第三章 分子对称性和点群

合集下载

分子的对称性与群论基础群与分子点群

分子的对称性与群论基础群与分子点群

群与分子点群
3、分子点群
立方群
3)、 Ih 点群
对称元素: 6个 C5 轴(相对顶点)、 10个 C3 轴(相对面心)、 15个 C2 轴(相对棱心)、 对称中心.
120个对称操作,分为10个共轭类:
Eˆ , 6 Cˆ5 ,Cˆ54 , 6 Cˆ52,Cˆ53 , 10 Cˆ3 , Cˆ32 , iˆ , 6 Sˆ10 , Sˆ190 , 6 Sˆ130 , Sˆ170 , 10 Sˆ6 , Sˆ65 ,
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
必有:
A-1PA = P , B-1PB =
P , …… 即:对元于素分子P 点不群与:其他元素共轭。 恒等操作自成一类; 反演操作自成一类。
O2 , CO2 , C2 H 2
13
群与分子点群
3、分子点群
立方群
具有多于一个高次轴(Cn,n>2)的群,对应于凸正 多面体
4个 C3 轴 3个 C2 轴
T
Th (i)
Td (6d)
正四面体
3个 C4 轴 4个 C3 轴 6个 C2 轴
O Oh (i)
正八面体 正六面体
6个 C5 轴 10个 C3 轴
27
群与分子点群
5、同构与同态
2)、同态 定义:考虑群G与群H,若G的一组元素对应与H的一个元 素,且群G的元素的乘积对应于群H的相应元素的乘积, 则称群H 是群G的一个同态映像。
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….

第三章:分子对称性和点群

第三章:分子对称性和点群

σv2 σv2 σd1 σv1 σd2 C42 E
C41 C43
σd1 σd1 σv1 σd2 σv2 C41 C43 E
C42
σd2 σd2 σv2 σd1 σv1 C43 C41 C42 E
第三章:分子对称性和点群
1
群元素 群
乘法
对称操作 点群
操作动作的连续
2
本章目录
3.1对称元素和对称操作 3.2 对称操作的乘积 3.3分子点群
3.3.1 构成群 3.3.2 点群乘法表 3.3.3 类和子群 3.3.4 分子点群的类型 ****
3
3.1对称元素和对称操作
• 对称元素的定义(Symmetry Elements) 几何实体,如一个点,一条直线,一个平面;
(x,y,z) -C-2-(-x-)-> (x,-y,-z)-C--2(-y-)> (-x,-y,z) (x,y,z) -C--2(-z-)-> (-x,-y,z)
so, C2(y)C2(x)= C2(z)
34
例3:C4(z)和σ (xz)的存在,自动地要求σ d的存在 普通点[x1,y1,z1]通过xz平面的反映效果可以表为
分子点群满足数学群四准则。
点群中点的含义:(1)这些对称操作都是点操作,操作时 分子中至少有一点不动;(2) 分子的全部对称元素至少通 过一个公共点。
37
满足群的四点要求:
• (1)群中任意两个元素的乘积必为群中的 一个元素。
以NH3为例,逐一求出所有的对称操作的二元乘 积,发现两个操作的乘积仍为集合中的一个操作。
Snm = hmCnm (1)若独立地存在一个Cn轴和一个垂直于它 的平面h,那么就存在Sn。 (2)当分别地既不存在Cn也不存在垂直的h 时,Sn也可以存在。

群论第3章

群论第3章

NH3
CO,NO,HCN
C3v
C∞v
③ Cnh 群 属于Cnh点群的分子中具有一个Cn轴和一个垂直于Cn轴的σh 对称元素:Cn和σh 因σhCn=Sn,故(n-1)个旋转必产生(n-1)个象转 实际上 Cnh群是Cn群和Cs群的直积,阶次为2n 。
Cnh Cn Cs E, Cn1 , Cn 2 ,..., Cn n1 E, h = E, Cn1 , Cn 2 ,..., Cn n1 , h , hCn1 Sn , hCn 2 ,..., hCn n1
第三章. 分子对称性与分子点群
3.1 分子对称性
利用对称性原理和概念探讨分子的结构和性质,是人们认 识分子的重要途径,是了解分子结构和性质的重要方法。 ① 能简明地表达分子的构型 Ni(CN)42-离子具有D4h点群的对称性,用D4h这个符号就可以 准确地表达 9 个原子在同一平面上, Ni 原子在中心位置, 周围4个-CN完全等同,Ni-C-N都是直线型,互为90°角。 ② 简化分子构型的测定工作
3.分子的对称操作和对称元素:
分子是有限物体,在进行对称操作时,分子中至少有一 点不动------点操作 只有四种类型的对称操作和对称元素 a. 旋转操作------旋转轴(Cn)
b. 反映操作------镜面( σ )
c. 反演操作------ 对称心(i) d. 象轴(旋转反映)操作------象转轴(反轴)Sn 右手坐标系:讨论对称操作时,常将分子定位在右手坐 标轴系上,分子的重心处在坐标原点,主轴与Z轴重合。 主轴:分子中轴次最高的轴。
Cnh 待 定 分 子 是 否 直 线 型 N Y i Td
例:有两个分子群 D2 { E,C2(x),C2(y),C2(z) }

