方差分析(ANOVA)PPT课件
合集下载
《方差分析ANOVA》课件
假设检验
使用统计方法进行假设检验,确定因素对 均值的影响是否显著。
方差分析的应用领域
1 医学研究
2 市场调查
3 生物统计学
方差分析可用于比较 不同治疗方法的疗效, 评估药物的效果。
方差分析可帮助分析 不同广告策略的效果, 确定最佳市场推广方 案。
方差分析可应用于遗 传学研究、环境影响 评估等领域,探究不 同因素对生物现象的 影响。
方差分析中使用假设检验来确定样本均值之 间是否存在显著差异,从而判断因素的影响 程度。
统计软件的应用
方差分析通常使用统计软件进行计算和分析, 如SPSS、R、Python等工具。
单因素方差分析的步骤与示例
1
确定假设
设定原假设和备择假设,明确需要
收集数据
2
比较的样本组与因素。
采集各个样本组的数据,确保样本
方差分析的局限性与注意事项
局限性
方差分析假设样本来自正态分布总体,对离群 值敏感,样本不平衡可能导致结果不准确。
注意事项
在进行方差分析时,需要注意样本的选择、数 据的收集和处理,以及分析结果的有效解释。
总结与要点
1 方差分析
2Байду номын сангаас单因素与多因素
方差分析是一种统计 方法,用于比较多个 样本之间的均值差异。
方差分析的定义
方差分析是一种统计方法,用于比较三个或三个以上样本之间的均值差异。
方差分析的背景
方差分析起源于20世纪初的农学研究,用于比较不同农作物种植方法的效果。
方差分析的基本原理
方差分析基本原理
方差分析基于样本数据的方差和均值之间的 关系,通过计算方差的比值来判断均值是否 存在显著差异。
假设检验
使用统计方法进行假设检验,确定因素对 均值的影响是否显著。
方差分析的应用领域
1 医学研究
2 市场调查
3 生物统计学
方差分析可用于比较 不同治疗方法的疗效, 评估药物的效果。
方差分析可帮助分析 不同广告策略的效果, 确定最佳市场推广方 案。
方差分析可应用于遗 传学研究、环境影响 评估等领域,探究不 同因素对生物现象的 影响。
方差分析中使用假设检验来确定样本均值之 间是否存在显著差异,从而判断因素的影响 程度。
统计软件的应用
方差分析通常使用统计软件进行计算和分析, 如SPSS、R、Python等工具。
单因素方差分析的步骤与示例
1
确定假设
设定原假设和备择假设,明确需要
收集数据
2
比较的样本组与因素。
采集各个样本组的数据,确保样本
方差分析的局限性与注意事项
局限性
方差分析假设样本来自正态分布总体,对离群 值敏感,样本不平衡可能导致结果不准确。
注意事项
在进行方差分析时,需要注意样本的选择、数 据的收集和处理,以及分析结果的有效解释。
总结与要点
1 方差分析
2Байду номын сангаас单因素与多因素
方差分析是一种统计 方法,用于比较多个 样本之间的均值差异。
方差分析的定义
方差分析是一种统计方法,用于比较三个或三个以上样本之间的均值差异。
方差分析的背景
方差分析起源于20世纪初的农学研究,用于比较不同农作物种植方法的效果。
方差分析的基本原理
方差分析基本原理
方差分析基于样本数据的方差和均值之间的 关系,通过计算方差的比值来判断均值是否 存在显著差异。
假设检验
chapter6方差分析PPT课件
.
3
Biostatistics
常用术语:
• 试验指标(experimental index)
为衡量试验结果的好坏或处理效应的高低,在 试验中具体测定的性状或观测的项目称为试验指标。
• 因素水平(level of factor)
试验因素所处的某种特定状态或数量等级称为 因素水平,简称水平。
.
4
Biostatistics
i1
i1
j1
i1 j1
.
