福建省福州时代中学 2018-2019 学年第一学期七年级期中考试卷数学试卷

合集下载

福建省福州市福清市2018-2019学年七年级(上)期中数学试卷 含解析

福建省福州市福清市2018-2019学年七年级(上)期中数学试卷  含解析

2018-2019学年七年级(上)期中数学试卷一.选择题(共10小题)1.有理数﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣81022.单项式﹣4a3b2的系数是()A.5 B.3 C.4 D.﹣43.瑞士数学家欧拉是史上最伟大的四个数学家之一,目前在百度上搜索关键词“欧拉”,显示的搜索结果约为12 600 000条.将12 600 000用科学记数法表示应为()A.126×105B.1.26×107C.1.26×108D.0.126×1084.在有理数0,,5,3.2,﹣20%中,分数有()A.1个B.2个C.3个D.4个5.下列运用等式的性质,变形不一定正确的是()A.若x=y,则x+6=y+6 B.若x=y,则C.若x=y,则ax=ay D.若x=y,则6﹣x=6﹣y6.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.7.下列各组数中,不相等的是()A.+(﹣3)与﹣(+3)B.﹣|﹣3|与﹣3C.(﹣3)2与﹣32D.(﹣3)3与﹣338.把方程x﹣4x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间9.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是60km/h,水流速度是akm/h,3h后两船相距()A.6a千米B.3a千米C.360千米D.180千米10.1小王在某月的日历上圈出了如图所示的四个数,则这四个数的和可能是()A.24 B.27 C.28 D.30二.填空题(共6小题)11.比较大小:﹣10 ﹣9.12.用四舍五入法取近似数:1.2356≈.(精确到百分位)13.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么﹣700元表示.14.已知a﹣2b=5,则式子3a﹣6b+2的值为.15.若M,N是两个多项式,且M+N=6x2,则符合条件的多项式M,N可以是:M=,N=.(写出一组即可)16.已知m=,n2=n,则m+n的最小值为.三.解答题(共9小题)17.计算:(1)16+(﹣18)÷2(2)(﹣+)×2418.化简:(1)m﹣3n+2m+4n(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)19.(1)解方程:2x+14=2﹣x;(2)计算:﹣+(﹣)3÷(﹣12+).20.先化简,后求值:x2﹣[x2﹣2xy+3(xy﹣)],其中x=3,y=﹣4.21.刚刚升入初三,学习成绩优异但体育一般的王晴同学未雨绸缪,已经为明年的体育中考做起了准备.上周末她在家练习1分钟跳绳,以每分钟150下为基准,超过或不足的部分分别用正负数来表示,8次成绩(单位:下)分别是﹣10,﹣8,﹣5,﹣2,+2,+8,。

2019学年福建省七年级上学期期中考试数学试卷【含答案及解析】

2019学年福建省七年级上学期期中考试数学试卷【含答案及解析】

2019学年福建省七年级上学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列各数中,最大的数是()A. B. C. D.2. 下列说法正确的是()A.最大的负数是B.的倒数是C.表示负数D.绝对值最小的数是03. 我校七年级共有学生人,其中女生占,则男生人数是()A. B. C. D.4. 在代数式 ,, , 0中,整式的个数有()个A.1B.2C.3D.45. 把数60500精确到千位的近似数是()A.60B.61000C.D.6. 已知三个数在数轴上对应点的位置如图所示,下列判断中,正确的个数是()①②③④A.1个B.2个C.3个D.4个7. 观察下列图形,它们是按一定规律排列的,依照此规律,第20个图形共有★()个A.63 B.57 C.68 D.60二、填空题8. 的相反数是9. 代数式表示“两数的平方和”是10. 2014年3月5日,李克强总理在政府工作报告中指出: 2013年全国城镇新增就业人数约13 100 000人,创历史新高,将数字13 100 000用科学计数法表示为11. 数轴上表示有理数-2.5与3.5两点的距离是12. 写出一个系数为1,次数为2的单项式13. 把多项式按的降冪排列14. 已知,则15. 若,则16. 某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):,则车上还有人17. 如图所示的运算程序,当输入的x值为48时,第1次输出的结果为24;然后24又作为输入的的值继续输入,则第2次输出的结果为,...第20次输出的结果为.三、计算题18. 计算(每小题5分,共20分)(1) 5+()―3―(2)(3)-3÷(-1)×(-4)(4)四、解答题19. (7分)在数轴上表示下列各数:,,,,,并用“<”符号连接起来.20. (9分)把下列各数填在相应的大括号内,, , , , , , -(1)整数集合:{…}(2)分数集合:{…}(3)非负数集合:{…}21. (9分)互为相反数,c与d互为倒数,的绝对值是5,试求代数式的值.22. (9分)当时,求下列各代数式的值:(1)(2)23. (9分)已知且试化简:(1)(2)24. (13分)某自行车厂为了赶速度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产辆与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):25. 星期一二三四五六日增减td26. (13分)我国出租车收费标准因地而异,A地为:行程不超过3千米收起步价10元,超过3千米后,每增加1千米加价元;B地为:行程不超过3千米收起步价8元,超过3千米后,每增加1千米加价元。

2018——2019学年度上学期期中考试七年级数学试题卷

2018——2019学年度上学期期中考试七年级数学试题卷

2018—— 2019学年度上学期期中考试七年级数学试题卷(考:90 分友谊提示:⑴可以使用科学算器;⑵ 真,范答,心;⑶相信自己,出真切的水平。

一、填空(每小 2 分,共 24 分)分: 100 分)1、1,倒数是。

的相反数是22、某天清晨的气温是-7℃,正午上涨了11℃,正午的气温是。

3、孔子出生于公元前551 年,假如用-551 年来表示,那么以下中国史文假名人的出生年月如何表示?⑴司迁出生于公元前145 年;⑵李白出生于公元701 年。

4、某蓄所理,定存入正,取出,某天他理的 5 件是:- 765,-500,+265,+ 2000,- 850(位:元),增添或减少多少元?答:。

5、利用算器,按((—)2)∧5=示的果是6、算5x8x10 x。

7、右是一个数机的表示,若入x 的3,y 的 -2 ,出的果: _________________.8、甲乙两个学校,甲校比乙校学生人数多2100 人,甲校人数是乙校人数的 3 倍,假如乙校有学生x 人,甲校有学生,列方程得。

9、 2005 年 10 月 12 日 9 整点出征, 17 日 4 33 分旋着———神舟 6 号船115 小 32 分的太空之旅,地行77 圈,行程325 万公里,把325 万个数用科学数法表示,它有个有效数字。

10、若 m、 n 互相反数,m 1n =。

11、比大小(填“>”或“<”)53— 4 6;31, 3233, 344, 3536729 , 3712、察以下算式:39 ,2781243 ,2187 ,386561⋯⋯用你所的律写出32005的末位数字。

二、(每 3 分,共 15 分)13、- 2- 5 的算果是()(A)- 3(B)- 5(C)3( D)-714、以下句,表达正确的选项是()(A)0 是最小的数( B)任何有理数的都是正数(C)数上距原点 8 个位度的点表示的数是8和-8( D )最大的有理数是-115、以下移正确的选项是()( A )由5x 7 y 20 得 2 7 y5x (B)由 6 x 3 x 4 得 6x 3 4 x( C)由8 x x5得 x x58 (D)由 x 9 3x1得 x 3x 1 916、把18129 6 写成省略加号和括号的和的形式()(A)18 1296(B) 18129 6(C)18129 6 (D)18129 617、某粮店销售三种品牌的面粉,袋上分有量250.1 kg , 250.2 kg , 250.3 kg 的字,从中任意取出两袋,它的量最多相差()( A )三、合运用(共61 分)18、计算(每题 5 分,共 25 分)⑴2 73⑵65 499⑶23 3⑷323 2112 356⑸ 3(2a3b)1(6a12b)319、解方程(每题 5 分,共 10 分)⑴ 192⑵ 4x3x220、用计算器计算(每题2 分,共 4 分)⑴(保留三位有效数字)⑵7.12 3 (精确到 )21、( 7 分)请在数轴上表示以下各数:+3 , 5 , 0,— 4,1,并用“<”把它们联系起来。