第三章分子对称性和点群

第三章分子对称性和点群

A(c) A(a) A( f ) 0 1
0
0
001
cos 4
3
sin 4
3 0
sin 4
3
cos 4
3 0
0 0Βιβλιοθήκη cos 43sin 4
3
1 0
sin 4
3
cos 4
3 0
0
0
1
A (a) 1
A (b) 1
A (c) 1
表示的分类:
(1)等价表示 若A(g)是群G的一个表示, X是一正交变换矩阵, 则 B(g)=X-1A(g)X
规则二. 点群中所有不可约表示的维数的平方和等于群的阶 n. l12 l22 lk 2 n
在 D3中, l12 l22 l32 6
从而 l1 l2 1, l3 2
规则三. 点群中不可约表示特征标间的正交关系:
k
h j r (R j ) * s (R j ) n rs
j 1
对不可约表示: (R) 2 n
3
y2 a21 a22 a23 x2 , yi aij x j
y3 a31 a32 a33 x3
j 1
(i=1,2,3)
矩阵的迹 (trace) 或特征标 (character):
( A) TrA aii
i
相似变换:
A S1AS
TrA TrA
(S为正交矩阵) St S SSt E
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
3.1.1 n重对称轴, Cn (转动)
转角 2 / n

分子对称性和点群

分子对称性和点群

例二:置换群(群元素为变换位置的操作,乘法规则为从右到左 相继操作). S3 群 ( 三阶置换群 )
1 2 3 E 1 2 3 1 2 3 A 1 3 2
1 2 3 D 2 3 1 1 B 3 1 2 2 3 2 1 2 3 3 1
{E,D,F}构成S3的一个3阶子群
AA BB CC E
{E,A}、 {E,B}、 {E,C}分别构成S3的2阶子群
3.2.4 群的共轭类
共轭元素: B=X-1AX ( X,A,B都是群G的元素) (A和B共轭)
元素的共轭类: 一组彼此共轭的所有元素集合称为群的 一个类.
f 类 = { x-1fx,
第三章
分子对称性和点群
分子具有某种对称性. 它对于理解和应用分子 量子态及相关光谱有极大帮助. 确定光谱的选择定则需要用到对称性. 标记分子的量子态需要用到对称性.
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
A4 =E
(2)非循环群
欲构成非循环群,只可能是各元素的逆元素为自身 即 A2 =B 2 =C 2 =E ,再根据重排定理即可得乘法表
3.2.3 群的子群
•子群: 设 H 是群 G 的非空子集, 若对于群 G 的乘法规则,集合 H 也 满足群的四个条件,则称 H 是 G 的子群. • 1) 封闭性 • 2) 结合律: H属于G并且为相同的乘法规则,因此结合律显然满足 • 3) 恒等元素:针对每个子群加入群G的恒等元素即可 • 4) 逆元素 因此满足条件1)与4)是证明子群成立的关键. 显然, 恒等元素 E 单独构成的群和群 G 自身是平庸子群.

第三章 分子的对成性与点群

第三章 分子的对成性与点群

一个对称面只能产生两个反映操作:
ˆ n
ˆ (n为奇数) Eˆ(n为偶数 — 垂直主轴的对称面
d — 包含主轴且平分垂直主轴的两个二重轴之间的夹角
PtCl4:其对称面如上图所示。
5.象转轴(映轴)Sn和旋转反映操作 Sˆn
如果分子图形绕轴旋转一定角度后,再作垂直此轴的镜 面反映,可以产生分子的等价图形。则将该轴和垂直该轴 的镜面组合所得的元素称为象转轴或映轴。
分子的偶极矩是一个矢量,是分子的静态性质,分子的任何对称操 作对其大小和方向都不起作用。
只有分子的电荷中心不重合,才有偶极矩,重合,则无。 极性分子——永久偶极短0 一般分子——诱导偶极矩I
分子的对称性反映出分子中原子核和电子云空间分布 的对称性,因此可以判断偶极矩是否存在。
判据:若分子中有对称中心或有两个对称元素相交于 一点, 则分子不存在偶极矩。
象转轴和旋转—反映连续操作相对应,但和连续操作的
次序无关。即 :
Sˆn cˆnˆ h ˆ hcˆn
转900
Cˆ 4
ˆ h
(A)
例如CH4,其分子构型可用图(A)表示: CH4没有C4,但存在S4
注意:①当分子中存在一个Cn轴和一个垂直Cn的对称 面,则分子必存在Sn轴。
PtCl4有C4 且有 ,有h S4
D4h群:XeF4
D6h群:苯
Dh群: I3-
3) Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴夹
角的镜面σd.
对称元素 1个Cn轴,n个垂直Cn的二重轴,n个σd面 4n阶。
D2d : 丙二烯
C C C
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁

(完整版)第三章-分子对称性和群论初步

(完整版)第三章-分子对称性和群论初步
操作A和B是可交换的。
两个或多个对称操作 的结果,等效于某个 对称操作。
例如,先作二重旋转,再对垂直 于该轴的镜面作反映,等于对 轴与镜面的交点作反演。
对称操作的乘积示意图
2.分子点群的确定
分子可以按 “点群”或“对称群”加以分 类。在一个分子上所进行的对称操作的完全组 合构成一个“点群”或“对称群”。
Third
确定分子是否具有象转轴Sn(n为偶数),如果只 存在Sn轴而别无其它对称元素,这时分子属于假轴 向群类的Sn群。
3. 分子点群的确定
Forth
假如分子均不属于上述各群,而且具有Cn旋转轴时 可进行第四步。当分子不具有垂直于Cn轴的C2轴时,
则属于轴向群类。有以下三种可能:
没有对称面 若有n个sv对称面 若有1个sh对称面
Z s2
Y
x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4
3
43
旋转90◦
12
2
1
2
1 反映
43
3 4
2
1
注意: C4和与之垂直的σ都不独立存在

补充:反轴(In)和旋转反演操作(In )
反轴
如果分子图形绕轴旋转一定角度(θ=2π/n)后, 再按轴上的中心点进行反演,可以产生分子的 等价图形,则将该轴和反演组合所得到的对称 元素称为反轴。
对称中心的反演操作,能使分子中各相互对应的原子 彼此交换位置。即分子图形中任意一个原子的位置 A(x,y,z)将反射到点A’(-x,-y,-z),同时A’点将反射到A点, 从而产生分子的等价图形。示意图.exe
对分子图形若连续反演n次,可以满足:

nLeabharlann =E(n为偶数) ˆi(n为奇数)

第三章分子的对称性与点群

第三章分子的对称性与点群

III. 1,3,5-三甲基苯
1,3,5-三甲基苯 (图III)是C3点 群的例子,若不考 虑甲基上H原子, 分子的对称性可以 很高,但整体考虑, C6H3(CH3)3只有C3 对称元素。C3轴位 于苯环中心,垂直 于苯环平面,分子 绕C3轴转动120°, 240°都能复原。
IV. CH3CCl3
垂直于轴的平面反映
六、对称点群
1. 群的定义 一组元素若满足以下四个条件,构成一个群 1)封闭性
若A G, B G,则必有AB C ,C G
2)恒等元素E 若AG, E G,则EA AE A
3)逆元素
若AG,则必存在B G, 且AB BA E B为A的逆元素,记作A1 B
0

y

1 z


三、对称面与反映
存在对称面的分子,除位于对称面上的原子外, 其他原子成对地排在对称面两侧,它们通过反映操作 可以复原。
反映操作是使分子中的每一点都反映到该点到镜 面垂线的延长线上,在镜面另一侧等距离处。
连续进行反映操作可得 : σn ={ E ,n为偶数,σ , n 为奇数} 和主轴垂直的镜面以σh表示;通过主轴的镜面 以σv表示;通过主轴,平分副轴夹角的镜面以σd 表 示。
①. S1=Cs群: S1=σ C11=σ 即S1为对称面反映操作,故S1群相当
于Cs群。即对称元素仅有一个对称面。:{E,σ }。 如TiCl2(C5H5)2,Ti形成四配位化合物,2个Cl原
子和环戊烯基成对角。
Br
.TiCl2(C5H5)2
Cl
O H Cl
没有其它对称元素的平面分子
②.Ci群:
从分子中任一原子至对称中心连一直线,将此 线延长,必可在和对称中心等距离的另一侧找到另 一相同原子。

chap3b第三章 分子的对称性和点群

chap3b第三章 分子的对称性和点群
C1 , Ci , Cs
有多条高阶轴分子(正四面体、正八面体 有多条高阶轴分子(正四面体、正八面体…) 只有镜面或对称中心, 或无对称性的分子: 只有镜面或对称中心 或无对称性的分子 只有S 为正整数) 只有 2n(n为正整数)分子 为正整数 分子:
S 4 , S 6 , S8 ,...
C n , C nh , C nv
Z
对称操作,共有 个对称操作 但每条S 必然也是C 个对称操作. 对称操作,共有9个对称操作 但每条 4必然也是 2, S42与C2对称操作等价,所以将 个S42划归 2, 对称操作等价,所以将3个 划归C ,
穿过正四面体每条棱 并将四面体分为两半 的是一个σd , 共有 个 共有6个 的是一个 σd 。
旋转反映
(具有 n的)分子 具有S 分子 具有 镜象 反映 旋转
分子
橙色虚线框表明,分子与其镜象能够通过实操作旋转完 橙色虚线框表明, 全迭合,而前提是“分子具有 全迭合,而前提是“分子具有Sn”. 根据n的不同可以写出 根据 的不同可以写出: S1=σ,S2=i,S4=S4。 的不同可以写出 结论: 的分子, 结论 : 具有 σ、 或 i、 或 S4 的分子 , 可通过实际操作与其 镜象完全迭合,称为非手性分子。 镜象完全迭合,称为非手性分子。
夹角的镜面σ 夹角的镜面 d.
D2d : 丙二烯
D2d : B2Cl4
立方群:包括T 立方群:包括 d 、Th 、Oh 、Ih 等.
这类点群的共同特点是有多条高次(大于二次 旋转轴相交 这类点群的共同特点是有多条高次 大于二次)旋转轴相交 大于二次 旋转轴相交.
Td 群:属于该群的分子,对称性与正四面体完全相同。 属于该群的分子,对称性与正四面体完全相同。 正四面体完全相同

