人教版数学七年级上册 几何图形初步(培优篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.

(1)当时,的值为________.

(2)如何理解表示的含义?

(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.

【答案】(1)5或-3

(2)解:∵ = ,

∴表示到-2的距离

(3)解:∵点、在0到3(含0和3)之间运动,

∴0≤a≤3, 0≤b≤3,

当时, =0+2=2,此时值最小,

故最小值为2;

当时, =2+5=7,此时值最大,

故最大值为7

【解析】【解答】(1)∵,

∴a=5或-3;

故答案为:5或-3;

【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;

(2)此题就是求表示数b的点与表示数-2的点之间的距离;

(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.

2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .

(1)猜想与的数量关系,并说明理由;

(2)若,求的度数;

(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.

【答案】(1)解:,理由如下:

(2)解:如图①,设,则,

由(1)可得,

(3)解:分两种情况:

①如图1所示,当时,,

又,

②如图2所示,当时,,

又,

.

综上所述,等于或时, .

【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.

(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.

(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.

3.如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2= .

(1)求证:EF∥CD;

(2)若∠AGD=65°,试求∠DCG的度数.

【答案】(1)证明:∵EF⊥AB于F,CD⊥AB于D,

∴∠BFE=∠BDC=90°,

∴EF∥CD.

(2)解:∵EF∥CD,

∴∠2=∠DCE=50°,

∵∠1=∠2,

∴∠1=∠DCE,

∴DG∥BC,

∴∠AGD=∠ACB=65°,

∴∠DCG=

【解析】【分析】(1)由垂直的定义,可求得∠BFE=∠CDF=90°,可证明EF∥CD;

(2)利用(1)的结论,结合条件可证明DG∥BC,利用平行线的性质可得∠AGD=∠ACB= ,则∠DCG=∠ACB-∠2即可求得.

4.如图(1),将两块直角三角尺的直角顶点C叠放在一起,

(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;

(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;

(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.

【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°

∴∠DCB=90°﹣25°=65°

∵∠ACD=90°

∴∠ACB=∠ACD+∠DCB=155°.

∵∠ACB=150°,∠ACD=90°

∴∠DCB=150°﹣90°=60°

∵∠ECB=90°

∴∠DCE=90°﹣60°=30°.

故答案为:155°,30°

(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)

理由:∵∠ECB=90°,∠ACD=90°

∴∠ACB=∠ACD+∠DCB=90°+∠DCB

∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB

∴∠ACB+∠DCE=180°

(3)【解答】∠DAB+∠CAE=120°

理由如下:

∵∠DAB=∠DAE+∠CAE+∠CAB

故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.

【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根

据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.

5.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的直线分别交射线,,于点E,F,C.

(1)如图1,若,,,求的度数;

(2)如图2,若,请探索与的数量关系,并证明你的结论;

(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.

【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,

∴∠BAP=∠PAE= ∠BAM= ,

∠ABP=∠PBE= ∠ABN= ,

∴∠BPC=∠BAP+∠ABP= ;

(2)解:,理由如下:

∵PA、PB是∠BAM、∠ABN的角平分线,

∴设,,

∵,

∴,

∵,

∴,

又∵,

∴,

∴;

(3)

相关文档
最新文档