人教版初中数学七年级上册期中测试题(2018-2019学年福建省福州

人教版初中数学七年级上册期中测试题(2018-2019学年福建省福州

2018-2019学年福建省福州十九中七年级(上)期中数学试卷一、选择题(共10小题,每题2分,满分20分)1.(2分)﹣2的绝对值是()A.B.﹣C.2D.﹣22.(2分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.950×1010kmC.95×1011km D.9.5×1012km3.(2分)在有理数﹣12、﹣(﹣1)、﹣|﹣1|、(﹣1)5中负数有()A.4B.3C.2D.14.(2分)下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数5.(2分)解是x=的方程是()A.2﹣4x=1B.3x+2=5C.D.4x﹣2=6x﹣3 6.(2分)下列结论正确的是()A.3x2﹣x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4﹣2x3y是六次三项式7.(2分)以下各式中,能与3ab2合并同类项的是()A.9a2b2B.(3ab)2C.﹣D.3a2b8.(2分)如果x+,那么3x+=()A.6B.﹣9C.3D.﹣19.(2分)已知|a|>a,则下列各数中,值最大的是()A.a B.a2C.a3D.10.(2分)花园内有一块边长为a的正方形土地,园艺师设计了四种不同的图案,如下图的A、B、C、D所示,其中的阴影部分用于种植花草.种植花草部分面积最大的图案是()(说明:A、B、C中圆弧的半径均为,D中圆弧的半径为a)A.B.C.D.二、填空题(共6小题,每题3分,满分18分)11.(3分)﹣3(a﹣b)=﹣3a+3b,在这个去括号的过程中使用了.(填运算律)12.(3分)写出一个以字母y为未知数且解为﹣2的方程:.13.(3分)1.998精确到个位的近似数是.14.(3分)2016年9月,福州航空开通了福州直飞纽约的班机,机票价格为a元,国庆节时许多福州的土豪选择出行,于是机票价格相应上调了b%,则国庆节机票价格为元.15.(3分)已知a,b互为相反数,则a+2a+3a+…+99a+100a+100b+99b+…+3b+2b+b =.16.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=.三、解答题(满分0分,)17.(1)﹣13+28+62﹣77(2)4﹣4+(﹣3)×(﹣)(3)﹣12006+[1﹣(2﹣22)×3]+(4)(﹣6)×(﹣﹣+)×(﹣8)18.(1)3(3a2﹣2)﹣2(3a2﹣2)(2)(6xy+)﹣(x2﹣y2+72xy﹣12)19.已知a3+a2b=3,a2b+b3=﹣2,求a3﹣b3的值.20.先化简后求值:2(xy2+xy)﹣3(xy2﹣yx)﹣4yx2,其中|x+1|+(y﹣1)2=0.21.两家体育品经销商在国庆期间各推出了自己的优惠活动,A经销商的优惠活动是购买一件球衣送一双球袜,B经销商的优惠活动是球衣与球袜均降价10%出售,而两家经销商的球衣定价均为300元,球袜定价均为40元,若当地的体育学校需要购买球衣20套,球袜x双(x>20);(1)请分别用含x的代数式表示在两家经销商购买球衣和球袜的总费用;(填化简之后的结果)A经销商总费用:;B经销商总费用:;(2)当x=30时,请通过计算说明在哪家经销商处花费更少.22.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.23.用字母代替数字是数学发展史上的一大飞跃,请阅读材料并完成下列问题:在计算(1++)×(++)﹣(1+++)×(+)这个算式的过程中,可以设A=1++,B=+,原式化简为A(B+)﹣(A+)B再由乘法分配律A(B+)﹣(A+)B=AB+A﹣AB﹣B=A﹣B =(A﹣B)=请根据这种方法计算:(1++……+)×(+……+)﹣(1++……+)×(+……+)24.已知数轴上有ABC三点,分别表示有理数﹣12,﹣5,5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,其中P A表示点P到A的距离,PB表示点P与点B的距离,PC表示P到点C的距离.(1)当t<7时,用含t的代数式分别表示P A,PB,PC;(2)当P运动到点B与点C之间时,①P A+PB是定值,②PC+PB是定值这两个说法中有一个说法是正确的,请指出哪个说法是正确的,并说明理由.2018-2019学年福建省福州十九中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每题2分,满分20分)1.(2分)﹣2的绝对值是()A.B.﹣C.2D.﹣2【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:C.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.950×1010kmC.95×1011km D.9.5×1012km【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9500 000 000 000=9.5×1012,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)在有理数﹣12、﹣(﹣1)、﹣|﹣1|、(﹣1)5中负数有()A.4B.3C.2D.1【分析】先化简题目中的数字即可解答本题.【解答】解:∵﹣12=﹣1,﹣(﹣1)=1,﹣|﹣1|=﹣1,(﹣1)5=﹣1,∴有理数﹣12、﹣(﹣1)、﹣|﹣1|、(﹣1)5中负数有3个,故选:B.【点评】本题考查有理数的乘方、正负数、相反数、绝对值,解答本题的关键是明确有理数化简的方法.4.(2分)下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数【分析】根据分类:,,采用排除法求解.【解答】解:负整数不是正数,A错误;0既不是正数也不是负数,B错误;没有最小的有理数,C正确;正有理数包括正整数和正分数,D错误;故选:C.【点评】本题主要考查有理数的概念,熟练掌握概念和性质是解决数学问题的关键.5.(2分)解是x=的方程是()A.2﹣4x=1B.3x+2=5C.D.4x﹣2=6x﹣3【分析】分别解各个选项的一元一次方程,选出解是x=的选项即可.【解答】解:A.解方程2﹣4x=1得:x=,即A项错误,B.解方程3x+2=5得:x=1,即B项错误,C.解方程x=2得:x=4,即C项错误,D.解方程4x﹣2=6x﹣3得:x=,即D项正确,故选:D.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.6.(2分)下列结论正确的是()A.3x2﹣x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4﹣2x3y是六次三项式【分析】根据几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、3x2﹣x+1的一次项系数是﹣1,故错误;B、xyz的系数是1,故错误;C、a2b3c是六次单项式,故错误;D、正确.故选:D.【点评】本题考查了多项式,解决本题的关键是熟记多项式的有关概念.7.(2分)以下各式中,能与3ab2合并同类项的是()A.9a2b2B.(3ab)2C.﹣D.3a2b【分析】根据同类项、合并同类项法则计算.【解答】解:同类项才能合并,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,所以C能与3ab2合并同类项.故选:C.【点评】注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.8.(2分)如果x+,那么3x+=()A.6B.﹣9C.3D.﹣1【分析】根据等式的性质,把x+的两边同时乘3,求出3x+的值是多少即可.【解答】解:∵x+,∴3x+=﹣3×3=﹣9.故选:B.【点评】此题主要考查了等式的性质,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子)结果仍得等式;(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.(2分)已知|a|>a,则下列各数中,值最大的是()A.a B.a2C.a3D.【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.如果一个数的绝对值大于它本身,则该数一定是负数.【解答】解:因为|a|>a,所以a是负数.所以a2>0,而a3<0,<0,根据正数大于负数.故选B.【点评】考查了绝对值的性质和数的大小比较.10.(2分)花园内有一块边长为a的正方形土地,园艺师设计了四种不同的图案,如下图的A、B、C、D所示,其中的阴影部分用于种植花草.种植花草部分面积最大的图案是()(说明:A、B、C中圆弧的半径均为,D中圆弧的半径为a)A.B.C.D.【分析】将第2个图形中的半圆的面积相加为以半径为的圆;第3个图形中4个扇形的面积相加为以半径为的圆;故第1,2,3个图形阴影的面积为正方形的面积减去以为半径的圆的面积;第4个图形的面积为两个扇形的面积减去正方形的面积,计算后比较即可.【解答】解:第1,2,3个图形的面积为:a2﹣π()2=(1﹣)a2;第4个图形的面积为:×2﹣a2=(﹣1)a2;∵(1﹣)a2<(﹣1)a2,∴第4个阴影部分的面积最大.故选:D.【点评】解决本题的关键是将每个图形阴影部分面积求出.二、填空题(共6小题,每题3分,满分18分)11.(3分)﹣3(a﹣b)=﹣3a+3b,在这个去括号的过程中使用了乘法分配律.(填运算律)【分析】根据去括号与添括号法则即可求出答案.【解答】解:去括号过程是使用了乘法分配律,故答案为:乘法分配律.【点评】本题考查整式的运算,解题的关键是正确理解去括号与添括号法则,本题属于基础题型.12.(3分)写出一个以字母y为未知数且解为﹣2的方程:y+2=0(答案不唯一).【分析】根据方程的解的概念求解可得(答案不唯一).【解答】解:满足题意的方程为y+2=0,故答案为:y+2=0(答案不唯一).【点评】本题主要考查方程的解,解题的关键是掌握方程的解得概念.13.(3分)1.998精确到个位的近似数是2.【分析】把十分位上的数字9进行四舍五入即可.【解答】解:1.998精确到个位的近似数是2.故答案为2.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.(3分)2016年9月,福州航空开通了福州直飞纽约的班机,机票价格为a元,国庆节时许多福州的土豪选择出行,于是机票价格相应上调了b%,则国庆节机票价格为a (1+b%)元.【分析】直接利用机票价格相应上调了b%,得出国庆节机票价格.【解答】解:由题意可得,国庆节机票价格为:a(1+b%).故答案为:a(1+b%).【点评】此题主要考查了列代数式,正确表示出上调后价格是解题关键.15.(3分)已知a,b互为相反数,则a+2a+3a+…+99a+100a+100b+99b+…+3b+2b+b=0.【分析】已知a,b互为相反数,那么,a+b=0,则a+2a+3a+…+99a+100a+100b+99b+…+3b+2b+b=a+b=0.【解答】解:a+2a+3a+…+99a+100a+100b+99b+…+3b+2b+b=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b的值,然后利用“整体代入法”求代数式的值.16.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=109.【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.三、解答题(满分0分,)17.(1)﹣13+28+62﹣77(2)4﹣4+(﹣3)×(﹣)(3)﹣12006+[1﹣(2﹣22)×3]+(4)(﹣6)×(﹣﹣+)×(﹣8)【分析】(1)按有理数加减法法则计算,可利用加法交换律和结合律先把符号相同的数先相加减,达到简便运算.(2)按有理数混合运算法则计算,注意乘法时积的符号.(3)按有理数混合运算法则计算,注意第一项为1的2006次方的相反数,结果为﹣1;中括号内的计算按先乘除后加减;最后一项是偶数个﹣1的积,结果为1.(4)先把﹣6与﹣8相乘,再利用乘法分配律计算,注意分配律使用时每项的符号.【解答】解:(1)﹣13+28+62﹣77=(﹣13﹣77)+(28+62)=﹣90+90=0(2)4﹣4+(﹣3)×(﹣)=4﹣4+1=1(3)﹣12006+[1﹣(2﹣22)×3]+=﹣1+[1﹣(2﹣4)×3]+1=﹣1+[1﹣(﹣2)×3]+1=﹣1+[1+6]+1=7(4)(﹣6)×(﹣﹣+)×(﹣8)=48×(﹣﹣+)=48×()+48×()+48×=﹣4﹣14+18=0【点评】本题考查了有理数混合运算法则,为常考题型.必须正确理解法则并按先乘方、再乘除、最后加减的顺序运算进行计算.18.(1)3(3a2﹣2)﹣2(3a2﹣2)(2)(6xy+)﹣(x2﹣y2+72xy﹣12)【分析】(1)根据整式的运算法则即可求出答案;(2)根据整式的运算法则即可求出答案.【解答】解:(1)原式=9a2﹣6﹣6a2+4=3a2﹣2;(2)原式=6xy+﹣﹣6xy+1=1;【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.19.已知a3+a2b=3,a2b+b3=﹣2,求a3﹣b3的值.【分析】根据a3﹣b3=(a3+a2b)﹣(a2b+b3),应用代入法,求出算式的值是多少即可.【解答】解:当a3+a2b=3,a2b+b3=﹣2时,a3﹣b3=(a3+a2b)﹣(a2b+b3)=3﹣(﹣2)=5故答案为:5.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.20.先化简后求值:2(xy2+xy)﹣3(xy2﹣yx)﹣4yx2,其中|x+1|+(y﹣1)2=0.【分析】根据整式的运算法则即可求出答案.【解答】解:由题意可知:x=﹣1,y=1,原式=2xy2+2xy﹣3xy2+3yx﹣4yx2=﹣xy2+5xy﹣4x2y,=﹣(﹣1)×1+5×(﹣1)×1﹣4×1×1=1﹣5﹣4=﹣8.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.两家体育品经销商在国庆期间各推出了自己的优惠活动,A经销商的优惠活动是购买一件球衣送一双球袜,B经销商的优惠活动是球衣与球袜均降价10%出售,而两家经销商的球衣定价均为300元,球袜定价均为40元,若当地的体育学校需要购买球衣20套,球袜x双(x>20);(1)请分别用含x的代数式表示在两家经销商购买球衣和球袜的总费用;(填化简之后的结果)A经销商总费用:(40x+5200)元;B经销商总费用:(4x+600)元;(2)当x=30时,请通过计算说明在哪家经销商处花费更少.【分析】(1)根据题意表示出A与B经销商总费用即可;(2)把x=30分别代入计算,比较即可.【解答】解:(1)A经销商总费用为:300×20+40(x﹣20)=(40x+5200)元;B经销商总费用为:(1﹣10%)×(300×20+40x)=(36x+5400)元;故答案为:(40x+5200)元;(36x+5400)元;(2)把x=30代入A经销商总费用得:40×30+5200=1200+5200=6400元;把x=30代入B经销商总费用得:36×30+5400=1080+5400=6480元,由6400<6480,得到A经销商总费用更少.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.22.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.【分析】先根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后去掉绝对值号,再进行计算即可求解.【解答】解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b.【点评】本题考查了绝对值的性质以及合并同类项法则,根据数轴确定出a、b、c的正负情况是解题的关键.23.用字母代替数字是数学发展史上的一大飞跃,请阅读材料并完成下列问题:在计算(1++)×(++)﹣(1+++)×(+)这个算式的过程中,可以设A=1++,B=+,原式化简为A(B+)﹣(A+)B再由乘法分配律A(B+)﹣(A+)B=AB+A﹣AB﹣B=A﹣B =(A﹣B)=请根据这种方法计算:(1++……+)×(+……+)﹣(1++……+)×(+……+)【分析】根据题目中的例子可以求得所求式子的值,本题得以解决.【解答】解:设A=1++……+,B=+……+,则(1++……+)×(+……+)﹣(1++……+)×(+……+)=A(B+)﹣(A+)B=AB+A﹣AB﹣B=(A﹣B)=×1=.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.已知数轴上有ABC三点,分别表示有理数﹣12,﹣5,5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,其中P A表示点P到A的距离,PB表示点P与点B的距离,PC表示P到点C的距离.(1)当t<7时,用含t的代数式分别表示P A,PB,PC;(2)当P运动到点B与点C之间时,①P A+PB是定值,②PC+PB是定值这两个说法中有一个说法是正确的,请指出哪个说法是正确的,并说明理由.【分析】(1)t<7时,点P在点A与B之间,P A、PB、PC很容易表达;(2)当点P在B、C之间时,P A+PB=2t﹣7是随t变化的.【解答】解:(1)当t<7时,P A=t,PB=7﹣t,PC=17﹣t;(2)②PC+PB是定值正确;∵当P运动到点B与点C之间时,PB=t﹣7,PC=17﹣t,∴PB+PC=(t﹣7)+(17﹣t)=10,故PB+PC是定值.【点评】这是一个在数轴上两点之间距离计算问题,关键要弄清楚点P运动的位置,能准确地用含t的代数式表达P与A、B、C的距离.。

福建省福州市时代中学2018-2019学年七年级下期期中考试数学试卷(含答案)

福建省福州市时代中学2018-2019学年七年级下期期中考试数学试卷(含答案)

