一元二次方程测试题(基础)
《一元二次方程》基础测试题及答案详解
《一元二次方程》基礎測試一 選擇題(每小題3分,共24分):1.方程(m 2-1)x 2+mx -5=0 是關於x の一元二次方程,則m 滿足の條件是…( )(A )m ≠1 (B )m ≠0 (C )|m |≠1 (D )m =±12.方程(3x +1)(x -1)=(4x -1)(x -1)の解是………………………………………( )(A )x 1=1,x 2=0 (B )x 1=1,x 2=2 (C )x 1=2,x 2=-1 (D )無解3.方程x x -=+65の解是……………………………………………………………( )(A )x 1=6,x 2=-1 (B )x =-6 (C )x =-1 (D )x 1=2,x 2=34.若關於x の方程2x 2-ax +a -2=0有兩個相等の實根,則a の值是………………( )(A )-4 (B )4 (C )4或-4 (D )25.如果關於x の方程x 2-2x -2k =0沒有實數根,那麼k の最大整數值是…………( )(A )-3 (B )-2 (C )-1 (D )06.以213+ 和 213- 為根の一個一元二次方程是………………………………( ) (A )02132=+-x x (B )02132=++x x (C )0132=+-x x (D )02132=-+x x 7.4x 2-5在實數範圍內作因式分解,結果正確の是……………………………………( )(A )(2x +5)(2x -5) (B )(4x +5)(4x -5)(C ))5)(5(-+x x (D ))52)(52(-+x x8.已知關於x の方程x 2-(a 2-2a -15)x +a -1=0の兩個根互為相反數,則a の值是………………………………………………………………………………………( )(A )5 (B )-3 (C )5或-3 (D )1答案:1. C;2.B;3.C;4.B;5.B;6.A;7.D;8.B.二 填空題(每空2分,共12分):1.方程x 2-2=0の解是x = ;2.若分式2652-+-x x x の值是零,則x = ; 3.已知方程 3x 2- 5x -41=0の兩個根是x 1,x 2,則x 1+x 2= , x 1·x 2= ; 4.關於x 方程(k -1)x 2-4x +5=0有兩個不相等の實數根,則k ;5.一個正の兩位數,個位數字比十位數大2,個位數字與十位數の積是24,則這個兩位數是 . 答案:1.±2;2.3;3.35,121-;4.k <59且k ≠1;5.46.三 解下列方程或方程組(第1、2小題8分,第3小題9分,共25分):1.03232=+-x x ;解:用公式法.因為1=a ,23-=b ,3=c , 所以 6314)23(422=⨯⨯--=-ac b ,所以 2623126)23(1+=⨯+--=x ,2623126)23(2-=⨯---=x ; 2.7510101522=--+--x x x x ; 解:用換元法. 設152--=x x y ,原方程可化為 710=+yy , 也就是01072=+-y y ,解這個方程,有0)2)(5(=--y y ,51=y ,22=y . 由1521--=x x y =5得方程 052=-x x ,解得01=x ,52=x ; 由1522--=x x y =2得方程 0322=--x x ,解得13-=x ,34=x . 經檢驗,01=x ,52=x ,13-=x ,34=x 都是原方程の解.3..5201222⎩⎨⎧=+=--+y x xy y x 解:由52=+y x 得y x 25-=,代入方程 01222=--+xy y x ,得01)25(2)25(22=---+-y y y y ,081032=+-y y ,0)2)(43(=--y y ,341=y ,22=y . 把 341=y 代入y x 25-=,得371=x ; 把 22=y 代入y x 25-=,得12=x .所以方程組の解為 ⎪⎪⎩⎪⎪⎨⎧==343711y x ,⎩⎨⎧==2122y x .四 列方程解應題(本題每小題8分,共16分):1.某油庫の儲油罐有甲、乙兩個注油管,單獨開放甲管注滿油罐比單獨開放乙管注滿油罐少用4小時,兩管同時開放3小時後,甲管因發生故障停止注油,乙管繼續注油9小時後注滿油罐,求甲、乙兩管單獨開放注滿油罐時各需多少小時?略解:設甲、乙兩管單獨開放注滿油罐時各需x 小時和y 小時,依題意,有⎪⎩⎪⎨⎧=++=-19334y x x y , 解得 ⎩⎨⎧==1612y x 所以,甲管單獨開放注滿油罐需12小時,乙管單獨開放注滿油罐需16小時.2.甲、乙二人分別從相距20千米のA 、B 兩地以相同の速度同時相向而行,相遇後,二人繼續前進,乙の速度不變,甲每小時比原來多走1千米,結果甲到達B 地後乙還需30分鐘才能到達A 地,求乙每小時走多少千米.略解:用圖形分析:A 地 相遇地B 地依題意,相遇地為中點,設乙の速度為v 千米/時,根據“甲、乙走10千米所用時間の差為半小時”列式,有1102110+=-v v , 解得 v =4(千米∕時).五 (本題11分) 已知關於x の方程(m +2)x 2-035=-+m mx .(1)求證方程有實數根;(2)若方程有兩個實數根,且兩根平方和等於3,求m の值.略解:(1)當m =-2時,是一元一次方程,有一個實根;當m ≠ -2時,⊿=(m +2)2+20>0,方程有兩個不等實根;綜合上述,m 為任意實數時,方程均有實數根;(2)設兩根為p ,q .依題意,有p 2+q 2=3,也就是(p +q )2-2pq =3, 有因為p +q =m 5,pq =3-m ,所以 3232)25(2=+-⨯-+m m m m , 22)2(3)2)(3(25+=+--m m m m ,1212122+=+m m ,010=m ,0=m .六 (本題12分)已知關於x の方程式x 2=(2m +2)x -(m 2+4m -3)中のm 為不小於0の整數,並且它の兩實根の符號相反,求m の值,並解方程.提示:由m ≥0和⊿>0,解出m の整數值是0或1,當m =0時,求出方程の兩根,x 1=3,x 2=-1,符合題意;當m=1時,方程の兩根積x1x2=m2+4m-3=2>0,兩根同號,不符合題意,所以,舍去;所以m=0時,解為x1=3,x2=-1.。
专题01 一元二次方程(经典基础题7种题型+优选提升题)(原卷版)
专题01 一元二次方程(经典基础题7种题型+优选提升题)一元二次方程的定义1.(2022秋广东珠海九年级校考期中)下面关于x 的方程中:①ax 2+bx +c =0;②3(x ﹣9)2﹣(x+1)2=1;③x 2+1x +5=0;④x 2+5x 3﹣6=0;⑤3x 2=3(x ﹣2)2;⑥12x ﹣10=0,是一元二次方程个数是( )A .1B .2C .3D .4 2.(2022秋广西柳州九年级统考期中)方程254(1)20m m m x x +---=是关于x 的一元二次方程,则m的值为( )A .1B .6-C .6D .1或6-一元二次方程的解3.(2023春•玄武区期中)若m 是方程x 2+x ﹣1=0的一个根,则代数式2023﹣m 2﹣m 的值为 .4.(2023春•射阳县校级期中)已知a 是方程x 2﹣2020x +4=0的一个解,则的值为( )A.2023 B.2022 C.2021 D.2020一元二次方程的解法5.(2023春•滨海县期中)如果有理数a、b同时满足(a2+b2+3)(a2+b2﹣3)=16,那么a2+b2的值为()A.±5 B.5C.﹣5 D.以上答案都不对6.(2023春•东台市期中)方程x2+2x=0的根是.7.(2023春•江阴市期中)解方程:x2﹣4x+1=0;8.(2023春•无锡期中)解方程:x2﹣2x﹣4=0;9.(2023春•锡山区期中)解方程:x2﹣6x+5=0;10.(2023春•东台市期中)解方程:3x(x﹣4)=x﹣4.根的判别式11.(2023春•东台市校级期中)关于x的一元二次方程x2+2x+k=0有两个相等的实数根,则k的取值范围是()A.k=﹣1 B.k>﹣1 C.k=1 D.k>112.(2023春•射阳县校级期中)若关于x的方程kx2+4x﹣1=0有实数根,则k的取值范围是.13.(2023春•灌云县期中)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.14.(2023春•海州区校级期中)已知关于x的方程x2﹣4x﹣2k+8=0有两个实数根,则k的取值范围.15.(2023春•清江浦区校级期中)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为.16.(2023春•东台市期中)若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则实数k的取值范围是.根与系数的关系17.(2023春•鼓楼区期中)设x1,x2是一元二次方程x2﹣5x+4=0的两个实数根,则的值为.18.(2023春•东台市期中)若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.一元二次方程的实际应用19.(2023春•东台市期中)为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为.20.(2023春•东台市期中)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:.21.(2023春•东台市校级期中)某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,则年平均增长率为.配方法的应用22.(2023春•江都区期中)若M=2x2﹣12x+15,N=x2﹣8x+11,则M与N的大小关系为()A.M≥N B.M>N C.M≤N D.M<N23.(2023春•仪征市期中)若代数式x2﹣4x+a可化为(x﹣b)2﹣1,则a+b是()A.5 B.4 C.3 D.224.(2023春•梁溪区校级期中)在求解代数式2a2﹣12a+22的最值(最大值或最小值)时,老师给出以下解法:解:原式=2(a2﹣6a)+22=2(a2﹣6a+9)﹣18+22=2(a﹣3)2+4,∵无论a取何值,2(a﹣3)2≥0,∴代数式2(a﹣3)2+4≥4,即当a=3时,代数式2a2﹣12a+22有最小值为4.仿照上述思路,则代数式﹣3a2+6a﹣8的最值为()A.最大值﹣5 B.最小值﹣8 C.最大值﹣11 D.最小值﹣5 25.(2023春•高邮市期中)若M=2x2﹣12x+15,N=x2﹣8x+11,则M与N的大小关系为.26.(2023春•江都区期中)将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.例如,求代数式x2+2x+3的最小值.解:原式=x2+2x+1+2=(x+1)2+2.∵(x+1)2≥0,∴(x+1)2+2≥2.∴当x=﹣1时,x2+2x+3的最小值是2.(1)在横线上添加一个常数项,使代数式x2+10x+25成为完全平方式;(2)请仿照上面的方法求代数式x2+6x﹣1的最小值;(3)已知△ABC的三边a,b,c满足a2﹣6b=﹣14,b2﹣8c=﹣23,c2﹣4a=8.求△ABC的周长.27.(2023春•赣榆区期中)(1)已知3m=6,3n=2,求32m+n﹣1的值;(2)已知a2+b2+2a﹣6b+10=0,求(a﹣b)﹣3的值.28.(2023春•江阴市期中)【阅读材料】初一上学期我们已学过:由(x+3)2+(y﹣1)2=0知,x+3=0,y﹣1=0,∴x=﹣3,y=1.这不禁让人赞叹:精美的包装(数学模型),总可以给人满意的答案.初一下学期:利用完全平方式对上述式子进行变形:由(x+3)2+(y﹣1)2=0知,(x2+6x+9)+(y2﹣2y+1)=0,即x2+y2+6x﹣2y+10=0.反之,若x2+y2+6x﹣2y+10=0,则有(x2+6x+9)+(y2﹣2y+1)=0,即(x+3)2+(y﹣1)2=0,∴x+3=0,y﹣1=0,∴x=﹣3,y=1.精心挑选,合理搭配,让结果精彩纷呈.【知识应用】(1)若x2+y2﹣4x+6y+13=0,求x y的值;(2)若△ABC的三边为a、b、c,且满足4a2+4b2=4ab+18b﹣27,求最长边c的取值范围.29.(2023春•吴江区期中)我们可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,例如x2+4x﹣5=x2+4x+22﹣22﹣5=(x+2)2﹣9,我们把这样的变形叫做多项式ax2+bx+c (a≠0)的配方法.已知关于a,b的代数式满足a2+b2+2a﹣4b+5=0,请你利用配方法求a+b的值.30.(2023春•吴江区期中)阅读材料:若m2﹣2mn+2n2﹣2n+1=0,求m、n的值.解:∵m2﹣2mn+2n2﹣2n+1=0,∴(m2﹣2mn+n2)+(n2﹣2n+1)=0∴(m﹣n)2+(n﹣1)2=0,∴(m﹣n)2=0,(n﹣1)2=0,∴n=1,m=1.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x、y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52,且△ABC是等腰三角形,求c 的值.一.选择题(共2小题)1.(2022秋•建邺区期中)关于x的一元二次方程ax2+bx=c(ac≠0)一个实数根为2022,则方程cx2+bx =a一定有实数根()A.2022 B.C.﹣2022 D.﹣2.(2022秋•宿城区期中)要组织一次排球邀请赛,参赛的每两支球队之间都要进行一场比赛,共要比赛28场,参加比赛的球队有x支,则x的值为()A.8 B.9 C.18 D.10二.填空题(共4小题)3.(2023春•溧阳市期中)已知:x2﹣3x+5=(x﹣2)2+a(x﹣2)+b,则a+b=.4.(2022秋•泗洪县期中)如果x满足一元二次方程(x﹣4)(x+5)=0,则代数式x﹣4的值是.5.(2022秋•泗洪县期中)已知x=﹣1是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是.6.(2022秋•句容市期中)为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率.三.解答题(共14小题)7.(2022秋•太仓市期中)某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用40米长的篱笆围成一个矩形花园ABCD(篱笆只围AB,AD两边),设AB=x米.(1)若花园的面积为300米2,求x的值;(2)若在直角墙角内点P处有一棵桂花树,且与墙BC,CD的距离分别是10米,24米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为400米2?若能,求出x的值;若不能,请说明理由.8.(2022秋•梁溪区校级期中)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.9.