称内力 反对称内力
朱明工作室 zhubob

反对称荷载
对称荷载 反对称荷载 反对称内力
反对称内力
授人以鱼不如授人以渔
1P 2P

0 0
864 X1 216 X 2 216 X1 720 X
10080kN 2 1440kN

0 0

对称内力 对称内力
对称内力 反对称内力
6-5-1 取对称的基本结构 力法方程的系数可以分为两种:
朱明工作室 zhubob

①主系数 δii (i=1、2、‥‥、n) ②副系数 δij (i≠j )
简化计算的主要目标是:使方程中尽可能多的副系数等于零。
11 X1 1P 0
⑵ 在对称荷载作用下,只需求解对称未知力(反 对称未知力等于零)。
⑶ 在反对称荷载作用下,只需求解反对称未知力 (对称未知力等于零)。
⑷ 非对称荷载可分解为对称荷载和反对称荷载, 分别进行计算,然后将两种结果叠加;也可不 分解,直接用原荷载进行计算。
授人以鱼不如授人以渔
推广:选取成对未知力。
X1
基本结构1 X2
朱明工作室
基本结z构hub2ob
Y1
Y1
Y2
Y2
原结构
力法方程:
11 21
X1 X1

12 X 2 22 X 2

1P 2P

0 0

结构力学朱慈勉版课后答案【重要】

结构力学朱慈勉版课后答案【重要】

朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。

(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。

(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。

(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。

(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。

(a)2P F a 2P F a4P F Q34P F 2P F(b)aaaa a2m6m2m4m2m2020Q10/326/310(c)18060(d)3m2m2m3m3m4m3m2m2m2mA2m 2m2m2m7.5514482.524MQ3-3 试作图示刚架的内力图。

(a)242018616MQ18(b)4kN ·m 3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D30303011010QM 210(c)45MQ(d)3m3m 6m6m2m 2m444444/32MQN(e)4481``(f)4m4m2m3m4m222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。

(a)F P(b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。

结构力学-朱慈勉-第6章课后答案全解

结构力学-朱慈勉-第6章课后答案全解
解:基本结构为:
6-6试用力法求解图示超静定桁架,并计算1、2杆的内力。设各杆的EA均相同。
(a) (b)
题6-6图
6-7试用力法计算图示组合结构,求出链杆轴力并绘出M图。
(a)
解:基本结构为:
(b)
6-8试利用对称性计算图示结构,并绘出M图。
(a)
解:
原结构= +
①②
①中无弯矩。
②取半结构:
基本结构为:
结构力学第6章习题答案
6-1试确定图示结构的超静定次数。
(a)
(b)
(c)
(d)
(e)
(f)
(g)所有结点均为全铰结点
(h)
6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?
6-3试用力法计算图示超静定梁,并绘出M、FQ图。
(a)
解:
上图=
其中:
(b)
解:
基本结构为:
M图整体结构M图
(b)
(c)
解:根据对称性,考虑1/4结构:
基本结构为:
1
1
M
(d)
解:取1/4结构:
q
基本结构为:
q
X2
X1
1
1
1 1
M
(e)
(f)
(BEH杆弯曲刚度为2EI,其余各杆为EI)
取1/2结构:
= +
①②②中弯矩为0。
考虑①:反对称荷载作用下,取半结构如下:
= +
③④④中无弯矩。
考虑③:
6-4试用力法计算图示结构,并绘其内力图。
(a)
解:基本结构为:
(b)
解:基本结构为:

结构力学_第六章_作业参考答案(整理_BY_TANG_Gui-he)

结构力学_第六章_作业参考答案(整理_BY_TANG_Gui-he)

结构力学 第六章习题 参考答案TANG Gui-he6-1 试用积分法求图示刚架B 点的水平位移。

q解:(1) 实际状态下的内力AC 杆:22P qx M qlx =−+BC 杆:2P qlxM =(2) 虚拟状态下的内力AC 杆:M x = BC 杆:M x = (3)求Bx Δ200411()223 ()8l lp Bx M M ds qlx qx xdx qlx xdx EIEI EI qlΔ==+−+=∑∫∫∫i i→6-2 图示曲梁为圆弧形,EI =常数。

