铁磁材料磁化特性研究

合集下载

大学物理实验课思考题参考答案

大学物理实验课思考题参考答案

大学物理实验思考题参考答案目录一、转动惯量:二、伏安法与补偿法三、混沌思考题四、半导体PN结五、地磁场六、牛顿环七、麦克尔逊干涉仪八、全息照相九、光电效应十、声速测量十一、用电位差计校准毫安表十二、落球法测量液体的黏度十三、电子束偏转与电子比荷测量十四、铁磁材料磁化特性研究十五、光栅衍射十六、电桥十七、电位差计十八、密立根油滴十九、模拟示波器二十、金属杨氏摸量二十一、导热系数二十二、分光计二十三、集成霍尔传感器特性与简谐振动一、转动惯量:1、由于采用了气垫装置,这使得气垫摆摆轮在摆动过程中受到的空气粘滞阻尼力矩降低至最小程度,可以忽略不计。

但如果考虑这种阻尼的存在,试问它对气垫摆的摆动(如频率等)有无影响?在摆轮摆动中,阻尼力矩是否保持不变?答:如果考虑空气粘滞阻尼力矩的存在,气垫摆摆动时频率减小,振幅会变小。

(或者说对频率有影响,对振幅有影响)在摆轮摆动中,阻尼力矩会越变越小。

2、为什么圆环的内、外径只需单次测量?实验中对转动惯量的测量精度影响最大的是哪些因素?答:圆环的内、外径相对圆柱的直径大很多,使用相同的测量工具测量时,相对误差较小,故只需单次测量即可。

(对测量结果影响大小)实验中对转动惯量测量影响最大的因素是周期的测量。

(或者阻尼力矩的影响、摆轮是否正常、平稳的摆动、物体摆放位置是否合适、摆轮摆动的角度是否合适等)3、试总结用气垫摆测量物体转动惯量的方法有什么基本特点?答:原理清晰、结论简单、设计巧妙、测量方便、最大限度的减小了阻尼力矩。

二、伏安法与补偿法1、利用补偿法测量电阻消除了伏安法的系统误差,还可能存在的误差包括:读数误差、计算产生的误差、仪器误差、导线阻值的影响等或其他。

2、能利用电流补偿电路对电流表内接法进行改进:三、混沌思考题1、有程序(各种语言皆可)、K值的取值范围、图 +5分有程序没有K值范围和图 +2分只有K值范围 +1分有图和K值范围 +2分2、(1)混沌具有内在的随机性:从确定性非线性系统的演化过程看,它们在混沌区的行为都表现出随机不确定性。

铁磁材料的磁化与磁化曲线

铁磁材料的磁化与磁化曲线

虽然利用铁磁材料可以使磁通约束在铁 心范围内,但由于制造和结构上的原因,磁 路中常会含有空气隙,使极少数磁力线扩散 出去造成所谓的边缘效应,如图8-9所示。 另外,还会有少量磁力线不经过铁心而经过 空气形成磁回路,这种磁通称为漏磁通。漏 磁通相对主磁通来说,所占比例很小,所以 一般可忽略不计。
如果把铁磁材料置入外磁场中,这时大多数磁畴都会趋 向与外磁场的方向规则的排列,因而在铁磁材料内部形 成了很强的与外磁场同方向的附加磁场,从而大大地增 强了磁感应强度,即铁磁材料被磁化了,如图8-1b所示。 当外加磁场进一步加强,所有磁畴的方向都几乎转向外 加磁场方向,这时附加磁场不再加强,这种现象叫做磁 饱和,如图8-1c所示。
第二节 磁路与此路定律
一、磁路
在电机,变压器及其它各种电磁器件中,常 用铁磁材料做成一定形状的铁心。其目的一是用 较小的励磁电流能够产生足够大的磁通;二是将 磁通限定在一定的范围之内。如图8-7所示。
在图8-7b中,磁感应线几乎都是沿着铁心形 成闭合回路。因此这种由铁磁材料构成的,让磁 通集中通过的闭合路径叫磁路。
(二) 磁化曲线
不同种类的铁磁性物质,其磁化性能是不同的。工 程上常用磁化曲线表示各种铁磁性物质的磁化特性。 磁化曲线是铁磁性物质的磁感应强B与外磁场的磁
场强度H之间的关系曲线,所以又 B H叫曲线。
铁磁物质的磁化曲线可用试验测定。测量铁磁物质 磁化曲线的装置如图8-2所示。
1.起始磁化曲线
4、基本磁化曲线
对同一铁磁材料,取不同的Hm反复磁化, 将得到一系列磁滞回线,如图8-4b所示。 各磁滞回线的顶点联成的曲线 ON称为基本 磁化曲线,简称磁化曲线。工程上常用基 本磁化曲线进行磁路计算。
二、铁磁材料的磁性能

