第八章-光电传感器输出信号的采集

合集下载

第三章 光电信号的采集

第三章 光电信号的采集

(2)匹配偏置电路 匹配偏置指的是偏置电阻RB等于探测器内阻Rd 。
图为一匹配偏置电路。由于光敏电阻的阻值对温度变化特别敏 感,偏置电路中的RB通常不采用一个固定电阻,而是用一个与所 用探测器相同规格的光敏电阻代替,使RB与Rd随温度产生相同的 变化,以减小由于环境温度变化对输出信号的影响,从而保持输 出端A点电位的稳定。
(2) 孔径误差 由于模拟量转换成数字量有一个过程,对于一 个动态模拟信号,在模/数转换器接通的孔径时 间里,输入的模拟信号值是不确定的,从而引 起输出的不确定误差。 可见,孔径误差与信号的最高频率f和系统的 孔径时间有关

假设输入信号为一频率为ƒ的正弦信号V=Vmsin2 π ƒt,如图所示。
它基本上是一个电流-电压变换器,在环路增益很大的情况 下,输出电压与与输入电流之间的关系为: Vo = -ZFIi; 式中,ZF是从放大器的输出到输入的有效反馈阻抗。
2. 低噪声放大 第一级低噪声前置放大器多采用分立元件,因为集成运算放大 器的噪声一般比低噪声分立元件的噪声大。晶体管的选择是设计 前置放大器的重要环节,通常根据光电探测器的阻抗来选择合适 的晶体管。对于低噪声放大器,源电阻的大小是选择第一级放大 元件的重要依据。如果源电阻RS在1kΩ~1M Ω之间,选用运算放 大器; RS在1MΩ~1G Ω之间,多采用结型场效应管(JFET);当RS 超过1G Ω,可采用MOSFEF。 要得到低噪声前置放大器,必须选用噪声系数小的晶体管,同 时还要使光电探测器的源电阻与晶体管的最佳源电阻相等,以得 到最小的噪声系数。但在实际使用中,这二者不会刚好相等,可 以采用变压器匹配和并联来达到阻抗匹配的目的。 此外,还要减少背景光、杂散光以及外界电磁场对光电探测器 和前置放大器的影响。

光电测量技术实验报告

光电测量技术实验报告

一、实验目的1. 了解光电测量技术的基本原理和实验方法;2. 掌握光电传感器的工作原理和应用;3. 通过实验验证光电测量技术的实际应用效果。

二、实验原理光电测量技术是利用光电效应将光信号转换为电信号,通过测量电信号的大小来反映光信号的强度、位置、频率等物理量。

本实验采用光电传感器作为测量工具,通过实验验证光电测量技术的实际应用效果。

三、实验器材1. 光电传感器;2. 光源;3. 信号发生器;4. 电压表;5. 数据采集器;6. 实验台。

四、实验步骤1. 将光电传感器固定在实验台上,确保传感器与光源的位置和距离符合实验要求;2. 打开信号发生器,设置合适的频率和幅度;3. 将光电传感器输出端连接到数据采集器,数据采集器连接到电脑;4. 打开数据采集器软件,设置采样频率和采集时间;5. 打开光源,观察光电传感器输出端电压的变化;6. 记录电压随时间的变化数据;7. 关闭光源,重复步骤5和6,观察光电传感器输出端电压的变化;8. 对实验数据进行处理和分析。

五、实验结果与分析1. 实验结果显示,在光源照射下,光电传感器输出端电压随着光源强度的增加而增加,随着光源距离的增加而减小;2. 在关闭光源的情况下,光电传感器输出端电压基本稳定,说明光电传感器具有较好的抗干扰能力;3. 通过对实验数据的处理和分析,可以得出以下结论:(1)光电测量技术可以有效地将光信号转换为电信号,实现对光强度的测量;(2)光电传感器具有较好的抗干扰能力,可以应用于实际测量场合;(3)光电测量技术具有测量精度高、响应速度快、非接触等优点。

六、实验总结1. 本实验验证了光电测量技术的实际应用效果,掌握了光电传感器的工作原理和应用;2. 通过实验,了解了光电测量技术在光强度、位置、频率等物理量测量中的应用;3. 实验过程中,学会了使用光电传感器、信号发生器、数据采集器等实验器材,提高了实验操作技能。

七、实验展望1. 深入研究光电测量技术的原理和应用,探索其在更多领域的应用前景;2. 优化实验方案,提高实验精度和可靠性;3. 探索光电测量技术与人工智能、大数据等领域的结合,推动光电测量技术的发展。

《传感器与检测技术》课后习题:第八章(含答案)

《传感器与检测技术》课后习题:第八章(含答案)

第八章习题答案1.什么是光电效应,依其表现形式如何分类,并予以解释。

解:光电效应首先把被测量的变化转换成光信号的变化,然后通过光电转换元件变换成电信号,光电效应分为外光电效应和内光电效应两大类:a)在光线作用下,能使电子逸出物体表面的现象称为外光电效应;b)受光照的物体导电率1R发生变化,或产生光生电动势的效应叫内光电效应。

2.分别列举属于内光电效应和外光电效应的光电器件。

解:外光电效应,如光电管、光电倍增管等。

内光电效应,如光敏电阻、光电池和光敏晶体管等。

3.简述CCD 的工作原理。

解:CCD 的工作原理如下:首先构成CCD 的基本单元是MOS 电容器,如果MOS 电容器中的半导体是P 型硅,当在金属电极上施加一个正电压时,在其电极下形成所谓耗尽层,由于电子在那里势能较低,形成了电子的势阱,成为蓄积电荷的场所。