试求B 的水平位移。

1解:(1) 实际状态下的内力(sin 2p FM R R )θ=− (2) 虚拟状态下的内力1sin M R θ=i (3)求 Bx Δ/2312(sin )sin 22p Bx M M ds F F R R R Rd EIEIEIπθθθΔ==→−=∑∫∫ii i ()R6-3B AAB解:(1) 实际状态下的内力20sin()(1cos )p M qRd R qR θϕθϕθ=−=−∫i(2) 虚拟状态下的内力1sin M R θ=i(3)求 Bx Δ/2421(1cos )sin ()2p Bx M M ds FR qR R Rd EIEIEIπθθθΔ==←−=∑∫∫i i6-4 图示桁架各杆截面均为,32210m A −=×210 GPa E =,40 kN F =,。

试求:(a) C 点的竖向位移;(b) 角ADC 的改变量。

2 m d =F (kN)NP解: 实际状态下的桁架内力如上图。

(a )在C 点加上一个单位荷载,得到虚拟状态下的内力如上图。

11[2()(222322]22210)()N Np Cy F F l F d F d EAEA FdEAΔ==−−+↓++=+∑i i i i i i iNPNP(b)虚拟状态下的内力如上图。

11(22()(]4) ()N NpADCF F lF dEA EA dFEAϕ∠Δ==++−=∑ii i i增大6-6 试用图乘法求指定位移。

结构力学(朱慈勉版)上课件

结构力学(朱慈勉版)上课件

图乘。 a
MK图
ql 2
8
a
l
c
MP图
d
ql 2
8
l
Δ

1 EI
(
al 2
)

(
2c 3

d) 3
(2 3
l

ql )(c 8
d 2
)
第6章
使用乘法时应注意的问题小结: 1、yo必须取自直线图形; 2、当MK为折线图形时,必须分段计算; 3、当杆件为变截面时亦应分段计算; 4、图乘有正负之分; 5、若两个图形均为直线图形时,则面积、纵标可任意
A
A
p
A B
p
A
AB B
AB A B AB A B
第6章
4、上述各种位移统称为“广义位移”。与广义 位移相对应的力称为“广义力”。
二、计算结构位移的目的
1、刚度验算:电动吊车梁跨中挠度 fmax≤l/600。
2、计算超静定结构必须考虑位移条件。
3、施工技术的需要。
190.59 0.03m( ) EA
第6章
例题3 试求图示半径为R的圆弧形曲梁B点的竖向 位移BV。梁的抗弯刚度EI为常数。
M P PR sin
M K R sin
第6章
解: (1)在B点加一单位力(右图) ,写出单位力作用下的弯
矩表达式
(2)写出单位力作用下的弯矩表达式(左图)
第6章
二、图乘法证明
y
MP(x) d
M K M P ds l EI
1 EI
B
A M K M Pdx
1 EI
B
A x tgM Pdx

同济大学朱慈勉版结构力学课后答案(下)

同济大学朱慈勉版结构力学课后答案(下)

第六章 习 题6-1 试确定图示结构的超静定次数。

(a)(b)(c)(d)(e)(f)(g) 所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定去掉复铰,可减去2(4-1)=6个约束,沿I-I 截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定刚片I 与大地组成静定结构,刚片II 只需通过一根链杆和一个铰与I 连接即可,故为4次超静定(h)6-2 试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义? 6-3 试用力法计算图示超静定梁,并绘出M 、F Q 图。

(a) 解:上图=l1M p M01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EIl F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61 2l 3l 3 题目有错误,为可变体系。

+ lF 2 1=1M 图p Q X Q Q +=11p F 21p F 2(b) 解:基本结构为:l1Ml l 2Ml F p 21 p Ml F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδ p M X M X M M ++=2211p Q X Q X Q Q ++=22116-4 试用力法计算图示结构,并绘其内力图。

(a)l2l 2 l2l l 2Q 图12解:基本结构为:1Mp M01111=∆+p X δ p M X M M +=11(b)解:基本结构为:4a 2a4a4a3m6m6m810810计算1M,由对称性知,可考虑半结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构力学 第6章 习题答案6-1 试确定图示结构的超静定次数。