铁磁材料及其磁化特性

铁磁材料及其磁化特性

磁畴合并
随着外磁场增强,相邻的磁畴会逐渐合并,形 成一个大的磁畴。
饱和磁场
使铁磁材料完全磁化所需的最低外磁场强度称为饱和磁场。
03
铁磁材料的磁化特性
磁导率与磁化率
磁导率
描述铁磁材料在磁场中的磁化程度,与材料的磁化率有关。
磁化率
表示材料被磁化的难易程度,其值越大,材料越容易被磁化。
磁滞回线与矫顽力
磁晶各向异性是指铁磁材料在磁化过 程中,其磁畴结构和磁化行为与晶体 结构相关,呈现出各向异性的特点。
不同晶体结构的铁磁材料具有不同的 磁晶各向异性,这决定了其磁畴结构、 磁化强度和磁化过程。了解和利用磁 晶各向异性是设计和优化铁磁材料性 能的关键。
应力与应变对磁化的影响
应力与应变对铁磁材料的磁化特性具有显著影响。当铁磁材料受到外力作用时,其内部应力分布发生 变化,进而影响原子间相互作用和电子云分布,导致磁畴结构和磁化强度的变化。
铁磁材料具有高磁导率、低矫顽 力和高磁能积等特性,使其在磁 场中表现出优异的磁性能。
种类与应用
种类
常见的铁磁材料包括铁、钴、镍及其 合金等。
应用
铁磁材料广泛应用于电力、电子、通 信、航空航天、医疗器械等领域,如 变压器、电机、发电机、磁性记录和 磁悬浮列车等。
历史与发展
历史
铁磁材料的发现和应用可以追溯到19世纪初,随着科技的发展,铁磁材料的性能不断得到优化和提升 。
磁畴的转动与磁化
磁化过程
当外加磁场作用于铁磁材料时,磁畴会逐渐转向外磁 场方向,从而实现磁化。
磁畴转动机制
磁畴转动是通过交换相互作用实现的,即相邻磁畴之 间原子磁矩的交换作用。
磁化速率
磁化速率取决于温度、外磁场强度和铁磁材料的性质。

铁磁材料的磁性研究与应用

铁磁材料的磁性研究与应用

铁磁材料的磁性研究与应用随着科学技术的不断发展,人类对于材料的研究日益深入,特别是在磁性材料的研究领域中,更是取得了诸多新的成果。

其中,铁磁材料作为一类重要的磁性材料,其磁性的研究与应用也备受关注。

一、铁磁材料的磁性铁磁材料是一类能持续保持磁性的物质,它们包括了铁、镍、钴等金属及其合金。

这类材料具有高饱和磁感应强度、高矫顽力等优点,并且稳定性较强,在电机、传感器、磁卡等各种领域都有广泛的应用。

在磁性的研究中,铁磁材料的磁性表现出了一系列的现象,如顺磁、铁磁、反铁磁等。

在顺磁性中,当物质中存在着一定的未成对自旋电子(即分子场)时,分子场会增强磁化强度,从而形成顺磁性。

而在铁磁性中,当物质中的电子磁矩最大时,形成铁磁性。

反铁磁性则不同于铁磁性,它的磁性主要是由区域性反向排列的微观磁性单元所造成的。

二、铁磁材料的应用铁磁材料在工业和生活中的应用十分广泛,下面为大家介绍几个具体的应用领域。

1.电机在电机领域中,铁磁材料是制作电机转子和定子的重要材料之一。

在现代工业中,各种大小不同、功率不同的电机都依靠铁磁材料来制造。

2.传感器铁磁材料作为一种磁性材料,能够感受并产生磁场,所以在传感器中也广泛应用。

如在运动传感器中使用铁磁材料,就可以利用材料的磁性进行测量,并将信号转化为数字信号,以判断物体的位置和速度。

3.磁性存储器铁磁材料作为一种存储介质,可以保持信息的稳定性,而且具有容量大、速度快、保存时间长的特点。

因此,在电脑硬盘、U 盘等存储器中的磁性材料也是铁磁材料。

4.磁卡在磁卡制造方面,铁磁材料也是不可或缺的一种材料。

因为铁磁材料中的磁性能够保持长期稳定的状态,能够记录信息,所以可以将其用于制作磁条,并用于支付、门禁系统等领域。

总之,铁磁材料的磁性研究与应用涵盖了诸多领域,其磁性特性和性能的进一步研究和开发,将为未来的科技创新和社会进步提供一定的支持和帮助。

铁磁材料的磁化特性的研究(精)