(2022秋•高邮市期中)某剧院可容纳1200人,经调研在一场文艺演出中,票价定为每张50元时,可以售出800张门票如果票价每降低1元,那么售出的门票就增加40张.要使门票收入达到47560元,票价应降低多少元?10.(2022秋•邗江区期中)2019年12月以来,湖北省武汉市发现一种新型冠状病毒感染引起的急性呼吸道传染病.(1)在“新冠”初期,有1人感染了“新冠”,经过两轮传染后共有144人感染了“新冠”(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?11.(2021秋•邗江区校级期中)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A 开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2cm?(2)在(1)中,△PQB面积能否等于4cm2?请说明理由.12.(2021秋•洪泽区校级期中)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.(1)若现在按每千克60元销售,则月销售量千克,月销售利润元.(2)针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?13.(2021秋•邗江区校级期中)2021年8月,扬州疫情暴发,口罩供不应求,某药店在疫情前恰好新进了一批口罩,若按每个盈利1元销售,每天可售出200个;如果每个口罩的售价每上涨0.5元,则销售量就减少10个.(1)问应将每个口罩涨价多少元,才能让顾客得到实惠的同时每天利润为480元?(2)店主想要获得每天620元的利润,小红同学认为不可能,你同意小红的说法吗?请说明理由.14.(2022春•泗洪县期中)利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC周长的最大值.15.(2022秋•苏州期中)如图,一个边长为8m的正方形花坛由4块全等的小正方形组成.在小正方形ABCD中,点G,E,F分别在CD,AD,AB上,且DG=1m,AE=AF=x,在△AEF,△DEG,五边形EFBCG三个区域上种植不同的花卉,每平方米的种植成本分别是20元、20元、10元.(1)当x=2时,小正方形ABCD种植花卉所需的费用;(2)试用含有x的代数式表示五边形EFBCG的面积;(3)当x为何值时,大正方形花坛种植花卉所需的总费用是715元?16.(2020秋•鼓楼区期中)方程是含有未知数的等式,使等式成立的未知数的值称为方程的“解”.方程的解的个数会有哪些可能呢?(1)根据“任何数的偶数次幂都是非负数”可知:关于x的方程x2+1=0的解的个数为;(2)根据“几个数相乘,若有因数为0,则乘积为0”可知方程(x+1)(x﹣2)(x﹣3)=0的解不止一个,直接写出这个方程的所有解;(3)结合数轴,探索方程|x+1|+|x﹣3|=4的解的个数;(写出结论,并说明理由)(4)进一步可以发现,关于x的方程|x﹣m|+|x﹣3|=2m+1(m为常数)的解的个数随着m的变化而变化…请你继续探索,直接写出方程的解的个数与对应的m的取值情况.17.(2022秋•盱眙县期中)已知关于x的一元二次方程(m﹣1)x2+6x+m2﹣1=0的一个根是0,(1)求m的值.(2)求方程的另一根.18.(2023春•邗江区期中)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.19.(2020秋•锡山区期中)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?20.(2021春•工业园区校级期中)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知等腰△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC 的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.。
一元二次方程基础题
一元二次方程基础题一、一元二次方程的定义1. 定义- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
2. 例题1- 下列方程中,是一元二次方程的是()- A.x^2+3x + y = 0- B.x^2+(1)/(x)=1- C.2x^2+1 = 0- D.ax^2+bx + c = 0- 解析- 选项A中含有两个未知数x和y,不是一元二次方程。
- 选项B中(1)/(x)是分式,该方程是分式方程,不是整式方程,所以不是一元二次方程。
- 选项C符合一元二次方程的定义,是一元二次方程。
- 选项D中当a = 0时,方程变为bx + c=0,是一元一次方程,只有当a≠0时才是一元二次方程。
所以答案是C。
二、一元二次方程的解法1. 直接开平方法- 对于方程x^2=k(k≥0),解为x=±√(k)。
- 例题2- 解方程(x - 2)^2=9。
- 解析- 根据直接开平方法,x - 2=±√(9),即x - 2=±3。
- 当x - 2 = 3时,x=3 + 2=5;当x - 2=-3时,x=-3 + 2=-1。
所以方程的解为x_1=5,x_2=-1。
2. 配方法- 步骤:- (1)把方程化为一般形式ax^2+bx + c = 0(a≠0)。
- (2)移项,使方程左边只含有二次项和一次项,即ax^2+bx=-c。
- (3)在方程两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2。
- (4)将左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。
- 例题3- 用配方法解方程x^2+4x - 1 = 0。
一元二次方程测试题(含答案)
一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。
3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。
一元二次方程经典练习题(6套)附带详细答案
练习四◆基础知识作业1.利用求根公式解一元二次方程时,首先要把方程化为____________,确定__________的值,当__________时,把a ,b ,c 的值代入公式,x 1,2=_________________求得方程的解. 2、把方程4 —x 2 = 3x 化为ax 2 + bx + c = 0(a ≠0)形式为 ,则该方程的二次项系数、一次项系数和常数项分别为 。
3.方程3x 2-8=7x 化为一般形式是________,a =__________,b =__________,c =_________,方程的根x 1=_____,x 2=______.4、已知y=x 2-2x-3,当x= 时,y 的值是-3。
5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=06.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A.x 1、2=24312122⨯-±B.x 1、2=24312122⨯-±-C.x 1、2=24312122⨯+± D.x 1、2=32434)12()12(2⨯⨯⨯---±--7.方程21x x =+的根是( )A .x =B . 12x =C .x =D .12x -±= 8.方程x 2+(23+)x +6=0的解是( )A.x 1=1,x 2=6B.x 1=-1,x 2=-6C.x 1=2,x 2=3D.x 1=-2,x 2=-3 9.下列各数中,是方程x 2-(1+5)x +5=0的解的有( )①1+5 ②1-5 ③1 ④-5 A.0个 B.1个 C.2个D.3个10. 运用公式法解下列方程:(1)5x 2+2x -1=0 (2)x 2+6x +9=7◆能力方法作业11.方程2430x x ++=的根是 12.方程20(0)ax bx a +=≠的根是13.2x 2-2x -5=0的二根为x 1=_________,x 2=_________. 14.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________.15.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______. 16.下列说法正确的是( )A .一元二次方程的一般形式是20ax bx c ++=B .一元二次方程20ax bx c ++=的根是2b x a-±=C .方程2x x =的解是x =1D .方程(3)(2)0x x x +-=的根有三个 17.方程42560x x -+=的根是( )A .6,1B .2,3C .D .1± 18.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1B.4x 2+4x+54=0; C. 20x -= D.(x+2)(x-3)==-519、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于 ( ) A 、1B 、-1C 、0D 、220.若代数式x 2+5x +6与-x +1的值相等,则x 的值为( ) A.x 1=-1,x 2=-5 B.x 1=-6,x 2=1 C.x 1=-2,x 2=-3D.x =-121.解下列关于x 的方程:(1)x 2+2x -2=0 (2).3x 2+4x -7=0(3)(x +3)(x -1)=5 (4)(x -2)2+42x =022.解关于x 的方程2222x ax b a -=-23.若方程(m -2)x m2-5m+8+(m+3)x+5=0是一元二次方程,求m 的值24.已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. 求证:不论k 为何值,方程总有两不相等实数根.◆能力拓展与探究25.下列方程中有实数根的是( )(A)x 2+2x +3=0. (B)x 2+1=0. (C)x 2+3x +1=0. (D)111x x x =--. 26.已知m ,n 是关于x 的方程(k +1)x 2-x +1=0的两个实数根,且满足k +1=(m +1)(n +1),则实数k 的值是 .27. 已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>mB. 43≥mC. 43>m 且2≠mD. 43≥m 且2≠m答案1.一般形式 二次项系数、一次项系数、常数项 b 2-4ac ≥0 aacb b 242-±-2、x 2 + 3x —4=0, 1、3、—4; 3.3x 2-7x -8=0 3 -7 -84、0、2 5.A 6.D 7.B 8.D 9.B 10. (1)解:a =5,b =2,c =-1∴Δ=b 2-4ac =4+4×5×1=24>0 ∴x 1·2=56110242±-=±- ∴x 1=561,5612--=+-x (2).解:整理,得:x 2+6x +2=0 ∴a =1,b =6,c =2∴Δ=b 2-4ac =36-4×1×2=28>0 ∴x 1·2=2286±-=-3±7 ∴x 1=-3+7,x 2=-3-7 11.x 1=-1,x 2=-3 12.x 1=0,x 2=-b 13.4422+ 4422- 14. 240b c -≥ 15.1816.D 17.C . 18.B 19、A 20.A21. (1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 22.X=a+1b1 23.m=324.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根. 25. C 26. -2 27. C练习五第1题. (2005 南京课改)写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1: .答案:答案不惟一,例如:20x =,20x x -=等第2题. (2005 江西课改)方程220x x -=的解是 . 答案:1220x x ==,第3题. (2005 成都课改)方程290x -=的解是 .答案:3x =±第4题. (2005 广东课改)方程2x =的解是 .答案:120x x ==,第5题. (2005 深圳课改)方程22x x =的解是( )A.2x =B.1x =,20x =C.12x =,20x =D.0x =答案:C第6题. (2005 安徽课改)方程(3)3x x x +=+的解是( )A.1x = B.1203x x ==-, C.1213x x ==, D.1213x x ==-, 答案:D第7题. (2005 漳州大纲)方程22x x =的解是1x = 、2x = . 答案:1202x x ==,第8题. (2005江西大纲)若方程20x m -=有整数根,则m 的值可以是 (只填一个).答案:如0149m =,,,,第9题. (2005济南大纲)若关于x 的方程210x kx ++=的一根为2,则另一根为 ,k 的值为 .答案:1522-,第10题. (2005 上海大纲)已知一元二次方程有一个根为1,那么这个方程可以是______________(只需写出一个方程).答案:20x x -=第11题. (2005 海南课改)方程042=-x 的根是( )A. 1222x x ==-,B. 4=xC. 2=xD. 2-=x 答案:A第12题. (2005 江西淮安大纲)方程24x x =的解是 .答案:0或4第13题. (2005 兰州大纲)已知m 是方程210x x --=的一个根,则代数2m m -的值等于( )A.-1 B.0 C.1 D.2答案:C练习六第1题. (2007甘肃兰州课改,4分)下列方程中是一元二次方程的是( ) A.210x +=B.21y x +=C.210x +=D.211x x+= 答案:C第2题. (2007甘肃白银3市非课改,4分)已知x =-1是方程012=++mx x 的一个根,则m = .答案:2第3题. (2007海南课改,3分)已知关于x 的方程0322=++m mx x 的一个根是1=x ,那么=m .答案:253±-第4题. (2007黑龙江哈尔滨课改,3分)下列说法中,正确的说法有( ) ①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③依次连接任意一个四边形各边中点所得的四边形是平行四边形; ④一元一次不等式2511x +<的正整数解有3个; ⑤在数据1,3,3,0,2中,众数是3,中位数是3. A .1个 B .2个 C .3个 D .4个答案:B第5题. (2007湖北武汉课改,3分)如果2是一元二次方程2x c =的一个根,那么常数c 是( )A.2 B.2-C.4D.4-答案:C第6题. (2007湖北襄樊非课改,3分)已知关于x 的方程322x a +=的解是1a -,则a 的值为( ) A .1 B .35C .15D .1-答案:A第7题. (2007湖南株洲课改,6分)已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.答案:由1x =是一元二次方程2400ax bx +-=的一个解,得:40a b +=3分又a b ≠,得:22()()20222()2a b a b a b a ba b a b -+-+===-- 6分第8题. (2007山西课改,2分)若关于x 的方程220x x k ++=的一个根是0,则另一个根是.答案:2-。