(a)(b)(c)(d)(e)(f)(g) 所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定去掉复铰,可减去2(4-1)=6个约束,沿I-I 截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定刚片I 与大地组成静定结构,刚片II 只需通过一根链杆和一个铰与I 连接即可,故为4次超静定(h)6-2 试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义? 6-3 试用力法计算图示超静定梁,并绘出M 、F Q 图。

(a) 解:上图= l1M p M01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EIl F X EI l p p F X 211=p M X M M +=11l F p 612l 3l 3 题目有错误,为可变体系。

+ lF 2 1=1M 图l F p 61 p Q X Q Q +=11p F 21p F 2(b) 解:基本结构为:l1Ml l 2Ml F p 21 p Ml F p 31⎪⎩⎪⎨⎧=∆++=∆++022221211212111p p X X X X δδδδ p M X M X M M ++=2211p Q X Q X Q Q ++=22116-4 试用力法计算图示结构,并绘其内力图。

(a)l2l 2 l2l l 2Q 图12* *解:基本结构为:1Mp M01111=∆+p X δ p M X M M +=11(b)4a 2a4a4a3m 6m6m20kN/m810810* * 解:基本结构为:计算1M,由对称性知,可考虑半结构。

1M计算pM:荷载分为对称和反对称。

对称荷载时:a q22q26qa26qa26qa反对称荷载时:a q22q2* *214qa22qa 01111=∆+p X δ p M X M M +=116-5 试用力法计算图示结构,并绘出M 图。

(a)解:基本结构为:1M 2Mp M用图乘法求出p p 21221211,,,,∆∆δδδ⎪⎩⎪⎨⎧=∆++=∆++022221211212111p p X X X X δδδδ6m 6m3m3mX 2p M(b)解:基本结构为:1MMp M M()EI EI 1086623323326611=⨯⨯+⨯⨯+⨯⨯=δ ()03323326612=⨯⨯-⨯⨯=EI δ()EIEI 1086623323326622=⨯⨯+⨯⨯+⨯⨯=δEI EI p 27003231806212362081632323180621121=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⨯⨯⨯=∆6m6m3180150EI EI p 5403231806212362081632323180621122=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯-⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⨯⨯⨯=∆ ⎩⎨⎧-=-=⇒⎪⎪⎩⎪⎪⎨⎧=+=+5250540108027001082111X X EI X EIEIX EI m KN M CA ⋅=⨯-⨯-=9035253180 m KN M CB ⋅=⨯+⨯-=12035253180 ()m KN M CD ⋅-=-⨯=3056(c)解:基本结构为:1N 1Mp M()EI I E EI 5558293299233256633263111=⨯⎥⎦⎤⎢⎣⎡⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯=δ ()EI I E p 1442103109109231025661-=⨯⎥⎦⎤⎢⎣⎡⨯+⨯+⨯⨯+⨯⨯⨯-=∆ 6m3m9 9* *01111=∆+p X δ29.11=⇒Xm KN M AC ⋅=-⨯=61.11029.19m KN M DA ⋅-=-⨯=13.61029.13m KN M DC ⋅=⨯=87.329.13M(d)解:基本结构为:1M2M6m3m3.871.611.6110k N /mX26* *p M()()EII E EI 6.111293299233256623326311=⨯⨯⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯=δ ()EI I E 2.256396256612-=⨯+⨯⨯⨯-=δ ()()EII E I E 4.5066226666256622=⨯⨯⨯+⨯⨯⨯=δ()EI EI I E EI p 25.17216456325194540534059245325664334533111=⎪⎭⎫ ⎝⎛⨯⨯⨯-⨯+⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=∆02=∆p⎩⎨⎧-=-=⇒⎪⎪⎩⎪⎪⎨⎧=+-=+-69.839.1704.502.25025.17212.256.111212121X X X EI X EIEI X EI X EI m KN M AD ⋅=⨯-=49.24839.179405()m KN M BF ⋅=⨯--⨯=37.10439.17969.86 ()m KN M FE ⋅-=-⨯=17.5239.173()m KN M CG ⋅-=-⨯=14.5269.86M49.248 37.104 14.526-6 试用力法求解图示超静定桁架,并计算1、2杆的内力。