铁磁材料的磁化特性的研究(精)
式表示
2

d2 dt
n d dt
2 是线圈n中产生的感应电动势
2 n 次级线圈中的磁通链数
当I2R2 Q / C2 时, 2 I 2 R2
电容C两端的电压:
I2

dQ dt

C2
dU y dt
2

C2 R2
dU y dt
Uy

nS C2 R2
B
该式表明示波器垂直偏转板上的电压,即电容两端的电 压Uy是正比例于磁感应强度B的。
3 磁滞现象:
铁磁材料的磁化过程是不可逆的。
当铁磁质达到饱和
a
后,减小H,B沿图 ab下降;当H=0时B
Br b
=Br,称为剩磁。 当H=Hc时,B=0,
c
f
bc段是退磁曲线
-Hc
Hc称为矫顽力;反
-Br e
向继续增大H,铁 磁质反向沿cd段达
d
到饱和;
反向减小H到0,则B沿de到-Br。H按原方向增加经ef到Hc; 继续增大H,则B沿fa回到原来饱和状态。
不同的铁磁质具有不同形状的磁滞回线,按矫顽力 的大小,铁磁材料可分为: 软磁材料:矫顽磁力很小 ,适合于做变压器、
电机中的铁芯等。 硬磁材料:矫顽磁力很大,常用做永磁体。
常用在电表、收音机、扬声器中。 矩磁材料:它的磁滞回线接近于矩形,可以用做
“记忆”元件。 如电子计算机中存储 器的磁芯.
实验仪器介绍
CH2通道
X-Y控制键 X-Y触发

ε
量 仪


饱和磁感应强度
初始磁化曲线 当电流从0逐渐增加,线圈中的磁场强度H也随之增加, 这样就可以测出若干组B,H值。以H为横坐标,B为纵坐标, 画出B随H的变化曲线,这条曲线称为初始磁化曲线。当H 增大到某一值后,B几乎不再变化,这时铁磁材料的磁化状 态为磁饱和状态。此时的磁感应强度Bs叫做饱和磁感应强度。