17
n
其中 Biostatistics (xij xi. ) 0 j 1
所以
kn
k
kn
(xijx.).2n (xi.x.).2 (xijxi.)2
i 1j 1
i 1
i 1j 1
k
式中, n为(x各i.处x..)理2 平均数与总平均数的
i1
离均差平方和与重复数n的乘积,反映了重复 n
次的处理间变异,称为处理间平方和,记为SSt,
即
k
SSt n (xi.x..)2
i1 j1
x 可ij 以分解为:
xij i ij
.
12
Biostatistics
为了看出各处理的影响大小,将 再i 进行分 解,令 i
1 k
k i 1
i
则
i i
叫做 单因素试验 的 线 性 模 型(linear model) 亦称数学模型。
xiji ij
Xij表示为总平均数μ、处理效应αi、试验误差εij
15
二、平Bio方sta和tistic与s 自由度的剖分 在方差分析中是用样本方差即均方(mean
squares)来度量资料的变异程度的。 表中全部观测值的总变异可以用总均方来度
方差分析法PPT课件
计算各样本平均数 y 如i 下:
表 6-2
型号
ABCDE F
yi
9.4 5.5 7.9 5.4 7.5 8.8
•5
引言 方差分析的基本概念和原理
两个总体平均值比较的检验法 把样本平均数两两组成对:
y 1与 y ,2 与y 1 ,…y 3 与 y ,1 与y 6 ,…y ,2 与y 3 ,共有y (5
6.3 显著性检验
利用(6-17)式来检验原假设H0是否成立.对于给定的显著水
平,可以从F分布表查出临界值
A的值.
F(k1,k(再m根1)据),样本观测值算出F
当 FAF(k1,时k(m ,拒1绝))H0,
当 FAF(k1,,时k(m ,接1 受))H0。
即:如果H0成立,F应等于1;相反应大于1,而且因素的影响越大, F值也越大
m
km
T Tj Yij
•38
j1
作统计假设:6种型号的生产线平均维修时数无显 著差异,即
H0: i=0(i=1,2,…,6),H1:i不全为零
•37
6.3 显著性检验
计算SA及SE
k
SA
k
m
i1
(Yi
Y)2
Ti2
i1
m
T2 km
k
km
km
Ti2
SE i1
(Yij Yi)2
j1
i1
j1Yij2i1m
m
Ti Yij
j 1
相当于检验假设
H0 : i 0 (i=1,2,…,k) , H1 : αi不全为零
•29
6.3 显著性检验
可以证明当H0为真时,
ST
2
~2(k
方差分析 (共72张PPT)
2.总体变异的构成
总体变异 组间变异: 组内变异:组内变异理论上要求齐性,实际计算取其 均值
3.方差的基本公式
一般总体方差称方差,样本方差称均方 能使变量发生变异的原因很多,这些原因我们都将其称为变异
因素或变异来源。
方差分析就是发现各类变异因素相对重要性的一种方法
方差分析的思路就是:把整个试验(设有 k 个总体)的样本资料作 为一个整体来考虑。
原理是变异的可加性。
即每一个数据与数据的总体平均数差的平方和,可以分解为每一组数 据各自的离差平方和与由各组数据的平均数组成的一组数据的
离差平方和两部分。前者表达的是组内差异,即每组数据中 各个数据之间的差异,也就是个体差异,表达的是抽样误差或 随机误差程度;后者表达的是组间差异,即各组平均数之间的差 异,表达的是实验操纵的差异程度,实验操纵即指自变量的操 纵,这两部分差异之间相互独立。
3、这种两两比较会随着样本组数的增加而加大犯Ⅰ型错的差异显著性检验,若两两比较推 断正确的概率为95%,则所有比较都正确的概率为6=0.74,则降低
了推断的可靠性。
• 几个常用术语:
1、试验指标(experimental index) 为衡量试验结果的好坏或处理效应的高低 ,在试验中具体测
(1).计算平方和:
组间平方和