C .D . 福州市时代中学2018-2019七年级下期中考试数学试卷(测试范围:相交线与平行线) (测试时间:120分钟满分:150分)一、选择题(每小题4分,共40分)1.在21, ,4,312,0,2,·0.3-,无理数有( ).A .1 个B .2 个C .3 个D .4 个2. 在平面直角坐标系中,点 P (-2,x 2+3)所在的象限是().A .第一象限B .第二象限C .第三象限D .第四象限3. 如果 a >b ,那么下列不等式成立的是().A .a -b <0B .a -3<b -3C .-3a <-3bD .1a <1b3 34. 为了测算一块 600 亩试验田里新培育的杂交水稻的产量,随机对其中的 10 亩杂交水稻的产量进行了检测,在这个问题中 10 是( ). A .个体B .总体C .总体的样本D .样本容量5. 学校组织同学们春游,租用 45 座和 30 座两种型号的客车,若租用 45 座客车 x 辆,租用 30 座客车 y 辆,则不等式“45x +30y ≥500”表示的实际意义是( ).A .两种客车总的载客量不少于 500 人B .两种客车总的载客量不超过 500 人C .两种客车总的载客量不足 500 人D .两种客车总的载客量恰好等于 500 人6. 在下列命题中,为真命题的是().A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直7. 在平面直角坐标系中,以方程 2x -3y =6 的解为坐标的点组成的图形是().A .B .a8. 某种出租车的收费标准:起步价 7 元(即行驶距离不超过 3 千米都需付 7 元车费),超过 3 千米后,每增加1 千米,加收 2.4 元(不足 1 千米按 1 千米计).某人乘这种出租车从甲地到乙地共付车费19 元,那么甲地到乙地路程的最大值是().A .5 千米B .7 千米C .8 千米D .15 千米9. 若 a 的算术平方根为 27.75,b 的立方根为-9.79,x 的平方根为±2.775,y 的立方根为 97.9则( )A .x =100a ,y= 1aB .x = 1a ,y =100b100100 C .x = 1a ,y =-1000bD .x = 1,y =-100b 100100010. 如图,AB ∥CD ,BF 平分∠ABE ,且 BF ∥DE ,则∠ABE 与∠D 的关系是().A .∠ABE =3∠DB .∠ABE +∠D =90°C .∠ABE +3∠D =180°D .∠ABE =2∠D第 10 题第 12 题二、填空题(共6小题,每小题4分,共24分) 11.比较大小:5 6 (用“<、>、或=”填空)5612. 如图是一把剪刀,若∠AOB +∠COD =60°,则∠BOD =°.13. 已知一组数据是连续的整数,其中最大值是 242,最小数据是 198,若把这组数据分成 9 个小组,则组距是 .14. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有 牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两.问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,可列方程组为 .x =a15. 若二元一次方程 4x -6y -10=0 的一组解为 y =b,则 12b -8a +3=.16. 在平面直角坐标系中,点 A (a ,1),点 B (4-a ,1),且 A 在 B 的左边,点 C (1,0),若在△ABC 内部(含边界),横纵坐标均为整数的点有 6 个,则 a 的取值范围为 .三、解答题(共9 小题,满分86 分)3x+y=6 17.(8 分)计算:(1) -8-3+( 5)2+|1-3|;(2)解方程组: 4 34x-3y=-4.18.解不等式组⎪⎩⎪⎨⎧>++≤+xxxx2274)32(,把解集表示在数轴上,并写出它的所有整数解.19.(8 分)如图,在平面直角坐标系 xOy 中,几段1圆弧(占圆周的1的圆弧)首尾连接围成的封闭区域形如“宝4 4 瓶”,其中圆弧连接点都在正方形网格的格点处,点 A 的坐标是 A (0,6),点 C 的坐标是 C (-6,0).(1) 点 B 的坐标为,点 E 的坐标为 ;(2) 当点B 向右平移 个单位长度时,能与点 E 重合,如果(3) 直接写出“宝瓶”所覆盖区域面积的思路.20.(8 分)(1)阅读下列材料并填空:对于二元一次方程组我们可以将 x ,y 的系数和相应的常数项排成一个数表 ⎪⎪⎭⎫⎝⎛b a 1 0 0 1得的一次方程组的解⎩⎨⎧==b y ax ,用数表可表示为⎪⎪⎭⎫⎝⎛b a 1 0 0 1,用数表可以简化表达解一次方程组的过程如下, y =b 0 1 b请补全其中的空白:上行 ⎛ 4 3 54⎫⎛3 0 18 ⎫ ⎛1 0 6 ⎫ ⎛1 0 6 ⎫ ⎛ ⎫ 下行 ⎝1 ⎪ 3 36⎭⎝1 3 x = ⎪ 36⎭⎝1 3 ⎪ 36⎭ ⎝ 0 ⎪ ⎪ 3 30 ⎭ ⎝ ⎭y =2x +3y =6(2) 仿照(1) x +y =2的过程.21.(8 分)4 月23 日是“世界读书日”,学习开展“让书香溢满校园”的读书活动,以提升青少年的阅读兴趣,小明针对某校七年级学生(共16个班,480名同学)课外阅读喜欢图书的种类(每人只能选一种书籍)进行了调查. (1)小明采取的下列调查方式中,比较合理的是;理由是.A.对七年级(1)班的全体同学进行问卷调查;B.对七年级各班的语文科代表进行问卷调查;C.对七年级各班学号为3 的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:①在扇形统计图中,“其它”所在的扇形的圆心角等于度;②补全条形统计图;③根据调查结果,估计七年级课外阅读喜欢“漫画”的同学有多少人?22.(10 分)已知△ABC,EF∥AC 交直线AB 于点E,DF∥AB 交直线AC 于点D.(1)如图1,若点F 在边BC 上,①补全图形;②判断∠BAC 与∠EFD 的数量关系,并给予证明;(2)若点F 在边BC 的延长线上,(1)中的结论还成立吗?若成立,给予证明;若不成立,说明理由.23.(10 分)为降低空气污染,919 公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B 型两种公交车共10 辆,其中每台的价格、年载客量如表:若购买A 型公交车1 辆,B 型公交车2 辆,共需400 万元;若购买A 型公交车2 辆,B 型公交车1 辆,共需350 万元.(1)求a,b 的值;(2)如果该公司购买A 型和B 型公交车的总费用不超过1200 万元,且确保这10 辆公交车在该线路的年均载客总和不少于680 万人次.请你设计一个方案,使得购车总费用最少.A 型B 型价格(万元/台)a b年载客量(万人/年)60 10024.(13 分)对于平面直角坐标系xOy 中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P 的“k 属派生点”.例如:P(1,4)的“2 属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(-3,4)的“3 属派生点”P′的坐标为;(2)若点P 的“5 属派生点”P′的坐标为(3,-9),求点P 的坐标;(3)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P′点,且线段PP′的长度为线段OP 长度的3 倍,求k 的值.25.(13 分)如图1,已知两条直线AB,CD 被直线EF 所截,分别交于点E,点F,EM 平分∠AEF 交CD 于点M,且∠FEM=∠FME.(1)判断直线AB 与直线CD 是否平行,并说明理由;(2)如图2,点G 是射线MD 上一动点(不与点M,F 重合),EH 平分∠FEG 交CD 于点H,过点H 作HN⊥EM 于点N,设∠EHN=α,∠EGF=β.①当点G 在点 F 的右侧时,若β=56°,求α的度数;②当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.⎩福州市时代中学2018-2019七年级下期中考试数学试卷参考答案一、选择题题号1 2 3 4 5 6 7 8 9 10 选项BBCDABACCD二、填空题11.> 12.150 13.5 14. 15.-17 16.-1<a ≤0三、解答题⎧x = 817.(1)解:原式=8(2)解:原方程组的解为⎨ y = 1218.解:- 1≤x <2,数轴如图所示,整数解有 0、1;219.20.21.22.23.24.(1)P′的坐标为(9,-5)(Ⅲ)∵点P(a,b)在x轴的正半轴上,∴b=0,a>0.∴点P的坐标为(a ,0 ),点P′的坐标为(a ,ka )∴线段PP′的长为点P′到x轴距离为|ka|,∵P在x轴正半轴,线OP的长为a,根据题意,有|PP'|=3|OP|,∴|ka|=3a,∵a>0,∴|k|=3.从而k=±3.25.综上所述,当 G 在 F 的右侧时, α=1 2 β;当 G 在 F 的左侧时,α=90°-1β. 2。

