秒杀题型 双曲线的渐近线(双曲线)(详细解析版)
2023年高考数学真题实战复习(2022高考+模考题)专题18 解析几何中的双曲线问题(解析版)
专题18 解析几何中的双曲线问题【高考真题】1.(2022·北京) 已知双曲线221x y m +=的渐近线方程为y =,则m =__________. 1.答案 3- 解析 对于双曲线221x y m +=,所以0m <,即双曲线的标准方程为221x y m-=-,则1a =,b =,又双曲线221x ym +=的渐近线方程为y =,所以a b =,=解得3m =-;故答案为3-.2.(2022·全国甲理) 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.2.答案解析 双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =. 3.(2022·全国甲文) 记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________. 3.答案 2(满足1e <≤) 解析 2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为by x a=±, 结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”,所以c e a ===1e >,所以1e <≤2(满足1e <≤4.(2022·全国乙理) 双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A B .32 C D4.答案 C 解析 依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥, 因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos bcβ=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c c F F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=,又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率c e a ==.故选C .5.(2022·浙江)已知双曲线22221(0,0)x y a b ab-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点 ()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.5.答案 解析 过F 且斜率为4b a 的直线:()4b AB y x c a =+,渐近线2:b l y x a =,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a=,所以离心率e =. 【知识总结】1.双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹. (2)符号表示:||MF 1|-|MF 2||=2a (常数)(0<2a <|F 1F 2|).(3)焦点:两个定点F 1,F 2. (4)焦距:两焦点间的距离,表示为|F 1F 2|. 2.双曲线的标准方程和简单几何性质F (-c ,0),F (c ,0)F (0,-c ),F (0,c )【题型突破】题型一 双曲线的标准方程1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=11.答案 B 解析 由y =52x 可得b a =52,①.由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+ b 2=9,②.由①②可得a 2=4,b 2=5.所以C 的方程为x 24-y 25=1.故选B .2.(2016·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A .x 24-y 2=1B .x 2-y 24=1C .3x 220-3y 25=1D .3x 25-3y 220=12.答案 A 解析 依题意得b a =12,①,又a 2+b 2=c 2=5,②,联立①②得a =2,b =1.∴所求双曲线 的方程为x 24-y 2=1.3.(2018·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=13.答案 C 解析 因为双曲线的离心率为2,所以ca =2,c =2a ,b =3a ,不妨令A (2a,3a ),B (2a ,-3a ), 双曲线其中一条渐近线方程为y =3x ,所以d 1=|23a -3a |(3)2+(-1)2=23a -3a 2,d 2=|23a +3a |(3)2+(-1)2=23a +3a 2;依题意得:23a -3a 2+23a +3a 2=6,解得:a =3,b =3,所以双曲线方程为:x 23-y 29=1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=14.答案 D 解析 根据题意画出草图如图所示⎝⎛ 不妨设点A⎭⎫在渐近线y =ba x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴b a =tan 60°=3.又a 2+b 2=4,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1,故选D5.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .x 24-3y 24=1 B .x 24-4y 23=1 C .x 24-y 24=1 D .x 24-y 212=15.答案 D 解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,选D . 6.已知双曲线E 的中心为原点,(3, 0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中 点为(12, 15)N --,则E 的方程式为( )A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=6.答案 B 解析 设双曲线方程为22222222221, x y b x a y a b a b-=-=即,1122(,),(,)A x y B x y ,由221b x -221a y =2222222222, a b b x a y a b -=得,2212121212()()()0()y y b x x a y y x x -+-+=-,1215AB PN N k k =又中点(-,-),,212b ∴-+222150, 45a b a ==即,22+9b a =,所以224, =5a b =.7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A .x 26-y 25=1B .x 28-y 212=1C .x 28-y 24=1D .x 24-y 26=17.答案 D 解析 不妨设B (0,b ),由BA →=2AF →,F (c ,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得 49×c 2a 2-19=1,即49·a 2+b 2a 2=109,所以b 2a 2=32,①.又|BF →|=b 2+c 2=4,c 2=a 2+b 2,所以a 2+2b 2=16,②.由①②可得,a 2=4,b 2=6,所以双曲线C 的方程为x 24-y 26=1,故选D .8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM的面积为5,其中O 为坐标原点,则双曲线的方程为( ) A .x 2-4y 25=1 B .x 22-2y 25=1 C .x 24-y 25=1 D .x 216-y 220=1 8.答案 C 解析 由题意可知e =c a =32,可得b a =52,取双曲线的一条渐近线为y =ba x ,可得F 到渐近线y =b a x 的距离d =bca 2+b2=b ,在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,联立⎩⎨⎧b a =52,12ab =5,解得⎩⎨⎧a =2,b =5,所以双曲线的方程为x 24-y25=1.故选C .9.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐 标为-23,则此双曲线的方程是( ).A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=19.答案 D 解析:设所求双曲线方程为x 2a 2-y 27-a 2=1.由⎩⎪⎨⎪⎧x 2a 2-y 27-a 2=1,y =x -1,得x 2a 2-(x -1)27-a 2=1,(7-a 2)x 2-a 2(x -1)2=a 2(7-a 2),整理得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.又MN 中点的横坐标为-23,故x 0=x 1+x 22=-2a 22(7-2a 2)=-23,即3a 2=2(7-2a 2),所以a 2=2,故所求双曲线方程为x 22-y 25=1.10.双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( ) A .x 22-y 2=1 B .x 2-y 22=1 C .x 2-y 23=1 D .x 23-y 2=110.答案 B 解析 ∵∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|P Q|,P ,F 2,Q 三点共线,而|PF 1|-|PF 2|=2a ,∴|P Q|-|PF 2|=2a ,即|F 2Q|=2=2a ,解得a =1.又e =c a =3,∴c =3,∴b 2=c 2-a 2=2,∴双曲线的方程为x 2-y 22=1.故选B . 题型二 双曲线中的求值11.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A .32 B .3 C .23 D .411.答案 B 解析 由已知得双曲线的两条渐近线方程为y =±13x .设两渐近线的夹角为2α,则有tan α =13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |=3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan60°=3.故选B .12.(2019·全国Ⅰ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324 B .322C .22D .3212.答案 A 解析 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 13.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC=θ,若Γ的离心率为2,则( )A .θ∈⎝⎛⎭⎫0,π2B .θ=π2C .θ∈⎝⎛⎭⎫3π4,πD .θ=3π413.答案 B 解析 ∵e =ca=2,∴c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程可变形为x 2-y 2=a 2.设B (x 0,y 0),由对称性可知C (-x 0,y 0),∵点B (x 0,y 0)在双曲线上,∴x 20-y 20=a 2.∵A (a ,0),∴AB →=(x 0-a ,y 0),AC →=(-x 0-a ,y 0),∴AB →·AC →=(x 0-a )·(-x 0-a )+y 20=a 2-x 20+y 20=0,∴AB →⊥AC →,即θ=π2.故选B .14.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 14.答案 34 解析 化双曲线的方程为x 22-y 22=1,则a =b =2,c =2,因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上,则由双曲线的定义,知|PF 1|-|PF 2|=2a =22,解得|PF 1|=42,|PF 2|=22,根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.15.如图,双曲线的中心在坐标原点O ,A ,C 分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则∠BDF 的余弦值是________.15.答案 714 解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由e =ca=2知,c =2a ,又c 2=a 2+b 2,故b =3a ,所以A (0,3a ),C (0,-3a ),B (-a ,0),F (-2a ,0),则BA →=(a ,3a ),CF →=(-2a ,3a ),结合题图可知,cos ∠BDF =cos <BA →,CF →>=BA →·CF →|BA →|·|CF →|=-2a 2+3a 22a ·7a =714.16.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .4316.答案 D 解析 法一:由已知可得点P 的位置如图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,由⎩⎪⎨⎪⎧y =k x -4+2,x 22-y 2=1,消去y 得(1-2k 2)x 2+(16k 2-8k )x -32k 2+32k -10=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-16k 2+8k1-2k 2,x 1x 2=-32k 2+32k -101-2k 2,因为P (4,2)为AB 的中点,所以-16k 2+8k 1-2k 2=8,解得k =1,满足Δ>0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .法二:由已知可得点P 的位置如法一中图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21-2y 21-2=0,x 22-2y 22-2=0,所以(x 1+x 2)(x 1-x 2)=2(y 1+y 2)(y 1-y 2),因为P (4,2)为AB 的中点,所以k =y 1-y 2x 1-x 2=1,所以AB 的方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,x 22-y 2=1,消去y 得x 2-8x +10=0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .17.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A 、B 两点,若P 为AB 中点,则|AB |=( )A .22B .23C .33D .4317.答案 D 解析 易知直线AB 不与y 轴平行,设其方程为y -2=k (x -4),代入双曲线C :x 22-y 2=1,整理得(1-2k 2)x 2+8k (2k -1)x -32k 2+32k -10=0,设此方程两实根为x 1,x 2,则x 1+x 2=8k (2k -1)2k 2-1,又P (4,2)为AB 的中点,所以8k (2k -1)2k 2-1=8,解得k =1,当k =1时,直线与双曲线相交,即上述二次方程的Δ>0,所求直线AB 的方程为y -2=x -4化成一般式为x -y -2=0,x 1+x 2=8,x 1x 2=10,|AB |=2|x 1-x 2|=2·82-40=43.故选D .18.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为()A .1B .3C .5D .1218.答案 A 解析 在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A .19.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( )A .215a 2B .15a 2C .30a 2D .15a 2 19.答案 B 解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca=2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a ,∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin∠F 1AF 2=12×4a ×2a ×154=15a 2.20.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-220.答案 B 解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|·cos ∠PF 2F 1=2×4×14=2.故选B .题型三 双曲线的离心率21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线的夹角为60°,则双曲线C 的离心率为( )A .2B .3C .3或233D .233或221.答案 D 解析 秒杀 ∵两条渐近线的夹角为60°,∴一条渐近线的倾斜角为30°,斜率为33.∴e =1+k 2=233.或一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.故选D .通法 ∵两条渐近线的夹角为60°,且两条渐近线关于坐标轴对称,∴b a =tan 30°=33或ba =tan 60°=3.由b a =33,得b 2a 2=c 2-a 2a 2=e 2-1=13,∴e =233(舍负);由b a =3,得b 2a 2=c 2-a 2a 2=e 2-1=3,∴e =2(舍负).故选D .22.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50° D.1cos 50°22.答案 D 解析 秒杀 由题意可得-ba =tan 130°,所以e =1+b 2a 2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos 130°|=1cos 50°.故选D .23.(2019·全国Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.23.答案 2 解析 秒杀 由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.∴一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.通法一:由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.如图所示,不妨设B 为⎝⎛⎭⎫c 2,-32c .∵点B 在直线y=-b a x 上,∴b a =3,∴离心率e =ca=2.通法二:∵F 1B →·F 2B →=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c .如图,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=ba ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c ,0).又∵F 1A →=AB →,∴A 为F 1B 的中点.∴OA ∥F 2B ,∴b a =b c -a ,∴c =2a ,∴离心率e =c a =2.24.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A .2B .32C .3D .224.答案 A 解析 秒杀 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13=2.故选A .通法 因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义,得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca =2.故选A .25.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( )A .2B .3C .5D .625.答案 C 解析 秒杀 由已知△F 1PF 2是直角三角形,∠F 2PF 1=90°,sin ∠PF 1F 2=b c ,∠PF 2F 1=ac,∴e =c a =sin90°|sin ∠PF 1F 2+sin ∠PF 2F 1|=1|b c -a c|.即b a=2,所以e =1+⎝⎛⎭⎫b a 2=5.故选C .通法 如图,直线PF 2的方程为y =-a b (x -c ),设直线PF 2与直线y =ba x 的交点为N ,易知N ⎝⎛⎭⎫a 2c ,abc .又线段PF 2的中点为N ,所以P ⎝⎛⎭⎫2a 2-c 2c ,2ab c .因为点P 在双曲线C 上,所以(2a 2-c 2)2a 2c 2-4a 2b 2c 2b 2=1,即5a 2=c 2,所以e =ca =5.故选C .26.已知O 为坐标原点,点A ,B 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,且关于坐标原点O 对称.若双曲线C 上与点A ,B 横坐标不相同的任意一点P 满足k P A ·k PB =3,则双曲线C 的离心率为( ) A .2 B .4 C .10 D .10 26.答案 A 解析 秒杀 ∵k 1·k 2=e 2-1.∴3=e 2-1.∴e =2.故选A .通法 设A (x 1,y 1),P (x 0,y 0)(|x 0|≠|x 1|),则B (-x 1,-y 1),则k P A ·k PB =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21.因为点P ,A 在双曲线C 上,所以b 2x 20-a 2y 20=a 2b 2,b 2x 21-a 2y 21=a 2b 2,两式相减可得y 20-y 21x 20-x 21=b 2a 2,故b 2a 2=3,于是b 2=3a 2.又因为c 2=a 2+b 2,所以双曲线C 的离心率e =1+⎝⎛⎭⎫b a 2=2.故选A .27.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2B .32C .355D .5227.答案 B 解析 秒杀 由题意得,k 0·k =e 2-1.∴e =32.故选B .通法 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),则x 1+x 2=24,y 1+y 2=30,由⎩⎨⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2=(y 1+y 2)(y 1-y 2)b 2,则y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=4b 25a 2,由直线AB 的斜率k =15-612-3=1,所以4b 25a 2=1,则b 2a 2=54,双曲线的离心率e =ca = 1+b 2a 2=32,所以双曲线C 的离心率为32.故选B .28.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A .52 B .62 C .233D .3 28.答案 A 解析 秒杀 由题可知,|31||cos ||31|e θ-=+,即1||2c b a c ⋅=,即12b a =所以e=52,故选B .通法 由题意得直线l 的方程为x =ba y +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b 2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3cb 4-1,y 1y 2=b 4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎨⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c =b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A .29.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( ) A .3+72 B .11+332 C .3+396 D .1+17429.答案 C 解析 由题意可知AB 是通径,根据双曲线的对称性和∠AOB =∠OAB ,可知△AOB 为等边三角形,所以tan ∠AOF =b 2a c =33,整理得b 2=33ac ,由c 2=a 2+b 2,得c 2=a 2+33ac ,两边同时除以a 2,得e 2-33e -1=0,解得e =3+396.故选C . 30.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且FN →=3FM →,若OM ⊥FN ,则C 的离心率为( )A .2B .7C .3D .1030.答案 B 解析 设双曲线的右焦点为F ′,取MN 的中点P ,连接F ′P ,F ′M ,F ′N ,如图所示,由FN →=3FM →,可知|MF |=|MP |=|NP |.又O 为FF ′的中点,可知OM ∥PF ′.∵OM ⊥FN ,∴PF ′⊥FN .∴PF ′为线段MN 的垂直平分线.∴|NF ′|=|MF ′|.设|MF |=t ,由双曲线定义可知|NF ′|=3t -2a ,|MF ′|=2a +t ,则3t -2a =2a +t ,解得t =2a .在Rt △MF ′P 中,|PF ′|=|MF ′|2-|MP |2=16a 2-4a 2=23a ,∴|OM |=12|PF ′|=3a .在Rt △MFO 中,|MF |2+|OM |2=|OF |2,∴4a 2+3a 2=c 2⇒e =7.故选B . 题型四 双曲线的渐近线31.(2018·全国Ⅰ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 31.答案 A 解析 法一:由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,所以ba=2,所以该双曲线的渐近线方程为y =±ba x =±2x ,故选A .法二:由e =ca =1+⎝⎛⎭⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A .32.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO 交双曲线C 左支于点M ,直线PF 2交双曲线C 右支于点N ,若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2x D .y =±22x 32.答案 A 解析 由题意得,|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,∴|PF 1|=4a ,|PF 2|=2a ,由于P ,M 关于原点对称,F 1,F 2关于原点对称,∴线段PM ,F 1F 2互相平分,四边形PF 1MF 2为平行四边形,PF 1∥MF 2,∵∠MF 2N =60°,∴∠F 1PF 2=60°,由余弦定理可得4c 2=16a 2+4a 2-2·4a ·2a ·cos60°,∴c =3a ,∴b =c 2-a 2=2a .