(完整版)一元二次方程全章测试题(基础卷)
一元二次方程(一)一、选择题1.一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.若关于z 的一元二次方程 2.20x x m -+=没有实数根,则实数m 的取值范围是 ( )A .m<lB .m>-1C .m>lD .m<-1 3.一元二次方程x 2+x +2=0的根的情况是 ( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根D .有两个相等的实数根4.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <07.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )A.-1或34B.-1C.34D.不存在 8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.x 2+4=0B.4x 2-4x +1=0C.x 2+x +3=0D.x 2+2x -1=09.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A.200(1+a%)2=148B.200(1-a%)2=148图(7)C.200(1-2a%)=148D.200(1-a 2%)=148 10.下列方程中有实数根的是( ) A.x 2+2x +3=0B.x 2+1=0C.x 2+3x +1=0D.111x x x =-- 11.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围 是 ( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( ) A.2 B.-2 C.4 D.-4二、填空题13.已知一元二次方程22310x x --=的两根为1x 、2x ,则12x x += 14.方程()214x -=的解为 。
一元二次方程基础练习50题含详细答案
一元二次方程基础练习50题含详细答案一、单选题1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .42.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .±1C .1D .1-3.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为( ) A .0B .2C .0或2D .-24.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A .10B .14C .10或14D .8或105.1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( ) A .2-B .3-C .4D .6-6.若关于x 的一元二次方程(k+2)x 2﹣3x+1=0有实数根,则k 的取值范围是( ) A .k <14且k≠﹣2 B .k≤14C .k≤14且k≠﹣2 D .k≥147.下列方程有实数根的是 A .4x 20+=B 1=-C .2x +2x −1=0D .x 1x 1x 1=-- 8.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.59.已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3B .﹣2C .3D .610.已知x =2是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A .﹣3B .3C .0D .0或311.若2x =是关于x 的一元二次方程220180ax bx --=的一个解,则2035-2a +b 的值( ) A .17B .1026C .2018D .405322值( ) A .0B .1或2C .1D .213.把方程x(x+2)=5(x-2)化成一般式,则a 、b 、c 的值分别是( ) A .1,-3,10B .1,7,-10C .1,-5,12D .1, 3,214.关于x 的方程(m+1)21m x ++4x+2=0是一元二次方程,则m 的值为( )A .m 1=﹣1,m 2=1B .m=1C .m=﹣1D .无解15.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( ) A .-1或2B .-1C .2D .016.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m+n 的值为( ) A .1B .2C .-1D .-217.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A .1B .﹣1C .0D .﹣218.如果﹣1是方程x 2﹣3x+k=0的一个根,则常数k 的值为( ) A .4B .2C .﹣4D .﹣219.下列方程中,关于x 的一元二次方程是( ) A .x 2+2y=1B .211x x+﹣2=0 C .ax 2+bx+c=0 D .x 2+2x=120.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A .1B .﹣1C .0D .无法确定21.如果2是方程x 2-3x +k =0的一个根,则常数k 的值为( ) A .2B .1C .-1D .-222.若关于x 的方程2230mx x -+=有实数根,则m 的取值范围是( ) A .m≤13B .m≤13-C .m≥13D .m≤13,且m≠0 23.方程()24310mm x x m ++++=是关于x 的一元二次方程,则( )A .2m =±B .2m =C .2m =-D .2m ≠±24.若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为( ) A .-2B .2C .4D .-325.下列方程是一元二次方程的是( ) A .21x+x 2=0 B .3x 2﹣2xy=0 C .x 2+x ﹣1=0D .ax 2﹣bx=0A .2B .0C .0或2D .0或﹣227.方程3x 2﹣8x ﹣10=0的二次项系数和一次项系数分别为( ) A .3和8B .3和﹣8C .3和﹣10D .3和1028.已知一元二次方程2x 6x c 0-+=有一个根为2,则另一根为 A .2B .3C .4D .829.若关于x 的方程(a +1)x 2+2x ﹣1=0是一元二次方程,则a 的取值范围是( ) A .a ≠﹣1B .a >﹣1C .a <﹣1D .a ≠030.若关于x 的一元二次方程()2210k x x k -+-=的一个根为1,则k 的值为( ) A .1-B .0或1C .1D .031.下列方程中一定是一元二次方程的是( ) A .5x 2-2x+2=0 B .ax 2+bx+c=0 C .2x+3=6D .(a 2+2)x 2-2x+3=032.若2x =-是关于x 的一元二次方程22502x mx m -+=的一个根,则m 的值为( ) A .1或4 B .-1或-4C .-1或4D .1或-4二、填空题33.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 34.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =_____. 35.已知m 是关于x 的方程2230x x --=的一个根,则224m m -=______. 36.a 是方程224x x =+的一个根,则代数式242a a -的值是_______.37.已知x=2是关于x 的方程240x x m -+=的一个根,则m =____________. 38.若a 是方程x 2-2x-2015=0的根,则a 3-3a 2-2013a+1=____________. 39.一元二次方程290x 的解是__.40.已知关于x 的方程x 2+3x ﹣m=0的一个解为﹣3,则它的另一个解是_____. 41.若关于x 的一元二次方程(m ﹣1)x 2+x +m 2﹣1=0有一个根为0,则m 的值为_____. 42.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .43.关于x 的方程a(x+m)2+b=0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x+m+2)2+b=0 的解是__________.45.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于_____.46.设m 是一元二次方程x 2﹣x ﹣2019=0的一个根,则m 2﹣m +1的值为___. 47.若a 是方程2320x x --=的根,则2526a a +-=_____.48.若正数a 是一元二次方程x 2﹣5x +m =0的一个根,﹣a 是一元二次方程x 2+5x ﹣m =0的一个根,则a 的值是______.49.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab 的值是____________.50.关于x 的一元二次方程22(2)620k x x k k ++++-=有一个根是0,则k 的值是_______.参考答案1.B 【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0, 解得k=2. 故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 2.D 【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案. 【详解】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =, ∴210a -=,10a -≠, 则a 的值为:1a =-. 故选D . 【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义. 3.A 【解析】试题分析:根据一元一次方程的定义知m 2﹣1=0,且﹣m ﹣1≠0,据此可以求得代数式|m ﹣1|的值.解:由已知方程,得(m 2﹣1)x 2﹣(m+1)x+2=0.∵方程(m 2﹣1)x 2﹣mx ﹣x+2=0是关于x 的一元一次方程, ∴m 2﹣1=0,且﹣m ﹣1≠0, 解得,m=1,则|m ﹣1|=0. 故选A .点评:本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1. 4.B 【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根, ∴22﹣4m+3m=0,m=4, ∴x 2﹣8x+12=0, 解得x 1=2,x 2=6.①当6是腰时,2是底边,此时周长=6+6+2=14; ②当6是底边时,2是腰,2+2<6,不能构成三角形. 所以它的周长是14.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 5.A 【分析】先把x=1代入方程220x ax b ++=得a+2b=-1,然后利用整体代入的方法计算2a+4b 的值 【详解】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2. 故选A. 【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键 6.C 【分析】根据一元二次方程的定义和根的判别式得出k+2≠0且△=(-3)2-4(k+2)•1≥0,求出即可. 【详解】∵关于x 的一元二次方程(k+2)x 2-3x+1=0有实数根,∴k+2≠0且△=(-3)2-4(k+2)•1≥0, 解得:k≤14且k≠-2, 故选C . 【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键. 7.C 【解析】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B =−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆ =8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意. 故选C . 8.B 【分析】把0x =代入可得210a -=,根据一元二次方程的定义可得10a -≠,从而可求出a 的值. 【详解】把0x =代入()22110a x x a -++-=,得:210a -=,解得:1a =±,∵()22110a x x a -++-=是关于x 的一元二次方程,∴10a -≠, 即1a ≠, ∴a 的值是1-, 故选:B .本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件10a -≠. 9.A 【解析】试题解析:设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3. 故选A .考点:根与系数的关系. 10.A 【分析】直接把x =2代入已知方程就得到关于m 的方程,再解此方程即可. 【详解】解:∵x =2是一元二次方程x 2+mx +2=0的一个解, ∴4+2m +2=0, ∴m =﹣3. 故选:A . 【点睛】本题考查的是一元二次方程的解,难度系数较低,直接把解代入方程即可. 11.B 【分析】把x=2代入方程得2a-b=1009,再代入 20352a b -+,可求得结果. 【详解】因为x 2=,是关于x 的一元二次方程2ax bx 20180--=的一个解, 所以,4a-2b-2018=0, 所以,2a-b=1009,所以,20352a b -+=2035-(2a-b )=2035-1009=1026. 故选B.本题主要考查一元二次方程的根的意义.12.D【分析】把x=0代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠0.【详解】解:根据题意,将x=0代入方程,得:m2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D.【点睛】本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m的值必须满足:m-1≠0这一条件.13.A【分析】方程整理为一般形式,找出常数项即可.