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、填空题(本大题共有12小题,每小题2分,共24分)1.(2分)﹣3的相反数是.2.(2分)跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示.3.(2分)单项式﹣的次数是.4.(2分)某市某楼盘房屋销售均价为每平方米10500元,该数用科学记数法表示为.5.(2分)用代数式表示“比a的3倍大5的数”.6.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.7.(2分)若﹣3x m y2与5x3y n是同类项,则n﹣m=.8.(2分)绝对值不大于3的所有负整数的和是.9.(2分)已知x2﹣2y+2=0,则代数式2x2﹣4y﹣1的值是.10.(2分)如果|a﹣1|+(b+2)2=0,则(a+b)2018的值是.11.(2分)有理数a,b在数轴上的位置如图所示,则|a+b|﹣2|a﹣b|的结果为.12.(2分)在我国的民俗中常将十二生肖用于记年,顺序排列为子鼠、丑牛、寅虎、卯兔、辰龙、已蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪,今年(2018年)是“戌狗”年,2050年是“”年.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.(3分)下列一组数:﹣8,2.7,,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中无理数有()个A.0 B.1 C.2 D.314.(3分)下列式子中,符合代数式的书写格式的是()A.(a﹣b)×7 B.3a÷5b C.1ab D.15.(3分)下列各式计算正确的是()A.6a﹣5a=1 B.a+a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b16.(3分)多项式x2﹣3kxy+6xy﹣8化简后不含xy项,则k等于()A.2 B.﹣2 C.0 D.317.(3分)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(24分)(1)计算:﹣3﹣(﹣4)+7;(2)计算:﹣81÷×÷(﹣16);(3)计算:(﹣﹣)×(﹣24);(4)计算:﹣14﹣(﹣2)2+6×(﹣);(5)化简:3x2+5x﹣5x2+3x;(6)化简:6(m2﹣n)﹣3(n+2m2).19.(6分)画出数轴(取0.5cm为一个单位长度),用数轴上的点表示下列各数,并用“<”将它们从小到大排列.﹣2,+3.5,﹣1,1,0按照从小到大的顺序排列为.20.(6分)现定义某种新运算:对于任意两个有理数a、b,有a*b=a2﹣2b+1,例如:2*3=22﹣2×3+1=﹣1.(1)计算:3*(﹣2)的值;(2)试化简:x*(x2+1).21.(6分)老师在黑板上写了一个正确的演算过程,随后用手捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂住的多项式;(2)当a=﹣1,b=3时求所捂住的多项式的值.22.(6分)我们知道:点A、B在数轴上分别表示有理数a、b,如图A、B两点之间的距离表示为AB,记作AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)已知|a﹣3|=7,则有理数a=;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=.23.(6分)某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”)(1)有名男同学成绩达标,跑得最快的同学序号是号;跑得最快的同学比跑得最慢的同学快了秒;(2)这10名男同学的平均成绩是多少?24.(7分)操作与思考:一张边长为a的正方形桌面,因为实际需要,需将正方形边长增加b,从而得到一个更大的正方形,木工师傅设计了如图所示的方案:(1)方案中大正方形的边长都是,所以面积为;(2)小明还发现:方案中大正方形的面积还可以用四块小四边形的面积和来表示;(3)你有什么发现,请用数学式子表达;(4)利用(3)的结论计算20.182+2×20.18×19.82+19.822的值.25.(6分)我们把形如(n是正整数,n≥2)的分数叫做单位分数,如、、…,任何一个单位分数都可以拆成两个不同的单位分数之和,如=+、=+、=+…观察上述式子的规律,回答下面的问题:(1)把写成两个单位分数之和:=;(2)把(n是正整数,n≥2)写成两个单位分数之和:=;(3)计算:+++…+.26.(7分)阅读理解:我们把分一条线段为两条相等线段的点称为线段的中点.如图1所示,则称点M为线段AB的中点.问题解决:(1)如图2所示,点A、B、C、D、E在数轴上的对应的数分别为﹣2、﹣1、0、1、2,则图2中,线段AC的中点是点,点C是线段和线段的中点,线段AB的中点对应的数是,线段BE的中点对应的数是;(2)如图3,点E、F对应的数分别是e、f,则线段EF的中点对应的数为(用含e、f的代数式表示).27.(7分)小明根据市自来水公司的居民用水收费标准,制定了水费计算数值转换机的示意图.(用水量单位:m3,水费单位:元)(1)根据转换机程序计算下列各户月应缴纳水费(2)当x>15时,用含x的代数式表示水费;(3)小丽家10月份水费是70元,小丽家10月份用水m3.2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共24分)1.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.2.【解答】解:跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个,故答案为:少跳了8个.3.【解答】解:该单项式的次数为:4,故答案为:4.4.【解答】解:10500元,该数用科学记数法表示为1.05×104.故答案为:1.05×104.5.【解答】解:比a的3倍大5的数”用代数式表示为:3a+5,故答案为:3a+5.6.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.7.【解答】解:∵﹣3x m y2与5x3y n是同类项,∴m=3,n=2,则n﹣m=2﹣3=﹣1.故答案为:﹣1.8.【解答】解:绝对值不大于3的负整数有﹣1,﹣2,﹣3,则它们的和为﹣1+(﹣2)+(﹣3)=﹣6.故答案为﹣6.9.【解答】解:∵x2﹣2y+2=0,∴x2﹣2y=﹣2.∴2x2﹣4y=﹣4.∴原式=﹣4﹣1=﹣5.故答案为:﹣510.【解答】解:由题意得,a﹣1=0,b+2=0,解得,a=1,b=﹣2,则(a+b)2018=(﹣1)2018=1,故答案为:1.11.【解答】解:根据题意得:b<0<a,则a+b<0,a﹣b>0,则|a+b|﹣2|a﹣b|=﹣a﹣b﹣2a+2b=﹣3a+b.故答案为﹣3a+b.12.【解答】解:(2050﹣2018)÷12=2…8,∴2050年是“午马”年,故答案为:午马.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.【解答】解:、0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:C.14.【解答】解:选项A正确的书写格式是7(a﹣b),选项B正确的书写格式是,选项C正确的书写格式是ab,选项D的书写格式是正确的.故选:D.15.【解答】解:A、6a﹣5a=a,故本选项错误;B、a与a2不是同类项,不能合并成一项,故本选项错误;C、﹣(a﹣b)=﹣a+b,故本选项正确;D、2(a+b)=2a+2b,故本选项错误;故选:C.16.【解答】解:∵多项式x2﹣3kxy+6xy﹣8化简后不含xy项,∴﹣3k+6=0,解得:k=2.故选:A.17.【解答】解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.【解答】解:(1)﹣3﹣(﹣4)+7=﹣3+4+7=8;(2)﹣81÷×÷(﹣16)=﹣81×××(﹣)=1;(3)(﹣﹣)×(﹣24)=﹣9+4+18=13;(4)﹣14﹣(﹣2)2+6×(﹣)=﹣1﹣4﹣2=﹣7;(5)3x2+5x﹣5x2+3x=﹣2x2+8x;(6)6(m2﹣n)﹣3(n+2m2)=6m2﹣6n﹣3n﹣6m2=﹣9n.19.【解答】解:如图所示:按照从小到大的顺序排列为﹣2<﹣1<0<1<3.5.故答案为:﹣2<﹣1<0<1<3.5.20.【解答】解:(1)根据题中的新定义得:原式=9+4+1=14;(2)根据题意得:原式=x2﹣2(x2+1)+1=﹣x2﹣1.21.【解答】解:(1)原式=(a2﹣4b2)+(a2+4ab+4b2)=2a2+4ab(2)当a=﹣1,b=3时,原式=2﹣12=﹣1022.【解答】解:(1)数轴上表示2和5两点之间的距离是:|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是:|﹣3﹣2|=5.故答案是:3;5;(2)依题意得:a﹣3=7,或a﹣3=﹣7,解得a=10或a=﹣4,故答案是:10或﹣4;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=3﹣b+b+4=7.故答案是:7.23.【解答】解:(1)有7名男同学成绩达标,跑得最快的同学序号是6号;跑得最快的同学比跑得最慢的同学快了(15+1.2)﹣(15﹣1.4)=2.6秒.故答案为7,6,2.6;(2)(+1.2﹣0.6﹣0.8+1+0﹣1.4﹣0.5﹣0.4﹣0.3+0.8)÷10=﹣0.1,15﹣0.1=14.9(秒).答:这10名男同学的平均成绩是14.9秒.24.【解答】解:(1)方案中大正方形的边长都是(a+b),所以面积为(a+b)2,故答案为:(a+b),(a+b)2;(2)方案中大正方形的面积还可以用四块小四边形的面积和来表示:a2+ab+ab+b2=a2+2ab+b2,故答案为:(a2+2ab+b2);(3)根据大正方形的面积不变可知(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(4)20.182+2×20.18×19.82+19.822=(20.18+19.82)2=402=1600.25.【解答】解:(1)根据题意知,=+,故答案为:+.(2)根据题意知,=+,故答案为:+.(3)原式=﹣+﹣+﹣+…+﹣=﹣=.26.【解答】解:(1)线段AC的中点是点B,点C是线段BD和线段AE的中点,线段AB 的中点对应的数是﹣,线段BE的中点对应的数是;故答案为:B,BD,AE,﹣,;(2)∵点E、F对应的数分别是e、f,∴线段EF的中点对应的数为,故答案为:.27.【解答】解:(1)张大爷水费:6×3=18元;王阿姨水费:15×3=45元;小明家水费:(17﹣15)×5+15×3=55元.故答案为:18,4,55.(2)观察示意图得:当x>15时,月应缴纳水费(元)用x的代数式表示为15×3+5(x﹣15)=5x﹣30;故答案为:5x﹣30;(3)(70﹣15×3)÷5+15=25÷5+15=5+15=20(m3).答:小丽家该月用水20m3.故答案为:20;。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷(四)一、选择题:(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.2.若(k﹣1)x|k|+20=0是一元一次方程,则k的值是()A.1 B.﹣1 C.0 D.±13.解方程﹣=1,去分母正确的是()A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6 4.已知a﹣7b=﹣2,则4﹣2a+14b的值是()A.0 B.2 C.4 D.85.下列说法中正确的是()A.最小的整数是0 B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A .B .C .D .7.若关于x 的方程2m+x=1和方程3x ﹣1=2x+1的解互为相反数,则m 的值为( )A .﹣B .C .0D .﹣28.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A .甲B .乙C .同样D .与商品的价格有关 9.李华骑赛车从家里去乐山新村广场练习,去时每小时行24千米,回来时每小时16千米,则往返一次的平均速度为( )千米/时.A .20B .19.8C .19.6D .19.2 10.单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,711.长城总长约为6 700 000米,用科学记数法表示正确的是( )A .6.7×108米B .6.7×107米C .6.7×106米D .6.7×105米 12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为()A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2 二、填空题(每小题3分,共18分)13.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形.14.已知(a﹣3)2+|b+6|=0,则方程ax+b=0的解为.15.若a3=a,则a= .16.|3﹣π|= .17.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a ﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= .18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..三、解答题(本大题共66分.注意:解答应写出必要的文字说明,解答过程或解答步骤.)19.计算:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2];(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3.20.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)3(m﹣5n+4mn)﹣2(2m﹣4n+6mn)21.解方程:(1)3(x﹣1)﹣2(x+1)=﹣6(3)=1+(4)﹣=3.22.化简、求值:已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若A=﹣1,B=时,求6x2﹣6xy﹣15y2的值.23.城区某中学为形成体育特色,落实学生每天1小时的锻炼时间,通过调查研究,决定在七、八、九年级分别开展跳绳、羽毛球、毽球的健身运动.国家规定初中每班的标准人数为a人,七年级共有八个班,各班人数情况如下表,八年级学生人数是七年级学生人数的2倍少400人,九年级学生人数的2倍刚好是七、八年级学生人数的总和.(注:701班表示七年级一班)(1)用含a的代数式表示该中学七年级学生总数;(2)学校决定按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,其中跳绳每根5元,毽球每个3元,羽毛球拍每副18元.请你计算当a=50时,学校为落实1小时体育锻炼时间需购买器材的费用是多少?24.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|c+b|+|a ﹣b|.25.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?26.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.若x≤60,则费用表示为;若x>60,则费用表示为.(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?参考答案与试题解析一、1.【考点】展开图折叠成几何体.【分析】根据三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱;B、D的两底面不是三角形,故也不能围成三棱柱;只有C经过折叠可以围成一个直三棱柱.故选C.2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:k=﹣1.故选B.3.【考点】解一元一次方程.【分析】方程两边乘以6,去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣3(5x﹣3)=6,故选C.4.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把a﹣7b=﹣2代入计算即可求出值.【解答】解:∵a﹣7b=﹣2,∴原式=4﹣2(a﹣7b)=4+4=8,故选D.5.【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.6.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看会看到左侧有3个正方形,右面有1个正方形.故选B.7.【考点】一元一次方程的解.【分析】首先求得方程3x﹣1=2x+1的解,然后根据两个方程的解互为相反数求得2m+x=1的解,然后根据方程的解的定义代入求解即可.【解答】解:解方程3x﹣1=2x+1得:x=2,∵关于x的方程2m+x=1和方程3x﹣1=2x+1的解互为相反数,∴关于x的方程2m+x=1的解为x=﹣2,∴2m﹣2=1,解得:m=,故选B.8.【考点】有理数的混合运算.【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【解答】解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选B.9.【考点】一元一次方程的应用.【分析】把从家里去乐山新村广场的总路程看作单位“1”,先求出李华从家里去乐山新村广场所用的时间,再求出李华从乐山新村广场到家里所用的时间,最后用往返的总路程除以往返的总时间就是平均速度.【解答】解:(1+1)÷(1÷24+1÷16),=2÷(+),=2÷,=2×,=19.2(千米),答:往返一次的平均速度是每小时19.2千米.故选:D.10.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.11.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.12.【考点】规律型:图形的变化类.【分析】由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.【解答】解:∵等边三角形“扩展”而来的多边形的边数为:12=3×(3+1),正方形“扩展”而来的多边形的边数为:20=4×(4+1),正五边形“扩展”而来的多边形的边数为:30=5×(5+1),正六边形“扩展”而来的多边形的边数为:42=6×(6+1),…∴正n边形“扩展”而来的多边形的边数为:n(n+1).故选:B.二、13.【考点】多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,故答案为:n﹣3,n﹣2.14.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入方程计算即可求出解.【解答】解:∵(a﹣3)2+|b+6|=0,∴a﹣3=0,b+6=0,解得:a=3,b=﹣6,代入方程得:3x﹣6=0,解得:x=2,故答案为:x=215.考点】有理数的乘方.【分析】根据有理数乘方的法则进行计算即可.【解答】解:∵a3=a,∴a=0或±1.故答案为:0或±1.16.【考点】实数的性质.【分析】由于一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,由此即可求解.【解答】解:∵π>3,∴3﹣π<0,∴|3﹣π|=π﹣3.17.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.18.【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.三、19.计算:【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2]=[1﹣0.5]×[2﹣9]=0.5×(﹣7)=﹣3.5;(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣0.5×[10﹣4]﹣(﹣1)=﹣1﹣0.5×6+1=﹣1﹣3+1=﹣3.20.【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣3﹣2x﹣2=﹣6,移项合并得:x=﹣1;(2)去分母得:3x﹣3=12+4x+4,移项合并得:﹣x=19,解得:x=﹣19;(3)方程整理得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,解得:x=5.22.【考点】整式的加减—化简求值.【分析】①将A与B的表达式代入﹣A﹣3B后,化简即可求出答案.②将6x2﹣6xy﹣15y2表示为A与B即可求出答案.【解答】解:①﹣A﹣3B=﹣(4x2﹣4xy﹣y2)﹣3(﹣x2+xy+7y2)=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy+y2﹣20y2②当A=﹣1,B=时,6x2﹣6xy﹣15y2=(4x2﹣4xy﹣y2)﹣2(﹣x2+xy+7y2)=A﹣2B=﹣1﹣1=﹣223.【考点】列代数式;代数式求值.【分析】(1)a为每班的标准人数,根据表用a表示出每个班的人数,再相加即可得出答案;(2)根据已知条件得出八年级以及九年级的总人数,再计算出购买体育器材的费用.【解答】解:(1)七年级总人数=a+3+a+2+a﹣3+a+4+a+a﹣2+a﹣5+a﹣1=8a﹣2;(2)七年级总人数=8×50﹣2=398(人),买跳绳的费用=398×5=1990(元),八年级总人数=398×2﹣400=396(人),买羽毛球拍的费用=396÷2×18=3564(元),九年级总人数=÷2=397(人),买毽球的费用=397×3=1191(元),购买体育器材的费用=1990+3564+1191=6745(元).24【考点】整式的加减;数轴;绝对值.【分析】根据数轴先取绝对值再合并同类项即可.【解答】解:由数轴得,c<b<0<a,且|c|>|a|>|b|,|a+c|﹣|c+b|+|a﹣b|=﹣a﹣c+c+b+a﹣b=0.25.【考点】一元一次方程的应用.【分析】由题目可知:公共汽车速度为:30千米/时,出租车的速度应为60千米/时.可设小张家距火车站距离为x,公共汽车行驶后x的路程用时间应为=x小时,15分钟为小时,剩下的x的路程,出租车需要时间为:=x,则由题意,可根据时间差来列方程求解.【解答】解:由题目分析,根据时间差可列一元一次方程: x﹣x=,即: x=,解得:x=30千米.答:小张家到火车站有30km.26.【考点】一元一次方程的应用.【分析】(1)若x≤60,则费用按每立方米0.8元收费;若x>60,则费用=60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费).(2)设甲用户10月份用去煤气x立方米,根据60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费)=84,列方程求解.【解答】解:(1)若x≤60,则费用表示为:0.8x;若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.(2)设甲用户10月份用去煤气x立方米,由60×0.8=48<84,得到x>60,根据题意得:60×0.8+(x﹣60)×1.2=84,解得:x=90.答:甲用户10月份用去煤气90立方米.。