CCD 的最基本结构是一系列彼此非常靠近的MOS 电容器,这些电容器用同一半导体衬底制成,衬底上面覆盖一层氧化层,并在其上制作许多金属电极,各电极按三相(也有二相和四相)配线方式连接。

CCD 的基本功能是存储与转移信息电荷,为了实现信号电荷的转换:必须使MOS 电容阵列的排列足够紧密,以致相邻MOS 电容的势阱相互沟通,即相互耦合;控制相邻MOC 电容栅极电压高低来调节势阱深浅,使信号电荷由势阱浅的地方流向势阱深处;在CCD 中电荷的转移必须按照确定的方向。

4.说明光纤传输的原理。

解:光在空间是直线传播的。

在光纤中,光的传输限制在光纤中,并随光纤能传送到很远的距离,光纤的传输是基于光的全内反射。

当光纤的直径比光的波长大很多时,可以用几何光学的方法来说明光在光纤内的传播。

设有一段圆柱形光纤,它的两个端面均为光滑的平面。

当光线射入一个端面并与圆柱的轴线成θi 角时,根据斯涅耳(Snell )光的折射定律,在光纤内折射成θj ,然后以θk 角入射至纤芯与包层的界面。

若要在界面上发生全反射,则纤芯与界面的光线入射角θk 应大于临界角φc (处于临界状态时,θr =90º),即:21arcsin k c n n θϕ≥=且在光纤内部以同样的角度反复逐次反射,直至传播到另一端面。

第八章 图像信息的光电变换2-1节

第八章 图像信息的光电变换2-1节

序信号;CMOS图像传感器采用顺序开通行、列开关的方式完成像
素信号的一维输出。因此,有时也称面阵CCD、CMOS图像传感 器以自扫描的方式输出一维时序电信号。
监视器或电视接收机的显像管几乎都是利用电磁场使电子束偏
转而实现行与场扫描,因此,对于行、场扫描的速度、周期等参数 进行严格的规定,以便显像管显示理想的图像。
(8-1)
式中thf为行扫描周期,而W/thf应为电子 束的行扫描速度,记为vhf,式可改写为
f=fx〃vhf
(8-2)
CCD与CMOS等图像传感器只有遵守上 述的扫描方式才能替代电子束摄像管,因
此, CCD与CMOS的设计者均使其自扫描制式与电子束摄像管相同。

8.2.2 电视制式
电视的图像发送与接收系统中,图像的采集(摄像机)与图像
当摄像管有光学图像输入时,则入射光子打到靶上。 由于本征层占有靶厚的绝大部分,入射光子大部分被本征 层吸收,产生光生载流子。且在强电场的作用下,光生载 流子一旦产生,便被内电场拉开,电子拉向N区,空穴被 拉向P区。这样,若假定把曝光前本征层两端加有强电场 看作是电容充电,则此刻由于光生载流子的漂移运动的结 果相当于电容的放电。其结果,在一帧的时间内,在靶面 上便获得了与输入图像光照分布相对应的电位分布,完成 了图像的变换和记录过程。
传感器件通过电子束扫描或数字电路的自扫描方式将二维光学图像 转换成一维时序信号输出出来。这种代表图像信息的一维信号称为 视频信号。视频信号可通过信号放大和同步控制等处理后,通过相 应的显示设备(如监视器)还原成二维光学图像信号。 视频信号的产生、传输与还原过程中都要遵守一定的规则才能 保证图像信息不产生失真,这种规则称为制式。
第二,要求相邻两场光栅必须均匀地镶嵌,确保获得最高的清晰度。

红外光电传感器采集电路设计

红外光电传感器采集电路设计

红外光电传感器采集电路设计近年来,随着科学技术的迅猛发展,特别是红外探测器技术及加工工艺的日益完善,红外辐射探测系统的应用越来越广泛,有着不可替代的作用。

同时,随着使用环境越来越复杂,对红外系统性能的要求也越来越高。

调研发现,在红外辐射系统设计中经常遇到系统的体积、重量、所选材料、使用温度范围等同成象质量及其它技术要求的矛盾,如不很好解决,则难以适应现代红外探测和多波段光谱探测的需要。

在这样的背景下,本课题针对红外预警探测系统的发展,并以其为应用对象,开展红外光学系统设计研究,其研究目的是为先进红外光学系统的设计提供理论基础、设计方法和手段。

整个系统包括硬件设计及软件设计两大部分,其中硬件由红外光发射电路、红外光检测电路、单片机控制电路、报警电路等组成;软件设计主要负责红外光微波信号的产生、红外光接收中断信号的处理、报警信号的传输等。

硬件设计红外采集系统整体设计红外光电传感器采集电路的硬件设计如下图所示,红外光发射电路主要实现红外光的产生和发射,发出的红外光经红外光接收电路负责将接受到的光信号转变成电信号以后送入信号放大及调制电路,信号放大及调制电路将电信号进行放大并进行调制,然后送入到单片机中,单片机进行处理以后发出报警信号,实现报警功能。

红外光发射电路红外光通讯以红外光作为通讯载体,通过红外光在空中的传播来传输数据,从而实现无线传输,硬件部分主要由红外光发射器和红外光接收器来完成。

在红外光发射器电路中,通过单片机软件编程,可以实现STC89C52RC的P3.4输出38kHzPWM红外光载波信号,然后经三极管9013驱动红外光发射管TSAL6200发射出红外光。