【详解】方程整理得:x2−3x+10=0,则a=1,b=−3,c=10.故答案选A.【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的每种形式. 14.B【解析】【分析】根据一元二次方程未知数项的最高次数是2,可得m2+1=2且m+1≠0,计算即可求解. 【详解】因为一元二次方程的最高次数是2,所以m2+1=2,解得m=﹣1或1,又因为m+1≠0,即m≠﹣1,所以m =1,故选B. 【点睛】本题主要考查一元二次方程的概念:只含有一个未知数(一元),且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程,掌握这个概念是解决此题的关键. 15.B 【分析】首先把x=1代入22(2)40m x x m -+-=,解方程可得m 1=2,m 2=-1,再结合一元二次方程定义可得m 的值 【详解】解:把x=1代入22(2)40m x x m -+-=得:2m 2+4m --=0,2m m 20++=-,解得:m 1=2,m 2=﹣1∵22(2)40m x x m -+-=是一元二次方程, ∴m 20-≠ , ∴m 2≠, ∴1m =-, 故选:B . 【点睛】此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于0. 16.D 【分析】将n 代入方程,提公因式化简即可. 【详解】解:∵()n n 0≠是关于x 的方程2x mx 2n 0++=的根, ∴2n mn 2n 0++=,即n(n+m+2)=0, ∵n 0,≠∴n+m+2=0,即m+n=-2,故选D.【点睛】本题考查了一元二次方程的求解,属于简单题,提公因式求出m+n是解题关键.17.A【详解】试题分析:∵关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,∴b2﹣ab+b=0,∵﹣b≠0,∴b≠0,方程两边同时除以b,得b﹣a+1=0,∴a﹣b=1.故选A.考点:一元二次方程的解.18.C【分析】把x=-1代入方程可得到关于k的方程,可求得k的值.【详解】∵-1是方程x2-3x+k=0的一个根,∴(-1)2-3×(-1)+k=0,解得k=-4,故选C.【点睛】考查一元二次方程的解,把方程的解代入得到到关于k的方程是解题的关键.19.D【分析】一元二次方程是指含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,根据定义判断即可.【详解】解:A、含有两个未知数,不是一元二次方程,故本选项不符合题意;B、分母中含有未知数,是分式方程,故本选项不符合题意;C、当a=0时不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.20.B【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B21.A【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【详解】解:∵2是一元二次方程x2-3x+k=0的一个根,∴22-3×2+k=0,解得,k=2.故选:A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.22.A【分析】分m=0和m≠0两种情况求解即可. 当m=0时,方程是一元一次方程,一定有实根;当m≠0时,方程有两个实数根,则根的判别式△≥0,建立关于m的不等式,求得m的取值范围.【详解】当m≠0时,∵a=m,b=−2,c=3 且方程有实数根,∴△=b2−4ac=4−12m≥0∴m≤1 3 .当m=0 时,方程为一元一次方程,仍有解,故m的取值范围是m≤1 3 .故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 23.B【分析】根据次数最高项的次数是2,且次数最高项的系数不为0列式求解即可.【详解】由题意得,2m=,且20m+≠,解之得,2m=.故选B.【点睛】本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义解答即可.24.A【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【详解】设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.考点:根与系数的关系.【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证.【详解】A.不是整式方程,不是一元二次方程;B.含有两个未知数,不是一元二次方程;C.符合一元二次方程的定义,是一元二次方程;D.二次项系数a不知是否为0,不能确定是否是一元二次方程.故选C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.26.A【解析】试题分析:∵x=2是一元二次方程x2﹣2mx+4=0的一个解,∴4﹣4m+4=0,∴m=2.故选A.考点:一元二次方程的解.27.B【解析】【分析】分别确定2x和x的系数,注意符号不要遗漏.【详解】解:由题意得,二次项系数是3,一次项系数为-8,故选择B.【点睛】遗漏系数的符号是本题的易错点.28.C试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=4.考点:根与系数的关系.29.A【分析】根据一元二次方程的定义可得a +1≠0,即可得出答案.【详解】解:由题意得:a +1≠0,解得:a ≠﹣1.故选A .【点睛】本题考查的是一元二次方程的定义:只有一个未知数,并且未知数的最高次数是2次的整式方程.30.D【分析】把x=1代入()2210k x x k -+-=得以k 为未知数的一元二次方程,解方程求得k 值,再由二次项系数不为0 即可解答.【详解】把x=1代入()2210k x x k -+-=得k-1+1-k 2=0,解得k 1=0,k 2=1, 而k-1≠0,所以k=0.故选D .【点睛】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k 的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.31.D【解析】【分析】根据一元二次方程的定义进行判断即可得.【详解】A. 5x 2-2x+2=0,不是整式方程,故不符合题意; B. 当a=0时,方程ax 2+bx+c=0不是一元二次方程,故不符合题意;C. 2x+3=6是一元一次方程,故不符合题意;D. (a 2+2)x 2-2x+3=0是一元二次方程,故符合题意,故选D.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程是整式方程,含有一个未知数,含有未知数的项的次数最高为2次是解题的关键.32.B【分析】把2x =-代入关于x 的方程22502x mx m -+=,得到2450m m ++=,解关于m 的方程即可.【详解】解:∵2x =-是关于x 的一元二次方程22502x mx m -+=的一个根, ∴2450m m ++=解得121,4m m =-=-故选B .【点睛】本题考查一元二次方程根的定义和一元二次方程的解法,理解方程根的定义得到关于m 的方程是解题关键.33.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.34.﹣2【分析】根据一元二次方程的解的定义把x =2代入x 2+mx +2n =0得到4+2m +2n =0得n +m =−2,然后利用整体代入的方法进行计算.【详解】∵2(n≠0)是关于x 的一元二次方程x 2+mx +2n =0的一个根,∴4+2m +2n =0,∴n +m =−2,故答案为−2.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.35.6.【解析】试题分析:∵m 是关于x 的方程2230x x --=的一个根,∴2230m m --=,∴223m m -=,∴224m m -=6,故答案为6.考点:一元二次方程的解;条件求值.36.8【分析】直接把a 的值代入得出224a a -=,进而将原式变形得出答案.【详解】解:∵a 是方程224x x =+的一个根,∴224a a -=,∴22422(2)248a a a a -=-=⨯=.故答案为8.【点睛】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.37.1【分析】把x =2代入方程得到关于m 的方程,然后解关于m 的方程即可.【详解】解:把x =2+代入方程得2(24(20m -++=,解得m =1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.38.-2014【分析】由题意得:222015,a a -=拆项,运用因式分解方法变形求解.【详解】由题意得:222015,a a -=则:a 3-3a 2-2013a+1=22a(2)20131a a a a ---+()22=20152013121201512014a a a a a --+=--+=-+=-.故答案为-2014.【点睛】考核知识点:因式分解的运用.拆项分组是关键.39.x 1=3,x 2=﹣3.【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.40.0【解析】【分析】设方程的另一个解是n ,根据根与系数的关系可得出关于n 的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n ,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax 2+bx+c=0(a≠0)的两根之和等于﹣b a 、两根之积等于c a是解题的关键. 41.﹣1.【分析】根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m 2-1=0,由此可以求得m 的值.【详解】解:把x =0代入(m ﹣1)x 2+x +m 2﹣1=0得m 2﹣1=0,解得m=±1, 而m ﹣1≠0,所以m =﹣1.故答案为﹣1.【点睛】本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.42.15.【详解】解:29180x x -+=,得x 1=3,x 2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15.故答案是:1543.x=-4,x=-1【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故方程a(x+m+2)2+b=0的解为x1=-4,x2=-1.故答案为:x1=-4,x2=-1.【点睛】本题考查方程解的定义.注意由两个方程的特点进行简便计算.44.2【解析】试题分析:∵关于x的方程230-+=的一个根是1,∴1﹣3×1+m=0,解得,m=2,x x m故答案为2.考点:一元二次方程的解.45.2028【分析】根据一元二次方程的解的概念和根与系数的关系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)计算可得.【详解】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2028,故答案为:2028.【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a . 46.2020.【分析】把x=m 代入方程计算即可求解.【详解】解:把x =m 代入方程得:m 2﹣m ﹣2019=0,即m 2﹣m =2019,则原式=2019+1=2020,故答案为2020.【点睛】本题考查一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 47.1【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1. 故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.48.5试题解析:∵a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,∴a 2-5a+m=0①,a 2-5a-m=0②,①+②,得2(a 2-5a )=0,∵a >0,∴a=5.考点:一元二次方程的解.49.1【分析】把x=1代入x 2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【详解】∵x=1是一元二次方程x 2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a 2+b 2+2ab=(a+b )2=(﹣1)2=1.50.1【分析】把方程的根代入原方程得到220k k +-=,解得k 的值,再根据一元二次方程成立满足的条件进行取舍即可.【详解】∵方程22(2)620k x x k k ++++-=是一元二次方程,∴k+2≠0,即k ≠-2;又0是该方程的一个根,∴220k k +-=,解得,11k =,22k =-,由于k ≠-2,所以,k=1.故答案为:1.【点睛】本题考查了一元二次方程的解.解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法.同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方.。
解一元二次方程(因式分解法)习题精选附答案