∴ba =2,∴双曲线C 的渐近线方程为y =±2x .故选A .33.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (1,0)作x 轴的垂线,与双曲线交于A ,B 两点,O 为坐标原点,若△AOB 的面积为83,则双曲线的渐近线方程为________.33.答案 y =±22x 解析 由题意得|AB |=2b 2a ,∵S △AOB =83,∴12×2b 2a ×1=83,∴b 2a =83①,又a 2+b 2=1②,由①②得a =13,b =223,∴双曲线的渐近线方程为y =±bax =±22x .34.已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( )A .y =±xB .y =±2xC .y =±2xD .y =±3x34.答案 A 解析 由双曲线方程可得渐近线为:y =±b a x ,A (a,0),F (c,0),则点A 到渐近线距离d 1=|ab |a 2+b2=ab c ,点F 到渐近线距离d 2=|bc |a 2+b 2=bc c =b ,∴d 1∶d 2=ab c ∶b =a ∶c =1∶2,即c =2a ,则ba =c 2-a 2a =aa =1,∴双曲线渐近线方程为y =±x .故选A .35.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,F 为其一个焦点,若F 关于l 1的对称点在l 2上,则双曲线的渐近线方程为( )A .y =±2xB .y =±3xC .y =±3xD .y =±2x35.答案 B 解析 不妨取F (c ,0),l 1:bx -ay =0,设其对称点F ′(m ,n )在l 2:bx +ay =0,由对称性可得⎩⎨⎧b ·m +c 2-a ·n 2=0n m -c ·ba =-1,解得⎩⎪⎨⎪⎧m =a 2-b 2a 2+b2cn =2abca 2+b2,点F ′(m ,n )在l 2:bx +ay =0,则a 2-b 2a 2+b 2·bc +2a 2bca 2+b2=0,整理可得b 2a 2=3,∴b a =3,双曲线的渐近线方程为:y =±bax =±3x .故选B.36.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( )A .y =±2xB .y =±12xC .y =±22x D .y =±2x36.答案 D 解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .37.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±6x D .y =±66x 37.答案 D 解析 根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 120°,即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x .38.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =038.答案 A 解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0. 题型五 双曲线中的最值与范围39.P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155 C .4+155D .22+1 39.答案 D 解析 如图所示,设双曲线右焦点为F 2,则|PF 1|+|PQ |=2a +|PF 2|+|PQ |,即当|PQ |+|PF 2|最小时,|PF 1|+|PQ |取最小值,由图知当F 2,P ,Q 三点共线时|PQ |+|PF 2|取得最小值,即F 2到直线l 的距离d =1,故所求最值为2a +1=22+1.故选D .40.双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线上在第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( )A .8B .10C .4+37D .3+317 40.答案 B 解析 由已知得⎩⎪⎨⎪⎧a b =233,c =7,c 2=a 2+b 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,c 2=7,则双曲线C 的方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,又点P 在第一象限,则|PF ′|+|P A |的最小值为|AF ′|=3,故△P AF 的周长的最小值为10. 41.过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线, 切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .1941.答案 B 解析 由题意可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1),因此|PM |2-|PN |2=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.故选B . 42.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上 的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4B .5C .6D .742.答案 C 解析 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C .43.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.43.答案 [3+23,+∞) 解析 由题意,得22=a 2+1,即a =3,设P (x ,y ),x ≥3,FP →=(x +2, y ),则OP →·FP →=(x +2)x +y 2=x 2+2x +x 23-1=43⎝⎛⎭⎫x +342-74,因为x ≥3,所以OP →·FP →的取值范围为[3+23,+∞).44.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.44.答案 (0,3] 解析 由双曲线的定义及题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=t |PF 2|,解得⎩⎨⎧|PF 1|=2att -1,|PF 2|=2a t -1.又|PF 1|+|PF 2|≥2c ,∴|PF 1|+|PF 2|=2at t -1+2a t -1≥2c ,整理得e =c a ≤t +1t -1=1+2t -1,∵1<t ≤3,∴1+2t -1≥2,∴1<e ≤2.又b 2a 2=c 2-a 2a 2=e 2-1,∴0<b 2a 2≤3,故0<ba ≤3.∴双曲线经过一、三象限的渐近线的斜率的取值范围是(0,3].45.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→的最小值的取值范围是________.45.答案 ⎣⎡⎦⎤-1516,-34 解析 设P (m ,n ),则m 2a 2-n 2b 2=1,即m 2=a 2⎝⎛⎭⎫1+n 2b 2.又F 1(-1,0),F 2(1,0),则PF 1→=(-1-m ,-n ),PF 2→=(1-m ,-n ),PF 1→·PF 2→=n 2+m 2-1=n 2+a 2⎝⎛⎭⎫1+n 2b 2-1=n 2⎝⎛⎭⎫1+a 2b 2+a 2-1≥a 2-1,当且仅当n =0时取等号,所以PF 1→·PF 2→的最小值为a 2-1.由2≤1a ≤4,得14≤a ≤12,故-1516≤a 2-1≤-34,即PF 1→·PF 2→的最小值的取值范围是⎣⎡⎦⎤-1516,-34.。
双曲线渐近线方程记忆诀窍
双曲线渐近线方程记忆诀窍
双曲线是高中数学中的重要内容,其中双曲线渐近线方程更是考试中的热点难点。
为了帮助大家更好地掌握双曲线渐近线方程,下面分享一些记忆诀窍。
1. 双曲线渐近线方程的一般形式是 y=±a/x,其中 a 为常数。
2. 当双曲线的开口朝左右方向时,其渐近线方程为 y=0,即 x 轴为渐近线。
3. 当双曲线的开口朝上下方向时,其渐近线方程为 x=0,即 y 轴为渐近线。
4. 当双曲线的开口朝左右或上下方向时,其渐近线方程为 y=x 或 y=-x,即双曲线两支的交点为原点,而且两支的对称轴分别为 y=x 和 y=-x。
5. 当双曲线的离心率 e>1 时,其渐近线方程为 y=±ex,其中 e 为离心率。
6. 当双曲线的离心率 e<1 时,其渐近线方程为 y=±a/x,其中a=√(1-e)。
以上是双曲线渐近线方程的记忆诀窍,希望能够帮助大家更好地理解和掌握这个知识点。
同时也要注意多做练习,熟练掌握渐近线方程的应用技巧。
- 1 -。
高考数学专题复习:双曲线(含解析)
高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。
修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。
2.理解数形结合的思想。
3.了解双曲线的实际背景及其简单应用。
一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。
点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。
2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。
点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。
双曲线的通径为 $2a$。
3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。
历年高三数学高考考点之双曲线的渐近线和离心率必会题型及答案
历年高三数学高考考点之<双曲线的渐近线和离心率>必会题型及答案体验高考1.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( ) A.433 B.23C.6D.4 3答案 D解析 设A ,B 两点的坐标分别为(x ,y A ),(x ,y B ),将x =c =2代入渐近线方程y =±3x 得到y A ,y B ,进而求|AB |.由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c=2代入得y =±23,即A ,B 两点的坐标分别为(2,23),(2,-23),所以|AB |=4 3.2.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的半实轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1C.x 24-y 24=1D.x 24-y 212=1 答案 D解析 由题意知双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b 4+b2或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b4+b 2,即第一象限的交点为⎝⎛⎭⎪⎫44+b2,2b 4+b 2.由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b2,4b 4+b2,故8×4b4+b2=2b ,得b 2=12.故双曲线的方程为x 24-y 212=1.故选D.3.已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<1答案 A解析 由题意可得:m 2-1=n 2+1,即m 2=n 2+2, 又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1. 4.已知点P 和Q 横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线C 1和C 2,若C 1的渐近线为y =±3x ,则C 2的渐近线方程为____________.答案 y =±32x 解析 设点P 和Q 的坐标为(x ,y ),(x 0,y 0), 则有⎩⎪⎨⎪⎧x =x 0,y =2y 0,又因为C 1的渐近线方程为y =±3x ,故设C 1的方程为3x 2-y 2=λ, 把点坐标代入,可得3x 20-4y 20=λ, 令λ=0⇒3x ±2y =0, 即为曲线C 2的渐近线方程, 则y =±32x .5.已知双曲线x 2a2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________.答案33解析 直接求解双曲线的渐近线并比较系数.双曲线x 2a 2-y 2=1的渐近线为y =±xa ,已知一条渐近线为3x +y =0,即y =-3x ,因为a >0,所以1a =3,所以a =33.高考必会题型题型一 双曲线的渐近线问题例1 (1)已知直线y =1-x 与双曲线ax 2+by 2=1(a >0,b <0)的渐近线交于A ,B 两点,且过原点和线段AB 中点的直线的斜率为-32,则ab的值为( ) A.-2327B.-32C.-932 D.-233答案 B解析 双曲线ax 2+by 2=1的渐近线方程可表示为ax 2+by2=0,由⎩⎪⎨⎪⎧y =1-x ,ax 2+by 2=0得(a +b )x 2-2bx +b =0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2ba +b, y 1+y 2=2aa +b,所以原点和线段AB 中点的直线的斜率k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2=a b =-32, 故选B.