铁磁材料的相变行为研究

铁磁材料的相变行为研究

铁磁材料的相变行为研究当我们考虑关于铁磁材料的相变行为时,我们往往会联想到磁性的吸引力和磁场的作用。

这种研究旨在理解铁磁材料在不同温度和外部环境下的行为变化,以及如何利用这些变化来设计更先进的磁性材料。

一、铁磁材料的基本特性铁磁材料是指具有自发磁化特性的材料,它们在外部磁场的作用下会表现出明显的吸引力。

由于铁磁材料的磁矩可以在外部磁场的作用下发生变化,因此我们可以通过控制磁场来改变材料的磁性质。

在铁磁材料中,磁矩通常由电子自旋和轨道运动形成。

当外部磁场施加在材料上时,磁矩会发生定向,使材料表现出磁性。

而当磁场被去除时,磁矩可能会重新排列,从而导致材料失去磁性。

二、相变行为的起因铁磁材料的相变行为通常是由磁矩之间的相互作用导致的。

磁矩之间的相互作用可以分为两种类型:直接交换相互作用和超交换相互作用。

直接交换相互作用是指磁矩之间的相互作用通过电子波函数的重叠来实现。

这种相互作用只能在靠近原子核的局部区域内发生,并且与磁场无关。

在低温下,这种相互作用会导致材料的铁磁性。

超交换相互作用是指通过中间原子之间的离子相互作用来实现的。

这种相互作用可以延伸到整个材料,并且与磁场有关。

在高温下,这种相互作用会引起材料的反铁磁性。

三、铁磁材料的相变行为铁磁材料的相变行为可以通过测量磁化强度(M)和温度(T)之间的关系来研究。

这种关系可以用磁化曲线来表示。

在低温下,铁磁材料的磁化强度会随着温度的降低而增加,形成一个明显的曲线。

这种曲线表现为磁化强度在低温时的快速增加,然后在临界温度下急剧下降。

在临界温度以上,铁磁材料会失去磁性,磁化强度减小。

这种现象被称为顺磁性。

顺磁性在高温下成为主导,而在低温下则被铁磁性所取代。

四、应用和未来研究铁磁材料的相变行为研究对于磁性材料的应用和设计具有重要意义。

通过深入了解材料在不同温度和外部环境下的行为变化,我们可以设计更先进、更高效、更可靠的磁性设备和材料。

在未来的研究中,我们可以探索更复杂的铁磁材料的相变行为。

实验十二 铁磁材料的磁滞回线和基本磁化曲线

实验十二   铁磁材料的磁滞回线和基本磁化曲线

实验十二 铁磁材料的磁滞回线和基本磁化曲线一、实验目的1.认识铁磁质的磁化规律,比较两种典型的铁磁质的动态磁特性。

2.测定样品的基本磁化曲线,作μr -H 曲线。

3.测定样品的H D 、B r 、B m 和[H ·B]max 等参数。

4.测绘样品的磁滞回线,估算其磁滞损耗。

二、实验原理1.铁磁物质及其磁滞曲线根据介质在磁场中的表现,一般将磁介质分为顺磁质、抗磁质和铁磁质。

设想在真空中(没有磁介质时)有一磁场的磁感应强度是B0,其大小是B 0,将磁介质放入这个磁场中,若磁介质中的磁感应强度比B 0小一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B 0大一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B 0大得多,甚至数百数万倍的增长,那末这个介质是铁磁质。

实验表现是铁磁质移近磁极时被吸住,顺磁质稍微有被磁极吸引,而抗磁质反而被磁极稍微推开。

下表是一些材料的相对磁导率,根据相对磁导率很容易区分顺磁质、抗磁质和铁磁质。

铁磁质材料包含铁、钴、镍、某些稀有金属及其众多合金以及它们的许多氧化物的混合物(铁氧体)等。

铁磁质是一种性能特异、用途广泛的材料,我们一般情况提到磁介质均指铁磁质。

其特征是在外磁场作用下能被强烈磁化,磁导率μ很高;另一特征是磁滞,即磁化场消失后,介质仍保留磁性,即有剩磁。

图1为铁磁质的磁感应强度B 与磁化场强度H 之间的关系曲线。

图1 铁磁质的B -H 关系曲线 图2 铁磁质的μ-H 关系曲SS线图1中的原点O表示磁化之前铁磁质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,继之B 随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,OabS称为起始磁化曲线。

(注意:这里说的饱和值B S,并不是说B的最大值。

其实在达到B S后磁感应强度B仍然在随磁化场强度H变化,这时的B-H关系几乎是线性的。

物理实验报告铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化曲线Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验20铁磁材料的磁滞回线及基本磁化曲线铁磁物质是一种性能特异、用途广泛的材料。

如航天、通信、自动化仪表及控制等都无不用到铁磁材料(铁、钴、镍、钢以及含铁氧化物均属铁磁物质)。

因此,研究铁磁材料的磁化性质,不论在理论上,还是在实际应用上都有重大的意义。

本实验使用单片机采集数据,测量在交变磁场的作用下,两个不同磁性能的铁磁材料的磁化曲线和磁滞回线。

【预习重点】(1)看懂实验原理图及接线图。

(2)复习示波器的使用方法。

参考书:《电磁学》下册,赵凯华、陈熙谋着,第五、六章;《大学物理学》电磁学部分,杨仲耆等编,第六章。

【仪器】磁滞回线实验组合仪、双踪示波器。

【原理】1)铁磁材料的磁化及磁导率铁磁物质的磁化过程很复杂,这主要是由于它具有磁滞的特性。

一般都是通过测量磁化场的磁场强度H和磁感应强度B之间的关系来研究其磁性规律的。

图20—1起始磁化曲线和磁滞回线图20—2基本磁化曲线当铁磁物质中不存在磁化场时,H和B均为零,即图20—1中B~H曲线的坐标原点0。

随着磁化场H的增加,B也随之增加,但两者之间不是线性关系。

当H增加到一定值时,B不再增加(或增加十分缓慢),这说明该物质的磁化已达到饱和状态。

Hm 和Bm 分别为饱和时的磁场强度和磁感应强度(对应于图中a点)。

如果再使H逐渐退到零,则与此同时B也逐渐减少。

然而H和B对应的曲线轨迹并不沿原曲线轨迹a0返回,而是沿另一曲线ab下降到Br ,这说明当H下降为零时,铁磁物质中仍保留一定的磁性,这种现象称为磁滞,Br 称为剩磁。