其原理图如图1所示。

图1 红外光发射电路原理图红外光检测电路TCRT5000光电传感器模块是基于TCRT5000红外光电传感器设计的一款红外反射式光电开关。

传感器采用高发射功率红外光电二极管和高灵敏度光电晶体管组成,输出信号经施密特电路整形,稳定可靠。

光电传感器的ADC采样信息处理方式

光电传感器的ADC采样信息处理方式
图1中的采样数据处理、验证和巡线调整算法都是 跟传感器的布局息息相关的。经过多次论证,我们选择 了简单的。一”字型布局,把16个接收管(以下简称 采样通道)排成一排,与相关处理电路一起布局在一块 电路板(以下简称灯板)上,通过ADC采样部件和多 路模拟开关就能得到16个采样点的采样数据。
2采样数据处理算法
_15
priD“ (b’
(a)暖中dir=b时-越r落千窗 口j■h健dlr=priDlr

喵—————三兰妥三卜———J5 ' prxl)ir 【c,
朗3滑动窗口验证算法
图3(a)中,初始时窗I:1的基准priDir和dir都 置为O,系统对下一次检测到的dir进行验证,有两种
情况: (1)如果dir落于窗口内,说明dir有效,滑动窗I=1
火L参赛队的定位技术进步很快,包括颜色传
感器、光电传感器、陀螺仪、数字罗盘等各式传感器纷 纷走进赛场,展示其用武之地。其中,光电传感器一直 受到很多参赛队的器重,尤其是在2009年的比赛中,涌 现了很多基于光电传感器的定位方案,特别是西安交通 大学代表队的三角形布局方案和华中科技大学代表队的 四方形布局方案,给我们留下了深刻的印象。
田2采样数据处理演示
ADC(7)一ADC(f)I>客差6 (2一1) 再自右向左扫描,找出第一个满足下面条件的 通道,
I ADC(8)一ADC(f)I>容差6 (2—2) 式2—1和2—2的实质是找出第一次出现的AD 值突出(也即在白线上)的通道,其中的容差接受上位 机的设置。这样,我们约定白线的位置就是灯板下位机 程序流程图所示。 下位机计算得到的白线位置值的范围为O~30,当 其等于15时表明白线处在机器人中间位置,机器人与 白线之间没有发生偏离。当其大于15时表示左偏,当 其小于15时表示右偏。位置值离15越远(即两者差值 的绝对值越大),则表明机器人偏移的幅度越大,通过 这个值就可以识别机器人当前偏离白线的状况。

光电检测技术

光电检测技术

光电检测技术
以光电子学为基础,以光电子器件为主体,研究 和发展光电信息的形成、传输、接收、变 换、处理和应用。应用领域包括:
1、工业检测(光电精密测试,光纤传感在线 检测和机器视觉)
2、日常生活:光电传感(自动对焦、路灯控 制、图象传感)
3.军事:激光(激光雷达)、红外、微光探 测,定向和制导
光电检测是信息时代的关键技术
光电检测系统:是利用光电传感器实现各类检测。
它将被测量的量转换成光通量,再转换成电量,并综合 利用信息传送和处理技术,完成在线和自动测量
光电检测系统包括
– 光学变换 – 光电变换 – 电路处理
光学变换
– 时域变换:调制振幅、频率、相位、脉宽(干涉、 衍射)
– 空域变换:光学扫描(扫描盘)
事实上是光学参量调制:光强、波长、相位、偏振
光电检测技术研究热点
纳米、亚纳米高精度的光电测量新技术。 小型、快速的微型光、机、电检测系统。 微空间三维测量技术和大空间三维测量技术。 闭环控制的光电检测系统,实现光电测量与光
电控制一体化。 向人们无法触及的领域发展。 光电跟踪与光电扫描测量技术。
第五章 光电检测系统 5.1 直接光电检测系统 5.2 光外差光电检测系统 5.3 典型的光电检测系统
第六章 光纤传感检测 第七章 光电信号的数据采集与微机接口 第八章 光电检测技术的典型应用
第一章 绪 论
1.光电系统描述
光是一种电磁波,电磁波谱包括:长波电震荡、无线 电波、 微波、光波(包括红外光、可见光、紫外光)、 射线等。光波的波长范围为1mm-10nm,频率为3x10113x1016Hz,它是工作于电磁波波谱图上最后波段的系统, 特点是波长短,频率高.(与电子系统载波相比,光电系 统载波的频率提高了几个量级,因此载波能量大,分 辨率高,但易受大气的吸收等影响,传输距离受限, 易遮挡)。

光电传感器信号采集与控制系统设计

光电传感器信号采集与控制系统设计

光电传感器信号采集与控制系统设计第一章:引言光电传感器信号采集与控制系统在现代工业自动化中扮演着重要的角色。

光电传感器是一种能够将光信号转化为电信号的装置,广泛应用于工业生产中的测量、检测、控制等领域。

设计一套稳定可靠的光电传感器信号采集与控制系统,能够实时准确地采集和处理传感器信号,并对其进行精确控制,对于提高生产效率、降低成本具有重要意义。

第二章:光电传感器信号采集系统设计2.1 光电传感器信号采集原理光电传感器信号采集是通过光电器件将光信号转化为电信号的过程。

光电器件可以是光敏电阻、光电二极管、光电三极管等。

光敏电阻的电阻值与光照强度成反比,光电二极管和光电三极管的输入端光照强度增加时,输出电流或电压也相应增加。

通过对光电器件的电信号进行放大、滤波等处理,可以得到准确可靠的光电传感器信号。

2.2 光电传感器信号采集电路设计光电传感器信号采集电路主要包括前端传感器接口电路、放大电路、滤波电路和模数转换电路等。

前端传感器接口电路负责将传感器的信号转化为标准的电压或电流信号,放大电路用于放大传感器信号的幅度,滤波电路则对信号进行去噪处理,模数转换电路将模拟信号转化为数字信号,方便后续处理和控制。