SB SX n2X n2 71 .5 6 65 8 .1 7 8 20 8 .47
¨ 组内平方和
SW SX 2X n2 7 6 7 41 4 .5 6 4 45 7 .5 7 8
¨ 总平方和
SS T X 2X n2
764414252 876.396
23
(2).计算自由度
因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,发 现主要的变异来源,从而抓住主要的、实质性的东西。
方差分析(一)单向课件
F值检验
根据F值和显著性水平判断组间 差异是否显著。
效应量估计
根据方差分析的结果估计效应量, 效应量越大表明组间差异越大。
结果解释
根据检验结果和效应量估计解释 方差分析的结果,并给出相应的
结论和建议。
案例一:不同施肥处理对小麦产量的影响
总结词
施肥处理对小麦产量有显著影响,不同 施肥处理下的小麦产量存在显著差异。
总结词
详细描述
案例三:不同温度处理对酶活性的影响
总结词
温度处理对酶活性有显著影响,不同温度处理下的酶活性存在显著差异。
详细描述
为了研究不同温度处理对酶活性的影响,选取了三种不同的温度处理,分别为低温、中温和高温。通过方差分析, 发现不同温度处理下的酶活性存在显著差异,其中高温处理下的酶活性最高,中温次之,低温最低。这说明温度 处理对酶活性的影响非常显著。
方差分析的基本思想
方差分析认为数据中的变异可以归结为两个部分:组间变异和组内变异。 组间变异是由不同条件或处理引起的,而组内变异则是由随机误差引起的。
通过比较组间变异和组内变异的比例,可以推断不同条件或处理对结果 的影响是否显著。如果组间变异的比例显著高于组内变异的比例,则说
明不同条件或处理对结果有显著影响。
方差分析的局限性
假设严格
。
样本量要求
交互作用 多元比较问题
使用方差分析时的注意事项
01
数据正态性
02
独立性
03
样本量均衡
04
异常值处理
THANKS
感谢观看
线性模型
方差分析的数学模型通常采用线性模 型,将自变量和因变量之间的关系表 示为线性方程。
数学模型的建立过程
方差分析PPT课件
方差分析的用途
1. 用于多个样本平均数的比较 2. 分析多个因素间的交互作用 3. 回归方程的假设检验 4. 方差的同质性检验
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
第一节 方差分析的基本问题
▪ 一、方差分析问题的提出 问题:为了探索简便易行的发展大学生心 血管系统机能水平的方法,在某年级各项 身体发育水平基本相同,同年龄女生中抽 取36人随机分为三组,用三种不同的方法 进行训练,三个月后,测得哈佛台阶指数 如表 1 ,试分析三种不同的训练方法对女 大学生心血管系统的影响有无显著性差异。
结果的好坏和处理效应的高低,实际中具体测 定的性状或观测的项目称为试验指标。常用的 试验指标例如有:身高、体重、日增重、酶活 性、DNA含量等等。
影响因素( experimental factor): 观测中所
研究的影响观测指标的定性变量称之为因素。 当考察的因素只有一个时,称为单因素试验; 若同时研究两个或两个以上因素的影响时,则 称为两因素或多因素试验。
N (3, 2)
A3
61.31 60.00
┆ 67.26 69.05
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
分析
根据研究目的,这里有三个正态总体 N (1, 2),N (2, 2 ), N (3 , a2 ) 。三组数据分别为来自三个总体的样本,问题是 推断 1 ,2 和 3 之间有无显著差异。 由 x1, x2, x3不相等,不能直接得出1, 2, 3不尽相等的结论, 原因是:造成 x1, x2, x3不相等可能有两个方面因素:一是 1, 2, 3 不等,二是1 2 3,但由于抽样误差,造成 x1, x2, x3 之间有差异。现在的任务是通过样本推断1, 2, 3之间有无 显著性差异。