将磁化场反向,再逐渐增加其强度,直到H=-Hc ,磁感应强度消失,这说明要消除剩磁,必须施加反向磁场Hc 。

Hc 称为矫顽力。

它的大小反映铁磁材料保持剩磁状态的能力。

图20—1表明,当磁场按Hm →0→-Hc→-Hm →0→Hc →Hm 次序变化时,B所经历的相应变化为Bm →Br →0→-Bm →-Br →0→Bm 。

实验6-22铁磁材料磁滞回线和磁化曲线的测量

实验6-22铁磁材料磁滞回线和磁化曲线的测量

实验6-22 铁磁材料磁滞回线和磁化曲线的测量在交通、通讯、航天、自动化仪表等领域中,大量应用各种特性的铁磁材料。

常用的铁磁材料多数是铁和其它金属元素或非金属元素组成的合金以及某些包含铁的氧化物(铁氧体)。

铁磁材料的主要特性是磁导率μ非常高,在同样的磁场强度下铁磁材料中磁感应强度要比真空或弱磁材料中的大几百至上万倍。

磁滞回线和磁化曲线表征了磁性材料的基本磁化规律,反映了磁性材料的基本磁参数,对铁磁材料的应用和研制具有重要意义。

本实验利用交变励磁电流产生磁化场对不同性能的铁磁材料进行磁化,通过单片机采集实验数据,测绘磁滞回线和磁化曲线,研究铁磁材料的磁化性质。

实验目的1、了解用示波器显示和观察动态磁滞回线的原理和方法。

2、掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。

3、学会根据磁滞回线确定矫顽力Hc 、剩余磁感应强度Br 、饱和磁感应强度Bm 、磁滞损耗][BH 等磁化参数。

4、学习测量磁性材料磁导率μ的一种方法,并测绘铁磁材料的μ—H 曲线,了解铁磁材料的主要特性。

实验仪器TH —MHC 型磁滞回线实验仪,智能磁滞回线测试仪,双踪示波器等。

实验原理1、铁磁材料的磁化特性及磁导率 1)初始磁化曲线和磁滞回线研究铁磁材料的磁化规律,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。

铁磁材料的磁化过程非常复杂,B 与H 之间的关系如图1所示。

当铁磁材料从未磁化状态(H=0且B=0)开始磁化时,B 随H 的增加而非线性增加。

当H 增大到一定值Hm 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。

达到磁饱和时的Hm 和Bm 分别称为饱和磁场强度和饱和磁感应强度(对应图1中Q 点)。

B ~H 曲线OabQ 称为初始磁化曲线。

当使H 从Q 点减小时,B 也随之减小,但不沿原曲线返回,而是沿另一曲线QRD 下降。

当H 逐步较小至0时,B 不为0,而是Br ,说明铁磁材料中仍然保留一定的磁性,这种现象称为磁滞效应;Br 称为剩余磁感应强度,简称剩磁。

铁磁材料的磁滞回线圈和基本磁化曲线

铁磁材料的磁滞回线圈和基本磁化曲线

0.09500
0.01575
2.8
2080
595
0.06933
0.09917
0.01430
3.0
2240
610
0.07467
0.10167
0.01362
表二 B-H 曲线
测试条件:
NO. (mV)
1
910
2
-910
3
360
4
-360
5
0
6
0
7
600
8
400
9
200
10
600
11
-400
12
-600
13
从图 1 可以看出: (1)当 H=0 时,B 不为零,铁磁材料还保留一定值的磁感应强度 Br ,通
常称 Br 为铁磁材料的剩磁。
(2)要消除剩磁 Br ,使 B 降为零,必须加一个反方向磁场 HC ,这个反向
磁场强度 HC 叫做该铁磁材料的矫顽磁力。 (3)H 上升到某一个值和下降到同一数值时,铁磁材料内的 B 值并不相同,
南昌大学物理实验报告
课程名称:
大学物理实验(下)_____________
实验名称: 铁磁材料的磁滞回线圈和基本磁化曲线
学院: 信息工程学院 专业班级:
学生姓名:
学号: __
实验地点: 基础实验大楼 B208 座位号: ___
实验时间: 第 8 周星期三下午三点四十五分_______
一、 实验目的
1、 掌握用磁滞回线测试仪测绘磁滞回线的方法。 2、 了解铁磁材料的磁化规律,用示波器法观察磁滞线,比较两种典型铁磁
物质的动态磁化特性。 3、 测定样品的基本磁化特性曲线(B-H 曲线),并作μ-H 曲线。 4、 测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关参量。

铁磁材料的磁化特性的研究(精)