2.3 光电传感器信号采集系统的可靠性设计为了提高光电传感器信号采集系统的可靠性,可以采取以下措施:一是选择稳定可靠的光电器件,保证其性能指标符合要求;二是合理设计电路布局,减少干扰和噪声,提高信号质量;三是使用高质量的元器件和连接线,提高系统的抗干扰能力;四是进行严格的系统测试和质量控制,确保系统的长期稳定运行。

第三章:光电传感器信号控制系统设计3.1 光电传感器信号处理算法设计光电传感器信号处理算法包括对信号的滤波、放大、数字滤波、数据处理等。

滤波算法可以选择低通滤波、高通滤波等,根据实际需求进行选择和优化;放大算法可以根据传感器信号的幅度范围进行放大系数的设置,使得采集的信号能够被系统准确地识别和控制;数字滤波算法可以通过滑动平均、中值滤波等方法去除噪声,提高系统的抗干扰能力。

基于3D打印的近红外光谱成像系统前端设计

基于3D打印的近红外光谱成像系统前端设计

基于3D打印的近红外光谱成像系统前端设计谢宏;徐升;姚楠;杨文璐;夏斌【摘要】针对当前近红外成像光谱系统研发成本高、结构复杂、便携性差等问题,提出了基于3D打印的近红外光谱成像系统前端设计.通过3D打印技术设计系统前端发射器、接收器和采集头套,并与近红外光谱成像系统结合,设计出尺寸小、硬度强、易扩展的前端采集设备.利用高灵敏度的OPT101、ADS1299和GS1011完成信号采集与传输,通过3D打印可实现精度高、无线传输、可实时检测脑部血氧浓度的近红外光谱成像系统.【期刊名称】《微型机与应用》【年(卷),期】2016(035)013【总页数】4页(P76-78,81)【关键词】3D打印;fNIRS;可穿戴;光源【作者】谢宏;徐升;姚楠;杨文璐;夏斌【作者单位】上海海事大学信息工程学院,上海201306;上海海事大学信息工程学院,上海201306;上海海事大学信息工程学院,上海201306;上海海事大学信息工程学院,上海201306;上海海事大学信息工程学院,上海201306【正文语种】中文【中图分类】TN98引用格式:谢宏,徐升,姚楠,等. 基于3D打印的近红外光谱成像系统前端设计[J].微型机与应用,2016,35(13):76-78,81.目前,近红外医疗设备朝着“微型化、智能化、可穿戴”的方向发展。

日立公司近几年推出了两款采用电池运行的可穿戴无线成人前额皮质fNIRS测量系统,即22通道WOT (2009)和2通道HOT 121B (2011)。

美国NIRx公司其产品系列从DYNOT演变到NIRScout,再到NIRSport,设备逐渐变小,实现多通道可扩展,更加便携式[1]。

美国TechEn公司在1999年推出了首款商用CW fNIRS系统,其目前的系统CW6已经具有32个激光源和32个探测头[2]。

瑞士苏黎世(Zurich)大学的Wolf等开发出4通道无线fNIRS成像系统。

中国近红外光谱技术还处在发展阶段,北京师范大学近红外脑成像研究中心(Center for fNIRS Brain Imaging Research,CNBIR)[3]致力于脑成像领域新方法与新技术的研究和探索,其中fNIRS静息态(脑网络)成像新技术、fNIRS双脑耦合神经反馈新技术、fNIRS双脑同时成像新技术都取得了丰硕成果,而对用于脑功能探测的fNIRS系统尤其是便携式、3D打印方式的研究相对较少。

传感器系列实验实验报告(3篇)

传感器系列实验实验报告(3篇)

第1篇一、实验目的1. 理解传感器的基本原理和分类。

2. 掌握常见传感器的工作原理和特性。

3. 学会传感器信号的采集和处理方法。

4. 提高实验操作能力和数据分析能力。

二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。

(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集热敏电阻的输出信号。

3. 使用示波器观察热敏电阻输出信号的波形和幅度。

4. 分析热敏电阻输出信号与温度的关系。

2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。

1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集霍尔传感器的输出信号。

3. 使用示波器观察霍尔传感器输出信号的波形和幅度。

4. 分析霍尔传感器输出信号与磁场强度的关系。

3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。

(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集光电传感器的输出信号。

3. 使用示波器观察光电传感器输出信号的波形和幅度。

4. 分析光电传感器输出信号与光照强度的关系。

4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。

(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集电容式传感器的输出信号。

3. 使用示波器观察电容式传感器输出信号的波形和幅度。

4. 分析电容式传感器输出信号与电容变化的关系。

5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。

1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

传感器第六、七、八章思考题及习题

传感器第六、七、八章思考题及习题

第六章 思考题与习题1、什么是压电效应?答:沿着一定方向对某些电介质加力而使其变形时,在一定表面上产生电荷,当外力取消,又重新回到不带电状态,这一现象称为正压电效应。