解一元二次方程(因式分解法) 习题精选(一)(时间60分钟,满分100分)(一)基础测试:(每题3分,共18分)1.x x 52-因式分解结果为 ,)3(5)3(2---x x x 因式分解结果为 . 2.96202-+x x 因式分解结果为 ,096202=-+x x 的根为 .3.一元二次方程(1)x x x -=的解是 .4.小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=____.5.若关于x 的方程250x x k -+=的一个根是0,则另一个根是 .6.经计算整式1+x 与4-x 的积为432--x x ,则0432=--x x 的所有根为( )A .4,121-=-=x xB .4,121=-=x xC .4,121==x xD .4,121-==x x(二)能力测试:(7,8,9,10题每题3分,11题每个方程7分,共47分)7.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个三角形.8.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 9.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A . 1B . -1C . 1或-1D . 1210.将4个数a b c d ,,,排成2行、2列,两边各 加一条竖直线记成a b c d,定义a b c d ad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = .11.用因式分解法解下列方程:(1)035122=+-x x (2)04)13(2=--x (3)0)32(2)32(32=---x x (4)22)52(16)2(9-=+x x (5)06)3(5)3(2=++-+x x (三)拓展测试:(12,13,14每题5分,15,16每题10分,共35分)12.若04)3)((2222=--++b a b a ,则=+22b a .13.关于x 的一元二次方程052=+-p x x 的两实根都是整数,则整数p 的取值可以有( )A .2个B .4个C .6个D .无数个14.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( )A .-5B .5C .-1D .115.如果方程062=--bx ax 与方程01522=-+bx ax 有一个公共根是3,求b a ,的值,并分别求出两个方程的另一个根. 16.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.参考答案 1.(50),(3)(250)x x x x --- 2.4,24),4)(24(21=-=-+x x x x3.1,021==x x 4.0 5.5 6.S 7.直角1 8.6或10或129.B 10.2±11.(1)7,521==x x (2)31,1-==x x1114,526)4(611,23)3(21====x x x x1,0)5(21-==x x12.4 13.D 14.C15.,1==b a 另一根为-5.16.(1)a b -4x 2;(2)正方形的边长为。
一元二次方程20道题
一元二次方程20道题一、基础型题目1. 有一个一元二次方程,你能找出这个方程的两个根吗?就像找藏在树洞里的小松鼠一样哦。
2. 方程,这就像一个神秘的小盒子,你得打开它找到里面的答案(也就是方程的根)呢。
3. 对于一元二次方程,先把它化简一下,再求根呀,就像给小宠物梳理毛发一样,先整理好再找问题的关键。
4. 一元二次方程,这个方程看起来很简洁呢,快把它的根找出来,就像从简单的迷宫里找到出口一样容易。
5. 看这个方程,你可以先提取公因式,然后再求解,就像拆礼物一样,一层一层来。
6. 方程,想象你是一个小侦探,要找到让这个方程成立的那些数字(根)哦。
7. 一元二次方程,这个方程就像一个等待被解开的小谜题,你能解开它求出根吗?8. 对于,你得想办法把这个方程破解了,找到那两个能让等式成立的神秘数字(根)呀。
9. 方程,它在向你求救呢,快用你的数学魔法把它的根找出来吧。
10. 一元二次方程,就像走在一条有宝藏(根)的小路上,你要找到那些宝藏哦。
二、稍复杂型题目(含系数不是1的二次项或者配方相关)11. 看这个有点难的一元二次方程,你要像超级英雄一样克服困难求出它的根哦。
12. 方程,这就像一个复杂的拼图,你得把每一块(通过求根的步骤)都放对位置呢。
13. 对于一元二次方程,这个方程可是可以用配方的方法轻松求解的哦,就像给蛋糕做漂亮的装饰(配方)然后再享用(求出根)。
14. 一元二次方程,这个方程看起来有点棘手,不过你要是掌握了配方或者求根公式就没问题啦,就像掌握了魔法咒语一样。
15. 方程,你要想办法把这个方程的根找出来,就像在茂密的森林里找到特定的花朵一样。
16. 对于,先把方程化简一下再求根,就像给杂乱的房间先收拾一下再找东西一样。
17. 一元二次方程,这个方程很适合用配方来求解呢,就像给小机器人调整零件(配方)让它正常运转(求出根)。
18. 方程,你得动动脑筋,是用求根公式还是先化简再求根呢?就像选择走哪条路去远方(求出根)。
《一元二次方程》基础练习含答案(5套)
《一元二次方程》基础知识反馈卡·第一份时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则( )A.a≠0 B.a≠1C.a=1 D.a≠-12.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为( )A.-1 B.1 C.-2 D.2二、填空题(每小题4分,共12分)3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_______________.4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______.5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.三、解答题(共7分)6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.用配方法解方程x 2-23x -1=0,正确的配方为( )A.⎝ ⎛⎭⎪⎫x -132=89B.⎝ ⎛⎭⎪⎫x -232=59C.⎝ ⎛⎭⎪⎫x -132+109=0D.⎝⎛⎭⎪⎫x -132=1092.一元二次方程x 2+x +14=0的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定二、填空题(每小题4分,共12分)3.方程x 2-4x -12=0的解x 1=________,x 2=________. 4.x 2+2x -5=0配方后的方程为____________. 5.用公式法解方程4x 2-12x =3,得到x =________. 三、解答题(共7分)6.已知关于x 的一元二次方程x 2-mx -2=0.(1)对于任意实数m ,判断此方程根的情况,并说明理由; (2)当m =2时,求方程的根.时间:10分钟 满分:25分一、选择题(每小题3分,共6分) 1.一元二次方程x 2=3x 的根是( ) A .x =3 B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=-32.方程4(x -3)2+x (x -3)=0的根为( )A .x =3B .x =125C .x 1=-3,x 2=125D .x 1=3,x 2=125二、填空题(每小题4分,共12分)3.方程x 2-16=0的解是____________.4.如果(m +n )(m +n +5)=0,则m +n =______. 5.方程x (x -1)=x 的解是________. 三、解答题(共7分)6.解下列一元二次方程:(1)2x 2-8x =0; (2)x 2-3x -4=0.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是( ) A.4 B.3 C.-4 D.-32.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,3二、填空题(每小题4分,共12分)3.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为____________________.4.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.5.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.三、解答题(共7分)6.已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)2=1732.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19% B.20% C.21% D.22%3.一个面积为120 cm2的矩形花圃,它的长比宽多2 m,则花圃的长是( ) A.10 m B.12 m C.13 m D.14 m二、填空题(每小题4分,共8分)4.已知一种商品的进价为50元,售价为62元,则卖出8件所获得的利润为__________元.5.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共8分)6.某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?参考答案基础知识反馈卡·21.11.B 2.B 3.2 4.-125.x 2-6x +4=0 x 2 -6 4 6.解:把x =-1代入原方程,得2m -1-3m +5=0,解得m =4. 基础知识反馈卡·21.2.1 1.D 2.B 3.6 -24.(x +1)2=6 5.3±2 326.解:(1)Δ=b 2-4ac =m 2+8, ∵对于任意实数m ,m 2≥0, ∴m 2+8>0.∴对于任意的实数m ,方程总有两个不相等的实数根.(2)当m =2时,原方程变为x 2-2x -2=0, ∵Δ=b 2-4ac =(-2)2-4×1×(-2)=12,∴x =2±122.解得x 1=1+3,x 2=1- 3. 基础知识反馈卡·21.2.2 1.C 2.D3. x =±44.0或-55.0或2 6.(1)x 1=0,x 2=4 (2)x 1=4,x 2=-1基础知识反馈卡·*21.2.3 1.B 2.A3.x 2-7x +12=0(答案不唯一) 4.2 2 5.156.解:∵方程有两个不相等的实数根,∴Δ>0.∴(2m -3)2-4m 2>0.解得m <34.∵1α+1β=1,即α+βαβ=1. ∴α+β=αβ.又α+β=-(2m -3),αβ=m 2. 代入上式,得3-2m =m 2. 解得m 1=-3,m 2=1.∵m 2=1>34,故舍去.∴m =-3.基础知识反馈卡·21.31.C 2.B 3.B 4.96 5.24 6.解:设每千克小型西瓜的售价降低x 元,根据题意,得(3-2-x )·⎝ ⎛⎭⎪⎫200+x0.1×40-24=200,整理,得50x -25x +3=0, 解得x 1=0.2,x 2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.。
九年级数学一元二次方程(基础)(含答案)
一元二次方程(基础)一、单选题(共10道,每道10分)1.下列方程中是关于x的一元二次方程的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一元二次方程的定义2.方程是关于x的一元二次方程,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一元二次方程的定义3.方程(x+1)(x-2)=6的二次项系数、一次项系数、常数项分别为( )A.1,1,8B.1,-1,8C.1,-1,-8D.-1,1,-8答案:C解题思路:试题难度:三颗星知识点:一元二次方程的定义4.把方程(2x+1)(x-2)=5-3x整理成一般式后,得到( )A.2x2-3x-2=0B.2x2-6x+3=0C.2x2-7=0D.2x2+3=0答案:C解题思路:试题难度:三颗星知识点:一元二次方程的定义5.若一元二次方程没有一次项,则a的值为( )A.2B.-2C.8D.±2答案:B解题思路:试题难度:三颗星知识点:一元二次方程的定义6.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=( )A.2B.-4C.4D.-2答案:D解题思路:试题难度:三颗星知识点:一元二次方程的解7.某企业2018年初获利润300万元,到2020年初计划利润达到507万元,设这两年的年利润平均增长率为x,应列方程是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——增长率型8.《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?若设长方形门的宽为x,则应列方程为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实际问题与一元二次方程9.2017-2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x支,则可列方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——循环制10.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形边长.设剪去的小正方形边长为xcm,根据题意可列方程为( )A.10×6-4×6x=32B.(10-2x)(6-2x)=32C.(10-x)(6-x)=32D.10×6-4x2=32答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——面积型。
(完整版)《一元二次方程》基础测试题及答案详解
《一元二次方程》基础测试一选择题(每小题3分,共24分):221.方程(m -1)x +mx -5=0是关于x 的一元二次方程,则m 满足的条件是…()(A)m ≠1(B)m ≠0(C)|m |≠1(D)m =±1 2.方程(3x +1)(x -1)=(4x -1)(x -1)的解是………………………………………()(A)x 1=1,x 2=0(B)x 1=1,x 2=2(C)x 1=2,x 2=-1(D)无解 3.方程5x +6=-x 的解是……………………………………………………………()(A)x 1=6,x 2=-1(B)x =-6(C)x =-1(D)x 1=2,x 2=32 4.若关于x 的方程2x -ax +a -2=0有两个相等的实根,则a 的值是………………()(A)-4(B)4(C)4或-4(D)25.如果关于x 的方程x -2x -2k=0没有实数根,那么k 的最大整数值是…………(2)(A)-3(B)-2(C)-1(D)03+13-1和为根的一个一元二次方程是………………………………(221122(A)x -3x +=0(B)x +3x +=022122(C)x -3x +1=0(D)x +3x -=026.以2)7.4x -5在实数范围内作因式分解,结果正确的是……………………………………()(A)(2x +5)(2x -5)(B)(4x +5)(4x -5)(C)(x +5)(x -5)(D)(2x +5)(2x -5)22 8.已知关于x 的方程x -(a -2a -15)x +a -1=0的两个根互为相反数,则a 的值是………………………………………………………………………………………()(A)5(B)-3(C)5或-3(D)1答案:1.C;2.B;3.C;4.B;5.B;6.A;7.D;8.B.二填空题(每空2分,共12分):21.方程x -2=0的解是x =;x 2-5x +62.若分式的值是零,则x =;x -213.已知方程 3x - 5x -=0的两个根是x ,x ,则x +x =4212122,x 1·x 2=;4.关于x 方程(k -1)x -4x +5=0有两个不相等的实数根,则k ;5.一个正的两位数,个位数字比十位数大2,个位数字与十位数的积是24,则这个两位数是.答案:1.