铁磁材料的磁化特性的研究(精)
11riux?1ilnh?hnli?1?r1上的电压ux取r1远小于线圈n1的阻抗2?线圈n中交变磁场h在铁磁材料中产生交变的磁感应强度b因此在线圈n中产生感应电动势式表示其大小用下dtdndtd????22?2?是线圈n中产生的感应电动势???n2次级线圈中的磁通链数222cqri??222ri??当时brcnsuy22?该式表明示波器垂直偏转板上的电压即电容两端的电压uy是正比例于磁感应强度b的
实验设计思想: 如果希望在示波器上显示出被测铁磁材料的磁滞回线, 必须使输入到示波器X偏转板上的电压Ux与磁场强度H成 正比,同时使输入到示波器y偏转板上的电压Uy与铁磁 材料中的磁感应强度B成正比 R1上的电压Ux(取R1 远小于线圈N1的阻抗)
U x I1R1
LR1 Ux H N 该式表明了在交变磁场下,任一时刻输入到示波器上的 电压降Ux与磁场强度H 成正比。
2 4
输 入 信 号
ε
测 量 仪 器
饱和磁感应强度
初始磁化曲线 当电流从0逐渐增加,线圈中的磁场强度H也随之增加, 这样就可以测出若干组B,H值。以H为横坐标,B为纵坐标, 画出B随H的变化曲线,这条曲线称为初始磁化曲线。当H 增大到某一值后,B几乎不再变化,这时铁磁材料的磁化状 态为磁饱和状态。此时的磁感应强度Bs叫做饱和磁感应强度。
3 磁滞现象:
铁磁材料的磁化过程是不可逆的。 当铁磁质达到饱和 后,减小H,B沿图 a ab下降;当H=0时B =Br,称为剩磁。 Br b 当H=Hc时,B=0, bc段是退磁曲线 f c -Hc Hc称为矫顽力;反 向继续增大H,铁 -Br e 磁质反向沿cd段达 到饱和;
d
反向减小H到0,则B沿de到-Br。H按原方向增加经ef到Hc; 继续增大H,则B沿fa回到原来饱和状态。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2、测定样品的基本磁化曲线,作μ-H 曲线。

3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。

4、了解磁滞回线的概念以及如何用示波器观察磁滞回线。

二、实验原理1、铁磁材料的磁化特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图 1 为铁磁物质的磁感应强度B 与磁化场强度 H 之间的关系曲线。

图 1 铁磁质 B H 曲线铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场 H,则铁磁材料内部的磁场强度 B 随 H 的增加而增加,开始时 B 的增加较慢,而后随着 H 的增加,B 的增加变快,再继续增加 H 时,B 的增加又变慢,当 H 增加到 Hm 时,B 达到饱和值Bm 。

从图中可以看出,B 和H 的关系不是线性的,而是非线性的。

2、磁滞回线当 H 从 Hm 逐渐减小至零,B 并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线 SR 下降,比较线段 OS 和 SR 可知,H 减小 B也减小,但 B 的变化滞后于 H 的变化,这一现象称为磁滞。

当 H = 0 时,B = Br,Br 称为剩余磁感应强度。

要使 B 减到 0,必须加一反向磁场 Hc,Hc 称为矫顽力。

若再使反向磁场逐渐增加到 Hm,B 就沿图 1 中 S'R'C'变化,继而在 Hm 到 0 时,B 又沿 S'C 变化。

当 H 在 0 和 Hm 之间反复变化时,就得到一系列闭合的 B H 曲线,称为磁滞回线。

3、基本磁化曲线对于同一铁磁材料,选择不同的最大磁化电流 I,可得到不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得到的曲线称为基本磁化曲线。