当在某些电介质的极化方向上施加电场,这些电介质在一定方向上产生机械变形或机械压力,当外加电场散去,这些变形和应力也随之消失,此即称为逆压电效应。

2、为什么压电传感器不能测量静态物理量? 答:压电元件送入放大器的输入电压由上式可知,用·当作用在压电元件上的力是静压力(ω=0)时,前置放大器输入电压等于零。

因为电荷就会通过放大器的输入电阻和传感器本身的泄漏电阻漏掉。

所以压电传感器不能测量静态物理量。

3、压电式传感器中采用电荷放大器有何优点?为什么电压灵敏度与电缆长度有关?而电荷灵敏度与电缆长度无关? 答:p115 ●补充题:1、有一压电晶体,其面积为20mm 2,厚度为10mm ,当受到压力p=10MPa 作用时,求产生的电荷及输出电压:①零度X 切的纵向石英晶体;②利用纵向效应之BaTiO 3(压电陶瓷)。

已知:S=20 mm 2,δ=10mm ,P=10MPa , 求:Q=?,V=? 解:①∵ PS d F d Q 1111== 而:)/(1031.21211N c d -⨯= ∴ c PS d Q 10111062.4-⨯== 又∵ SQ S Q C Q U r r a εεδδεε00)/(/=== 而:)/(1085.85.412-0m F r ⨯==εε、 ∴ )(8.5797/0V SQ C Q U r a ===εεδ解②∵ PS d F d Q 3333== 而:)/(10901233N c d -⨯= ∴ c PS d Q 833108.3-⨯== 同上:又∵ SQ S Q C Q U r r a εεδδεε00)/(/=== 而:)/(1085.8120012-0m F r ⨯==εε、 ∴ )(3.1788/0V SQ C Q U r a ===εεδ2、某压电晶体的电容为1000pF;Kq=2.5C/cm,Cc=3000pF,示波器的输入阻抗为1M Ω和并联电容为50pF,求;①压电晶体的电压灵敏度;②测量系统的高频响应③如系统允许的测量幅值误差为5%,可测最低频率时多少?④如频率为10Hz,允许误差为5%,用并联方式,电容值是多少?已知:pF C M R pF C N c k pF C i i c q a 5013000/5.21000=Ω====;;;; 求: 解①∵ a q V C k k /= ∴ )/(105.29N V k V ⨯= 解②依据教材p113(6-14)式 ∵ ic a m im V C C Cd F U k ++=∞=33/)(;而:3333//d F F d F Q k q ===∴ )/(1017.68N V C C C k k ic a qV ⨯=++=解③依据教材p113(6-15)式 因: 222)(1)()(i c a i c a C C C R C C C R k +++++=ωωω高频响应时:1)(*=∞=k k而:%5)(**≤-kk k Lωγ 则:%95)(1)()(222≥+++++=i c a i c a C C C R C C C R k ωωω其中: 解得:Hz f LCL 5.1192==πω 解④因: %5)(**≤-k k k Lωγ 则: %95)(1)()(222≥+++++=i c a i c a C C C R C C C R k ωωω其中:解得:pF C C C C c a 48447=++=3、用石英晶体加速度计及电荷放大器测量机器的振动,已知:加速度计灵敏度为5pC/g,电荷放大器灵敏度为50mV/pC,当机器达到最大加速度值时相应的输出电压幅值为2V ,试求该机器的振动加速度。

《光电探测与信号处理》教学大纲

《光电探测与信号处理》教学大纲

《光电探测与信号处理》教学大纲一、课程基本信息1、课程名称:光电探测与信号处理全称(英文)Photoelectric detection and signal processing2、课程代码:B13090163、课程管理:数理学院应用物理教研室4、教学对象:应用物理5、教学时数:总时数48学时,其中理论教学32学时,实验实训16学时。

6、课程学分:37、课程性质:专业选修课程8、课程衔接:(1)先修课程:工程光学、电磁学、原子物理学、量子力学、模拟电子技术(2)后续课程:光电子技术二、课程简介《光电探测与信号处理》课程为一门主要专业方向课程,是从事光学工程、仪器仪表、测量与控制研究人员所必须具备的专业基础,是一门与现代科学技术紧密相连的正在发展的新兴学科。

本课程主要讲述光电检测理论基础知识以及光电检测的结构组成、设计思路和应用特点。

通过本课程的学习,使学生了解和掌握光电转换的基本原理及光电检测技术所必须的各种知识,了解和掌握常用光电测量方法及常用测量仪器的使用,具备进行各种基本光电测量所需技能和设计光电检测电路的能力。

三、教学内容及要求第一章绪论(一)教学目标掌握光电检测系统的组成及特点;了解信息技术及光电检测技术的概念。

(二)教学节次及要求第一节信息技术及光电检测技术了解信息技术及光电检测技术的概念。

第二节光电检测与光电传感器概念了解光电检测与光电传感器概念及各自的作用。

第三节光电检测系统的组成及特点了解光电检测系统的基本模型及光电系统框图。

第四节光电检测方法及应用发展趋势1、掌握光电检测的基本作用法、差动测量法补偿测量法和脉冲测量法;2、了解光电检测系统的及应用发展趋势。

(三)教学重点与难点1、教学重点:光电传感器、光电检测系统的组成及特点2、教学难点:光电检测系统的组成及特点(四)教学方法与手段课堂讲授、多媒体辅助教学。

(五)教学时数4学时第二章光电检测器件工作原理及特性(一)教学目标了解光电检测器件的特性参数;掌握光电导效应、光生伏特效应和热释电效应。

PLC的自动化生产线__供料单元的结构与控制

PLC的自动化生产线__供料单元的结构与控制

第三章供料单元的结构与控制3.1 供料单元的结构3.1.1 供料单元的功能供料单元是YL-335A中的起始单元,在整个系统中,起着向系统中的其他单元提供原料的作用。