(2)如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F .点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).①求双曲线C 的方程;②过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.解 ①设F (c ,0),因为b =1,所以c =a 2+1, 直线OB 的方程为y =-1ax ,直线BF 的方程为y =1a (x -c ),解得B (c 2,-c2a ).又直线OA 的方程为y =1ax ,则A (c ,ca ),k AB =c a -(-c 2a )c -c 2=3a.又因为AB ⊥OB ,所以3a ·(-1a)=-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.②由①知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0. 因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M (2,2x 0-33y 0);直线l 与直线x =32的交点为N (32,32x 0-33y 0).则|MF |2|NF |2=(2x 0-3)2(3y 0)214+(32x 0-3)2(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2.因为P (x 0,y 0)是C 上一点, 则x 203-y 20=1, 代入上式得|MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43, 即所求定值为|MF ||NF |=23=233.点评 (1)在求双曲线的渐近线方程时要掌握其简易求法.由y =±b a x ⇔x a ±y b =0⇔x 2a 2-y 2b 2=0,所以可以把标准方程x 2a 2-y 2b 2=1(a >0,b >0)中的“1”用“0”替换即可得出渐近线方程.(2)已知双曲线渐近线方程:y =b a x ,可设双曲线方程为x 2a 2-y 2b2=λ(λ≠0),求出λ即得双曲线方程.变式训练1 已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为154,则C 2的渐近线方程为( ) A.x ±2y =0B.2x ±y =0C.x ±2y =0D.2x ±y =0 答案 C解析 由已知,得e 1=1-(b a)2,e 2=1+(b a)2,所以e 1e 2=1-(b a)4=154,解得b a =±12, 所以C 2的渐近线方程为y =±b a x =±12x ,即x ±2y =0,故选C. 题型二 双曲线的离心率问题例2 (1)点A 是抛物线C 1:y 2=2px (p >0)与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( ) A.2B.3C.5D. 6(2)(2016·课标全国甲)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin F 2=13,则E 的离心率为( )A.2B.32C.3D.2答案 (1)C (2)A解析 (1)双曲线的渐近线方程为:y =b ax , 由题意可求得点A (p 2,p )代入渐近线得b a =pp2=2,∴(b a )2=4,∴c 2-a 2a2=4, ∴e 2=5,∴e =5,故选C.(2)离心率e =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin Msin F 1-sin F 2=2231-13= 2.故选A.点评 在研究双曲线的性质时,半实轴、半虚轴所构成的直角三角形是值得关注的一个重要内容;双曲线的离心率涉及的也比较多.由于e =ca是一个比值,故只需根据条件得到关于a 、b 、c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形求e ,并且需注意e >1.同时注意双曲线方程中x ,y 的范围问题.变式训练2 (2016·上海)双曲线x 2-y 2b2=1(b >0)的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2)设b =3,若l 的斜率存在,且(F 1A →+F 1B →)·AB →=0,求l 的斜率. 解 (1)由已知F 1(-b 2+1,0),F 2(b 2+1,0), 取x =b 2+1,得y =b 2, |F 1F 2|=3|F 2A |,∵|F 1F 2|=2b 2+1,|F 2A |=b 2, ∴2b 2+1=3b 2,即3b 4-4b 2-4=(3b 2+2)(b 2-2)=0, ∴b =2,∴渐近线方程为y =±2x . (2)若b =3,则双曲线方程为x 2-y 23=1,∴F 1(-2,0),F 2(2,0), 设A (x 1,y 1),B (x 2,y 2),则F 1A →=(x 1+2,y 1),F 1B →=(x 2+2,y 2),AB →=(x 2-x 1,y 2-y 1), ∴F 1A →+F 1B →=(x 1+x 2+4,y 1+y 2),(F 1A →+F 1B →)·AB →=x 22-x 21+4(x 2-x 1)+y 22-y 21=0,(*) ∵x 21-y 213=x 22-y 223=1,∴y 22-y 21=3(x 22-x 21),∴代入(*)式,可得4(x 22-x 21)+4(x 2-x 1)=0, 直线l 的斜率存在,故x 1≠x 2, ∴x 1+x 2=-1.设直线l 为y =k (x -2),代入3x 2-y 2=3, 得(3-k 2)x 2+4k 2x -(4k 2+3)=0, ∴3-k 2≠0,且Δ=16k 4+4(3-k 2)(4k 2+3)=36(k 2+1)>0, x 1+x 2=-4k 23-k 2=-1,∴k 2=35,∴k =±155, ∴直线l 的斜率为±155. 题型三 双曲线的渐近线与离心率综合问题例3 已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点P ,Q ,若∠PAQ =60°,且OQ →=3OP →,则双曲线C 的离心率为( ) A.74B.73C.72D.7 答案 C解析 如图所示,设∠AOQ =α,∴tan α=b a ⇒cos α=a c ,sin α=b c,∴|OH |=a ·cos α=a 2c ,|AH |=a ·sin α=abc,又∵OQ →=3OP →,∴|OP |=|PH |=|HQ |=a 22c,∴|AH |=3|PH |⇒ab c =3·a 22c⇒2b =3a ,∴e =1+(b a)2=72. 故选C.点评 解决此类问题:一是利用离心率公式,渐近线方程,斜率关系等列方程组.二是数形结合,由图形中的位置关系,确定相关参数的范围.变式训练3 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)以及双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线将第一象限三等分,则双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为( )A.2或233B.6或233C.2或3D.3或 6答案 A解析 由题意可知,双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线的倾斜角为30°或60°,则k =b a =3或33, 则e =c a =c 2a 2=a 2+b 2a 2=1+b 2a 2=2或233. 高考题型精练1.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,233答案 A解析 由双曲线方程可求出F 1,F 2的坐标,再求出向量MF 1→,MF 2→,然后利用向量的数量积公式求解.由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0), ∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. 2.已知双曲线x 2a 2-y 2b2=1的一条渐近线方程为y =2x ,则双曲线的离心率为( )A.5B.52C.5或52D.2 答案 A解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,由题意可得b a=2,即有b =2a .c =a 2+b 2=5a ,可得e =c a=5,故选A.3.已知双曲线x 2a 2-y 2b2=1的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( ) A.43B.53C.2D.73 答案 B解析 由双曲线的定义知|PF 1|-|PF 2|=2a , ① 又|PF 1|=4|PF 2|,②联立①②解得|PF 1|=83a ,|PF 2|=23a .在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2,要求e 的最大值,即求cos ∠F 1PF 2的最小值, 当cos ∠F 1PF 2=-1时,解得e =53,即e 的最大值为53,故选B.4.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2,若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,则双曲线的离心率是( ) A.3+52 B.5+12 C.5-12 D.3-52答案 B解析 由题意,得直线F 1B 1的方程是bx -cy +bc =0, 因为圆与直线相切,所以点O 到直线F 1B 1的距离等于半径,即bc b 2+(-c )2=a ,又b 2=c 2-a 2,得c 4-3a 2c 2+a 4=0,e 4-3e 2+1=0,e 2=3+52,e =1+52,故选B. 5.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点,若M ,O ,N 将椭圆的长轴四等分,则双曲线与椭圆的离心率的比值是( )A.3B.2C.3D. 2 答案 B解析 设椭圆与双曲线的标准方程分别为x 2a 2+y 2b 2=1(a >b >0), x 2m 2-y 2n 2=1(m >0,n >0), 因为它们共焦点,所以它们的半焦距均为c , 所以椭圆与双曲线的离心率分别为e 1=c a ,e 2=c m, 由点M ,O ,N 将椭圆长轴四等分可知m =a -m ,即2m =a ,所以e 2e 1=c m c a=am=2,故选B.6.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A.焦距相等B.半实轴长相等C.半虚轴长相等D.离心率相等答案 A解析 因为0<k <9,所以两条曲线都表示双曲线.双曲线x 225-y 29-k=1的半实轴长为5,半虚轴长为9-k ,焦距为225+(9-k )=234-k ,离心率为34-k 5.双曲线x 225-k -y29=1的半实轴长为25-k ,半虚轴长为3,焦距为2(25-k )+9=234-k ,离心率为34-k25-k,故两曲线只有焦距相等.故选A.7.已知F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 是双曲线C 的中心,直线y =mx是双曲线C 的一条渐近线,以线段OF 为边作正三角形AOF ,若点A 在双曲线C 上,则m =________. 答案 3+2 3解析 因为直线y =mx 是双曲线C 的一条渐近线,所以m =b 2a2,又A 在双曲线C 上,三角形AOF 是正三角形,所以A (12c ,32c ),(12c )2a 2-(32c )2b 2=1,c 2=a 2+b 2,化为a 2+b 24a 2-3(a 2+b 2)4b2=1, 14+14m -34-34m=1, 因为m >0,可解得m =3+2 3.8.设P 为直线y =b 3a x 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,则双曲线的离心率e =________. 答案324解析 设P (x ,b3ax ),则由题意,知c =|x |,因为PF 1垂直于x 轴,则由双曲线的通径公式知|b 3a x |=b 2a ,即b 3a c =b 2a ,所以b =c3.又由a 2=c 2-b 2,得a 2=89c 2,所以e =c a =324.9.(2016·山东)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.答案 2解析 由已知得|AB |=2b2a,|BC |=2c ,∴2×2b2a=3×2c ,又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝ ⎛⎭⎪⎫c a 2-3c a -2=0,即2e 2-3e -2=0,解得e =2或e =-12(舍去).10.已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →,若双曲线x 2a2-y 2b2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是________. 答案 (1,2)解析 根据条件AP →⊥BP →,可得P 点的轨迹方程x 2+(y -2)2=1,求出双曲线的渐近线方程y =b ax ,运用圆心到直线的距离大于半径,得到3a 2>b 2, 再由b 2=c 2-a 2, 得出离心率e =c a<2,又双曲线离心率e >1,所以1<e <2.11.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,点F 1关于渐近线的对称点恰好在以F 2为圆心,|OF 2|(O 为坐标原点)为半径的圆上,则该双曲线的离心率为______. 答案 2解析 设F 1(-c ,0),F 2(c ,0), 设一条渐近线方程为y =-b ax , 则F 1到渐近线的距离为bca 2+b2=b ,设F 1关于渐近线的对称点为M ,F 1M 与渐近线交于点A ,所以|MF 1|=2b , A 为F 1M 的中点,又O 是F 1F 2的中点,所以OA ∥F 2M ,∠F 1MF 2是直角, 由勾股定理得:4c 2=c 2+4b 2, 化简得e =2.12.已知双曲线C 1:x 2-y 24=1.(1)求与双曲线C 1有相同焦点,且过点P (4,3)的双曲线C 2的标准方程;(2)直线l :y =x +m 分别交双曲线C 1的两条渐近线于A 、B 两点,当OA →·OB →=3时,求实数m 的值.解 (1)∵双曲线C 1:x 2-y 24=1,∴焦点坐标为(5,0),(-5,0),设双曲线C 2的标准方程为x 2a 2-y 2b2=1(a >0,b >0),∵双曲线C 2与双曲线C 1有相同焦点,且过点P (4,3),∴⎩⎪⎨⎪⎧a 2+b 2=5,16a 2-3b2=1,解得⎩⎪⎨⎪⎧a =2,b =1.∴双曲线C 2的标准方程为x 24-y 2=1.(2)双曲线C 1的两条渐近线为y =2x ,y =-2x ,由⎩⎪⎨⎪⎧y =2x ,y =x +m 可得x =m ,y =2m ,∴A (m ,2m ), 由⎩⎪⎨⎪⎧y =-2x ,y =x +m 可得x =-13m ,y =23m ,∴B (-13m ,23m ),∴OA →·OB →=-13m 2+43m 2=m 2,∵OA →·OB →=3,∴m 2=3,∴m =± 3.。