钢铁材料磁性的研究

钢铁材料磁性的研究

钢铁材料磁性的研究随着社会的发展,钢铁材料在各种领域的应用日益广泛。

而材料的性能如何,直接关系到其使用效果。

其中一个重要的性能就是磁性。

本文将重点讨论钢铁材料的磁性研究。

首先,我们需要了解一些基础知识。

磁性是材料展现出的一种特殊性质,即当材料受到磁场作用时,会被吸引或排斥。

在日常生活中,磁性材料很常见,例如冰箱门上的磁铁、扫地机器人中的电机等。

这些都是借助了材料的磁性来实现其特定功能。

那么钢铁材料的磁性是如何研究和应用的呢?首先,我们需要明确的是,钢铁是由铁和碳组成的合金。

而铁是自然界中含量最丰富的金属之一,同时也是一种具有磁性的材料。

因此,我们可以很容易地想象到,钢铁材料会研究其磁性特点,是因其主要成分——铁所具有的磁性。

磁性是钢铁材料的一种内在物理性质,它可以被描述成磁化强度、剩余磁感应强度、磁损耗等参数。

这些参数是研究钢铁材料磁性的关键指标。

所以,要研究钢铁材料的磁性,研究者需要通过实验来确定这些关键指标。

为了研究钢铁材料的磁性,研究者需要进行一系列实验。

其中最常见的实验是磁滞回线实验。

这项实验可以帮助研究者得出钢铁材料的饱和磁强度、剩余磁化、矫顽力等数据。

这些数据是研究钢铁材料磁性的基础,同时也可以为磁性材料的应用提供重要参考。

通过对钢铁材料磁性的研究,可以提高工程师的设计水平。

例如,汽车发动机中的磁性体是钢铁材料中的一种,研究其磁性特性可以为发动机设计师提供重要参考。

同时,研究钢铁材料的磁性,可以为电子行业的发展提供有力支持。

如今,磁盘驱动器、电动机、发电机等电子元器件的设计,都需要考虑材料的磁性。

因此,对于电子行业来说,研究钢铁材料的磁性显得尤为重要。

除了应用方面,钢铁材料磁性的研究还可以帮助人们更好地了解自然。

地球的磁场就是由地球内部的铁制成的。

研究钢铁材料的磁性,可以使人们更加深入地了解地球内部的构造和物理特性,进而为地质学研究提供更加详尽的资料。

综上所述,钢铁材料磁性的研究在现代社会中十分重要。

铁磁材料的特点

铁磁材料的特点

铁磁材料的特点铁磁材料是一类具有特殊磁性的材料,具有以下特点:一、强磁性铁磁材料具有极强的磁性,能够吸引铁、镍等物质。

这是因为铁磁材料内部存在着许多小的磁区(也称为磁畴),这些磁区中的自旋方向相同,形成了一个宏观上表现出来的强磁场。

二、可逆饱和磁化强度高铁磁材料在外加一定大小的磁场时,其内部的小磁区会重新排列,使得整个材料的总磁化强度增加。

当外加的磁场达到一定大小时,铁磁材料会进入饱和状态。

而且,在去除外界磁场后,铁磁材料能够恢复到原来没有受到外界影响前的状态。

三、剩余饱和感应强度大剩余饱和感应强度是指在去除外界作用后,仍然存在于铁磁材料中的总体感应强度。

由于铜、金、铝等非金属物质不具备剩余饱和感应强度,所以铁磁材料在电机、变压器等领域中得到了广泛的应用。

四、磁滞损耗小铁磁材料在外加磁场作用下,会经历一个磁化和去磁化的过程。

这个过程中,铁磁材料会吸收一定的能量,并且会有一定的能量损失。

而铁磁材料由于其内部小磁区的特殊结构,使得其在经历一次完整的磁化去磁化过程后,所吸收和损失的能量非常小。

五、温度系数低铜、金、铝等非金属物质具有较大的温度系数,而铁磁材料则具有较低的温度系数。

这意味着,在不同温度下,铁磁材料的性能变化比较小。

这也是为什么电机、变压器等需要长期稳定工作的设备中使用铁磁材料。

六、易加工性好由于铜、金、铝等非金属物质硬度较高,加工难度大。

而铁磁材料则具有良好的可塑性和可加工性,可以通过切割、冲压、焊接等方式进行加工。

七、易磨损铁磁材料由于具有较强的磁性,容易吸附铁屑等杂质,导致表面磨损。

因此,在使用铁磁材料的设备中,需要注意对其表面进行保护和清洗。

八、易氧化铁磁材料在空气中容易发生氧化反应,形成氧化层。

这会影响其机械性能和耐腐蚀性能。

因此,在使用铁磁材料的设备中,需要注意对其进行防腐处理。

总结:综上所述,铁磁材料具有强磁性、可逆饱和磁化强度高、剩余饱和感应强度大、磁滞损耗小、温度系数低、易加工性好等特点。

铁磁材料的滞回线和基本磁化曲线实验报告

铁磁材料的滞回线和基本磁化曲线实验报告

铁磁材料的滞回线和基本磁化曲线
实验报告.doc
铁磁材料的滞回线和基本磁化曲线实验报告
一、实验介绍
1.目的:了解铁磁材料的滞回线特性和基本磁化曲线特性。

2.原理:铁磁材料对外加磁场可以产生磁化,当外加磁场大于一定值时,磁化会达到平衡,此时,电流为零。

3.实验装置:实验使用的设备有:铁磁材料及其连接的实验装置,电流表、电压表等。

二、实验步骤
1.准备实验:将铁磁材料放入实验装置中,接上电源,接好电流表、电压表等装置,打开实验装置。

2.测量滞回线:用电流表测量铁磁材料在不同外加磁场下的磁化,记录电流和电压数据,即可得到滞回线的曲线。

3.测量基本磁化曲线:用电压表测量铁磁材料在不同外加磁场下的磁化,记录电流和电压数据,即可得到基本磁化曲线的曲线。

三、实验结果
1.滞回线曲线:
在H=0.2T,I=0mA时,V=1.9V;
在H=0.4T,I=4.8mA时,V=3.6V;
在H=0.6T,I=9.6mA时,V=5.3V;
在H=0.8T,I=14.4mA时,V=7.0V;
2.基本磁化曲线:
在H=0.2T,V=1.9V时,I=0mA;
在H=0.4T,V=3.6V时,I=4.8mA;
在H=0.6T,V=5.3V时,I=9.6mA;
在H=0.8T,V=7.0V时,I=14.4mA。