第三章-分子的对称性

第三章-分子的对称性

对称操作只能产生等价构型分子,不能改变其 物理性质(偶极矩)。因此,分子的偶极矩必定在 分子的每一个对称元素上。
(1) 若分子有一个Cn轴,则DM必在轴上; (2) 若分子有一个σ面,则DM必在面上; (3) 若分子有n个σ面,则DM必在面的交线上; (4) 若分子有n个Cn轴,则DM必在轴的交点上,DM=0; (5) 分子有对称中心 i ( Sn ),则DM=0。
群的乘法表
把群元素的乘积列为表,则得到乘法表。乘 积为列×行,行元素先作用,列元素后作用。群 的元素数目 n为群的阶数。 例:H2O,对称元素,C2, σv, σv’ ,对称操作
ˆ ˆ ˆ ˆ C2,σv ,σv ', E , 属4阶群。
C2v
ˆ E ˆ C2 ˆ σv ˆ σv'
ˆ E ˆ ˆ σv σv' ˆ ˆ σv' σv
判据:若分子中有对称中心或有两个对称元素相交 于一点, 则分子不存在偶极矩。 推论:只有属于Cn 和Cnv(n=1,2,3,…,∞)这两类点群 的分子才具有偶极矩,而其他点群的分子偶极矩为 0。因C1v≡C1h≡Cs,Cs点群也包括在Cnv之中。
H C Cl
H C Cl
1,2 -二氯乙烯(顺式) , C2v,有
C60
闭合式[B12H12]2-
非真旋轴群: 包括Cs 、Ci 、S4 只有虚轴(不计包含在Sn中的Cn/2. 此外, i= S2 , σ = S1, 只有n为4的倍数时Sn是独立的).
Cs 群 : 只有镜面 Ci 群: 只有对称中心 S4 群: 只有四次旋映轴
亚硝酸酐 N2O3
分子点群的确定
起点 线性分子
2
ˆ E ˆ E ˆ C
ˆ C2 ˆ C

(03) 第三章 分子对称性与群论初步PPT课件

(03) 第三章 分子对称性与群论初步PPT课件

如果一个操作产生的结果和两个或多个其它操作连续作用的结果 相同,通常称这一操作为其它操作的乘积。
若 A ˆB ˆC ˆ,则 C ˆ为 称 A ˆB ˆ的乘积。 若A ˆBˆ BˆA ˆ, 则A ˆ和 称Bˆ是 可 交 换 的 。
例如H2O的对称操作。
21
E,C2,v(x)z,v(y)z E ˆC ˆ2C ˆ2E ˆC ˆ2
对应的两个原子和中心点同在一条直线上,且到中心点的距离相
iˆ 等,这一点就是对称中心i,这种操作就是反演
.
反式二氯二溴乙烷
14
H
H
Cl H
CC
Cl
HH
H Cl
Cl Pt Cl
H
Cl
FF B
O
HH F
H
iˆ2n ˆ
iˆ2n1 iˆ
15
(5)象转轴Sn与旋转反映操Sˆ作n Sˆ n
如果图形绕轴旋转一定角度后,再作垂直此轴的镜面反映, 可以产生分子的等价图形。则将该轴和镜面组合所得到的对称 元素称为象转轴。
映 .ˆ
11
按和主轴的关系对称面可分为: V面:包含主轴; h面:垂直于主轴; d面:包含主轴,且平分两个相邻的C2轴的夹角。
12
PtCl4
ˆ2n Eˆ
ˆ2n1 ˆ
13
(4) 对称中心i与反演操作 iˆ
分子中若存在一个中心点,对于分子中任何一个原子来说,
在中心点的另一侧,必能找到一个和它相对应的同类原子,互相
4
C
1 4
3
4 3
1
4
2
2 1
h
2 1
4 3
18
Sˆ nk
ˆ h

k n

第三章 分子的对称性和点群

第三章 分子的对称性和点群

3.1.1 分子的对称操作与对称元素
对称操作:不改变图形中 任何两点的距离而能使图形复 原的操作叫做对称操作;
对称元素: 旋转轴 对称操作: 旋转
对称操作据以进行的几何 要素叫做对称元素。如点、线、 面以及它们的组合。
分子中的四类对称操作及 相应的对称元素如下:
(1)旋转轴与旋转操作
借助一条直线,使分子旋转2/n后得到等价图形的操作称
3.2 点群
3.2.1 群的定义
设有一组元素的集合GA, B,C,...,定义一种称之为“乘
法”的运算,如果满足下列条件,则集合G构成群。
1)封闭性:集合G 中任何两个元素相“乘”(或称之为 组合),其结果仍然是G 中元素,也就是说,A、B分别 属于G,AB=C 也属于 G。即 A∈G, B∈G, 则 AB= C∈G
邻菲罗啉、吡啶、环戊烯、甲醛 、丙酮、呋喃、顺式丁二烯和环 己烷(船式构象)等许多近似呈V 型的分子都属于C2v群。
C3v : NH3 、NF3 C3v :CHCl3
C3v群分子
无对称中心的线性分子属于C∞v群:如HCl
N2O C∞v群分子
(c) Sn群:只存在一个Sn轴 . n为偶数,如果为奇 数,就是Cnh群,不独立存在
又如,四个动作立正、向左转、向右转和向后转构成群, 这里定义的群元素之间的乘法就是一个动作之后接做另一 个动作。
例1. 实数加法群 元素为全体实数(因此是无限群),群乘
法为初等代数加法;(1)任意两实数之和仍是实数; (2)恒等元为0;(3)实数的代数加法满足结合律; (4)实数的逆元为其相反值。
生 物 界 的 对 称 性
文学中的对称性——回文
将这首诗从头朗诵到尾, 再反过来, 从尾到头去朗诵, 分别都是一首绝妙好诗. 它们可以 合成一首“对称性”的诗,其中每一首相当于一首“手性”诗.