双曲线高考6大常考基础题型总结(解析版)--2024高考数学常考题型精华版
第20讲双曲线高考6大常考基础题型总结【考点分析】考点二:双曲线的通径过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为22b a.考点三:双曲线常考性质结论①双曲线的焦点到两条渐近线的距离为常数b ;顶点到两条渐近线的距离为常数ab c;②双曲线上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数222a b c;考点四:双曲线焦点三角形面积为2tan2b θ(可以这样理解,顶点越高,张角越小,分母越小,面积越大)【题型目录】题型一:利用双曲线定义解题题型二:求双曲线的标准方程题型三:双曲线焦点三角形面积题型四:双曲线的渐近线有关题型题型五:双曲线的离心率问题题型六:双曲线的最值问题【典型例题】题型一:利用双曲线定义解题【例1】已知双曲线()222:1012x y C a a -=>的左右焦点分别为1F 、2F ,0y +=,若点M在双曲线C 上,且15MF =,则2MF =()A .9B .1C .1或9D .1或7【例2】已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=【例3】已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为.【答案】121,22,a c PF PF a ==∴-==22112224PF PF PF PF ∴-+=22212121221212,(2)8,24,()8412,PF PF PF PF c PF PF PF PF PF PF ⊥∴+==∴=∴+=+=∴+= 【例4】已知曲线C 的方程为221mx ny +=,下列说法正确的是()A .若0mn >,则曲线C 为椭圆B .若0mn <,则曲线C 为双曲线C .若曲线C 为焦点在x 轴的椭圆,则0m n >>1n【题型专练】1.设双曲线221169x y -=的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆2216x y +=相切于点N ,M 为线段PF 的中点,O 为坐标原点,则MN MO -=()A .12B .1C .32D .22.已知F 1、F 2分别为双曲线C :29x -227y =1的左、右焦点,点A 为C 上一点,点M 的坐标为(2,0),AM为∠F 1AF 2的角平分线.则|AF 2|=.3.方程132m m +=-+表示双曲线的一个充分不必要条件是()A .23m -<<B .20m -<<C .2m <-或3m >D .32m -<<题型二:求双曲线的标准方程【例1】与椭圆22:11612y x C +=共焦点且过点(的双曲线的标准方程为()A .2213y x -=B .2221yx -=C .22122y x -=D .2213y x -=【答案】C 【解析】【分析】求出椭圆的焦点坐标,利用双曲线的定义可求得a 的值,再由b =b 的值,结合双曲线的焦点位置可求得双曲线的标准方程.【详解】椭圆C 的焦点坐标为()0,2±,设双曲线的标准方程为()222210,0y x a b a b-=>>,由双曲线的定义可得2a =-=,a ∴2c = ,b ∴=因此,双曲线的方程为22122y x -=.故选:C.【例2】已知圆22:(4)16M x y ++=,M 为圆心,P 为圆上任意一点,定点(4,0)A ,线段PA 的垂直平分线l 与直线PM 相交于点Q ,则当点P 在圆上运动时,点Q 的轨迹方程为()A .221(2)412x y x -=≤-B .221412x y -=C .221(1)3y x x -=≤-D .2213y x -=【例3】已知双曲线H :219x y a -=(0a >),以原点为圆心,双曲线的虚半轴长为半径的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形ABCD 的面积为4a ,则双曲线的方程为()A .22199x y -=B .221189x y -=C .221279x y -=D .221369x y -=【例4】已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在双曲线C 的右支上,12MF MF ⊥,若1MF 与C 的一条渐近线l 垂直,垂足为N ,且12NF ON -=,其中O 为坐标原点,则双曲线C 的标准方程为()A .2212016x y -=B .221204x y -=C .221416x y -=D .221420x y -=,【题型专练】1.已知双曲线的对称轴为坐标轴,两个顶点间的距离为2,焦点在y ,则双曲线的标准方程是()A .2212y x -=B .2212x y -=C .2212xy -=D .2212y x -=2.已知双曲线C 的焦点为1F ,)2F ,点P 在双曲线C 上,满足112PF F F ⊥,14PF =,则双曲线C 的标准方程为()A .2214x y -=B .2214y x -=C .22132x y -=D .22123x y -=3.已知圆M :()2224x y ++=,M 为圆心,P 为圆上任意一点,定点()2,0A ,线段PA 的垂直平分线l 与直线PM 相交于点Q ,则当点P 在圆上运动时,点Q 的轨迹方程为()A .221(2)412x y x -=≤-B .221412x y -=C .221(1)3y x x -=≤-D .2213y x -=4.已知双曲线方程为222x y k -=,焦距为6,则k 的值为________.故答案为:±6.5.(2022·重庆·三模)已知双曲线C :()222210,0x y a b a b-=>>的左右焦点为1F ,2F ,左右顶点为1A ,2A ,过2F 的直线l 交双曲线C 的右支于P ,Q 两点,设12PA A α∠=,21PA A β∠=,当直线l 绕着2F 转动时,下列量保持不变的是()A .1PQA △的周长B .1PF Q 的周长与2PQ之差C .tan tan αβD .tan tan αβ⋅【答案】BD 【解析】【分析】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,可判断A ,根据双曲线定义求解可判断B ,设(),P x y ,则tan ,tan y y a xx aαα==-+-根据商与积的值可判断CD .【详解】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,故A 不正确;1PF Q 的周长为1122442PF QF PQ a PF QF PQ a PQ++=+++=+所以1PF Q 的周长与2PQ之差为4a ,故B 正确;设(),P x y ,则tan ,tan y ya x x aαα==-+-,由tan tan a xa xαβ-=+不是常量,故C 不正确;由22222222221tan tan x b y y a y b a x a x a x a x aαβ⎛⎫- ⎪⎝⎭⋅=⋅==-+---为常量,故D 正确;故选:BD题型三:双曲线焦点三角形面积【例1】设双曲线2222:1(00)x y C a b a b,-=>>的左、右焦点分别为1F ,2F.P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a =()A .1B .2C .4D .8【答案】A【思路导引】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【解析】解法一:ca=c ∴=,根据双曲线的定义可得122PF PF a -=,12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥ ,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选A .解法二:由题意知,双曲线的焦点三角形面积为2tan 221θb S F PF =.∴︒45tan 2b =4,则2=b ,又∵5==ace ,∴1=a .解法三:设n PF m PF ==21,,则421==mn S F PF ,a n m 2=-,5,4222===+ace c n m ,求的1=a .【例2】已知1F ,2F 是双曲线C :()2210,0436x y a b -=>>的左、右焦点,M ,N 是C 上关于原点对称的两点,且12MN F F =,则四边形12MF NF 的面积是______.,即可求得四边形【题型专练】1.已知1F ,2F 分别是双曲线C :22144x y -=的左、右焦点,P 是C 上一点,且位于第一象限,120PF PF ⋅= ,则()A .PB .12PF =C .12PF F △的周长为4D .12PF F △的面积为42.设1F ,2F 是双曲线2:13C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则△12PF F 的面积为()A .72B .3C .52D .2【答案】B【解析】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,∵121||1||2OP F F ==,∴点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形,故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,∴2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,∴12F F P S =△121||||32PF PF =,故选B .题型四:双曲线的渐近线有关题型焦点在x 轴上的渐近线为⎪⎪⎭⎫ ⎝⎛=-±=02222b y a x x a b y 焦点在y 轴上的渐近线为⎪⎪⎭⎫ ⎝⎛=-±=02222b x a y x b a y 若双曲线的方程为122=+ny mx ,要求渐近线只需令022=+ny mx ,解出即可即已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。
双曲线渐近线方程推导总结
双曲线渐近线方程推导总结双曲线是一条具有特殊形状的曲线,它有着独特的渐近线。
本文将对双曲线的渐近线方程进行推导并进行总结。
双曲线的定义双曲线是一个平面上的几何形状,其定义可以用以下方程表示:$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $,其中 $ a $ 和 $ b $ 分别是双曲线的参数。
双曲线的渐近线双曲线具有两条渐近线,一条是水平的渐近线,另一条是垂直的渐近线。
它们分别与双曲线的两个极限值轨迹相切。
水平渐近线方程推导对于双曲线 $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $,当 $ x $ 趋向于正无穷大时,可得到 $ y $ 的极限值为正无穷大。
同理,当$ x $ 趋向于负无穷大时,$ y $ 的极限值为负无穷大。
因此,当 $ y $ 趋向于正无穷大时,$ \frac{x^2}{a^2} $ 的值将无穷接近于 $ \frac{y^2}{b^2} + 1 $,即 $ \frac{x^2}{a^2} \approx \frac{y^2}{b^2} + 1 $。
进一步简化可得 $ \frac{x^2}{a^2} \approx \frac{y^2}{b^2} $。
通过取平方根可得 $ \frac{x}{a} \approx \pm \frac{y}{b} $,即$ y \approx \pm \frac{b}{a} x $。
因此,双曲线的水平渐近线方程为 $ y = \pm \frac{b}{a} x $。
垂直渐近线方程推导对于双曲线 $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $,当 $ y $ 趋向于正无穷大时,可得到 $ x $ 的极限值为正无穷大。
同理,当$ y $ 趋向于负无穷大时,$ x $ 的极限值为负无穷大。
因此,当 $ x $ 趋向于正无穷大时,$ \frac{y^2}{b^2} $ 的值将无穷接近于 $ \frac{x^2}{a^2} - 1 $,即 $ \frac{y^2}{b^2} \approx\frac{x^2}{a^2} - 1 $。
高中高考考点难点常见题型(带答案解析)双曲线(解析版)
(a+m)2 +(b+m)2 (a+m)2
所以,当a>b时,e1<e2;
当a<b时,e1>e2.