±2;2.3;3.951,-;4.k<且k ≠1;5.46.5312三解下列方程或方程组(第1、2小题8分,第3小题9分,共25分):1.x -32x +3=解:用公式法.因为所以20;a =1,b =-32,c =3,b 2-4ac =(-32)2-4⨯1⨯3=6,所以x 1=-(-32)+632+6=2⨯12,x 2=-(-32)-632-6=;2⨯12x 2-510x -10+2=7; 2.x -1x -5解:用换元法.x 2-5设y =,原方程可化为x -110=7,y +y也就是y 2-7y +10=0,解这个方程,有(y -5)(y -2)=0,y 1=5,y 2=2.x 2-5由y 1==5得方程x -1x 2-5x =0,解得x 1=0,x 2=5;x 2-5由y 2==2得方程x -12x -2x -3=0,解得x 3=-1,x 4=3.经检验,x1=0,x 2=5,x 3=-1,x 4=3都是原方程的解.⎧x 2+y 2-2xy -1=0⎨3.⎩x +2y =5.解:由x +2y =5得x =5-2y ,22代入方程x +y -2xy -1=0,得22(5-2y )+y -2(5-2y )y -1=0,3y 2-10y +8=0,(3y -4)(y -2)=0,4y 1=,y 2=2.347代入x =5-2y ,得x 1=;33把y 2=2代入x =5-2y ,得x 2=1.7⎧x =⎪⎪13⎧x 2=1所以方程组的解为⎨,⎨.⎪y =4⎩y 2=21⎪3⎩把y 1=四列方程解应题(本题每小题8分,共16分):1.某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时?略解:设甲、乙两管单独开放注满油罐时各需x 小时和y 小时,依题意,有解得⎧y -x =4⎪,⎨33+9⎪x +y =1⎩⎧x =12⎨⎩y =16所以,甲管单独开放注满油罐需12小时,乙管单独开放注满油罐需16小时.2.甲、乙二人分别从相距20千米的A 、B 两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B 地后乙还需30分钟才能到达A 地,求乙每小时走多少千米.略解:用图形分析:A 地相遇地B 地依题意,相遇地为中点,设乙的速度为v 千米/时,根据“甲、乙走10千米所用时间的差为半小时”列式,有解得v =4(千米∕时).五(本题11分)10110,-=v 2v +1已知关于x 的方程(m +2)x -5mx +m -3=0.(1)求证方程有实数根;(2)若方程有两个实数根,且两根平方和等于3,求m 的值.略解:(1)当m =-2时,是一元一次方程,有一个实根;2当m ≠-2时,⊿=(m +2)+20>0,方程有两个不等实根;综合上述,m 为任意实数时,方程均有实数根;(2)设两根为p ,q .22依题意,有p +q =3,也就是2(p +q )-2pq =3,2有因为p +q =所以5m ,pq =m -3,5m 2m -3)-2⨯=3,m +2m +2225m -2(m -3)(m +2)=3(m +2),2m +12=12m +12,10m =0,m =0.(六(本题12分)22已知关于x 的方程式x =(2m +2)x -(m +4m -3)中的m 为不小于0的整数,并且它的两实根的符号相反,求m 的值,并解方程.提示:由m ≥0和⊿>0,解出m 的整数值是0或1,当m =0时,求出方程的两根,x 1=3,x 2=-1,符合题意;当m=1时,方程的两根积x1x2=m+4m-3=2>0,两根同号,不符合题意,所以,舍去;所以m=0时,解为x1=3,x2=-1.2。
一元二次方程配方法基础训练30题
一元二次方程配方法基础训练30题一.选择题(共10小题)1.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=152.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=193.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16B.(x+5)2=1C.(x+10)2=91D.(x+10)2=1094.用配方法解一元二次方程x2﹣6x ﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36B.(x ﹣6)2=4+36C.(x﹣3)2=﹣4+9D.(x﹣3)2=4+95.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=146.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=97.用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16B.(x+5)2=34C.(x﹣5)2=16D.(x+5)2=258.用配方法解方程x2+4x+1=0时,经过配方,得到()A.(x+2)2=5B.(x﹣2)2=5C.(x﹣2)2=3D.(x+2)2=39.把方程x2﹣4x+1=0配方,化为(x+m)2=n的体式格局应为()A.(x﹣2)2=﹣3 B.(x﹣2)2=3C.(x+2)2=﹣3D.(x+2)2=310.用配办法把一元二次方程x2+6x+1=0,配成(x+p)2=q的体式格局,其成效是()A.(x+3)2=8B.(x﹣3)2=1C.(x﹣3)2=10D.(x+3)2=4二.填空题(共12小题)11.一元二次方程x2+3﹣2x=0的解是.12.一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a=.13.用配方法解方程x2﹣6x=1时,方程两边应同时加上,就能使方程左边配成一个完全平方式.14.已知,关于x 的方程x2+2(m+2)x+9m=0,方程的左边是一个完全平方式,则m=.第1页(共2页)B.(x﹣3)2=14C.D.(x+3)2=415.把方程x+6x+3=0变形为(x+h)=k的形式,其中h,k为常数,则k=.16.若将方程x2+6x=7化为(x+m)2=16,则m=.17.一元二次方程x2﹣4x+2=0的根是.18.方程x2+6x﹣5=0的左边配成完全平方式后所得方程为.19.将一元二次方程x2﹣6x﹣5=0化成(x﹣3)2=b的形式,则b=.20.用配方法解方程x2﹣6x+8=0,配方后得:.21.把方程2x2+8x﹣1=0化为(x+m)2=n的形式,则22.x2+4y2=4xy,则的值为.的值是.22三.解答题(共8小题)23.用配办法解方程2x2﹣4x﹣3=0.24.解方程:(1)x2+2x=1(2)(x﹣3)2+2(x﹣3)=0.25.解方程:x2+4x﹣7=6x+5.26.解下列方程:(1)(2x﹣3)2=9(2)3x2﹣10x+6=0.27.(1)用配方法解方程:3x2﹣12x﹣3=0(2)(x+8)(x+1)=﹣1.28.解方程:2x2﹣8x+3=0.29.用配办法解方程:2x2﹣5x+2=0.30.x2+2x﹣35=0(配方法解)。
方程与不等式之一元二次方程基础测试题含答案解析
方程与不等式之一元二次方程基础测试题含答案解析一、选择题1.方程22310x x +-=的两根之和为( )A .32-B .23-C .3-D .12【答案】A【解析】【分析】据一元二次方程的根与系数的关系即可判断.【详解】 根据一元二次方程的根与系数的关系可得:两个根的和是:32-. 故选:A .【点睛】此题考查根与系数的关系,解题关键在于掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-12b c x x a a =,. .2.如果等腰三角形的两边长分别是方程x 2-10x +21=0的两根,那么它的周长为 ( ) A .17B .15C .13D .13或17【答案】A【解析】试题分析:根据题意可得方程的两根为x=3和x=7,3、3、7不能构成三角形,则三角形的三边为3、7、7,则周长为17.考点:一元二次方程、等腰三角形.3.已知直角三角形的两条边长分别是方程x 2-14x+48=0的两个根,则此三角形的第三边是( )A .6或8B .10C .10或8D .【答案】B【解析】【分析】先解方程x 2-14x+48=0求得直角三角形的两条边长,再根据勾股定理即可求得结果.【详解】解:解方程x 2-14x+48=0得x 1=6,x 2=8当8为直角边时,第三边10==当8为斜边长时,第三边==故选B.考点:解一元二次方程,勾股定理点评:分类讨论问题是初中数学学习中的重点和难点,是中考的热点,尤其在压轴题中比较常见,一般难度较大,需特别注意.4.将方程()22230x x x m n --=-=化为的形式,指出,m n 分别是( )A .1和3B .-1和3C .1和4D .-1和4 【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】移项得x 2-2x=3,配方得x 2-2x+1=4,即(x-1)2=4,∴m=1,n=4.故选C .【点睛】用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx+c=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0,然后配方.5.用配方法解一元二次方程时,原方程可变形为( ) A .2(2)1x +=B .2(2)7x +=C .2(2)13+=xD .2(2)19+=x 【答案】B【解析】试题分析:243x x +=,24434x x ++=+,2(2)7x +=.故选B .考点:解一元二次方程-配方法.6.已知()222226x y y x +-=+,则22x y +的值是( ) A .-2B .3C .-2或3D .-2且3 【答案】B【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=. 故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.7.某班同学毕业时,都将自己的照片向全班其他同学各送一张表示留念,全班共送1892张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x+1)=1892B .x (x−1)=1892×2C .x (x−1)=1892D .2x (x+1)=1892【答案】C【解析】试题分析:∵全班有x 名同学,∴每名同学要送出(x -1)张;又∵是互送照片,∴总共送的张数应该是x (x -1)=1892.故选C .点睛:本题考查由实际问题抽象出二元一次方程组.计算全班共送多少张,首先确定一个人送出多少张是解题关键.8.用配方法解方程2640x x ++=时,原方程变形为( )A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x += 【答案】C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x 2+6x+5+4-5=0,即(x+3)2=5.故选:C .【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.9.代数式2x -4x +5的最小值是( )A .-1B .1C .2D .5【答案】B【解析】 2x -4x +5=2x -4x +4-4+5=2(2)x -+1∵2(2)x -≥0,∴2(2)x -+1≥1,∴代数2x -4x +5的最小值为1.故选B.点睛:解这类题时,通常先通过配方把原式化为“一个完全平方式”和“一个常数”的和的形式,再把完全平方式分解因式化为一个代数式的平方的形式,就可由“任何代数式的平方都是非负数”可知原式的最小值就是那个“常数”.10.已知m ,n 是方程2210x x --=的两根,且()()227143510m m a n n m -+-+=,则a 的值是( )A .5-B .5C .9-D .9【答案】A【解析】【分析】由一元二次方程的解及根与系数的关系可得出2221,21,2m m n n m n -=-=+=,结合()()227143510m m a n n m -+-+=,可求出a 的值,此题得解. 【详解】解:∵m ,n 是方程2210x x =--的两根,2221,21,2m m n n m n ∴-=-=+=.()()227143510m m a n n m -+-+=Q ,即(7)(32)10a ++=, 5a ∴=-.故选:A .【点睛】本题考查了一元二次方程的解及根与系数的关系,解题的关键是掌握根与系数的关系,正确求出a 的值.11.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =(1<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为或﹣1,故选:D .【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.12.已知,,m n 是一元二次方程2320x x -+=的两个实数根,则2246m mn m --的值为( )A .8B .10C .8-D .12-【答案】D【解析】【分析】先根据一元二次方程的解的定义得到m 2-3m=-2,则2m 2-4mn-6m=2(m 2-3m )-4mn=-4-4mn ,再根据根与系数的关系得到mn=2,然后利用整体代入的方法计算.【详解】∵m 是一元二次方程x 2-3x+2=0的实数根,∴m 2-3m+2=0,∴m 2-3m=-2,∴2m 2-4mn-6m=2(m 2-3m )-4mn=-4-4mn ,∵m ,n 是一元二次方程x 2-3x+2=0的两个实数根,∴mn=2,∴2m 2-4mn-6m=-4-4×2=-12.故选:D .【点睛】此题考查根与系数的关系,解题关键在于掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-12b c x x a a =,.13.李师傅去年开了一家商店,将每个月的盈亏情况都作了记录.今年1月份开始盈利,2月份盈利2000元,4月份盈利恰好2880元,若每月盈利的平均增长率都相同,这个平均增长率是( )A .20%B .22%C .25%D .44%【解析】【分析】设这个平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设这个平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x1=20%,x2=-2.2(舍去).答:这个平均增长率为20%.故选A.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.14.已知关于X的方程x2 +bx+a=0有一个根是-a(a≠0),则a-b的值为()A.1 B.2 C.-1 D.0【答案】C【解析】【分析】由一元二次方程的根与系数的关系x1•x2=ca、以及已知条件求出方程的另一根是-1,然后将-1代入原方程,求a-b的值即可.【详解】∵关于x的方程x2+bx+a=0的一个根是-a(a≠0),∴x1•(-a)=a,即x1=-1,把x1=-1代入原方程,得:1-b+a=0,∴a-b=-1.