分子对称性和点群

分子对称性和点群
9. O h点群 有3个C4轴, 4个C3轴, 3个 h , 6个对称面 d, 对称中心 i. 正八面体对称群.
3.4 群的表示
• 3.4.1 向量和矩阵
向量具有一定的大小和方向.
xa A ya
za
是数的有序排列, 代表在坐标轴上的投影.
A
2

xa2
0 0 0 i j k


0 0 0 l m n
分块对角矩阵的性质:
det D det Adet Bdet C
TrD TrATrB TrC
A1 B1A2 B2 A1A2 B2B1
其中 A1 和 A2 都是 n 阶矩阵,B1 和 B2 都是 m
• 那么称为群的表示.
(表示的乘积等于乘积的表示)
在三维空间中对称操作的矩阵表示.
1 0 0
E 0 1 0

0
0
1

1 0 0
xy 0 1 0

0
0
1
1 0 0
yz 0 1 0

0
0
1

1 0 0

例1. 全部整数的集合, 乘法规那么为代数加法, 那么 构成一个群.
恒等元素为 0. 数 n 的逆元素为 (-n). 封闭性和结合律是显然的.
例2. 数的集合 {1, -1, i, -i}, 乘法规那么为代数乘法, 那么构 成一个群.
恒等元素为1. 数 (-1) 的逆元素为(-1).数 (i) 的逆元素为 (-i).
当n为偶数时, 当n为奇数时,
Snn hnCnn I Snn hnCnn h , S2nn h2nC2nn I

分子的对称性和点群

分子的对称性和点群

2 二面体群
(1)Dn群 2n个群元素
有一个 n 2 主轴和n个垂直于主轴 的2次旋转轴的分子

2 n1 ˆ (1) ˆ ( 2) ( n) ˆ ˆ ˆ ˆ ˆ E, Cn , Cn ,, Cn , C2 , C2 ,, C2


部分交错式的CH3-CH3
D3群
(2) Dnh群 除具有Dn群的对称元素外,还有一个垂 直于主轴的对称面
反演中心:进行反演所凭借的中心点称作 对称中心。
i
2 k 1 ˆ ˆ i i
(k=0,1,2,……)
2k ˆ ˆ i E
5 象转
ˆ S n
旋转和反映的复合操作
2
象转:先将分子绕某轴旋转 n 角度后, 再凭借垂直于该轴的平面进行反映后能够 产生分子等价图形的对称操作。 象转轴:进行象转所凭借的对称轴。 S n



48个对称操作分为10类
四 分子点群的确定步骤
Dh C V Td Oh Cs
Ci C1 Sn Dnh Dnd Dn Cnh CnV Cn
五 群的乘法表
“乘法”定义为一 个操作后接另一个 对称操作 NH3分子属C3v群

2 ( 1 ) ( 2 ) ( 3 ) ˆ ˆ ˆ ˆ v , ˆ v , ˆv E, C3 , C3 ,


丙二烯(CH2=C=CH2) D2d群 交错式乙烷(CH3-CH3) D3d群
交错式二茂铁
D5d群
3 立方群
分子有多个高次旋转轴(n3)
(1) Td群
例 CH4,CCl4,SiH4
具有正四面体构型的分子 对称元素有4个C3轴,3个C2轴,3个S4 轴(与3个C2轴重合)和6个d平面

第三讲分子的对称性与群论基础群与分子点群

第三讲分子的对称性与群论基础群与分子点群

(AB)C=A(BC)
(3) 恒等元素 该集合必须含有一个元素 E,对于该集合中的任何元素 A, 都有:AE=EA=A (4) 逆元素 对于该集合的任何元素 A,一定有一个逆元素A-1,它也是 该集合的一个元素,使得: AA-1= A-1A = E 。
2
群与分子点群
1. 群的定义
* 群元素: 数、矩阵、对称操作、算符
群G与群H同构,则两者的阶相同,且乘法表相同。 群G: …., Ai , …, Aj , …., AiAj = Ak , ….
群H: …., Bi , …, Bj , …., BiBj = Bk , ….
26
群与分子点群
5、同构与同态
CS 群
Ci 群
CS与Ci 同构:元素一一对应,“乘积对应乘积”:
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
群H: …., Bi , …, Bj , …., BiBj , ….
* 同态的群,其群元素的乘法关系相同。
* 若两个同态的群的阶相同,则两者同构。
28
群与分子点群
5、同构与同态
群 G = { 1, -1, i, -i }
(证毕)
由定理3,相互共轭的群元素组成一个封闭的子集合,称为 一个类(共轭类)。从而可以把一个群的元素按共轭类划 分,不同的类没有共同元素。
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
(4) 逆元素:相反数 (1 与 -1,2 与 -
2,…..)