简单 已测:3518次 正确率:92.9%
22
6.
设双曲线 x2 a2
−
y2 b2
=
1(a>0, b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于
B, C两点,过B, C分别作AC, AB的垂线,两垂线交于点D.若D到直线BC的距离小于
=1
D. x2 4
−
y2 3
=1
考点:双曲线的标准方程的求解、双曲线的渐近线问题
知识点:双曲线的标准方程、双曲线的渐近线
答案:D
解析:由题意可得
b a
=
3 2
,
c
=
7,又c2
=
7 = a2+b2,解得a2
= 4, b2
=
3,故双曲线的方程为
x2 4
−
y2 3
=
1.
一般 已测:1871次 正确率:76.7%
,所以 ,则由题意知 ,即 ,所 (
b2 a
)2
=
(c
−
a)∣F D∣
∣F D∣
=
a2
b4 (c−a)
a2
b4 (c−a)
<a+
a2 + b2
a2
b4 (c−a)
<a
+
c
以b4<a2(c
−
a)(a
+
c),即b4
<a2
(c2 −a2
,即) b4<a2b2
高考数学冲刺专题3.8 双曲线的综合问题(新高考)(解析版)
专题3.8 双曲线的综合问题与双曲线有关的解答题的求解策略:(1)熟知双曲线的渐近线、双曲线的方程及双曲线的性质是求解此类问题的关键; (2)对于双曲线中的定值、定点问题,属于难题,一般解法是设直线、联立方程组、根与系数关系、结合已知条件化简即可得出答案.【预测题1】已知双曲线22221x y a b-=(a >0,b >0)的右焦点为F (3,0),左、右顶点分别为M ,N ,点P 是E 在第一象限上的任意一点,且满足k PM •k PN =8. (1)求双曲线E 的方程;(2)若直线PN 与双曲线E 的渐近线在第四象限的交点为A ,且△P AF 的面积不小于,求直线PN 的斜率k 的取值范围.【答案】(1)x 228y-=1.(2)0<k ≤ 【解析】(1)设P (x 0,y 0),则k PM 00y x a =+,k PN 00y x a=-,所以k PM •k PN 20220y x a==-8,即20y =8x 02﹣8a 2, 又P (x 0,y 0)是双曲线上的点,所以220022x y a b -=1,即y 0222b a =x 02﹣b 2,所以22b a=8,又双曲线的右焦点为(3,0),所以a 2+b 2=9.所以a 2=1,b 2=8,所以双曲线的方程为x 228y -=1.(2)由(1)可知N (1,0),双曲线的过第四象限的渐近线方程为y =﹣x ,设直线PN 的方程为x =my +1,则直线PN 的斜率为k 1m=,显然m >0.联立方程组1x my y =+⎧⎪⎨=-⎪⎩,可得yA =联立方程组22118x my y x =+⎧⎪⎨-=⎪⎩,可得y P 21618m m =-, 所以S △P AF 122=⨯⨯(y P ﹣y A)21618m m=+=-令2818m m+≥-,解得m 24≥,所以01m≤<0<k ≤【名师点睛】本题考查了双曲线的性质,直线与圆锥曲线的位置关系,属于中档题. 【预测题2】郑州中原福塔的外立面呈双曲抛物面状,造型优美,空中俯瞰犹如盛开的梅花绽放在中原大地,是现代建筑与艺术的完美结合.双曲抛物面又称马鞍面,其在笛卡儿坐标系中的方程与在平面直角坐标系中的双曲线方程类似.双曲线在物理学中具有很多应用,比如波的干涉图样为双曲线、反射式天文望远镜利用了其光学性质等等.(1)已知A ,B 是在直线l 两侧且到直线l 距离不相等的两点,P 为直线l 上一点.试探究当点P 的位置满足什么条件时,||PA PB -取最大值;(2)若光线在平滑曲线上发生反射时,入射光线与反射光线关于曲线在入射点处的切线在该点处的垂线对称.证明:由双曲线一个焦点射出的光线,在双曲线上发生反射后,反射光线的反向延长线交于双曲线的另一个焦点.【答案】(1)当P 的位置使得l 为APB ∠的平分线时,||PA PB -取最大值;(2)证明见解析.【解析】(1)不妨设A 点到直线l 的距离比B 点到直线l 的距离大,作点A 关于直线l 的对称点A '.当A ',B ,P 三点共线,即l 为APB ∠的平分线时, 有PA PB PA PB A B ''-=-=,当A ',B ,P 三点不共线,即l 不是APB ∠的平分线时,取这样的点P ', 则A ',B ,P '能构成一个三角形,故P A P B P A P B A B ''''''-=-<(两边之差小于第三边),因此,当且仅当P 的位置使得l 为APB ∠的平分线时,||PA PB -取最大值.(2)不妨设双曲线的焦点在x 轴上,实半轴长为a ,虚半轴长为b ,左右焦点分别为1F ,2F ,入射光线1l 从2F 出射,入射点Q ,反射光线2l , 双曲线在Q 点处的切线3l ,3l 在Q 点处的垂线4l ,由光的反射定律,1l ,2l 关于4l 对称,故1l ,2l 关于3l 对称, 要证:反射光线2l 过点1F ,只要证:3l 是12FQF ∠的角平分线,定义双曲线焦点所在区域为双曲线的内部,渐近线所在区域为双曲线的外部,由双曲线的定义,12||2FQ F Q a -=,双曲线上任意一点满足方程为22221x y a b-=, 若12||2FQ F Q a ''->,Q '满足不等式22221x y a b->,即Q '与焦点同在双曲线内部; 若12||2FQ F Q a ''''-<,Q ''满足不等式22221x y a b-<,即Q ''在双曲线外部. 故:对于双曲线内部的任意一点Q ',有12||2FQ F Q a ''->, 对于双曲线外部的任意一点Q '',有12||2FQ F Q a ''''-<, 又3l 是双曲线在Q 点处的切线,故在3l 上有且仅有一点Q 使得12||2FQ F Q a -=, 3l 上其他点Q '''均有12||2FQ F Q a ''''''-<, 故Q 是3l 上唯一使得12||FQ F Q -取最大值的点, 又1F ,2F 到直线3l 距离不相等,根据(1)中结论,可知3l 是12FQF ∠的角平分线, 故反射光线2l 过点1F ,命题得证.【名师点睛】设双曲线22221(0,0)x y a b a b-=>>左右焦点分别为1F ,2F ,则有:若(,)Q x y 为双曲线上任意一点,则12||2FQ F Q a -=,且22221x ya b-=;若(,)Q x y 为双曲线内部任意一点,则12||2FQ F Q a ->,且22221x ya b->; 若(,)Q x y 为双曲线外部任意一点,则12||2FQ F Q a -<,且22221x ya b-<.【预测题3】已知双曲线的中心在原点,1F 、2F 倍,双曲线过点(4,.(1)求双曲线的标准方程;(2)若点(3,)M m 在双曲线上,求证:点M 在以12F F 为直径的圆上;(3)在(2)的条件下,若直线2MF 交双曲线于另一点N ,求1F MN △的面积.【答案】(1)22166x y -=;(2)证明见解析;(3)12+. 【解析】(1)设双曲线标准方程为()222210,0x y a b a b-=>>双曲线焦距为2c ,实轴长为2a ,则2c =,即c =2222b c a a ∴=-= ∴双曲线方程为222x y a -=代入(得216106a =-= ∴双曲线的标准方程为22166x y-=(2)由(1)知()1F -,()2F()3,M m 在双曲线上 296m ∴-=,即23m =()13,MF m ∴=--,()223,MF m =-()()2123391230MF MF m ∴⋅=-⨯+=-+= 12MF MF ∴⊥M ∴在以12F F 为直径的圆上(3)由(2)知(M或(3,当(M 时,直线2MF方程为)(()323y x x =-=--即((26y x =-++代入双曲线方程整理可得(26260y y --+=MN ∴)2==-1F MN ∴∆的面积为)(12122122S F F =⋅=+=+由双曲线对称性可知,当(3,M 时,1F MN ∆面积与(M 时一致1F MN ∴∆的面积12S =+【名师点睛】本题考查双曲线几何性质、直线与双曲线知识的综合应用问题,涉及到双曲线方程的求解、与双曲线焦点弦有关的三角形面积的求解问题,属于常考题型.【预测题4】已知坐标原点为O ,双曲线()2222C :10,0x y a b a b-=>>的焦点到其渐近线的. (1)求双曲线的方程;(2)设过双曲线上动点()00,P x y 的直线0012y yx x -=分别交双曲线的两条渐近线于A ,B 两点,求AOB 的外心M 的轨迹方程.【答案】(1)2212y x -=;(2)22924x y -=. 【解析】(1)由已知可得2c e a ====b == 即21a =,22b =,所以双曲线的方程为2212y x -=;(2)设()11,A x y ,()22,B x y ,且由已知得22012y x -=,渐近线方程为y =,联立0012y y x x y ⎧-=⎪⎨⎪=⎩,解得1002x =11y =;联立0012y y x x y ⎧-=⎪⎨⎪=⎩,解得2002x =,所以22y =;法一:设AOB 的外心(),M x y ,则由MA MO MB ==得()()()()2222221122x x y x y x x y -+=+=-++即211113322xx x x x =⇒+=——①,同理222223322xx x x x =⇒=——②,①②两式相乘得2212924x y x x -=,因为12220112x x yx ===-所以AOB 的外心M 的轨迹方程为22924x y -=; 法二:设AOB 的外心(),M x y ,线段OA的中垂线方程为11222y x y x ⎛⎫-=- ⎪⎝⎭, 线段OB的中垂线方程为22222y x y x ⎛⎫-=- ⎪⎝⎭,联立1122222222y x y x y x y x ⎧⎛⎫-=--⎪ ⎪⎪⎝⎭⎨⎫⎪-=-⎪⎪⎝⎭⎩,解得())121234x x x y x x ⎧=+⎪⎪⎨⎪=-⎪⎩因为12022000022222x x x x y x +===-,1202200000222x xyx-===-即())120012033242343384x x x x x xy yy x x y⎧⎧=+==⎪⎪⎪⎪⇒⎨⎨⎪⎪==-=⎪⎪⎩⎩,代入22012yx-=得2248199x y-=,所以AOB的外心M的轨迹方程为22924x y-=.