四、实验结论
通过实验,我们发现,铁磁材料的滞回线曲线是一条倒U形曲线,而基本磁化曲线是一条正U形曲线,由此可见,铁磁材料对外加磁场的反应有其特定规律。

铁磁材料的磁化与磁化曲线

铁磁材料的磁化与磁化曲线

Um Fm
(8-3)
3.磁路欧姆定律
设一段均匀磁路的截面积为S,长度为l,铁
磁材料的磁导率为μ,通过横截面的磁通为Φ, 而每一分段中均有B=μH,即Φ/S=μH,所以
Φ HS Hl U m U m l S l S Rm
(8-4)
此式叫做磁路欧姆定律。式中Um= Hl是磁压 降 ,其单位为A,Rm l 为磁路的磁阻,单位为
若电压为正弦量,在忽略线圈电阻及漏磁通 时,选择线圈电压、电流、磁通及感应电动势的 参考方向如图8-11所示。
在图8-11中有
ut et dΨ t N dΦt
dt
dt
式中,N为线圈匝数。
在上式中,若电压为正弦量时,磁通也为正弦量。
设 Φt Φm sin t ,则有
路没有影响,所以电压和电流的关系很简单,

I ,U 其中U为线圈两端的直流电压,r为
r
线圈的电阻。在直流稳态电路里,铁心线圈仅相
当于一个电阻而已。
2.交流模型
对于交流,因为有感应电压产生,由于磁滞现 象和涡流现象等,磁路对电路的影响很大,所以铁 心线圈的电压与电流关系比较复杂。通过对交流磁 路特点的分析,我们知道励磁电流:
关的系数,由实验确定。
实际工程应用中,为降低磁滞损耗,常选用磁滞
回线较狭长的铁磁性材料制造铁心,如硅钢就是制造
变压器、电机的常用铁心材料,其磁滞损耗较小。为
了降低涡流损耗,常用的方法有两种:一种是选用电
阻率大的铁磁材料,如无线电设备中就选择电阻率很
大的铁氧体,而电机、变压器则选用导磁性好、电阻
率较大的硅钢;另一种方法是设法提高涡流路径上的
虽然利用铁磁材料可以使磁通约束在铁 心范围内,但由于制造和结构上的原因,磁 路中常会含有空气隙,使极少数磁力线扩散 出去造成所谓的边缘效应,如图8-9所示。 另外,还会有少量磁力线不经过铁心而经过 空气形成磁回路,这种磁通称为漏磁通。漏 磁通相对主磁通来说,所占比例很小,所以 一般可忽略不计。

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线实验讲义铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性,也是设计选用材料的重要依据。

一:实验目的:1...认识铁磁材料的磁化规律,比较两种典型铁磁物质的动态磁特性。

2...测定样品的基本磁化特性曲线(B m-H m曲线),并作μ—H曲线。

3...测绘样品在给定条件下的磁滞回线,以及相关的H c,B r,B m,和[H B ]等参数。

二:实验原理:铁磁物质是一种性能特异,在现代科技和国防上用途广泛的材料。

铁,钴,镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,磁导率μ 很高。

另一特性是磁滞,即磁场作用停止后,铁磁材料仍保留磁化状态。

图一为铁磁物质的磁感应强度Β与磁场强度HH图一铁磁物质的起始磁化曲线和磁滞回线图中的原点。

表示磁化之前铁磁物质处于磁中性状态,即B=H=O 。

当外磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段落0a所示;继之B随H迅速增长,如ab段所示;其后,B的增长又趋缓慢;当H值增至Hs 时,B 的值达到Bs ,在S点的B s和H s,通常又称本次磁滞回线的B m和H m。

曲线oabs段称为起始磁化曲线。

当磁场从H s逐渐减少至零时,磁感应强度B并不沿起始磁化曲线恢复到o点,而是沿一条新的曲线sr下降,比较线段os和sr,我们看到:H减小,B也相应减小,但B的变化滞后于H的变化,这个现象称为磁滞,磁滞的明显特征就是当H=0时,B不为0,而保留剩磁B r。

当磁场反向从o逐渐变为-H c时,磁感应强度B=O,这就说明要想消除剩磁,必须施加反向磁场,H c称为矫顽力。

它的大小反映铁磁材料保持剩磁状态的能力,线段rc称为退磁曲线。

图一还表明,当外磁场按H s →0→-H c→-H s→0 → H c→ H s次序变化时,相应的磁感应强度则按闭合曲线srcs’r’c’s变化时,这闭合曲线称为磁滞回线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档