福州市2018-2019学年第一学期人教版七年级数学期中质检

福州市2018-2019学年第一学期人教版七年级数学期中质检

福州市2018-2019学年第一学期期中质检七年级数学试卷(满分100分;考试时间120分钟)一、选择题(共10小题,每题2分,满分20分;每小题只有一个正确的选项)1.在数|-2|,-(-2),+(-2)中,负数的个数有()个A.0 B.1 C.2 D.32.下列计算正确的是()A.-1-1=0 B.-1+1=0 C.1-(-1)=0 D.(-1)+(-1)=0 3.一个两位数,十位数上的数是a,个位上的数是b,这个两位数可表示为()A.ab B.10ab C.10a+b D.10(a+b) 4.连续4个-3相乘可表示为()A.4×(-3) B.-34C.(-3)4D.4-35.某种速冻水饺的储藏温度是-18±2°C,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.-17°C B.-18°C C.-19°C D.-22°C6.下列各组数中,数值相等的是()A.-23和-32B.(-2)3与(-3)2C.-32与(-3)2D.(-2)3与-23 7.长方形的周长为10,它的长为a,那么它的宽是()A.5-a B.5-2a C.10-a D.10-2a8.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a<b B.ab<0 C.a-b>0 D.a+b>09.一个多项式与x 2-x +1的和是 x 4 +1,则这个多项式的次数是( )A .4B .3C .2D .110.礼堂第一排有m 个座位,后面每排都比前一排多2个座位,则第n 排的座位个数是( )A .m +2B .m +2nC .m +2(n -1)D .m +2(n +1)二、填空题(共6小题,每题3分,满分18分)11.单项式-3x 2y 的系数..是____________. 12.用四舍五入法取近似数:π(精确到百分位)≈__________.13.比x 的3倍小2的数可表示为________________.14.若2a 2m b 3和13a 4b n -2是同类项,则m +n 的值是 ____________. 15.已知a -b =-4,c +d =3,则(3b +c )-(3a -d )的值是________________.16.已知a ,b 互为相反数,则a +2a +3a +Ʌ+100a +100b +Ʌ+…+3b +2b +b 的值是____________.三.解答题(满分62分)17.(4分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来:1.5, -2, 3, -3.5, 92, 018.(每小题3分,共12分)计算:(1) 4-8+6-10 ; (2)(12-34+56)×(-24);(3)(-2)2×5-(-2.5)÷0.5;(4) -32 +(-24)÷(-4)- (-3)3 ×(-23).19.(第一小题3分,第2小题4分,共7分)化简:(1)13 a -23a +2a (2)(x -y )-2(2x -3y )20.(6分)化简求值:12xy -2(xy -16 y 2)+(-52xy + 23y 2),其中x =-3,y =34.21.(6分)观察下列各式:定义一种新运算“⊙”:1⊙3=1×4+3=7, 3⊙-1=3×4-1=11, 5⊙4=5×4+4=244⊙(-3)=4×4-3=13, (-2)⊙(-5)=(-2)×4-5=-13,……(1)写出一般结论: a ⊙b =________________;(2)如果a ≠b ,那么a ⊙b _________b ⊙a (填“=”或“≠”)(3)先化简,再求值:(a -b )⊙(2a +3b ).其中a =-12,b =2019.22.(7分)在今年的“十一”黄金周的7天长假中,某风景区每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前一天少)(1)若9月30日的游客人数为4.2万人,则10月4日的游客人数是多少万人?(2)7天中游客人数最多的一天比最少的一天多几万人?(3)如果每万人带来的经济收入约为100万元,则该风景区黄金周七天的旅游总收入约为多少元?(结果用科学计数法来表示)23.(6分)小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进200个手机充电宝,然后每个加价n元到市场出售.由于开学临近,小丽在成功售出150个充电宝后,决定将剩余充电宝按售价8折出售,并在开学前全部售完.解答下列问题(结果用含m,n的式子表示)(1)小丽实际销售总金额是多少元?(2)小丽销售完这批充电宝的利润是多少元?24.(7分)观察下列三行数,并完成后面的问题:①-2,4,-8,16,-32,…;②1,-2,4,-8,16,…;③0,-3,3,-9,15 …;(1)根据排列规律,分别写出上面三行数的第6个数;(2)设x、y、z分别表示第①、②、③行数的第2019个数字,计算x+y+z的值.25.(7分)已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题: (1)请直接写出a、b、c的值:a=_________,b=_________,c=___________.(2)a、b、c所对应的点分别为A、B、C,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和6个单位长度的速度向右运动,假设t秒钟过后,若点B和点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请求其值.。

2018-2019学年新人教版七年级数学初一期中考试卷含答案

2018-2019学年新人教版七年级数学初一期中考试卷含答案

2018-2019学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.254.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣16.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.18.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是.12.若单项式5x4y和25x n y m是同类项,则m+n的值为.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为.14.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是.15.化简|π﹣4|+|3﹣π|=.16.计算:﹣5÷×5=(﹣1)2000﹣02011+(﹣1)2012=.17.单项式的系数是,次数是.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.【考点】相反数.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.【考点】有理数的混合运算.【分析】A、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;B、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算;C、根据有理数的乘方法则计算即可求解;D、从左往右依次计算即可求解.【解答】解:A、﹣(﹣1)2+(﹣1)=﹣1﹣1=﹣2,故选项错误;B、﹣22+|﹣3|=﹣4+3=﹣1,故选项错误;C、﹣(﹣2)3=8,故选项正确;D、﹣+(﹣)﹣1=﹣1﹣1=﹣2,故选项错误.故选:C,3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.25【考点】绝对值.【分析】根据绝对值的定义解答.【解答】解:绝对值是5的数,原点左边是﹣5,原点右边是5,∴这个数是±5.故选A.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.5.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣1【考点】数轴;有理数大小比较.【分析】根据数轴上的点表示数的方法得到数轴上表示﹣2的点与表示+2的点的距离是4;数轴上原点表示的数是0;所有的有理数都可以在数轴上表示出来;﹣1是最大的负整数.【解答】解:A、数轴上表示﹣2的点与表示+2的点的距离是4,所以A选项错误,符合题意;B、数轴上原点表示的数是0,所以B选项正确,不符合题意;C、所有的有理数都可以在数轴上表示出来,所以C选项正确,不符合题意;D、﹣1是最大的负整数,所以D选项正确,不符合题意.故选A.6.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:B.7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.1【考点】整式的混合运算;绝对值.【分析】由于a≠0,那么应该分两种情况讨论:①a>0;②a<0,然后分别计算即可.【解答】解:∵a≠0,①当a>0时,(a﹣|a|)÷2a=(a﹣a)÷2a=0;②当a<0时,(a﹣|a|)÷2a=(a+a)÷2a=1.故选A.8.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元【考点】列代数式.【分析】总价格=足球数×足球单价+篮球数×篮球单价,把相关数值代入即可.【解答】解:∵4个足球需要4m元,7个篮球需要7n元,∴买4个足球、7个篮球共需要(4m+7n)元,故选C.9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.【考点】数轴;有理数的加法;有理数的减法;有理数的乘法;有理数的除法.【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后根据有理数的加、减、乘、除运算进行符号判断即可.【解答】解:根据题意,a<0且|a|<1,b>且|b|>1,∴A、a+b是正数,故本选项正确;B、a﹣b=a+(﹣b),是负数,故本选项错误;C、ab是负数,故本选项错误;D、是负数,故本选项错误.故选A.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.【考点】规律型:数字的变化类.【分析】分别求出a2,a3,a4,a5的值,不难发现每3个数为一组依次进行循环,用2011除以3,余数是几,则与第几个数相同.【解答】解:∵a1=2,∴a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,a5=1﹣=,…依此类推,每3个数为一组进行循环,2011÷3=670…1,∴a2011=a1=2.故答案为:2.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是﹣3p.【考点】列代数式.【分析】根据题意可以列出相应的代数式,本题得以解决.【解答】解:p的3倍的相反数是﹣3p,故答案为:﹣3p.12.若单项式5x4y和25x n y m是同类项,则m+n的值为5.【考点】同类项.【分析】根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.【解答】解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为﹣7或1.【考点】数轴.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:当点A在﹣3的左侧时,则﹣3﹣4=﹣7;当点A在﹣3的右侧时,则﹣3+4=1.则A点表示的数为﹣7或1.故答案为:﹣7或114.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是13.【考点】代数式求值.【分析】把代数式1+3a2﹣6a变形为3(a2﹣2a)+1,然后把a2﹣2a=4整体代入计算即可.【解答】解:∵1+3a2﹣6a=3(a2﹣2a)+1,而a2﹣2a=4,∴1+3a2﹣6a=3×4+1=13.故答案为13.15.化简|π﹣4|+|3﹣π|=1.【考点】绝对值.【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.16.计算:﹣5÷×5=﹣125(﹣1)2000﹣02011+(﹣1)2012=2.【考点】有理数的混合运算.【分析】(1)乘除运算时,从左往右进行计算;(2)先计算乘方运算,再算加减运算即可得到结果.【解答】解:(1)﹣5÷×5,=﹣5×5×5,=﹣125;(2)(﹣1)2000﹣02011+(﹣1)2012,=1﹣0+1,=2.17.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).【考点】规律型:图形的变化类.【分析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多3个基础图案,从而得出第n个图案中基础图案的表达式.【解答】解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是8℃.【考点】正数和负数.【分析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣3)=5+3=8℃.故答案为:8℃.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f=n﹣1,f()=n(n为整数),再计算即可.【解答】解:由规律得:f(n)=n﹣1,f(1n)=n(n为整数),∴f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.【考点】有理数的混合运算.【分析】(1)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(2)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(3)先把除法化为乘法,再根据乘法分配律进行计算;(4)先计算乘方,再计算加减,注意﹣32=﹣9.【解答】解:(1)﹣14﹣×[2﹣(﹣3)2],=﹣1﹣×[2﹣9],=﹣1﹣×(﹣7),=;(2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2,=﹣64+3×4﹣6,=﹣64+12﹣54,=﹣52﹣54,=﹣106;(3)(﹣+﹣+)÷,=﹣+×60﹣×60+×60,=﹣45+50﹣35+12,=﹣80+62,=﹣18;(4)﹣32﹣(﹣2)2+1,=﹣9﹣4+1,=﹣13+1,=﹣12.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减;合并同类项;去括号与添括号.【分析】(1)先去括号,再合并即可;(2)先去括号,再合并.【解答】解:(1)(3a﹣2)﹣3(a﹣5)=3a﹣2﹣3a+15=13;(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2y﹣3xy2﹣2xy2﹣4x2y=﹣2x2y﹣5xy2,当x=,y=﹣2时,原式=1﹣10=﹣9.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.【考点】非负数的性质:绝对值;非负数的性质:偶次方;代数式求值.【分析】先根据互为相反数的和等于0列式,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,∵|a+2|≥0,(b﹣3)2≥0,∴|a+2|=0,(b﹣3)2=0,a+2=0,b﹣3=0,解得a=﹣2,b=3,∴a b+3(a﹣b),=(﹣2)3+3(﹣2﹣3),=﹣8﹣15,=﹣23.故答案为:﹣23.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产599辆;(2)产量最多的一天比产量最少的一天多生产26辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【考点】正数和负数.【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【解答】解:(1)前三天生产的辆数是20×3+(5﹣2﹣4)=599(辆).答案是:599;(2)16﹣(﹣10)=16+10=26(辆),故答案是26;(3)这一周多生产的总辆数是5﹣2﹣4+13﹣10+16﹣9=9(辆).1400×7+9×15=9800+135=9935(元).答:该厂工人这一周的工资是9935元.27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=﹣(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据连续整数的乘积的倒数等于倒数差可得;(2)利用(1)中所得规律裂项求解可得;(3)根据=(﹣)裂项求和可得.【解答】解:(1)=﹣,故答案为:﹣;(2)①原式=1﹣+﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;;(3)原式=(﹣+﹣+﹣+…+﹣)=×(﹣)=×=,故答案为:.2017年5月4日。