【名师点睛】解答本题第二问的关键是通过三角形的外心对应的几何特点即外心到三角形的三个顶点的距离相等,由此通过坐标的化简运算得到对应的轨迹方程.此外,三角形任意两边中垂线的交点也是三角形的外心,也可借由此结论完成解答.【预测题5】过双曲线2222:1(0,0)x ya ba bΓ-=>>左焦点1F的动直线l与Γ的左支交于A,B两点,设Γ的右焦点为2F.(1)若三角形2ABF可以是边长为4的正三角形,求此时Γ的标准方程;(2)若存在直线l,使得22AF BF⊥,求Γ离心率的取值范围.【答案】(1)2212yx-=;(2e1<≤+.【解析】(1)依题意得12AF=,24AF=,12F F=2122a AF AF=-=,1a=122==c F Fc=2222b c a=-=此时Γ的方程为2212yx-=;(2)设l的方程为x my c=-,与22221x ya b-=联立,得()22222420b m a y b cmy b--+=设()11,A x y,()22,B x y,则2122222b cmy yb m a+=-,412222by yb m a=-,由22AF BF⊥220F A F B ⋅=,()()12120x c x c y y --+=,()()()()24222222212122201440my c my c y y m b m c b c b m a --+=⇒+-+-=()()()2222422222224414114a c m b a c m a c c a b⇒+=⇒+=≥⇒≥- 所以44224260e 6e 10c a a c +-≤⇒-+≤, 因为e 1>,所以21e 322<≤+ 所以1e 12<≤+又A 、B 在左支且l 过1F ,所以120y y <,42222222222424011b a a c a m m b m a b b b<⇒<⇒+=<+- 所以222224e 5a b c a <=-⇒> 5e 12<≤+.【名师点睛】本题考查求双曲线的标准方程,考查直线与双曲线相交问题.解题方法是设()11,A x y ,()22,B x y ,设l 的方程为x my c =-,直线方程代入双曲线方程应用根与系数关系得1212,y y y y +,条件22AF BF ⊥转化为220F A F B ⋅=,化简后代入根与系数关系的结论可得,,a c m 关系式,然后结合不等式的性质得出离心率的不等式,求得其范围.【预测题6】已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,过双曲线C 的右焦点F 作渐近线的垂线,垂足为N ,且FON (O 为坐标原点)5 (1)求双曲线C 的标准方程;(2)若P ,Q 是双曲线C 上的两点,且P ,Q 关于原点对称,M 是双曲线上异于P ,Q 的点.若直线MP 和直线MQ 的斜率均存在,则MP MQ k k ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.【答案】(1)22145x y -=;(2)是定值,定值为54.【解析】(1)双曲线C 的渐近线方程为by x a=±,即0bx ay ±=, 所以点(),0F cbcb c==. 所以FON的面积为111||||222NF ON ba ⋅=⋅=⋅=即ab =因为双曲线C的离心率为32c a ====,所以2254b a =,即2b a =.代人ab =,解得2a =,所以b =故双曲线C 的标准方程为22145x y -=.(2)MP MQ k k ⋅是定值,理由如下:设()11,P x y ,()00,M x y ,则()11,Q x y --,2201x x ≠,所以22002211145145x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减并整理得2201220154y y x x -=- 所以220101012201010154MP MQy y y y y y k k x x x x x x -+-⋅=⋅==-+-. 所以MP MQ k k ⋅是定值,且该定值为54. 【名师点睛】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【预测题7】已知双曲线C 过点(,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点. (1)求双曲线C 的方程;(2)若直线l 过原点,点P 是曲线C 上任一点,直线PM ,PN 的斜率都存在,记为PM k 、PN k ,试探究PM PN k k ⋅的值是否与点P 及直线l 有关,并证明你的结论;(3)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点Q 坐标及此常数的值;若不存在,说明理由.【答案】(1)2214x y -=;(2)14PM PN k k ⋅=,PM PN k k ⋅的值与点P 及直线l 无关,证明见解析;(3)存在,23,08Q ⎛⎫⎪⎝⎭, 3164QM QN ⋅=-,理由见解析【解析】(1)因为渐近线方程为12y x =±. 所以可设双曲线为224x y λ-=,将点(代入2244λ-=,解得=1λ所以双曲线C 的方程为2214x y -=(2)直线l 过原点,由双曲线的对称性知道,点M 、N 关于原点对称. 设点(),M m n ,(,)P x y ,则点(),N m n --代入2214x y -=,有2244m n =+,2244x y =+所以PM y n k x m -=-,PN y nk x m+=+. 2222=PM PNy n y n y n k k x m x m x m-+-⋅=⋅-+- 将2244m n =+,2244x y =+代入得22221444PM PNy n k k y n -⋅==-.所以14PM PN k k ⋅=,PM PN k k ⋅的值与点P 及直线l 无关. (3)由题意知直线l 斜率存在,故设直线为()1y k x =- , 点()11,M x y 、()22,N x y 、(),0Q t ,由()22114x y y k x ⎧⎪⎨-==-⎪⎩,得 ()2222148440k x k x k -+--= ,2140k ->且>0∆ , 22121222844=,=4141k k x x x x k k ++--, 又()11,QM x t y =-,()22,QN x t y =-,所以()()()()()()1212121211QM QN x t x t y y x t x t k x k x ⋅=--+=--+--()()()()22221212=1k x x t k x x t k +-++++ ()()()22222222448=14141k k k t k t k k k ++-+++--()22227844=41t t k t k -++-- ,令227844=41t t t -+--解得238t =,此时3164QM QN ⋅=-. 【预测题8】已知A 、B 是双曲线1C :22221x y a b-=(0a >,0b >)的两个顶点,点P 是双曲线上异于A 、B 的一点,O 为坐标原点,射线OP 交椭圆2C :22221x y a b+=于点Q ,设直线PA 、PB 、QA 、QB 的斜率分别为1k 、2k 、3k 、4k .(1)若双曲线1C 的渐近线方程是12y x =±,且过点1)2,求1C 的方程; (2)在(1)的条件下,如果12158k k +=,求△ABQ 的面积;(3)试问:1234k k k k +++是否为定值?如果是,请求出此定值;如果不是,请说明理由.【答案】(1)2214x y -=;(2)1617;(3)定值为0.【解析】(1)双曲线1C 的渐近线方程是12y x =±设双曲线方程为224x y λ-=,将点1)2代入方程,解得1λ=1C 的方程为2214x y -=.(2)设00(,)P x y ,00001220002152248y y x y k k x x x +=+==+-- , 220014x y -=,化简得到:00415x y = 根据对称性不妨设11(,)Q x y 在第一象限,Q 在OP 上,则11415x y =,代入方程2214x y +=得到1817y = ,1816421717ABQ S ∆=⨯⨯= ; (3)设00(,)P x y ,11(,)Q x y ,000011111234222200110122y y x y y y x y k k k k x a x a x a x a x a x a+++=+++=++-+---, 2200221x y a b -=,2211221x y a b+=, 22200001111222222201010122222()x y b x x x y b x x b x a x a a y a y a y y +=-=---,,,O P Q 三点共线20011201012()0y x y x b x x a y y ⇒=⇒-= ,12340k k k k +++=,【名师点睛】本题考查了双曲线和椭圆的知识,计算量大,意在考查学生的计算能力和解决问题的能力.【预测题9】已知双曲线2222:1(0,0)x y C a b a b-=>>上一动点P ,左、右焦点分别为12,F F ,且2(2,0)F ,定直线3:,2l x PM l =⊥,点M 在直线l上,且满足2||||PM PF = (1)求双曲线的标准方程;(2)若直线0l 的斜率1k =,且0l 过双曲线右焦点与双曲线右支交于,A B 两点,求1ABF 的外接圆方程.