方差分析ppt课件
推断控制变量是否给观测变量带来了显 著影响。
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2
若
x1
x 2 >t0.05
s x1
x2
或
x1
ห้องสมุดไป่ตู้
x2
>
t0.01
s x1 x2
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2
若
x1
x 2 >t0.05
s x1
x2
或
x1
ห้องสมุดไป่ตู้
x2
>
t0.01
s x1 x2
课件方差分析
例子2
五个商店以各自的销售方式卖出新型健身器, 连续五天各商店健身器的销售量如下表所示。销 售量服从正态分布,且具有方差齐性,试考察销 售方式对销售量有无显著影响,并对销售量作两 两比较。
双因素方差分析假设
双因素方差分析数据结构表
双因素方差分析表
双因素方差分析SPSS界面
例子1
例子2
西方国家有一种说法,认为精神病与月亮有关,月 圆时,人盯着州亮看,看得太久,就会得精神病。中医 也有一种说法,认为精神病与季节有关,特别是春季, 人最容易得精神病。为了检验这两种说法是否有道理, 对某地平均每日精神病发病人数统计如下:
SSR与MSR
组间差异(组间平方和,简称SSR): 各组平均值与总平均值离差的平方和, 反映了各水平之间的差异程度或不同 的处理造成的差异。
组间均方: MSR= SSR /(自由度k-l)
SSE与MSE
组内差异(组内平方和、残差平方和, 简称SSE): 每个样本数据与其组平均值离差的平方和, 反映了随机误差造成差异的大小。
例子2
Байду номын сангаас
单因素练习1
某饮料生产企业研制出一种新型饮料。饮料的颜色共 有四种,分别为桔黄色、粉色、绿色和无色透明。随机从 五家超级市场上收集了前一期该种饮料的销售量。
问:饮料的颜色是否对销售量产生影响。
超市 1 2 3 4 5
无色 26.5 28.7 25.1 29.1 27.2
粉色 桔黄色 绿色 31.2 27.9 30.8 28.3 25.1 29.6 30.8 28.5 32.4 27.9 24.2 31.7 29.6 26.5 32.8
概述 方差分析的分类
方差分析按所涉及因素的多少可分为: 单因素方差分析 双因素方差分析 多因素方差分析
【医学统计学】方差分析(ANOVA)PPT
P
总 组间 组内(误差)
54.4522 58 8.6054 2 4.30275.2555 0.0081
45.8468 56 0.8187
F 分布
➢方差比的分布
F
MSBetween MSWithin
~ F(1 , 2 )
F 分布
1.0
1=1, 2=10
0.8
0.6
1=5, 2=10
0.4
SStotal
2
X ij X
total= N-1
59
2
SST Xij 1.334 54.4522
j1
组间变异—— SS组间
▪ Sum of squares between groups
X1
X2
X3
X
n1( X1 X )2 n2( X2 X )2 n3( X3 X )2
➢ 随机的含义:机会均等 不可预测
❖因素 (factor)
所要检验的对象:治疗方案
❖ 水平(level)
因素的具体表现:方案A、方案B、方案C
❖ 试验(Trial)
单因素三水平的试验
基本步骤
➢建立检验假设,确定检验水准 ➢计算检验统计量(列方差分析表) ➢计算 P 值 ➢结论
建立假设,确定检验水准
多重比较(multiple comparison)
▪ 多组间的两两比较为什么不能用 t 检验?