故选C.【点睛】本题主要考查了一元二次方程的解.解题关键是根据一元二次方程的根与系数的关系确定方程的一个根.15.已知关于x的一元二次方程230 4x x a--+=有两个不相等的实数根,则满足条件的最小整数a的值为( )A.-1 B.0 C.2 D.1【答案】D【分析】根据根的判别式即可求出a 的范围.【详解】由题意可知:△>0,∴1﹣4(﹣a +34)>0, 解得:a >12故满足条件的最小整数a 的值是1,故选D .【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.16.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100m 2的矩形小花园(墙长为15m ),则与墙垂直的边x 为( )A .10m 或5mB .5m 或8mC .10mD .5m 【答案】C【解析】【分析】设与墙垂直的边长x 米,则与墙平行的边长为(30﹣2x )米,根据矩形的面积公式结合矩形小花园的面积为100m 2,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】设与墙垂直的边长x 米,则与墙平行的边长为(30﹣2x )米,根据题意得:(30﹣2x )x =100,整理得:x 2﹣15x +50=0,解得:x 1=5,x 2=10.当x =5时,30﹣2x =20>15,∴x =5舍去. 故选:C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.如果方程20x x p -+=有两个不同的实数解,那么p 的取值范围是( ) A .0p ≤ B .14p < C .14p ≥ D .104p ≤<【解析】【分析】关于x 的方程20x x p -+=有两个不相等的实数根,即判别式△=b 2-4ac >0,即可得到关于p 的不等式,从而求得p 的范围.【详解】∵a=1,b=-1,c=p ,∴△=b 2-4ac=(-1)2-4×1×p=1-4p >0, 解得:14p <; 故选:B .【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 【答案】D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】 2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.19.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .()2100181x +=B .()2811100x +=C .()2811100x -=D .()2100181x -=【答案】D【解析】【分析】此题利用基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】由题意可列方程是:()2100181x -=.故选:D.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于列出方程20.已知一元二次方程12()( )0a x x x x --=(a≠0,x 1≠x 2)与一元一次方程 0dx e +=有一个公共解x=x 1,若一元二次方程()12()()0a x x x x dx e --++=有两个相等的实数根,则( )A .()12a x x d -=B .()21a x x d -=C .()212a x x d -=D .()221a x x d -= 【答案】B【解析】【分析】 由x=x 1是方程12()( )0a x x x x --=(a≠0,x 1≠x 2)与 0dx e +=的一个公共解可得x=x 1是方程()12()()0a x x x x dx e --++=的一个解,根据一元二次方程根与系数的关系可得x 1+x 1=12()ax ax d a-+--,整理后即可得答案. 【详解】 ∵12()( )0a x x x x --=(a≠0,x 1≠x 2)与 0dx e +=有一个公共解x=x 1,∴x=x 1是方程()12()()0a x x x x dx e --++=的一个解, ()2121212 ()0()()a x x x x dx e ax ax ax d x ax x e --++=-+-++=,∵一元二次方程()12()()0a x x x x dx e --++=有两个相等的实数根, ∴x 1+x 1=12()ax ax d a-+--, ∴a(x 2-x 1)=d ,故选:B .【点睛】 本题考查一元二次方程ax 2+bx+c=0(a≠0)根与系数的关系,若方程的两个根为x 1、x 2,那么x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键.。
一元二次方程题库(基础)
基础篇一.解答题(共30小题)1.解方程:(1)2x2﹣4x﹣1=0(配方法)(2)(x+1)2=6x+6.2.解一元二次方程:(x+2)(x﹣2)=3x.3.解下列方程:(1)2x2﹣x=1(2)x2+4x+2=0.4.解方程:(4x﹣2)(x+3)=x2+3x.5.解下列方程:(1)2x2﹣5x+1=0(2)(x+4)2=2(x+4)6.解方程:(1)(4x﹣1)2﹣9=0(2)3(x﹣2)2=2﹣x.7.解下列方程.(1)x(x﹣2)﹣(x﹣2)=0;(2)x2+x=1.8.解方程:(1)3x2﹣7x=0(2)(x﹣2)(2x﹣3)=2(x﹣2)9.选用合适的方法解下列方程:(1)2x2﹣5x=3;(2)(x+3)2=(1﹣3x)2.10.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是什么形状?说明理由.(2)若x2+4y2﹣2xy+12y+12=0,求x y的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a+b+c=.11.用合适的方法解方程(1)x2﹣3x=0(2)(2x﹣1)2=9(3)(x﹣5)(3x﹣2)=10 (4)x2+6x=1(5)(2x﹣3)(x+1)=x+1 (6)6x2﹣x﹣12=0.12.用适当的方法解下列方程:(1)x2=3x(2)2x2﹣x﹣6=0.(3)y2+3=2y;(4)x2+2x﹣120=0.13.用适当的方法解下列方程:(1)(x﹣1)(x+3)=12;(2)9(x﹣2)2=4(x+1)2;(3)2x2﹣6x﹣1=0;(4)(3x﹣7)2=2(3x﹣7).14.试判定当m取何值时,关于x的一元二次方程x2﹣(2m+1)x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?15.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.16.已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为大于1的整数,求方程的根.17.已知关于x的方程x2+mx+m﹣3=0.(1)若该方程的一个根为1,求m的值及该方程的另一根;(2)求证:不论m取何实数,该方程都有两个不相等的实数根.18.已知关于x的方程x2﹣4mx+4m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.19.已知:a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根.(1)求n的取值范围;(2)若等腰三角形三边长分别为a,b,2,求n的值.20.解方程:2x2﹣4x﹣1=0(用配方法)21.用配方法解方程:2x2+3x﹣1=0.22.解方程:y(y﹣4)=﹣1﹣2y.23.解方程:x2﹣6x﹣3=0.24.王洪同学在解方程x2﹣2x﹣1=0时,他是这样做的:解:方程x2﹣2x﹣1=0变形为x2﹣2x=1.…第一步x(x﹣2)=1.…第二步x=1或x﹣2=1.…第三步∴x1=1,x2=3.…第四步王洪的解法从第步开始出现错误.请你选择适当方法,正确解此方程.25.解方程:x2﹣6x+6=0.26.用公式法解方程y(y﹣3)=2+y(1﹣3y).27.用公式法解方程:2x2+3x=1.28.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.29.用公式法解方程:x2+4x﹣2=0.30.解方程:(1)4x(1﹣x)=1 (2)x2+3x+1=0(公式法)参考答案与试题解析一.解答题(共30小题)1.(2017•红桥区模拟)解方程:(1)2x2﹣4x﹣1=0(配方法)(2)(x+1)2=6x+6.【解答】解:(1)x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=±=±,所以x1=1+,x2=1﹣;(2)(x+1)2﹣6(x+1)=0,(x+1)(x+1﹣6)=0,x+1=0或x+1﹣6=0,所以x1=﹣1,x2=5.2.(2017•合肥模拟)解一元二次方程:(x+2)(x﹣2)=3x.【解答】解:方程化为x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1.3.(2017•孝感模拟)解下列方程:(1)2x2﹣x=1(2)x2+4x+2=0.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0或x﹣1=0,(2)△=42﹣4×2=8,x==﹣2±,所以x1=﹣2+,x2=﹣2﹣.4.(2017•东明县一模)解方程:(4x﹣2)(x+3)=x2+3x.【解答】解:方程化为(4x﹣2)(x+3)﹣x(x+3)=0,(x+3)(4x﹣2﹣x)=0,x+4=0或4x﹣2﹣x=0,所以x1=﹣4,x2=.5.(2017•曲靖一模)解下列方程:(1)2x2﹣5x+1=0(2)(x+4)2=2(x+4)【解答】解:(1)∵a=2,b=﹣5,c=1,∴△=25﹣4×2×1=17>0,则x=;(2)∵(x+4)2﹣2(x+4)=0,∴(x+4)(x+2)=0,则x+4=0或x+2=0,解得:x=﹣4或x=﹣2.6.(2017•常州模拟)解方程:(1)(4x﹣1)2﹣9=0(2)3(x﹣2)2=2﹣x.【解答】解:(1)方程变形得:(4x﹣1)2=9,4x﹣1=3,或4x﹣1=﹣3,解得:x1=1,x2=﹣;(2)方程整理得:3(x﹣2)2﹣2+x=0,可得x﹣2=0或3x﹣5=0,解得:x1=2,x2=.7.(2017•和平区模拟)解下列方程.(1)x(x﹣2)﹣(x﹣2)=0;(2)x2+x=1.【解答】解:(1)(x﹣2)(x﹣1)=0,所以x1=2,x2=1;.(2)x2+x﹣1=0,△=12﹣4×1×(﹣1)=5,x=,所以x1=,x2=.8.(2017春•杭州期中)解方程:(1)3x2﹣7x=0(2)(x﹣2)(2x﹣3)=2(x﹣2)【解答】解:(1)x(3x﹣7)=0,x=0或3x﹣7=0,所以x1=0,x2=;(2)(x﹣2)(2x﹣3)﹣2(x﹣2)=0,(x﹣2)(2x﹣3﹣2)=0,x﹣2=0或2x﹣3﹣2=0,所以x1=2,x2=.9.(2017春•莒县期中)选用合适的方法解下列方程:(1)2x2﹣5x=3;(2)(x+3)2=(1﹣3x)2.【解答】解:(1)原方程整理得:2x2﹣5x﹣3=0,∵(x﹣3)(2x+1)=0,解得:x=3或x=﹣0.5;(2)∵(x+3)2=(1﹣3x)2,∴x+3=1﹣3x或x+3=﹣1+3x,解得:x=﹣0.5或x=2.10.(2017春•江阴市期中)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是什么形状?说明理由.(2)若x2+4y2﹣2xy+12y+12=0,求x y的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a+b+c=3.【解答】解:(1)△ABC是等边三角形.理由如下:由题意得(a﹣3)2+(b﹣3)2+|3﹣c|=0,∴a=b=c=3,∴△ABC是等边三角形.(2)由题意得(x﹣y)2+3(y+2)2=0…4′∴x=y=﹣2.∴x y=;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a+b+c=2﹣2+3=3.故答案为:3.11.(2017春•嵊州市月考)用合适的方法解方程(1)x2﹣3x=0(2)(2x﹣1)2=9(3)(x﹣5)(3x﹣2)=10(4)x2+6x=1(5)(2x﹣3)(x+1)=x+1(6)6x2﹣x﹣12=0.【解答】解:(1)∵x(x﹣3)=0,∴x=0或x﹣3=0,解得:x=0或x=3;(2)∵2x﹣1=3或2x﹣1=﹣3,解得:x=2或x=﹣1;(3)整理得3x2﹣17x=0,∵x(3x﹣17)=0,∴x=0或3x﹣17=0,解得:x=0或x=;(4)∵x2+6x=1,∴x2+6x+9=1+9,即(x+3)2=10,则x+3=,∴x=﹣3;(5)∵(x+1)(2x﹣3﹣1)=0,即2(x+1)(x﹣2)=0,∴x+1=0或x﹣2=0,解得:x=﹣1或x=2;(6)∵(2x﹣3)(3x+4)=0,∴2x﹣3=0或3x+4=0,解得:x=或x=﹣.12.(2017春•上虞区校级月考)用适当的方法解下列方程:(1)x2=3x(2)2x2﹣x﹣6=0.(3)y2+3=2y;(4)x2+2x﹣120=0.【解答】解:(1)∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3;(2)∵(x﹣2)(2x+3)=0,∴x﹣2=0或2x+3=0,解得:x=2或x=﹣;(3)∵y2﹣2y+3=0,∴(y﹣)2=0,则y=;(4)∵(x﹣10)(x+12)=0,∴x﹣10=0或x+12=0,解得:x=10或x=﹣12.13.(2017春•下城区校级月考)用适当的方法解下列方程:(1)(x﹣1)(x+3)=12;(2)9(x﹣2)2=4(x+1)2;(3)2x2﹣6x﹣1=0;(4)(3x﹣7)2=2(3x﹣7).【解答】解:(1)x2+2x﹣15=0,(x﹣3)(x﹣5)=0,所以x1=3,x2=﹣5;(2)3(x﹣2)=±2(x+1),所以x1=8,x2=;(3)△=(﹣6)2﹣4×2×(﹣1)=44,x=,所以x1=,x2=;(4)(3x﹣7)2﹣2(3x﹣7)=0,(3x﹣7)(3x﹣7﹣2)=0,所以x1=,x2=3.14.(2016•濮阳校级自主招生)试判定当m取何值时,关于x的一元二次方程x2﹣(2m+1)x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?【解答】解:△=[﹣(2m+1)]2﹣4=(2m+1)2﹣4,当方程有两个不相等的实数根时,(2m+1)2﹣4>0,解得m>或m<﹣;当方程有两个相等的实数根时,(2m+1)2﹣4=0,解得m=或m=﹣;当方程没有实数根时,(2m+1)2﹣4<0,解得﹣<m<.15.(2016•蓝山县校级自主招生)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.