具体的功能是:按照需要将放置在料仓中待加工工件(原料)自动地推出到物料台上,以便输送单元的机械手将其抓取,输送到其他单元上。

如图3-1所示为供料单元实物的全貌。

3.1.2供料单元的结构组成供料单元的结构组成如图3-2所示。

其主要结构组成为:工件推出与支撑,工件漏斗,阀组,端子排组件,PLC,急停按钮和启动/停止按钮,走线槽、底板等。

1.工件推出与支撑及漏斗部分该部分如图3-3所示。

用于储存工件原料,并在需要时将料仓中最下层的工件推出到物料台上。

它主要由大工件装料管、推料气缸、顶料气缸、磁感应接近开关、漫射式光电传感器组成。

该部分的工作原理是:工件垂直叠放在料仓中,推料缸处于料仓的底层并且其活塞杆可从料仓的底部通过。

当活塞杆在退回位置时,它与最下层工件处于同一水平位置,而夹紧气缸则与次下层工件处于同一水平位置。

在需要将工件推出到物料台上时,首先使夹紧气缸的活塞杆推出,压住次下层工件;然后使推料气缸活塞杆推出,从而把最下层工件推到物料台上。

在推料气缸返回并从料仓底部抽出后,再使夹紧气缸返回,松开次下层工件。

这样,料仓中的工件在重力的作用下,就自动向下移动一个工件,为下一次推出工件做好准备。

为了使气缸的动作平稳可靠,气缸的作用气口都安装了限出型气缸截流阀。

气缸截流阀的作用是调节气缸的动作速度。

截流阀上带有气管的快速接头,只要将合适外径的气管往快速接头上一插就可以将管连接好了,使用时十分方便。

图3-4是安装了带快速接头的限出型气缸截流阀的气缸外观。

图3-5是一个双动气缸装有两个限出型气缸节流阀的连接和调节原理示意图,当调节节流阀A时,是调整气缸的伸出速度,而当调节节流阀B时,是调整气缸的缩回速度。

从图3-4上可以看到,气缸两端分别有缩回限位和伸出限位两个极限位置,这两个极限位置都分别装有一个磁感应接近开关,如图3-6(a)所示。

《传感器与检测技术》第八章光电式传感器

《传感器与检测技术》第八章光电式传感器

光 检 测 放 大
烟 筒
刻 度 校 对
显 示 报 警 器
吸收式烟尘浊度监测系统组成框图
3.包装充填物高度检测
光电开光
光电信号
h 放大 整形 放大
执行机构
利用光电检测技术控制充填高度
五、光电耦合器件
1.光电耦合器 (1)耦合器的组合形式
(2)耦合器的结构形式
(3)耦合器常见的特性
对于光电耦合器的特性,应注意以下各项参数。 1)电流传输比 2)输入输出间的绝缘电阻 3)输入输出间的耐压 4)输入输出间的寄生电容 5)最高工作频率 6)脉冲上升时间和下降时间
的发射极一边做得很大,以扩大光的照射面积。
光敏晶体管的结构与原理电路
原理:光照射在集电结上时 ,形成光电流,相当于 三极管的基极电流。因而集电极电流是光生电流的 β倍,所以光敏晶体管有放大作用。
(3)基本特性 1)光谱特性
应用:光或探测赤热状态物体时,一般都用硅管。但 对红外光进行探测时,锗管较为适宜。
运动的“粒子流”,这种粒子称为光子。每个光子具
有的能量为: E=h·υ
υ—光波频率; h—普朗克常数,h=6.63*10-34J/Hz
对不同频率的光,其光子能量是不相同的,光波频率 越高,光子能量越大。用光照射某一物体,可以看 做是一连串能量为hγ的光子轰击在这个物体上,此 时光子能量就传递给电子,并且是一个光子的全部 能量一次性地被一个电子所吸收,电子得到光子传 递的能量后其状态就会发生变化,从而使受光照射
2.光电开关 (1)典型的光电开关结构
(2)光电开关的应用
第二节 光纤传感器
光纤传感器FOS(Fiber Optical Sensor)用光作为敏 感信息的载体,用光纤作为传递敏感信息的媒质。 因此,它同时具有光纤及光学测量的特点。

光电传感器输出类型

光电传感器输出类型

光电传感器有NPN型输出型(电流流入)和PNP输出型(电流流出)两种,当电流流出的传感器(PNP输出型)在接通时,电流是从电源经传感器的输出端(output)流到负载(load)上,进入负载, 然后流到接地端。

而电流流入(NPN 输出型)的传感器接通时,电流是从电源经负载流到传感器的输出端(output),然后流到接地端(GND),最后进入系统的地(GND)。

PNP与NPN型传感器一般有三条引出线,即电源线VCC、GND,OUT信号输出线1、NPN类NPN是指当有信号触发时,信号输出线OUT和GND连接,相当于OUT 输出低电平。

2、PNP类PNP是指当有信号触发时,信号输出线OUT和VCC连接,相当于OUT输出高电平的电源线。

有两个方法:1。

产品上肯定会有接线图,NPN型的接线图是负载连接正电(棕线)及信号输出线(黑线);PNP型的接线图是负载连接负电(蓝线)及信号输出线(黑线)。

2。

万用表检测信号线(黑线)有信号输出时的电压:为正电压,侧PNP型。

为负电压,侧NPN 型。

我知道,呵呵,我用的槽式光电开关TP850,刚开始也不知道怎么搞,不过后来弄明白了,NPN和PNP型的光电开关功能是相同的,只是接线方式不同,如果你的光电开关是NPN型的,选择发射级接地,集电极接一个限流电阻后接+5v电压(我选择的是6.8K欧的电阻),同样的,如果你的光电开关是PNP的,选择集电极接地,发射级接一个限流电阻后接+5v电压。