结构化学第三章教案

结构化学第三章教案

S4群
23
返回
总结 线性分子 线性分子 分 子 点 群 正四面体 正八面体
左右对称 反之
D∞h C∞v
Td Oh Dnd Cnv Dn Cn
有 轴 群
D群 C群
其它
Dnh Cnh
Cs Ci Sn C1
24
确定点群一定要按着上述顺序 确定点群一定要按着上述顺序 例1 :苯
σd
C6 C2
σh
D6d C6 + 6C2 ﹢σh D类群 D6h群
5
例 : H2 O C2 O H
σv
H
σv’
6
(4) 对称中心(i)和反演操作( 和反演操作(
ɵ) i
例:
i
∧ (5) 象转轴(Sn)和旋转反映操作( S ) 和旋转反映操作( n
旋转2 旋转 π/n, 并作垂直 反映操作 此轴的反映 此轴的反映操作
复合操作 顺序无关
7
例:CH4 本身并不存在C 本身并不存在 4 和σh 但存在 S4 H
32
· i
H C
S4
H H
通常, 通常,有Cn和σh,必有Sn 。
可有可无。 无Cn和σh, Sn可有可无。
8
5种对称元素
(1)恒等元素 恒等元素 (2)旋转轴 旋转轴 (3)对称面 对称面 每个分子都有 主轴 次轴 垂直主轴的对称面 ① σh : 垂直主轴的对称面
② σv : 包含主轴的对称面 包含主轴的对称面
例2:交叉式乙烷
C3, 3个C2 个 σ , D3d群
d
C3
C2 C2 C2
中点 过C-C中点,垂直于C3 - 中点
σd
C2
C2
14
返回

分子对称性和分子点群课件

分子对称性和分子点群课件

分子对称性的意义
预测和解释分子的物理和化学性质
分子对称性与分子的电子结构和化学键有关,因此可以用来预测和解释分子的性质,如稳 定性、反应活性等。
确定分子的点群
分子的点群是根据分子的对称性进行分类的,通过确定分子的点群可以更好地理解分子的 结构和性质。
指导药物设计和材料科学
分子对称性在药物设计和材料科学中具有重要意义,例如在药物设计中,可以利用分子对 称性来设计具有特定性质的化合物。
分子对称性在化学反应中的实例分析
以烷烃为例,烷烃的对称性越高,其化学反应选择性越低,因为它们具有更稳定的 分子结构。
以烯烃为例,烯烃的对称性较低,因此它们在加成反应中表现出较高的反应活性。
以芳香族化合物为例,由于芳香族化合物具有较低的对称性,它们在取代反应中表 现出较高的反应活性。
05
CATALOGUE
02
CATALOGUE
分子点群的基本概念
分子点群的分 类
01
02
03
04
第一类点群
包括1个线性群和3个二面体群。
第二类点群
包括4个四面体群、6个三方 柱群和1个六方柱群。
第三类点群
包括4个四方锥群、4个三角 锥群、2个八面体群、1个五 方双锥群和1个三方偏方面体
群。
第四类点群
包括1个二十面体群。
02
分子对称性是分子结构的一个重 要属性,它决定了分子的物理和 化学性质。
分子对称性的分类
01
02
03
点对称性
分子在三维空间中具有一 个或多个对称中心,这些 对称中心可以将分子分成 若干个相同的部分。
轴对称性
分子具有一个或多个对称 轴,这些对称轴可以将分 子分成若干个相同的部分。

分子对称性和分子点群PPT课件

分子对称性和分子点群PPT课件

完整版课件
28
2. Cn点群
C2
H
OO H
仅含有一个Cn轴。如:H2O2仅含有一个C2轴, 该轴平分两个平面的夹角,并交于O-O键的中点,
所以,该分子属于C2点群;类似的结构如:N2H4等
完整版课件
29
3. Cs点群
O
H
Cl
仅含有一个镜面。如:HOCl为一与水类似的
弯曲分子,只有一个对称面即分子平面,所以它属
完整版课件
2
对称元素和对称操作
元素符号
E C
σ
i
S
I
元素名称 单位元素 旋转轴
镜面 对称中心
映轴
反轴
操作符号
Ê
Ĉ σ∧

i
Ŝ
Î
完整版课件
对称操作
恒等操作
绕中心旋转 2π/n
通过镜面反映
按分子中心反 演 绕中心旋转 2π/n 再镜面 对映 绕中心旋转 2π/n 再反演
下一页
3
分子点群的种类
点群
Cn群 C1 Cnv群 C2v Cnh群 C1h Dn群 D3 Dnh群 D2h Dnd群 D2d Sn群 S2 Td群 Td Oh群 Oh
同理,各个对称操作作用于Tx 、Tz,也可 以得到类似的结果。
Tx Tx
Tx
完整版课件
Tz
Tz
Tz
40
C2v
E
C2 (xz) (yz)
Γ1
1
-1
-1
1
Ty
Γ2
1
-1
1
-1
Tx
Γ3
1
1
1
1
Tz
上述数字的集合(矩阵)代表群,就是 群的表示。