【解答】(1)证明:△=(2k+1)2﹣4×4(k﹣)=4k2+4k+1﹣16k+8,=4k2﹣12k+9=(2k﹣3)2,∵(2k﹣3)2≥0,即△≥0,∴无论k取何值,这个方程总有实数根;(2)解:当b=c时,△=(2k﹣3)2=0,解得k=,方程化为x2﹣4x+4=0,解得b=c=2,而2+2=4,故舍去;当a=b=4或a=c=4时,把x=4代入方程得16﹣4(2k+1)+4(k﹣)=0,解得k=,方程化为x2﹣6x+8=0,解得x1=4,x2=2,即a=b=4,c=2或a=c=4,b=2,所以△ABC的周长=4+4+2=10.16.(2016•昌平区二模)已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为大于1的整数,求方程的根.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4(k﹣2)>0,即12﹣4k>0,解得:k<3.故k的取值范围为k<3.(2)∵k为大于1的整数,且k<3,∴k=2.将k=2代入原方程得:x2+2x=x(x+2)=0,解得:x1=0,x2=﹣2.故当k为大于1的整数,方程的根为x1=0和x2=﹣2.17.(2016•曲靖一模)已知关于x的方程x2+mx+m﹣3=0.(1)若该方程的一个根为1,求m的值及该方程的另一根;(2)求证:不论m取何实数,该方程都有两个不相等的实数根.【解答】(1)解:把x=1代入方程x2+mx+m﹣3=0得1+m+m﹣3=0,解得:m=1,则原方程为x2+x﹣2=0,解得:x=﹣2,或x=1.因此方程的另一个根为﹣2.(2)证明:△=m2﹣4(m﹣3)=(m﹣2)2+8,∵(m﹣2)2≥0,∴(m﹣2)2+8>0,∴该方程都有两个不相等的实数根.18.(2016•西城区二模)已知关于x的方程x2﹣4mx+4m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.【解答】解:(1)∵△=(﹣4m)2﹣4(4m2﹣9)=36>0,∴此方程有两个不相等的实数根;(2)∵x==2m±3,∴x1=2m﹣3,x2=2m+3,∵2x1=x2+1,∴2(2m﹣3)=2m+3+1,∴m=5.19.(2016•平谷区二模)已知:a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根.(1)求n的取值范围;(2)若等腰三角形三边长分别为a,b,2,求n的值.【解答】解:(1)由题意,得△=b2﹣4ac=(﹣6)2﹣4(n﹣1)=40﹣4n,∵a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴40﹣4n≥0.∴n≤10.(2))∵三角形是等腰三角形,∴①a=2或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,舍去;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,综上所述,n=10.20.(2016秋•东城区期末)解方程:2x2﹣4x﹣1=0(用配方法)【解答】解:2x2﹣4x﹣1=0x2﹣2x﹣=0x2﹣2x+1=+1(x﹣1)2=∴x1=1+,x2=1﹣.21.(2016春•门头沟区期末)用配方法解方程:2x2+3x﹣1=0.【解答】解:2x2+3x﹣1=0x2+(1分)x2+(3分)(4分)x+(6分)x1=(7分)22.(2016春•海淀区期末)解方程:y(y﹣4)=﹣1﹣2y.【解答】解:y(y﹣4)=﹣1﹣2y,y2﹣2y+1=0,(y﹣1)2=0,y1=y2=1.23.(2016春•顺义区期末)解方程:x2﹣6x﹣3=0.【解答】解:解法一:x2﹣6x=3,x2﹣6x+32=3+32,(x﹣3)2=12,∴,∴.解法二:a=1,b=﹣6,c=﹣3,b2﹣4ac=36﹣4×1×(﹣3)=36+12=48.∴.∴.24.(2016春•怀柔区期末)王洪同学在解方程x2﹣2x﹣1=0时,他是这样做的:解:方程x2﹣2x﹣1=0变形为x2﹣2x=1.…第一步x(x﹣2)=1.…第二步x=1或x﹣2=1.…第三步∴x1=1,x2=3.…第四步王洪的解法从第二步开始出现错误.请你选择适当方法,正确解此方程.【解答】解:王洪的解法从第二步开始出现错误,正确解此方程:x2﹣2x+1=1+1,(x﹣1)2=2,x﹣1=±,x1=1+,x2=1﹣;故答案为二.25.(2016春•丰台区期末)解方程:x2﹣6x+6=0.【解答】解:∵a=1,b=﹣6,c=6,∴△=b2﹣4ac=12,,∴,.26.(2016秋•门头沟区期末)用公式法解方程y(y﹣3)=2+y(1﹣3y).【解答】解:原方程可化为y2﹣3y=2+y﹣3y2,y2+3y2﹣3y﹣y﹣2=0,4y2﹣4y﹣2=0,∵a=4,b=﹣4,c=﹣2,∴b2﹣4ac=(﹣4)2﹣4×4×(﹣2)=48,∴y==所以,原方程的根为.27.(2016秋•潮州期末)用公式法解方程:2x2+3x=1.【解答】解:移项得:2x2+3x﹣1=0,b2﹣4ac=32﹣4×2×(﹣1)=17,x=,x1=,x2=.28.(2016春•南通校级期末)解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.29.(2016秋•九台市期中)用公式法解方程:x2+4x﹣2=0.【解答】解:(1)△=42﹣4×1×(2)=24,x==﹣2±,所以x1=﹣2+,x2=﹣2﹣.30.(2016秋•宜宾县期中)解方程:(1)4x(1﹣x)=1(2)x2+3x+1=0(公式法)【解答】解:(1)4x2﹣4x+1=0,△=(﹣4)2﹣4×4×1=0,x=,所以x1=x2=;(3)△=32﹣4×1×1=5,x=,所以x1=,x2=.。
一元二次方程测试题及答案
一元二次方程测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 2x + 1 = 0B. 2x + 3 = 0C. 3y^2 - 5 = 0D. x^3 - 4 = 0答案:A2. 一元二次方程 ax^2 + bx + c = 0 中,a的取值范围是:A. a ≠ 0B. a > 0C. a < 0D. a ≥ 0答案:A3. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ的值为:A. 1B. 4C. 16D. 25答案:B4. 如果一元二次方程的两个根为x1和x2,那么x1 * x2的值为:A. c/aC. b/aD. a/c答案:A5. 对于方程 x^2 - 4x + 4 = 0,以下哪个说法是正确的?A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断答案:B6. 一元二次方程 2x^2 - 6x + 4 = 0 的根为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B7. 方程 x^2 - 2ax + a^2 - a = 0 的根必定是:A. 0B. 1C. aD. -1答案:B8. 方程 3x^2 - 4x + 1 = 0 的判别式Δ等于:B. -12C. 12D. 20答案:C9. 如果一元二次方程的系数a、b、c都是整数,那么这个方程必有:A. 两个实数根B. 两个共轭复数根C. 两个有理数根D. 两个整数根答案:A10. 方程 x^2 + 3x + 2 = 0 的根的和为:A. -3B. -2C. 3D. 2答案:A二、填空题(每题4分,共20分)11. 一元二次方程的一般形式是____________________。
答案:ax^2 + bx + c = 0(a ≠ 0)12. 如果一元二次方程的判别式Δ < 0,那么该方程____________________。
一元二次方程基础知识训练题
一元二次方程一、填空题(每题2分,共16分)1、当m 时,关于x 的方程5)3()2(852+-+-++x m x m m 是一元二次方程;当m 时,关于x 的方程是一元一次方程。
2、已知方程5x 2+mx-10=0的一根是-5,则方程的另一个根及m 的值分别是 、 。
3、关于x 的方程2x 2-3x+m+1=0没有实数根,则m 的取值范围是 。
4、造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的百分率为 。
5、设关于x 的方程2x 2+ax+2=0的两根是α、β,且βαβα1122+=+,则a= 。
6、如果544+-+-=b b a ,那么以a 、b 为根的一元二次方程是 。
7、已知代数式7x (x+5)+10与代数式9x-9的值相等,则x= 。
8、(2x-1)2=9的根是 。
二、选择题(每题3分,共36分)1、以下方程中,一定是关于x 的一元二次方程的是( )A 、ax 2+bx+c=0B 、2x 2+3x=2x (x-1)C 、(k 2+1)x 2-2x=6D 、0152=+-xx 2、关于x 的方程2x 2+3ax-2a=0有一个根是x=2,则关于y 的方程y 2+a=7的解是( 0A 、5±B 、7±C 、±3D 、±93、(1-x )2=x-1的根是( )A 、1B 、2C 、1或2D 、0或14、若(2x+y )2+3(2x+y )-4=0,则2x+y 的值等于( )A 、1B 、-4C 、1或-4D 、-1或35、若方程ax 2+bx+c=0 (a ≠0)中,a 、b 、c 满足a+b+c=0 和a-b+c=0 ,则方程的根是( )A 、1,0B 、1,-1C 、-1,0D 、无法确定6、已知关于x 的方程0)3(4122=+--m x m x 有两个不相等的实数根,那么m 的最大的整数值是( )A 、2B 、1C 、0D 、-17、若方程2x (kx-4)-x 2+6=0没有实数根,则k 的最小整数值是( )A 、2B 、1C 、-1D 、不存在8、某商品连续两次降价,每次都降20%后的价格为m 元,则原价是( )A 、22.1m 元 B 、1.2m 元 C 、28.0m 元 D 、0.82m 元 9、若关于x 的方程011=-+x ax 有增根,则a 的值为( ) A 、1 B 、-1 C 、0 D 、无法确定10、菱形ABCD 的边长是5,两条对角线交于点O ,且AO 、BO 的长分别是关于x 的方程x2+(2m-1)x+m2+3=0的根,则m的值为()A、-3B、5C、5或-3D、-5或311、如果关于x的方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A、x2+3x+4=0B、x2-4x+3=0C、x2+4x-3=0D、x2+3x-4=012、解方程2(x-1)2=3(x-1)最适当的方法是()A、直接开平方法B、配方法C、公式法D、分解因式法三、用恰当的方法解下列方程(每小题3分,共12分)1、x2-10x+25=72、x2+6x=13、3x(x-1)=2-2x4、(x+8)(x+1)=-12四、解答题(每题4分,共8分)1、方程x2+ax+b=0的一个根为0,另一个根大于0,而且是方程(x+4)2=3x+52的解,求a 和b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程测试题
一、选择题(3分×8=24分)
1. 下列方程中,是关于x 的一元二次方程的是 ( )
A.()()12132+=+x x
B.02112=-+x
x C.02=++c bx ax D. 1222-=+x x x
2、方程x x 22=的解为( )
A.x =2
B. x 1=2-,x 2=0
C. x 1=2,x 2=0
D. x =0
3. 下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( )
A . 若x 2=4,则x =2
B .方程x (2x -1)=2x -1的解为x =1
C .若x 2
+2x +k =0有一根为2,则8=-k D .若分式1232-+-x x x 值为零,则x =1,2 4.用配方法解下列方程是,配方错误的是 ( )
A 、100)1(099222=+=-+x x x 化为
B 、465)27(04722=
-=--m m m 化为 C 、25)4(09822=+=++x x x 化为 D 、9
10)32
(024322=-=--x x x 化为 2
7、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )
A .2±=m
B .m=2
C .m= —2
D .2±≠m
8、((2011山东潍坊)关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )
A . k 为任何实数,方程都没有实数根
B . k 为任何实数,方程都有两个不相等的实数根
C . k 为任何实数,方程都有两个相等的实数根
D. 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种
9、关于x 的一元二次方程013)1(22=-++-m x x m 的一根为0,则m 的值是( )
A 、1±
B 、2±
C 、-1
D 、-2
10.如图,在矩形ABCD 中,AB=1,BC=2,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为( ) A .212- B. 213- C. 215- D.2
16- 二、填空题(3分×8=24分)
11. 方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。
12.方程(x ﹣1)(x + 2)= 2(x + 2)的根是 .
13、在实数范围内定义一种运算“#”,其规则为a#b=a 2-b 2,根据这个规则,方程
(x-3)#5=0的解为 .
14. 我国政府为解决老百姓看病难问题,决定下调药品价格。
某种药品经过两次降价,由每盒60元调至52元。
若设每次降价的百分率为x ,则由题意可列方程为 .
15. 已知三角形的两边的长分别为2和8,第三边是方程070172=+-x x 的两根之一,则此三角形的周长是 ;
三、计算题(每小题5分,共35分)
17、用开平方法解方程:4)1(2
=-x
18、用配方法解方程:x 2 —4x +1=0
19、用公式法解方程:3x 2 + 5(2x + 1)=0 20、2325x x =+ (不能用公式法解,否则不给分)
22. 如图所示,某小区规划在一个长为40 m 、宽为26 m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积为144 m 2,求甬路的宽度.
21、参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?
23、(2011山东日照)为落实国务院房地产调控政策,
使“居者有其屋”,某市加快了廉租房的建设力
度.2011年市政府共投资2亿元人民币建设了廉租房
8万平方米,预计到2012年底三年共累计投资9.5亿
(20题图)
元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.。