福建省福州市时代中学2018-2019年七年级下期期中考试数学试卷(含答案)

福建省福州市时代中学2018-2019年七年级下期期中考试数学试卷(含答案)

福州市时代中学2018—2019七年级下期中考试数学试卷(测试范围:相交线与平行线 )在平面直角坐标系中,点 P (-2, x 2+3)所在的象限是(学校组织同学们春游,租用 45座和30座两种型号的客车,若租用 45座客车x 辆,租用30座客车y 辆, 则不等式« 45x+30y>500”表示的实际意义是(测试时间:120分钟 满分:150分)一、选择题 1 .在 1,2(每小题4分,共40分) - 1 r~ _,4,2 — , 0, *2, -0.3, 3无理数有(A. 1个B. 2个C. 3个D.2. 3. 4. A.第一象限C.第三象限D. 第四象限如果a>b,那么下列不等式成立的是(B. a — 3Vb — 3C. — 3av — 3bD. 1 V _a<_b 3 3为了测算一块 600亩试验田里新培育的杂交水稻的产量, 随机对其中的 10亩杂交水稻的产量进行了检测,在这个问题中10 是( ). A.个体B.总体C.总体的样本D. 样本容量6. A.两种客车总的载客量不少于 C.两种客车总的载客量不足在下列命题中,为真命题的是A.相等的角是对顶角 C.同旁内角互补7 .在平面直角坐标系中,以方程A.500人 500人8 .两种客车总的载客量不超过 500人 D.两种客车总的载客量恰好等于500人B.平行于同一条直线的两条直线互相平行 D.垂直于同一条直线的两条直线互相垂直5. ( )• A2x — 3y=6的解为坐标的点组成的图形是().B .C. D.8.某种出租车的收费标准:起步价 7元(即行驶距离不超过 3千米都需付7元车费),超过3千米后,每增加1千米,加收 2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费 19元,那么甲地到乙地路程的最大值是 (). A. 5千米B. 7千米C. 8千米D. 15千米9.若a 的算术平方根为27. 75,b 的立方根为一9. 79,x 的平方根为土 2. 775, y 的立方根为97.9则()A. x=100a, y= - aB. x= - a, y= 100b100 100 C. x= - a, y=— 1000bD. x=」,a y=-100b100100010.如图,AB//CD, BF 平分/ ABE,且 BF// DE,贝U/ ABE 与/ D 的关系是().B. / ABE + Z D = 90°二、填空题(共6小题,每小题4分,共24分)11 .比较大小:第 -------- 6二(用“V、>、或="填空)5 612 .如图是一把剪刀,若/ AOB + Z COD = 60° ,则/ BOD= 13 .已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成 9个小组,则组距14 .《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括 开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有 牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?” 设每头牛值金x 两,每只羊值金 y 两,可列方程组为 .x= a15 .若二元一次方程 4x —6y —10=0的一组解为1,则12b- 8a+ 3= ______________ .ly= b16 .在平面直角坐标系中,点 A (a, 1),点B (4-a, 1),且A 在B 的左边,点 C (1, 0),若在△ ABC 内部(含 边第12题A. / ABE= 3/ D第10题界),横纵坐标均为整数的点有6个,则a的取值范围为 .三、解答题(共9小题,满分86分)317 .(8分)计算:⑴病—喧+ (e 2+|1—小|;2(x 3) 4x 718 .解不等式组 x 2,把解集表示在数轴上,并写出它的所有整数解---- x 2^-2-10123 4 5 6 7 8当丫=6(2)解方程组:・ 4 34x — 3y = - 4.19.(8分)如图,在平面直角坐标系xOy中,几段1圆弧(占圆周的。

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.3的相反数是()A.﹣3B.﹣C.3D.2.下列各数中,比﹣2大的数是()A.﹣3B.0C.﹣2D.﹣2.13.下列说法正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数4.计算(﹣2)3所得结果是()A.﹣6B.6C.﹣8D.85.单项式﹣的系数与次数分别是()A.﹣2,2B.﹣2,3C.,3D.﹣,36.下列各式正确的是()A.﹣(﹣3)=﹣|﹣3|B.﹣(2)3=﹣2×3C.|﹣|>﹣100D.﹣24=(﹣2)4 7.计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.28.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米9.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元10.有理数a,b,c在数轴上对应的点如图所示,则下列式子①a>b;②|b+c|=b+c;③|a﹣c|=c ﹣a;④﹣b<c<﹣a.其中正确的是()A.①②③④B.①②④C.①③④D.②③④二、填空题(每小题3分,共15分)11.计算2×3+(﹣4)的结果为.12.“m与n的平方差”用式子表示为.13.把2x3﹣x+3x2﹣1按x的升幂排列为.14.比较大小:.15.若|x﹣2|+(y+3)2=0,则(x+y)2018=.三、解答题(8+9+9+9+9+10+10+11=75分)16.(8分)计算:直接写出结果10﹣(﹣8)=;(﹣32)﹣(+5)=;﹣7﹣5=;(+12)﹣(+21)=;=;=;﹣12﹣(﹣3)2=;=.17.(9分)画一条数轴,并把﹣4,﹣(﹣3.5),,0,…各数在数轴上表示出来,再用“<”把它们连接起来.18.(9分)计算:﹣23÷8﹣×(﹣2)2.19.(9分)计算:(﹣+﹣)×(﹣48)20.(9分)计算:﹣34÷(﹣27)﹣[(﹣2)×(﹣)+(﹣2)3].21.(10分)某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?22.(10分)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.23.(11分)阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫*(加乘)运算.”然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:(+4)*(+2)=6;(﹣4)*(﹣3)=+7;…(﹣5)*(+3)=﹣8;(+6)*(﹣7)=﹣13;…(+8)*0=8;0*(﹣9)=9.…小亮看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了.”请你帮助小亮完成下列问题:(1)归纳*(加乘)运算的运算法则:两数进行*(加乘)运算,..特别地,0和任何数进行*(加乘)运算,或任何数和0进行*(加乘)运算,都得这个数的绝对值.(2)若有理数的运算顺序适合*(加乘)运算,请直接写出结果:①(﹣3)*(﹣5)=;②(+3)*(﹣5)=;③(﹣9)*(+3)*(﹣6)=;(3)试计算:[(﹣2)*(+3)]*[(﹣12)*0](括号的作用与它在有理数运算中的作用一致);参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2.1<﹣2<0,所以各数中,比﹣2大的数是0.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.【分析】只需分a>0、a=0、a<0三种情况讨论,就可解决问题.【解答】解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选:C.【点评】本题考查的是数的分类、绝对值的概念、相反数等知识,其中数可分为正数、0、负数,运用分类讨论的思想是解决本题的关键.4.【分析】本题考查有理数的乘方运算,(﹣2)3表示3个(﹣2)的乘积.【解答】解:(﹣2)3=(﹣2)×(﹣2)×(﹣2)=﹣8.故选:C.【点评】本题考查了乘方运算,负数的偶数次幂是正数,负数的奇数次幂仍为负数.5.【分析】根据单项式的概念即可求出答案.【解答】解:单项式的系数为﹣,次数为3;故选:D.【点评】本题考查单项式的概念,属于基础题型.6.【分析】先求出每个式子左、右两边的值,再判断即可.【解答】解:A、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;B、﹣(2)3=﹣8,﹣2×3=﹣6,故本选项错误;C、|﹣|=>﹣100,故本选项正确;D、﹣24=﹣16,(﹣2)4=16,故本选项错误;故选:C.【点评】本题考查了有理数的乘方,绝对值,相反数的应用,能正确求出各个式子的值是解此题的关键.7.【分析】根据有理数的加减混合运算的法则进行计算即可得解.【解答】解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2故选:A.【点评】本题主要考查了有理数的加减混合运算,是基础题比较简单.8.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.9.【分析】根据题意列出代数式即可.【解答】解:根据题意得:买2千克苹果和3千克香蕉共需(2a+3b)元,故选:C.【点评】此题考查了列代数式,弄清题意是解本题的关键.10.【分析】根据数轴可判断a<b<0<c,且|a|>|c|>|b|,于是可判断①是错误的,于是可排除答案A、B、C即可解决.【解答】解:由数轴可知a<b<0<c,∴①错误∴利用排除法即可排除答案A、B、C,∴只能选择答案D.实质上,∵b+c>0,∴|b+c|=b+c,故②正确;∵a﹣c<0,∴|a﹣c|=c﹣a,故③正确;∵根据数轴上互为相反数的对称关系,可判断﹣b<c<﹣a正确故选:D.【点评】本题考查的利用数轴进行数的大小比较,把握数轴上点的特征以及是解决本题的关键.二、填空题(每小题3分,共15分)11.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】根据题意利用两数平方后再相减得出即可.【解答】解:由题意可得:m2﹣n2.故答案为:m2﹣n2.【点评】此题主要考查了列代数式,正确把握关键术语是解题关键.13.【分析】根据多项式的次数的意义、x的指数的大小顺序排列即可.【解答】解:把2x3﹣x+3x2﹣1按x的升幂排列为﹣1﹣x+3x2+2x3,故答案为:﹣1﹣x+3x2+2x3【点评】本题主要考查对多项式的次数和排列顺序的理解,理解多项式的次数含义是解此题的关键.14.【分析】根据两个负数,绝对值大的其值反而小,进行比较即可.【解答】解:∵|﹣|>|﹣|,∴﹣<﹣.故答案为:<.【点评】本题考查了有理数的大小比较,属于基础题,掌握有理数的大小比较法则是关键.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出x,y的值进而得出答案.【解答】解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3,∴(x+y)2018=(﹣1)2018=1.故答案为:1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.三、解答题(8+9+9+9+9+10+10+11=75分)16.【分析】根据有理数的混合运算顺序和运算法则逐一计算可得.【解答】解:10﹣(﹣8)=10+8=18;(﹣32)﹣(+5)=(﹣32)+(﹣5)=﹣37;﹣7﹣5=﹣7+(﹣5)=﹣12;(+12)﹣(+21)=(+12)+(﹣21)=﹣9;=;=﹣×=﹣;﹣12﹣(﹣3)2=﹣1﹣9=﹣10;=2﹣2×3×3=2﹣18=﹣16.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.17.【分析】先画出数轴,将﹣4,﹣(﹣3.5),,0在数轴上表示出来,再利用数轴从左到右的顺序用“<”把它们连接起来即可.【解答】解:在数轴上表示以上各数为:用“<”把它们连接为:﹣4<﹣2<0<﹣(﹣3.5)【点评】本题考查的是数轴与有理数的对应及有理数的大小比较,准确找到每个数对应数轴上的每一个点是解决本题的关键.18.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣8÷8﹣×4=﹣1﹣1=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.【分析】先利用乘法分配律展开,再依次计算乘法和加减可得.【解答】解:原式=﹣×(﹣48)+×(﹣48)﹣×(﹣48)=8﹣20+2=10﹣20=﹣10.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律.20.【分析】首先计算乘方以及括号内的式子,然后进行加法计算即可.【解答】解:原式=﹣81÷(﹣27)﹣[﹣8],=3+,=.【点评】本题主要考查了有理数的混合运算,正确理解运算顺序是解决本题的关键.21.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格解答即可.【解答】解:(1)4﹣3﹣5+300=296.(2)21+8=29.(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(﹣3﹣5﹣8﹣6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.故答案为:296;29【点评】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.22.【分析】(1)当x=850时,在甲商场没有优惠,在乙商场有优惠,故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+超过1000元的部分×90%;在乙商场的费用是:500+超过500元的部分×95%=0.95x+25;(3)把x=1700代入(2)中的代数式计算出结果进行比较即可.【解答】解:(1)根据题意可得:当x=850时,在甲商场没有优惠,在乙商场有优惠,费用是:500+(850﹣500)×95%=8332.5(元),故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+(x﹣1000)×90%=0.9x+100;在乙商场的费用是:500+(x﹣500)×95%=0.95x+25;(3)把x=1700代入(2)中的两个代数式:0.9x+100=0.9×1700+100=1630,0.95x+25=0.95×1700+25=1640,∵1640>1630,∴选择甲商场合算.【点评】此题主要考查了根据实际问题列代数式,关键是正确理解题意,分清两个商场的收费方式.23.【分析】(1)根据已知算式得出法则:两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加;(2)依据所得法则计算可得;(3)先计算中括号内的加乘运算,再进一步计算可得.【解答】解(1)根据题意知,两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加,故答案为:同号得正、异号得负,并把绝对值相加.(2)①(﹣3)*(﹣5)=+(3+5)=8;②(+3)*(﹣5)=﹣(3+5)=﹣8;③(﹣9)*(+3)*(﹣6)=(﹣12)*(﹣6)=18;(3)原式=(﹣5)*(﹣12)=17.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及对新定义的理解与运用.。