第三章 群表示理论基础1

第三章 群表示理论基础1

若{F 1,F 2,… F m }及{G 1,G 2,… G n }是两个函数集合,则函数集合{F i G k }(m ×n 个)称为前两个函数集合的直积。

B 、表示的直积以函数集合{F i G k }为基的表示ΓFG 称为以函数集合{F 1,F 2,… F m }为基的表示ΓF 与以函数集合{G 1,G 2,… G n }为基的表示ΓG 的直积。

记为:ΓFG = ΓF × ΓG2)定理:操作R 对应的矩阵中,以直积为基表示的特征标等于以单个函数为基表示的特征标的乘积。

χFG (R) = χF (R)χG (R)五、群表示间的关系小结1、群表示间的关系群表示Γa 的矩阵群为{A 1,A 2,A 3, …},Γb 的矩阵群为{B 1,B 2,B 3, …}其中,A i 、B i 分别为Γa 与Γb 中对应于第i 个操作的矩阵 。

1)等价:若对每一个操作R 均能找到矩阵X ,使B(R) = X -1A(R)X ,则表示Γa与Γb 是等价的,记为Γa = Γb 。

2)约化: 若能找到矩阵X ,使表示Γ的任一矩阵C(R),可通过相似变换X -1C(R)X= C´(R) 变为对角方阵C´(R)。

C´(R)中每一组对应的小方阵构成一个群的低维表示Γi ,则称表示Γ是可约化的。

记为:...2211+Γ+Γ=Γ=Γ∑a a a ii i3)直积:若ψa 和ψb 分别为Γa 及Γb 表示的基,则以(ψa ψb )为基的表示Γab称为Γa 与Γb 的直积。

记为Γab =Γa ×Γb2、群表示的特征标间的关系若将上述关系中群表示符号Γ换为群表示中与某一对称操作对应的矩阵的特征标,则与上述群表示间关系相对应的特征标间的代数运算依然成立。

1)等价: Γa = Γb → χa (R) = χb (R)因为A(R)与B(R)为共轭矩阵,因此特征标应相等。

2)约化:∑∑=→Γ=Γi ii i i i R a R a )()(χχ这是显然的,因为与Γi 对应的矩阵在C´(R)里是沿对角线排列的,因此∑=ii i R a R )()('χχ又因为C(R)与C´(R) 共轭,因此χ(R) =χ´(R)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 2) 结合律 A(BC)=(AB)C • 3) 有唯一的恒等元素 E, 使得对任意群元素 R, 有 RE=ER=R • 4) 每个元素 R 必有逆元素 R-1, 使得 RR-1 =R-1 R=E
•性质: 1) 若 AB=AC 则 B=C