进行一次假设检验,犯第一类类错误的概率:
进行多次(k)假设检验,至少犯一次第一类错误的概 率:
1-(1-)k
组数为3, k=3, 1-(1-0.05)k=0.1426 组数为4, k=6, 1-(1-0.05)k=0.2649 组数为5, k=10, 1-(1-0.05)k=0.4013
方差分析课件-PPT
、 、 、 增重表就是选用S-N-K法作均数多重两两比较得结果
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
统计学课件之方差分析
2.9850 2.9320
-1.8100 -1.8960
平均
2.0320 3.8850 2.9585 -1.8530
a1-a2
0.0960 0.0100 0.0530
单独效应 其他因素固定时,同一因素不同水平的差异 主效应 某一因素各水平的平均差别 交互效应 某因素的各单独效应随另一因素改变而变化
完全随机设计方案与随机区组设计方案的比较
方差齐性检验(Bartlett法,求一个卡方值)
方差不齐的处理——非参数检验
在设计阶段未预先考虑或预料到,经假设检验得 出多个总体均数不全相等的提示后,才决定的多 个均数的两两事后比较,多用于探索性研究 方法有:SNK-q test、Bonfferoni-t test等
xi
0.5542 0.4167 0.3438 0.1646 0.3698 ( x )
xi2 3.9350 2.3925 1.7006 0.5906 8.6187 ( x2 )
随机区组设计
方案 配伍组设计,为配对设计的扩展(1:m) 首先将受试对象按可能影响试验结果的属性
相同或相近分组(非随机),如按性别、体重、 年龄、职业、病情等。共形成b个区组,再分别将 各区组内的试验单位随机分配到各处理组。
试问:三组ATP总体均数是否存在差别? 若三组间存在差别,则推论B组和C组的处理对ATP
的影响。
表1 大鼠烫伤后ATP的测量结果(mg)
A组
B组
C组
xij
7.76
11.14
10.85
7.71
11.60
8.58
8.43
11.42
7.19
8.47
13.85
9.36
10.30
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不全相同。
26
2020/3/24
方差分析适合于任何多组独立均衡可比的数据
例子:某研究者在某单位工作人员中进行了体重指数 (BMI)抽样调查,随机抽取不同年龄组男性受试者 各16名,测量了被调查者的身高和体重值,由此按照 BMI=体重/身高2公式计算了体重指数,请问,不同 年龄组的体重指数有无差异。
2
1 / 2 1
F 2 / 2
2
1 1 2
1
2
2
2
( 1 F
1 2
2 ) 2
1 1, 2 5
2020/3/24
0.8 0.6
1 5, 2 5
0.4
1 10,2 10
0.2
0.0
0
1
2F
3
4
15
F 分布曲线
2020/3/24
回忆t分布和t检验
16
2020/3/24
17
2020/3/24
项目
样本量 平均值 标准差
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 3 25.49 7.19
2020/3/24
一、方差分析的基本思想
组间 a 1
SS组间反映了各组均数 X的i 变异程度
组间变异=①随机误差+②处理因素效应
8
3.组内变异:用各组内各测量值Xij与
其所在组的均数差值的平方和来表示,
SS组内
k ni
SS j1
组内 N a
SS组内反映随机误差的影响(个体差异和测量误差)。
9
均方差,均方(mean square,MS)
2020/3/24
方差分析(ANOVA)
1
2020/3/24
n4
n3 n2 n1
Y4
Y3 Y2
Y1
2
2020/3/24
例子:某研究者在某单位工作人员中进行了体重指数 (BMI)抽样调查,随机抽取不同年龄组男性受试者 各16名,测量了被调查者的身高和体重值,由此按照 BMI=体重/身高2公式计算了体重指数,请问,不同 年龄组的体重指数有无差异。
21
2020/3/24
例 在评价某药物耐受性及安全性的I期临床试验 中,对符合纳入标准的30名健康自愿者随机分为 3组每组10名,各组注射剂量分别为0.5U、1U、 2U,观察48小时部分凝血活酶时间(s)试问不 同剂量的部分凝血活酶时间有无不同?