福建省福州市七年级上学期数学期中考试试卷

福建省福州市七年级上学期数学期中考试试卷

福建省福州市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)-2的倒数是()A . 2B . -2C .D . -2. (2分)下列说法中正确的是()A . -a一定表示负数B . 两数比较,绝对值大的反而小C . 互为相反数的两个数对应的点一定在原点两侧D . 如果一个数的绝对值等于这个数的相反数,那么这个数是负数或零3. (2分) 2014年我国国内生产总值约为636000亿元,数字636000用科学记数法表示为()A .B .C .D .4. (2分)下列代数式中整式有(), 2x+y,a2b,,, 0.5,a.A . 4个B . 5个C . 6个D . 7个5. (2分)(2018·滨州模拟) 下列计算正确的是()A . a+a2=a3B . (a3)2=a5C . a•a2=a3D . a6÷a2=a36. (2分)下列一定是有理数的是()A . πB . aC . a+2D .7. (2分)下列计算结果为负数的是()A . ﹣1+2B . |﹣1|C .D . ﹣2﹣18. (2分)如果|x-2|+x-2=0,那么x的取值范围是()A . x>2B . x<2C . x≥2D . x≤29. (2分)有理数a、b在数轴上的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A . 2aB . ﹣2bC . ﹣2aD . 2b10. (2分)下面是一位同学做的四道题:①a3+a3=a6;②x2•x3=x6;③(﹣a)2÷2a=2a;④(﹣2xy2)3=﹣6x3y6 .其中做对了几道题()A . 0B . 1C . 2D . 3二、填空题 (共8题;共8分)11. (1分) (2016七上·防城港期中) 写出一个比﹣1小的数是________.12. (1分) (2019七上·句容期末) 单项式的系数是________,次数是________.13. (1分) (2019七上·浙江期中) 已知a是最大的负整数,b的算术平方根是它本身,求a+b是________.14. (1分) (2019七上·苍南期中) 绝对值小于3.5的所有整数的和为________.15. (1分) (2015九上·大石桥期末) 观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是________.16. (1分) (2017七上·呼和浩特期中) )多项式3x|m|y2+(m+2)x2y﹣1是四次三项式,则m的值为________.17. (1分)(2020七上·德江期末) 有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=________.18. (1分)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是 a ,并运用这个公式求得图2中多边形的面积是________ .三、解答题 (共5题;共39分)19. (10分) (2017八上·高州月考) 实数、在数轴上的位置如图所示,请化简:.20. (5分) (2017七上·秀洲月考) 计算(1) 3a-(5a-2b)+3(2a-b)(2)先化简,再求值。

2018-2019学年度七年级上学期期中考试数学试题(含答案) - 副本

2018-2019学年度七年级上学期期中考试数学试题(含答案) - 副本

2018-2019学年度七年级上学期期中考试数学试题考试时间:100分钟 满分:120注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题3分,共42分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.A . +4B . ﹣9C . ﹣4D . +9 2.的倒数是( )A . 2B . -2C .D .3.下列各式中运算正确的是( )A . 3a ﹣2a=1B . x 2+x 2=x 4C . 2a 2b ﹣3ab 2=﹣abD . 2x 3+3x 3=5x 34.如果a 与1互为相反数,则a+2等于( ) A . 2 B . -2 C . 1 D . -15.从阳江海陵岛试验区旅游外侨局获悉,去年7,8两月暑假期间海陵岛共接待游客3520000人次,旅游收人约24亿元,分别同比增长8.9%,8.8%,外省游客和团队游数量明显增加.其中3520000用科学记数法表示为( )A . 0.352×105B . 3.52×106C . 3.52×107D . 35.2×106 6.下列算式中,运算结果为负数的是( )A . ﹣(﹣2)B . |﹣2|C . ﹣22D . (﹣2)2 7.下列比较大小结果正确的是( )A . 43-->B . 22->C . 1123--> D .1165-->8.在代数式① ,② ,③ ,④,⑤2+57x y 中 单项式有( )A . 1个B . 2个C . 3个D . 4个 9.大于-3的负整数的个数是( ). A . 2 B . 3 C . 4 D . 无数个10.有理数 , 在数轴上的位置如图所示,下面结论正确的是( )A .B .C .D . 11.下列说法正确的是( )A . 一个数前面加上“-”号,这个数就是负数B . 零是最小的整数C . 若a 是正数,则-a 不一定是负数D . 零既不是正数也不是负数12. 的值与 的取值无关,则 的值为( )A .B .C .D . 13.下列各题去括号正确的是( ).A . (a -b)-(c +d)=a -b -c +dB . a -2(b -c)=a -2b -cC . (a -b)-(c +d)=a -b -c -dD . a -2(b -c)=a -2b -2c 14.若a 、b 、c 是三个非零有理数,则的值是( )A . 3B . ±3C . 3或1D . ±1或±3第II 卷(非选择题)二、填空题(每题4分,共16分)15.若a 是绝对值最小的数,b 是最大的负整数,则a ﹣b =_____. 16.若 -2mxy 和 3n x y 是同类项,则 m + n 的值是_______. 17.a 、b 互为相反数,c 、d 互为倒数,数轴上表示m 的点到原点的距离为6,则的值为____________________.18.一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格…,按这样的规律跳100次,跳蚤所在的点表示的数__________.三、解答题(共62分)19.计算:(每题5分,本题10分)(1)()23()|2 (3)5(5)5|-⨯÷----(2)3571 ()491236 --+÷20.(本题8分)先化简,再求值:3a2-7a+[3a-2(a2-2a-1)],其中a= -2. 21.(本题10分)“十一”黄金周期间,呀诺达风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(单位:万人)9月30日游客为2万.(1)10月2日游客的人数为多少万人?(2)请判断7天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?22.(本题10分)同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求 = . (2)若25x -=,则 =(3)同理12x x ++-表示数轴上有理数x 所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得123x x ++-=,这样的整数是 (直接写答案).23.(本题12分)若用点A 、B 、C 分别表示有理数a 、b 、c 如图:(1)判断下列各 式的符号:a+b 0;c ﹣b 0 c ﹣a 0 (2)化简|a+b|﹣|c ﹣b|﹣|c ﹣a |24.(本题12分)已知:A=3a 2-4ab ,B=a 2+2ab . (1)求A -2B ;(2)若|2a +1|+(2-b )2=0,求A -2B 的值.答案 一选择1-5 B B D C B 6-10 C D B A A 11-14 D A C D 二填空15. 1 16. 417. 7或-5 18. -50 三解答19.(1) (2)523253551015⎛⎫=⨯-⨯- ⎪⎝⎭=+= 357364912357363636491227202126⎛⎫--+⨯ ⎪⎝⎭-⨯-⨯+⨯=--+=-== 20.解:原式=3a 2−7a+3a−2(a 2−2a−1)=3a 2−7a+3a−2a 2+4a+2=a 2+2,当a=−2时, 原式=(−2)2+2=621.(1)4.4万人;(2)10月3日人数最多;10月7日人数最少; 它们相差2.2万人;22.(1) 7 (2) -3或7 (3) -1,0,1,2 23. (1) , , .(2) =-(a+b)+(c-b)-(c-a)= -a-b+c-b-c+a=-2b24. 解:, ., ()2210,20a b +≥-≥ 解得:当时,。

学18—19学年上学期七年级期中考试数学试题(附答案)(3)

学18—19学年上学期七年级期中考试数学试题(附答案)(3)