设各杆的EA 均相同。

40545(a) (b)题6-6图6-7 试用力法计算图示组合结构,求出链杆轴力并绘出M 图。

(a)解:基本结构为:1M p M()EIl l k l l l EI l EA l 272222262311=+⨯⨯+=θδ ()EI l F l k l F l l F l l F EI lp p p p p 2222631=+⨯+⨯⨯=∆θ01111=∆+p X δp F X 721-=⇒l F l F l F M p p p A 73272=⨯-=aaa1.5m2l l 173M (b)6-8 试利用对称性计算图示结构,并绘出M 图。

(a)解: 原结构+①②①中无弯矩。

②取半结构:基本结构为:6m6m9ma apFpFpFpFp Fp FpFp F 21M p MEI EI 22433299921211⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=δ p p p F EIF EI 22433292992111=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=∆ p p F X X 41011111-=⇒=∆+δM 图 整体结构M 图(b)(c)解:根据对称性,考虑1/4结构:llAB CDEI=常数qq 3m4m5m4m60kNA BC DEI=常数p 49p 4p F 49p 2基本结构为:12l qEIl l EI=⎪⎭⎫ ⎝⎛⨯⨯⨯=2121111δEI ql ql l ql l EI p 121821823112221=⎪⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯⨯=∆01111=∆+pX δ1221ql X -=⇒p M X M M +=112ql 242ql 242ql242ql 242ql M (d)解:取1/4结构: qlllDEAB EI=常数q qCF122ql 122ql基本结构为:111 1 2MpMEIlllEI332213211=⎪⎪⎭⎫⎝⎛⨯⨯=δEIllEI212112212-=⎪⎭⎫⎝⎛⨯⨯-=δEIlllEI2311112122=⎪⎭⎫⎝⎛⨯⨯+⨯⨯=δEIqllqllEIp8432311421-=⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯-=∆EIqlqllEIp612311322=⎪⎪⎭⎫⎝⎛⨯⨯⨯=∆⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=++-=--2213212422133611256232823qlXqlXEIqlXEIlXEIlEIqlXEIlXEIl362ql362ql22lq92ql92ql362ql 362ql M(e) (f)( BEH 杆弯曲刚度为2EI ,其余各杆为EI )取=+①② ②中弯矩为0。

考虑①:反对称荷载作用下,取半结构如下:=+ 2a 2a92qlpFF F F p F 2p F F 2p F 2③ ④ ④中无弯矩。

考虑③:弯矩图如下:(g)解:原结构=+①②①弯矩为0。

反对称荷载下:基本结构为:aaa aF F 2F paF p 22p F 2p F2p F 2p F2p F1M p MEI a a a a EI3832222211311=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEI a F a F a a F a EI a p p p p 1252222631-=⎪⎪⎭⎫⎝⎛⨯-⨯⨯-=∆p p pF X X EI a a EI F X EI a k X X 485341253811331311111=⇒-=-⇒-=∆+δM 图如下:(h)6-9 试回答:用力法求解超静定结构时应如何恰当地选取基本结构? 6-10 试绘出图示结构因支座移动产生的弯矩图。

设各杆EI 相同。

l hlll 2p F F p 2a p a F p 247p 24(a)(b)题6-10图6-11 试绘出图示结构因温度变化产生的M 图。

已知各杆截面为矩形,EI=常数,截面高度h=l/10,材料线膨胀系数为α。

(a) (b)题6-11图6-12 图示平面链杆系各杆l 及EA 均相同,杆AB 的制作长度短了 ,现将其拉伸(在弹性范围内)拼装就位,试求该杆轴力和长度。

题6-12图 题6-13图6-13 刚架各杆正交于结点,荷载垂直于结构平面,各杆为相同圆形截面,G = 0.4 E ,试作弯矩图和扭矩图。

6-14 试求题6-11a 所示结构铰B 处两截面间的相对转角B Δ 。

6-15 试判断下列超静定结构的弯矩图形是否正确,并说明理由。

(a) (c)lll+5℃ 4a4a4a 3aAB B ′EI=常数CD lP q2l 2 l 2l l(d)题6-15图6-16 试求图示等截面半圆形两铰拱的支座水平推力,并画出M 图。

设EI=常数,并只考虑弯曲变形对位移的影响。

题6-16图RRPR。

相关文档
最新文档