而且,一般的光电开关NPN的用的较多,呵呵,希望可以帮到你NPN与PNP传感器的区别。

常用的这类传感器可分为4个分类,即NPN-NO、NPN-NC、PNP-NO与PNP-NC(三条引线,电源线L+与L-,信号输出线)。

NPN是指当有触发信号时,信号输出线动作于L+这条高电平的电源线。

对于NO型,在没有触发信号时,输出线是悬空的;有触发时则发出与L+电源线相同的电平(实际是这两条线连通了)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
None 是
三、数据采集卡
声卡
声卡作为语音信号与计算机的通用接口,其主要功 能就是经过DSP音效芯片的处理,进行模拟音频信号与 数字信号的转换,因此,声卡也可以作为一块数据采 集卡来使用。
三、数据采集卡
声卡的技术参数
声卡的技术参数主要有两个:采样位数(分辨率)和采 样率。
采样位数可以理解为声卡处理声音的解析度,这个数值 越大,解析度就越高,录制和播放声音的效果就越真实。 声卡位数反映了对信号描述的准确程度。目前声卡的主流 产品位数都是16位,而一般数据采集卡大多只是12位。
量程:输入信号的幅度,常用有±5V、±10V、0~5V、
0~10V,要求输入信号在量程内进行。
增益:输入信号的放大倍数,分为程控增益和硬件增益,
通过数据采集卡的电压放大芯片将AD转换后的数据进行固定 倍数的放大。由两种型号PGA202(1、10、100、1000)和 PGA203(1、2、4、8)的增益芯片。
一、光电传感器信号的二值化处理
微型计算机所能识别的数字是“0”或“1”,即低或高 电平。 “0”或“1” 在光电信号中它既可以代表信号的有 与无,又可以代表光信号的强弱到一定程度,还可以检测运 动物体是否运动到某一特定的位置。将光电信号转换成“0” 或“1”数字量的过程称为光电信号的二值化处理。
光电信号的二值化处理分为单元光电信号的二值化处理与序 列光电信号的二值化处理。
二、DAQ设备
需要以多快的速度采集或生成信号?
对于DAQ设备来说,最重要的参数指标之一就是采样率,即 DAQ设备的ADC采样速率。典型的采样率(无论硬件定时或 软件定时)可达2MS/S。在决定设备的采样率时,需要考虑 所需采集或生产信号的最高频率成分。
Nyquist定理指出,只要将采样率设定为信号中所感兴趣的 最高频率分量的2倍,就可以准确地重建信号。然而,在实 践中至少应以最高频率分量的10倍作为采样频率才能正确 地表示原信号。选择一个采样率至少是信号最高频率分量 10倍的DAQ设备,就可以确保能够精确地测量或者生成信号。
序列光电信号是指有序排列分体或集成光电器件按时间 顺序或规律输出的信号称为序列光电信号。例如光电二极管 阵列,线、面阵CCD的输出信号属于序列光电信号。
一、光电传感器信号的二值化处理
单元光电信号的二 值化处理
固定阈值法、浮动阈值法
生产薄钢板的工厂为使钢板 整齐捲成卷,以便包装运输, 采用钢板边缘位置的光电检 测系统。由光源、远心照明 光学系统、聚光镜和光电接 收器件构成。
§8 光电传感器输出 信号的数据采集
微型计算机(包括单片机、DSP、ARM单板机和系统机等) 具有运算速度快,可靠性高,信息处理、存贮、传输、控制 等功能性强的优点,被广泛地用于光电测控技术领域。
光电信号的种类很多,分为缓变信号,调幅、调频脉冲 信号与视频图像信号等。光电信号载运信息的方法基本上分 为幅度信息,频率信息和相位信息。如何将这些信息送入微 型计算机?
典二型的、DADQ设AQ备设的电备压范围为+/-5V或+/-10V。在此范围内,
电压值将均匀分布,从而充分地利用ADC的分辨率。
例如,一个具有+/-10V电压范围和12位分辨率(212 或4096 个均匀分布的电压值)的DAQ设备,可以识别?5mV的电压 变化;一个具有16位分辨率(216 或 65536个均匀分布的 电压值)的DAQ设备则可以识别到?300µV的变化。大多数 数据采集都可以使用具有12、16或18位分辨率ADC的设备解 决问题。
由于声卡只是处理音频信号,目前最高采样率为 44.1kHz,少数能达48kHz。对于普通声卡,采样频率一般 设为4档: 44.1kHz, 22.05kHz, 11.025kHz和8kHz。
三、数据采集卡
声卡的硬件接口
一般声卡有4~5个对外接口。Wave Out和SPK OUT是输出接 口。 Wave Out输出的是没有经过放大的信号, SPK OUT输 出的是经过功率放大的信号,可直接接到扬声器上。Mic In和Line In是输入接口,Mic In接口只能接受较弱的信号, Line In接口可接受不超过1.5V的信号。两个输入接口内部 都有隔直电容,直流或频率较低的信号不能被声卡接受。 MIDI In输入接口一般接MIDI乐器或游戏摇杆。
一、光电传感器信号的二值化处理
1、单元光电信号的固定阈值法二值化处理电路 电压比较器的“-”输入端接能够调整的固定电位Uth。当 输入光电信号的幅值高于固定电位Uth时,比较器的输出为 高电平,即为1;当光电信号的幅值低于阈值电位Uth时,其