22
2020/3/24
23
2020/3/24
变异程度除与离均差平方和的大小有关外, 还与其自由度有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值
称为均方差,简称均方(mean square,MS)。组
间均方和组内均方的计算公式为:
MS组间
SS组间
组间
MS组内
SS组内
组内
10
F 界值表 18
2020/3/24
二、完全随机设计方差分析(单因素方差分析)
19
2020/3/24
关于因素与水平
因素也称为处理因素(factor) 每一处理因素至少有两个水平(level)(也称“处理组
”)。
20
2020/3/24
完全随机设计: 将实验对象随机分配到不同处理组的单因素 设计方法。针对一个处理因素,通过比较该 因素不同水平组均值,推断该处理因素不同 水平组的均值是否存在统计学差异。
方差分析步骤 :
(1)提出检验假设,确定检验水准
H0:μ1=μ2=μ3 H1:μ1,μ2,μ3不全相同 a=0.05
24
2020/3/24
(2)计算检验统计量F 值
25
2020/3/24
(3)确定P值,做出推断结论
F0.05(2,26) =2.52,F>F0.05(2,26) ,P<0.05,拒绝 H0。 三种不同剂量48小时部分凝血活酶时间
45
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员 的体重指数总体均数相等
H1:三个总体均数不等或不全相等 a=0.05
28
2020/3/24
(2)计算检验统计量F值
变异来源
SS 自由度(df)
MS
F
组间 组内 总变异
143.406 363.86 507.36
2
71.703
8.87
个测量值 与Xij该组均数 的Xi 差异
可用离均差平方和反映变异的大小
6
2020/3/24
1. 总变异: 所有测量值之间总的变异 程度,SS总
k ni
SST
(X ij X )2
i1 j1
总 N 1
7
2.组间变异:各组均数与总均数的离 均差平方和, SS组间
2020/3/24
k
SSTR ni (X i X )2 i 1
项目
样本量 平均值 标准差
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 27 7.19
2020/3/24
基本步骤
n1 n3 n2
Y1 Y3 Y2
VS
n1 n3 n2
Y1 Y3
Y2
11
n1 n3 n2
Y1 Y3 Y2
VS
n1 n2
Y1
Y3 Y2
12
组间均方与组内均方比值越小,样本越可能来 源于同一个总体,比值越大,样本越可能不是 来源于一个总体
13
… 二、F 值与F分布
本来如自果相各同组总样体本,的无总处体理均因数素相的等作(用H0,成则立组)间,变即异各同,处组理内组变的异样
一样,只反映随机误差作用的大小。组间均方与组内均方的比
值称为F统计量
F MS组间 MS组内
1 组间
2 组内
F值接近于1,就没有理由拒绝H0;反之,F值越大,拒绝 H0的理由越充分。数理统计的理论证明,当H0成立时,F 统计量服从F分布。
14
1.4 1.2 1.0
f( F)
f
(F)
1
2
4
2020/3/24
思想来源: 观察值总变异可以分解为组间变异和组内变异
组间变异 组内变异
总变异
5
2020/3/24
1. 总变异(Total variation): 全部测量值Xij与总均
数 间X 的差异 2. 组间变异(between group variation ): 各组的均
数 X与i 总均数 间X 的差异 3. 组内变异(within group variation ):每组的每
26
2020/3/24
方差分析适合于任何多组独立均衡可比的数据
例子:某研究者在某单位工作人员中进行了体重指数 (BMI)抽样调查,随机抽取不同年龄组男性受试者 各16名,测量了被调查者的身高和体重值,由此按照 BMI=体重/身高2公式计算了体重指数,请问,不同 年龄组的体重指数有无差异。
2
1 / 2 1
F 2 / 2
2
1 1 2
1
2
2
2
( 1 F
1 2
2 ) 2
1 1, 2 5
2020/3/24
0.8 0.6
1 5, 2 5
0.4
1 10,2 10
0.2
0.0
0
1
2F
3
4
15
F 分布曲线
2020/3/24
回忆t分布和t检验
16
2020/3/24
17
2020/3/24
项目
样本量 平均值 标准差
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 3 25.49 7.19
2020/3/24
一、方差分析的基本思想
组间 a 1
SS组间反映了各组均数 X的i 变异程度
组间变异=①随机误差+②处理因素效应
8
3.组内变异:用各组内各测量值Xij与
其所在组的均数差值的平方和来表示,
SS组内
k ni
SS j1
组内 N a
SS组内反映随机误差的影响(个体差异和测量误差)。
9
均方差,均方(mean square,MS)
2020/3/24
方差分析(ANOVA)
1
2020/3/24
n4
n3 n2 n1
Y4
Y3 Y2
Y1
2
2020/3/24
例子:某研究者在某单位工作人员中进行了体重指数 (BMI)抽样调查,随机抽取不同年龄组男性受试者 各16名,测量了被调查者的身高和体重值,由此按照 BMI=体重/身高2公式计算了体重指数,请问,不同 年龄组的体重指数有无差异。
21
2020/3/24
例 在评价某药物耐受性及安全性的I期临床试验 中,对符合纳入标准的30名健康自愿者随机分为 3组每组10名,各组注射剂量分别为0.5U、1U、 2U,观察48小时部分凝血活酶时间(s)试问不 同剂量的部分凝血活酶时间有无不同?