2018/2019学年度第一学期期中抽测初一数学试卷(考试时间:100分钟 卷面总分:120分)一、选择题(每小题3分,共24分,请把正确选项前的字母代号填在题后的括号内) 1.2的相反数是( ) A .2 B .12 C .-2 D .21- 2.下列代数式中,不是单项式的是( ) A.xyπ-B.3C.17ab D.4m n- 3.下列各数:2,-π,13-,0,-(-5),4--,其中是负数的有( ) A. 2个 B .3个 C .4个 D .5个4.用科学计数法表示150000正确的是 ( )A .41510⨯ B .51.510⨯ C .60.1510⨯ D .61.510⨯ 5.下列计算正确的是( ) A.4()3a a a ---=- B.336325a a a +=C.325a b ab --=-D.22234a b b a a b --=-6.下列去括号正确的是 ( )A.a +(b +c)=ab +cB.a +2(b -c)=a +2b -cC.a -(b +c )=a-b+cD.a+(-b+c )=a -b+c7.已知a ,b 两数在数轴上对应的点如图所示:,则下列结论正确的是( ) A . a+b >0 B .a ﹣b> 0 C .ab <0 D .|a|>|b|8.现有4种说法:①符号不同的两个数互为相反数;②整数包括正整数和负整数; ③几个有理数相乘,当负因数有奇数个时,积为负数;④当|x|=-x 时,x <0.其中正确的个数为( ) A.0个 B.1个 C.2个 D.3个 二、填空题(每小题3分,共30分,答案填在横线上)9.在一次数学测验中,小明的成绩比平均成绩高5分,记作+5分,则小丽的成绩比平均成绩低3分可记作 . 10.-5的倒数是 .11.单项式23a b-的系数是 .12.数轴上点A 对应的数为﹣2,与点A 相距3个单位长度的点所对应的数为 . 13.多项式42224ab a b ab -+-的次数是 次.14.小王家十月份用水8吨,用电35千瓦时,若水每吨a 元,电每千瓦时b 元,小王家十月份应交水电费 元.15.若122132m n x y x y --和是同类项,则n m = .16.如果2(3)|2|0a b ++-=,那么2018()a b + = .17.已知25x y-=,则代数式136x y +-的值等于 .18.在如图所示的运算流程中,若输出的数y=1009,则输入的数x= . 三、解答题(需要写出必要的过程,共8题,计66分)19.(6分)把下列各数在数轴上表示出来,并将它们按从小到大的顺序用“<”连接起来:(4),|6|,0, 1.5,3-----20.(8分)把下列各数填入相应的集合内: 1.4-, 2||3--,2π, 2.010010001-,4.6,(3)-- ,0.12正数集合:{ }; 分数集合:{ }; 负有理数集合:{ }; 无理数集合:{}.21.计算(每小题3分,共18分) (1) 7+8(2)--- (2) 444()5775-+÷-⨯-() (3)1121()26318-+-÷ (4)341(0.21)(2)15⨯-÷--(5)2348x y x y -+-- (6)(3)[2(3)]a b a b c ----22.(6分)先化简再求值:221-7+32(4)(1)2a ab ab a ab --+--,其中1a =-,2b =.23.(6分)若有理数a ,b 满足a 2=25,|b|=16,且a <b ,求3a-2b 的值.24.(6分)某出租车从解放路和青年路十字路口出发,在东西方向的青年路上连续接送5批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第5批客人后,该驾驶员在解放路和青年路十字路口什么方向,距离十字路口多少千米?(2)若该出租车每千米耗油0.08升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费8元,超过3km 的部分按每千米加1.2元收费,在这过程中该出租车驾驶员共收到车费多少元?25.(8分)某单位准备组织部分员工到海南旅游,现联系了甲、乙两家旅行社,两家旅行社的报价均为4000元/人,两家旅行社同时都对15人以上的团体推出了优惠措施:甲旅行社对每位员工八折优惠;乙旅行社免去一位员工的费用,其余员工九折优惠. (1)如果参加旅游的员工共有m (15m >)人,则甲旅行社的费用 元,乙旅行社的费用 元.(2)现该单位共组织了20名员工到海南旅游,问选择哪一家旅行社比较优惠?请说明理由.26.(8分)如图,将一根绳子对折1次后从中间剪一刀,绳子变成的段数记为1a ,对折2次后从中间剪一刀,绳子变成的段数记为2a ,对折3次后从中间剪一刀,绳子变成的段数记为3a ,,对折n 次后从中间剪一刀,绳子变成的段数记为n a .(1)写出1a ,2a ,3a的值;(2)用含n 的代数式表示n a ;(3)设123(1)(1)(1)(1)n n S a a a a =-+-+-++-,用含n 的代数式表示n S .(本题3个小题直接写出结果,不必说明理由.)七年级数学参考答案一、选择题:二、填空题:9.-3分10. 11. 12. 13. 514.15. 9 16. 1 17. 16 18. 2018或2019三、解答题:19.(1)数轴正确-----2分,标注正确------4分;(2)------6分20.正数集合---2分分数集合---4分负有理数集合---6分无理数集合--8分21.(1)原式=-7+8+2=3当a=-1,b=2时原式=22.因为,所以,-----------2分又因为,所以或,--------------------4分当时,,当时,----------------------6分24.,所以出租车在解放路和青年路十字路口东边,距离十字路口4千米--------------2分(2),所以在这过程中共耗油1.6升---------------2分(3)所以在这过程中该出租车驾驶员共收到车费47.2元.-----------8分25.(1)3200m,(3600m-3600)---------------4分(2)当m=20时3200m=64000(元),3600m-3600=68400(元)----------6分因为64000<68400,所以选择甲旅行社比较优惠.--------- ------8分26.(1)-----------3分(2)--------3分(3)-----------2分。

福建省福州市七年级上学期数学期中考试试卷

福建省福州市七年级上学期数学期中考试试卷

福建省福州市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知a,b,c三个数在数轴上对应的点如图所示,则下列式子中正确的是()A . ac>abB . ab<bcC . bc<abD . c+b>a+b2. (2分)的倒数是()A .B . -2C . 2D .3. (2分) (2019七上·朝阳期末) 若一个整数12500…0用科学记数法表示为1.25×1010 ,则原数中“0”的个数为()A . 5B . 8C . 9D . 104. (2分) (2019七上·天山期中) 下列说法正确的是()A . 的系数是2B . 的系数是0C . 的系数是2D . 的系数是45. (2分) (2017七上·新乡期中) 的相反数是()A . 2016B . ﹣2016C .D .6. (2分)(2017·市中区模拟) 下列运算正确的是()A . x2+x3=x5B . (x﹣2)2=x2﹣4C . (x3)4=x7D . 2x2⋅x3=2x57. (2分)﹣[x﹣(y﹣z)]去括号后应得()A . ﹣x+y﹣zB . ﹣x﹣y+zC . ﹣x﹣y﹣zD . ﹣x+y+z8. (2分) (2020七上·重庆期中) 按下图所示的程序计算:若开始输入的x值为-2,则最后输出的结果是()A . 8B . 64C . 120D . 1289. (2分)以下是代数式的是()A . m=abB . (a+b)(a-b)=a2-b2C . a+1D . S=πR210. (2分)若|m-3|+(n+1)2=0,则m+2n的值为()A . 1B . -1C . 0D . 2二、填空题 (共10题;共10分)11. (1分) (2019八上·玄武期末) 小明的体重为48.86kg,48.86≈________.(精确到0.1)12. (1分) (2017七上·平顶山期中) 计算:(﹣1)2016+(﹣1)2017=________.13. (1分)已知(x+5)2+|y2+y﹣6|=0,则2y2﹣xy+3x2+x3=________14. (1分) (2020七上·潮阳期末) 与是同类项,则 mn =________.15. (1分)(2020·长春模拟) 某饭店在2019年春节年夜饭的预定工作中,第一天预定了a桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了________桌年夜饭(用含a的代数式表示).16. (1分) (2018七上·江阴期中) 有理数a、b、c在数轴上的位置如图:化简 | b-c|+|a+b|-|c-a|=________.17. (1分)计算:(-3)2=________.18. (1分)(2017·兰山模拟) 为了求1+2+22+2,3+…2100的值,可令S=1+2+22+23…+2100 ,则2S=2+22+23+…+2101 ,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32016的值是________.19. (1分) (2019七上·宁津期末) 已知|x|=3,y2=16,xy<0,则x﹣y=________.20. (1分)(2016·新疆) 如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为________.三、解答题 (共8题;共75分)21. (10分) (2020七上·连城月考) 计算:(1)(2)(3)(4)(5)(6)( + - )×(-36)22. (10分) (2019七上·滨江期末)(1)化简求值: 其中(2)已知求A-(B-2A).23. (10分) (2018七上·昌图期末) 先化简,再求值:5(3x﹣y2)﹣3(2x﹣y2)﹣2,其中x=2,y=﹣1.24. (11分) (2018七上·台州期中) 如图,检测5个排球,其中质量超过标准的克数记为正数,不足的克数记为负数.(1)从轻重的角度看,几号球最接近标准?(2)若每个排球标准质量为260克,求这五个排球的总质量为多少克?25. (10分)已知关于x的方程(m+5)x|m|﹣4+18=0是一元一次方程.试求:(1) m的值;(2) 3(4m﹣1)﹣2(3m+2)的值.26. (10分) (2020七上·宜兴期中) 化简:(1) x2+5y﹣4x2﹣3y﹣1(2) a2+(5a2﹣2a)﹣2(a2﹣3a)27. (3分)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…(1)计算:13+23+33…+183+193+203=________(2)用含自然数n的等式表示上述各式的规律________.28. (11分)如图,动点A从-2表示的点向数轴的正方向运动,同时,动点B也从点+4向数轴的负方向运动,2秒钟后相遇,已知动点A的速度为1单位长度/秒.(1)求出动点B的速度;(2)若A、B两点从开始位置上同时按照原速度向数轴负方向运动,几秒后,点D(-1)使得线段AD:BD=2:3:(3)若A、B两点从原始点位置上同时按照原速度向数轴负方向运动,此时C点立即从+6点以3单位长度/秒的速度处追赶动点B,当C点追上B点时立即返回向数轴正方向运动,当点B追上A点时,C点立即停止,问:此时点C在什么位置?参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共10题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共8题;共75分)答案:21-1、答案:21-2、答案:21-3、答案:21-4、答案:21-5、答案:21-6、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、答案:28-2、答案:28-3、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福州时代中学2018-2019学年第一学期七年级期中考试
数学试卷
(考试时间:90分钟;试卷满分:100分)
班级_____________ 姓名_____________ 座号_____________
一、选择题(每小题2分,共20分)
1.下列有理数中,是负数的是
A .2(1)-
B .(1)--
C .1
--
D .3(1)--
2.大量事实证明,环境污染治理刻不容缓,据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学计数法表示为
A .51.4210⨯
B .41.4210⨯
C .314210⨯
D .60.14210⨯ 3.下列运算正确的是
A . 325a b ab +=
B .22330a b ba -=
C .235325x x x +=
D .22541y y -= 4.若有理数a 的值在—1与0之间,则的值可以是
A .1
B .
13 C .1
3
- D .2- 5.下列各组单项式中,是同类项的有
①3-与1
3
-;②26与2b ;③9ab 与9abc ;④x π与2x -;⑤23x y 与23yx - A .2组 B .3组 C .4组 D .5组 6.下列变形中,正确的是
A .若
a b
c c
=,那么a b = B . 若ac bc =,那么a b = C . 若a b =,那么1a
b
= D .若22a b =,那么a b =
7.用字母a 表示任意一个有理数,下列四个式子中,值不可能为0的是
A .11a --
B .1a -
C .31010a +
D .21a +
8.某商场9月份的营业额a 万元,10月份的营业额1.2a 万元,若按照相同的月增长率算该商场11月份的营业额为
A .1.2a 万元
B .1.4a 万元
C .1.44a 万元
D .2.4a 万元 9.若m n n m ÷=÷,则m 、n 的关系是
A .一定相等
B .一定互为相反数
C .互为倒数
D .相等或互为相反数 10.如下图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下
去,则第个图形需要黑色棋子的个数是
A . 22n n +
B .2n +
C .22n +
D .41n - 二、填空题(每小题2分,共20分) 11.3-的绝对值是 .
12.列式表示:比m 的3倍小5的数是 .
13.用四舍五入法得到的近似数0.618,精确到 位. 14.已知方程1
(2)160m m x
--+=是关于x 的一元一次方程,则m 的值是 .
15.在等式的括号内填上恰当的项,11x y -+=-( ). 16.多项式a b c ++的次数是 . 17.计算13413411
13
3213(32)13619117711771111
++=++=+=所用到的运算律是 .
18.有理数a ,b ,c 满足0a b c ++>,0abc <,则a b c abc
a b c abc
+++= . 19.若当1x =时,多项式3
1342
ax bx -+的值是7,则当1x =-时,这个多项式的值为 .
20.一列数,按一定规律排成—1,3,—9,27,—81,…,从中取出三个相邻的数,若这三个数的和为a ,则这三个数中最大的数与最小的数的差为 .(用含a 的代数式表示)
三、解答题(共60分) 21.(12分)计算:
(1)322.7() 5.35
5----;
(2)31
(2)4273
-÷+⨯;
第1个图形 第2个图形 第3个图形 第4个图形
(3)()13
(1)2464
-+⨯-; (4)42
11(10.5)2(3)3
⎡⎤---⨯⨯--⎣⎦. 22.(6分)化简:
(1)()()
22232421x xy x xy ----;
(2)(
){
}
222
2343x x x x x ⎡⎤--+--⎣⎦.
23.(6分)解方程:
(1)16 2.57.55x x x --=; (2)9355y y -=+.
24.(6分)先化简,再求值:设多项式113242323P x x y x y ⎛
⎫⎛⎫=-
--+-+ ⎪ ⎪⎝
⎭⎝⎭. (1)当1
3
x =-,1y =时,求P 的值; (2)当33y x -=-时,求P 的值.
25.(6分)某一出租车一天下午以鼓楼为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,—3,—5,+4,—10,+6,—3,—6,—4,+10.
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的上门方向? (2)若出租车每千米的耗油量为0.08升,这天下午出租车共蚝油量多少升? 26.(7分)探索规律:将连续的偶数2,4,6,8,…,排成如下表:
2 10 12 20 22 30 32 34 36 38 40


(1)十字框中的五个数的和与中间的数16有什么关系?
(2)移动十字框架,设中间的数为x ,用代数式表示十字框中的五个数的和; (3)若将十字框上下左右移动,可框柱另外的五个数,气他五个数的和能等于2560。

相关文档
最新文档