2) (AB) –1 =B –1 A –1
• 因为 (AB)(AB) –1 =ABB –1 A –1 =AA –1 =E
3
0
A
(
f
)
1
2
cos
4
3
0
1 0 0
A(a) 0 1 0
0
0 1
1 0 A(b) A(a) A(d ) 0 1
0 0
001
cos 2
3
sin 2
3 0
sin 2
3
cos 2
3 0
0 0
cos 2
3
sin 2
3
1 0
sin 2
3
cos 2
3 0
0
0
1
1 0
当n为偶数时, 当n为奇数时,
Snn hnCnn I Snn hnCnn h , S2nn h2nC2nn I
3.2 群的定义和基本性质
• 定义: 群 G 是一个不同元素的集合{A,B,…,R,…}, 对于一定的乘法 规则, 满足以下四个条件:
• 1) 封闭性 群中任意两个元素 R和 S的乘积等于集合中另一个元素, T=RS
D3群的乘法表
每一行和每一列都是所有群元素的重排 ad = b , da = c
例5. 求3阶群的乘法表. (错)
(?)
G={E,A,A2} (循环群)
• 群的阶: 有限群中群元素的个数. 如 D3 群的阶为 6.
• 循环群: 整个群是由一个元素及其所有的幂产生. • 如: Cn , C2n , C3n ,....,Cnn E
规则二. 点群中所有不可约表示的维数的平方和等于群的阶 n. l12 l22 lk 2 n
在 D3中, l12 l22 l32 6
从而 l1 l2 1, l3 2
规则三. 点群中不可约表示特征标间的正交关系:
k
h j r (R j ) * s (R j ) n rs
j 1
对不可约表示: (R) 2 n
3.1.3. 对称中心, i (反演)
i2 = I
3.1.4 n 重旋转反映轴, Sn
Sn = h Cn
Sn = h Cn 由于S1 = h C1 = , S2 = h C2 = i 所以S1 和S2无意义.
3.1.5 恒等元素, E 或 I
•所有分子都具有恒等元素 E (有时也写为 I ). •是保持群论规则必需的元素.
A(c) A(a) A( f ) 0 1
0
0
001
cos 4
3
sin 4
3 0
sin 4
3
cos 4
3 0
0 0
cos 4
3
sin 4
3
1 0
sin 4
3
cos 4
3 0
0
0
1
A (a) 1
A (b) 1
A (c) 1
表示的分类:
(1)等价表示 若A(g)是群G的一个表示, X是一正交变换矩阵, 则 B(g)=X-1A(g)X
0 0 1
cos sin 0
cos sin 0
C( ) sin cos 0 S( ) sin cos 0
0
0 1
0
0 1
• 特征标: 表示矩阵对角元之和.
A
(
g
)
j
A
jj
(
g
)
• 共轭类的特征标相等.
从 f=X-1gX 得 A(f)=A(X)-1A(g)A(X) 从而 A (g) A ( f )
3
y2 a21 a22 a23 x2 , yi aij x j
y3 a31 a32 a33 x3
j 1
(i=1,2,3)
矩阵的迹 (trace) 或特征标 (character):
( A) TrA aii
i
相似变换:
A S1AS
TrA TrA
(S为正交矩阵) St S SSt E
所以 D3 的共轭类为: {e}, {d,f}, {a,b,c}
3.3 点群
• 分子的所有对称元素构成分子的点群. 这些对称元素至少保持空间中的一点(分子质心)不变, 从而成为点群.
• 如H2O的所有对称元素为: I, C2, v (xz) , v (yz)
1. Cn点群
Cn ,C2n ,C3n ,....,Cnn I
第三章 分子对称性和点群
分子具有某种对称性. 它对于理解和应用分子量 子态及相关光谱有极大帮助.
确定光谱的选择定则需要用到对称性. 标记分子的量子态需要用到对称性.
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
证明:
TrA Aii
S ji Ajk Ski
Ajk S ji Ski
i
i jk
jk
i
Ajk jk Ajj TrA
jk
j
(这个性质在群表示中很有用)
3.4.2 群的表示
• 选定一组基向量,把群元素用一个矩阵表示,且
(1) 一一对应. 任一群元素 g 都有对应的矩阵 A(g).
例1. 全部整数的集合, 乘法规则为代数加法, 则构成 一个群.
恒等元素为 0. 数 n 的逆元素为 (-n). 封闭性和结合律是显然的.
例2. 数的集合 {1, -1, i, -i}, 乘法规则为代数乘法, 则构成一个群.
恒等元素为1. 数 (-1) 的逆元素为(-1).数 (i) 的逆 元素为 (-i).
7. Dnh群
有一个Cn轴, n个垂直于该轴的C2轴, 1
个垂直于该轴的对称面h
D3h
H2为Dh
8. Td点群 有4个C3轴, 3个 C2轴, 6个对称面 d. 正四面体对称群.
9. O h点群 有3个C4轴, 4个C3轴, 3个 h , 6个对称面 d, 对称中心 i. 正八面体对称群.
3.4 群的表示
A' (g) X 1A(g) X A'1 (g) 0 0 A'2 (g)
(对所有的群元素)
如 D3 群在直角坐标系下的表示就是可约表示. 群论的任务之一就是要找出点群的所有不等价不可约的表示的特征标.
规则一. 点群中不可约表示的数目等于共轭类的数目. 如 D3中有 3个共轭类 {e}, {d,f}, {a,b,c}, 故有 3个不可约表示.
Cnn-1 C-n1
Sn hCn , S2n hCn hCn h2Cn2 Cn2
例: S4 h C4
S24 h2 C42 C2 , S34 h3C34 h C34 S-41 S44 h4 C44 I
S3 h C3 S32 h2 C32 C32 , S33 h3C33 h I h S34 h4 C34 C34 C3 ,S53 h5C35 h C32 , S36 h6 C36 I
(2) 保持群的乘法规律不变. 即 A(f)A(g)=A(fg)
则称为群的表示.
(表示的乘积等于乘积的表示)
在三维空间中对称操作的矩阵表示.
1 0 0
E 0 1 0
0
0
1
1 0 0
xy 0 1 0
0
0
1
1 0 0
yz 0 1 0
0
0
1
1 0 0 i 0 1 0
点群的特征标表
对称: 反对称:
v C2 (1) v v C2 (1) v
说明: A1为全对称表示 A 表示对主轴是对称的 B 表示对主轴是反对称的
x E x, x C2 x, x xz x, x yz x
z E z, z C2 z, z xz z, z yz z
我们经常需要考虑两个不可约表示的乘积, 即表示的直积, 如
a31 a32 a33
维数: 每行和每列中矩阵元的个数.
b11
b12
b13
B b21 b22 b23
b31 b32 b33
矩阵加法:
C A B, cij aij bij
矩阵乘法:
C AB,
cij aikbkj
k
矩阵与向量的乘法: y1 a11 a12 a13 x1
• 3.4.1 向量和矩阵
向量具有一定的大小和方向.
xa A ya
za
是数的有序排列, 代表在坐标轴上的投影.
பைடு நூலகம் A
2
xa2
ya2
za2
A B xa xb ya yb zazb
• 矩阵是由数值或符号组成的长方形列阵. 如

a11
a12
a13
A a21 a22 a23 列
元素的共轭类: 一组彼此共轭的所有元素集合称为群的 一个类.
f 类 = { x-1fx, x 取遍所有的群元素}
例. 求 D3 的所有共轭类 D3={e,d,f,a,b,c}
e 类: x-1ex =e
d 类: a-1da=ac=f
a 类: b-1ab=bd=c d-1ad=fb=c c-1ac=cf=b
•子群: 设 H 是群 G 的非空子集, 若对于群 G 的乘法规则,集 合 H 也满足群的四个条件,则称 H 是 G 的子群.
显然, 恒等元素 E 和群 G 自身是固有子群.
例. 在 D3={e,d,f,a,b,c} 中, 子集 {e,d,f}, {e,a}, {e,b}, {e,c}都是子群.
相关文档
最新文档