输出都为低电平,即为0。
一、光电传感器信号的二值化处理
主要指标:
通道数
分辨率
精度
采样频率
量程
增益
触发
三、数据采集卡
通道数:就是板卡可以采集几路的信号,分为单端和差分。
常用的有单端32路/差分16路、单端16/差分8路。
分辨率:采样数据最低位所代表的模拟量的值,常有12位、
14位、16位等,(12位分辨率,电压5000mV)12位所能表示的 数据量为4096(2的12次方),即±5000mV电压量程内可以表 示4096个电压值,单位增量为(5000mV)/4096=1.22mV
模数转换器(ADC)
在经计算机等数字设备处理之前,传感器的模拟信号必 须转换为数字信号。 模数转换器(ADC)是提供瞬时模拟信号 的数字显示的一种芯片。实际操作中,模拟信号随着时间不 断发生改变,ADC以预定的速率收集信号周期性的“采样”。 这些采样通过计算机总线传输到计算机上,在总线上从软件 采样重构原始信号。来自、DAQ设备计算机总线
DAQ设备通过插槽或端口连接至计算机。作为DAQ设备和计 算机之间的通信接口,计算机总线用于传输指令和已测量 数据。DAQ设备可用于最常用的计算机总线,包括USB、PCI、 PCI Express和以太网。最近, DAQ设备已可用于802.11无 线网络进行无线通信。总线有多种类型,对于不同类型的 应用,各类总线都能提供各自不同的优势。
电压范围和分辨率是选择合适的数据采集设备时所需考虑 的重要因素。
三、数据采集卡
数据采集卡,即实现数据采集(DAQ)功能的计算机扩展卡, 可以通过USB、PXI、PCI、PCIExpress、火线(1394)、 PCMCIA、ISA、CompactFlash、485、232、以太网、各种无 线网络等总线接入个人计算机。
信号中可识别的最小变化,决定了DAQ设备所需的分辨 率。分辨率是指ADC可以用来表示一个信号的二进制数的位 数。一个3位ADC可以表示8(23)个离散的电压值,而一个 16位ADC可以表示65536(216)个离散的电压值。对于一个 正弦波来说,使用3位分辨率所表示的波形看起来更像一个 阶梯波,而16位ADC所表示的波形则更像一个正弦波。
3、序列光电信号二值化处理-固定阈值法 如:直径测量系统、条码扫描系统、文字识别系统等。
无需灰度信息,只需二值特征。
线阵CCD输出信号的二值化处理电路与输出的波形图
一、光电传感器信号的二值化处理
4、序列光电信号二值化处理-浮动阈值法 线阵CCD输出的信号经采样保持器采得该周期最初时间段输出 的背景信号并将其保持到整个周期。使阈值电平跟随CCD的背 景光的强度变化,而使二值化信号与背景的强弱无关。
一、光电传感器信号的二值化处理
如钢板移向左侧,光电器件输出幅值将增大,反之,则减小。
设输出幅值为U0的值为“阈值”, 输出值大于U0的为“+1”,低于U0的 为“-1”,为“+1”时拖动机构带 动钢板向右移,使光电器件接收的 光能量减少输出幅度将逐渐降低。 而为“-1”时带动钢板向左移动, 使光电器件接收光的能量增加,输 出幅度逐渐升高。
三、数据采集卡
精度:测量值和真实值之间的误差,标称数据采集卡的测
量准确程度。
一般用满量程(FSR,fullscalerange)的百分比表示, 常见的如0.05%FSR、0.1%FSR等,如满量程范围为0~10V, 其精度为0.1%FSR,则代表测量所得到的数值和真实值之 间的差距在10mv以内。
2、单元光电信号的浮动阈值法二值化处理电路
若使光电检测系统不受光源的影响,应采用浮动阈值二 值化处理电路。阈值电压为采集光源发光强度的光电二极管输
出的电压。用这个电压的分压值为阈值Uth,可以跟随光源发
光强度而变化。
当光源发光强度高时,
Ui增高, Uth也增高使
输出的二值化电压稳定 不变。
一、光电传感器信号的二值化处理
二、DAQ设备
DAQ设备的功能 模拟输入,用于测量模拟信号 模拟输出,用于输出模拟信号 数字输入/输出,用于测量和生成数字信号 计数器/定时器,用于对数字事件进行计数或产生数字脉冲 /信号 有些DAQ设备仅拥有上述功能中的一种,而多功能DAQ 设备则可以实现所有上述功能。
二、DAQ设备
信号调理
信号调理电路将信号处理成可以输入至ADC一种形式。 电路包括放大、衰减、滤波和隔离。一些DAQ设备含有内 置信号调理,用于测量特定的传感器类型。
二、DAQ设备
假设要测量的正弦波频率为1kHz。根据Nyquist定理,至少 需要以2kHz进行信号采集。建议使用10kHz的采样频率,从 而更加精确地测量或生成信号。 如图所示,是对一个频率为1kHz的正弦波分别以2kHz和
10kHz采样率采样时的结果比较。
二、DAQ设备
需要识别到信号中的最小变化是多少?
概述 产品 产品系列 总线类型 产品 编号 操作系统 / 对象 LabVIEW RT支持 DAQ产品家族 测量类型
隔离类型 与RoHS指令的一致性
PCIe-6320 多功能DAQ
PCI Express
781043-01 实时系统 , Windows 是 X系列 正交编码器 , 数字 , 电 压 , 频率
相关文档
最新文档