22
2020/3/24
23
2020/3/24
变异程度除与离均差平方和的大小有关外, 还与其自由度有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值
称为均方差,简称均方(mean square,MS)。组
间均方和组内均方的计算公式为:
MS组间
SS组间
组间
MS组内
SS组内
组内
10
F 界值表 18
2020/3/24
二、完全随机设计方差分析(单因素方差分析)
19
2020/3/24
关于因素与水平
因素也称为处理因素(factor) 每一处理因素至少有两个水平(level)(也称“处理组
”)。
20
2020/3/24
完全随机设计: 将实验对象随机分配到不同处理组的单因素 设计方法。针对一个处理因素,通过比较该 因素不同水平组均值,推断该处理因素不同 水平组的均值是否存在统计学差异。
方差分析步骤 :
(1)提出检验假设,确定检验水准
H0:μ1=μ2=μ3 H1:μ1,μ2,μ3不全相同 a=0.05
24
2020/3/24
(2)计算检验统计量F 值
25
2020/3/24
(3)确定P值,做出推断结论
F0.05(2,26) =2.52,F>F0.05(2,26) ,P<0.05,拒绝 H0。 三种不同剂量48小时部分凝血活酶时间
45
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员 的体重指数总体均数相等
H1:三个总体均数不等或不全相等 a=0.05
28
2020/3/24
(2)计算检验统计量F值
变异来源
SS 自由度(df)
MS
F
组间 组内 总变异
143.406 363.86 507.36
2
71.703
8.87
个测量值 与Xij该组均数 的Xi 差异
可用离均差平方和反映变异的大小
6
2020/3/24
1. 总变异: 所有测量值之间总的变异 程度,SS总
k ni
SST
(X ij X )2
i1 j1
总 N 1
7
2.组间变异:各组均数与总均数的离 均差平方和, SS组间
2020/3/24
k
SSTR ni (X i X )2 i 1
项目
样本量 平均值 标准差
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 27 7.19
2020/3/24
基本步骤
n1 n3 n2
Y1 Y3 Y2
VS
n1 n3 n2
Y1 Y3
Y2
11
n1 n3 n2
Y1 Y3 Y2
VS
n1 n2
Y1
Y3 Y2
12
组间均方与组内均方比值越小,样本越可能来 源于同一个总体,比值越大,样本越可能不是 来源于一个总体
13
… 二、F 值与F分布
本来如自果相各同组总样体本,的无总处体理均因数素相的等作(用H0,成则立组)间,变即异各同,处组理内组变的异样
一样,只反映随机误差作用的大小。组间均方与组内均方的比
值称为F统计量
F MS组间 MS组内
1 组间
2 组内
F值接近于1,就没有理由拒绝H0;反之,F值越大,拒绝 H0的理由越充分。数理统计的理论证明,当H0成立时,F 统计量服从F分布。
14
1.4 1.2 1.0
f( F)
f
(F)
1
2
4
2020/3/24
思想来源: 观察值总变异可以分解为组间变异和组内变异
组间变异 组内变异
总变异
5
2020/3/24
1. 总变异(Total variation): 全部测量值Xij与总均
数 间X 的差异 2. 组间变异(between group variation ): 各组的均
数 X与i 总均数 间X 的差异 3. 组内变异(within group variation ):每组的每