【答案】(1)2213x y -=;(2)221316258832x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 【解析】(1)由题意,知2||PF PM =,设点(,)P x y3=,所以22243(2)32x y x ⎛⎫-+=- ⎪⎝⎭,得222444433x x y x x -++=-+,整理得2213x y +=, 即双曲线的标准方程为2213x y -=.(2)由题意,知直线0:2l y x =-,设()()1122,,,A x y B x y ,联立方程,得22213y x x y =-⎧⎪⎨-=⎪⎩,整理得2212150x x -+=, 故126x x +=, 12152x x =,而12124y y x x +=+-, 所以AB 中点为(3,1)M ,而1ABF 外接圆圆心在AB 的垂直平分线1l 上,则1:4l y x =-+,又由焦点弦长公式,可知12|||AB x x =-==设圆心00,x y 满足()()()002222200004312y x x y x y =-+⎧⎪⎨-+-+=++⎪⎩,解得001831.8x y ⎧=⎪⎪⎨⎪=⎪⎩所以半径R ==故外接圆方程为221316258832x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【名师点睛】(1)设动点坐标,根据线段的比例关系,结合两点距离公式列方程,整理即可得双曲线的标准方程;(2)由直线与双曲线的位置关系,应用弦长公式求弦长;由三角形外接圆圆心的性质,结合弦长、弦心距、半径间的几何关系,求圆心坐标及半径,进而写出圆的方程.【预测题10】已知等轴双曲线C :22221x y a b-=(a >0,b >0)经过点,12).(1)求双曲线C 的标准方程; (2)已知点B (0,1).①过原点且斜率为k 的直线与双曲线C 交于E ,F 两点,求∠EBF 最小时k 的值; ②点A 是C 上一定点,过点B 的动直线与双曲线C 交于P ,Q 两点,AP AQ k k +为定值λ,求点A 的坐标及实数λ的值.【答案】(1)221x y -=;(2)①0k =;②),Aλ=或者(),A λ=.【解析】(1)由题意a b =,且2251441a b -=解得1a b ==, 所以双曲线C 的标准方程为221.x y -= (2)①由对称性可设()(),,,E x y F x y --,且1≥x ,则()()22,1,11BE BF x y x y x y ⋅=-⋅---=--+,因为E 点在双曲线C 上,所以221x y -=,所以221y x =-,所以()2210BE BF x⋅=-≤,当1x =时,0,BE BF EBF ∠⋅=为直角, 当1x >吋,0,BE BF EBF ∠⋅<为钝角. 因此,EBF ∠最小时,1,0x k ==. ②设(),,A m n 过点B 的动直线为 1.y tx =+设()()1122,,,,P x y Q x y 联立2211x y y tx ⎧-=⎨=+⎩得()221220t x tx ---=,所以()22212212210Δ48102 121t t t t x x t x x t ⎧-≠⎪=+->⎪⎪-⎨+=-⎪-⎪⎪=--⎩,由210t -≠且Δ0>,解得22t <且21t ≠,AP AQ k k λ+=,即1212,y n y n x m x m λ--+=--即121211tx n tx nx m x mλ+-+-+=--, 化简得()()()2121221220t x x mt n m x x m mn m λλλ-+-+-++-+-=, 所以()()222222122011t t mt n m m mn m t tλλλ--+-+-+-+-=--, 化简得()()2222212220m mn t m n t m mn m λλλλ-+--+-+-=,由于上式对无穷多个不同的实数t 都成立,所以2220102220m mn m n m mn m λλλλ⎧-=⎪--=⎨⎪-+-=⎩如果0,m =那么1,n =-此时()0,1A -不在双曲线C 上,舍去.因此0,m ≠从而22,m n =代入21m n =+解得1,n m ==此时()A 在双曲线C 上.综上,),A λ=或者(),A λ=.【名师点睛】本题考查直线与双曲线位置关系之定值问题,属于较难题,关键在于将直线与双曲线的方程联立,得出根与系数的关系,继而将目标条件转化到曲线上的点的坐标上去.。
双曲线渐近线方程推导
双曲线渐近线方程推导
双曲线的渐近线方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上),或令双曲线标准方程x/a-y/b=1中的1为零,即得渐近线方程。
方程x/a-y/b=1(a>0,b>0)
c=a+b
焦点坐标(-c,0),(c,0)
渐近线方程:y=±bx/a
方程 y/a-x/b=1(a>0,b>0)
c=a+b
焦点坐标(0,c),(0,-c)
渐近线方程:y=±ax/b
几何性质
1.双曲线 x/a-y/b =1的直观几何性质
(1)范围:|x|≥a,y∈r.
(2)对称性:双曲线的'对称性与椭圆完全相同,关于x轴、y轴及原点中心对称.
(3)顶点:两个顶点a1(-a,0),a2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c=a+b.与椭圆不同.
方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)
或令双曲线标准方程x/a-y/b=1中的1为零即得渐近线方程.
(5)距心率e>1,随着e的减小,双曲线张口逐渐显得宽广.
(6)等轴双曲线(等边双曲线):x2-y2=a2(a≠0),它的渐近线方程为y=±b/a*x,离心率e=c/a=√2
(7)共轭双曲线:方程 x/a-y/b=1与x/a-y/b=-1 则表示的双曲线共轭,存有共同的渐近线和成正比的焦距,但须要著重方程的表达形式.。
高中数学复习专题讲解与练习-----双曲线渐近线有关问题
=
OM MF
=
MN MF
=
3 1
②
OM
由①②得:
2 1− k2
= 3 解得 k = ±
3 ;所以渐近线方程为:
3
y=±
3x 3
四.课后作业 巩固内化
1.已知双曲线过点(1,2) ,渐近线方程为 y = ± 2x ,则双曲线的标准方程是( )
6 / 10
A. x2 − y2 = 1 2
【答案】:B
tan β
= tan 2α
= 2 tan α 1− tan2 α
= 2k 1− k2
① 2k
tan β = 1 − k 2 = 2
;
tan α
k 1− k2
由已知 得: uuur uuur 2MF = FN
MN MF
=
3 1
;
MN
在 和 中,易得 Rt Rt #
MOF
# MON
tan β tanα
【答案】: −
1 4
,
0
7 / 10
5. 是双曲线 的右焦点,则
左支上一点,直线 是双曲线 的一条渐近线, 在 上的射影为 是双曲线
的最小值为(
)[来源:学科网 ZXXK]
A. B. C. D.
【答案】:C
【解析】:由题知
,则
同一直线上时
最小,由渐近线方程 , 知
则
的最小值为 .故本题答案选 .
2α + β = π
故 , tan β
= tan (π
− 2α ) = − tan 2α
=
−
2 1−
tan α tan 2 α
=
−
渐近线求双曲线方程
渐近线求双曲线方程双曲线是一种常见的二次曲线,它的形状类似于两个相交的直线。
在数学中,我们可以通过求解双曲线的方程来研究它的性质和特点。
而在求解双曲线方程的过程中,渐近线是一个非常重要的概念。
渐近线是指一条直线,它与曲线趋于无限远时的距离趋于零。
在双曲线中,有两条渐近线,分别称为水平渐近线和垂直渐近线。
水平渐近线与双曲线的两支曲线趋于无限远时的距离相等,而垂直渐近线则与双曲线的两支曲线趋于无限远时的斜率相等。
对于一条双曲线,我们可以通过已知的渐近线来求解它的方程。
下面我们将介绍两种常见的方法。
方法一:通过水平渐近线求解双曲线方程对于一条双曲线,如果它的水平渐近线的方程为y=k(k为常数),那么它的方程可以表示为:(x^2/a^2)-(y^2/b^2)=1-k^2其中a和b分别为双曲线的半轴长度。
这个公式的推导过程比较复杂,我们这里不做详细介绍。
需要注意的是,当k=0时,双曲线的方程就变成了标准形式:(x^2/a^2)-(y^2/b^2)=1这个方程描述的是一个以原点为中心,横轴为对称轴,纵轴为渐近线的双曲线。
例如,如果一条双曲线的水平渐近线的方程为y=2,它的半轴长度分别为a=3和b=2,那么它的方程可以表示为:(x^2/9)-(y^2/4)=1-4化简后得到:(x^2/9)-(y^2/4)=-3这就是这条双曲线的方程。
方法二:通过垂直渐近线求解双曲线方程对于一条双曲线,如果它的垂直渐近线的方程为y=kx(k为常数),那么它的方程可以表示为:(y-kx)^2/a^2-x^2/b^2=1其中a和b分别为双曲线的半轴长度。
这个公式的推导过程也比较复杂,我们这里同样不做详细介绍。
例如,如果一条双曲线的垂直渐近线的方程为y=2x,它的半轴长度分别为a=3和b=2,那么它的方程可以表示为:(y-2x)^2/9-x^2/4=1化简后得到:y^2-4xy+4x^2-9=0这就是这条双曲线的方程。
需要注意的是,这种方法只适用于双曲线的两支曲线的斜率相等的情况。
2023年高考数学一轮复习精讲精练第28练 双曲线(解析版)
第28练 双曲线学校____________ 姓名____________ 班级____________一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .y =D .2y x =±【答案】C 【详解】由题意,22148x y -=的渐近线方程为y == 故选:C2.设双曲线的焦点在x 轴上,两条渐近线方程为12y x =±,则该双曲线的离心率为( )AB C D【答案】D 【详解】由题知12b a =,所以e === 故选:D3.已知点F 是双曲线2218y x -=的右焦点,点P 是双曲线上在第一象限内的一点,且PF与x 轴垂直,点Q 是双曲线渐近线上的动点,则PQ 的最小值为( )A .83B .83C .1D .1+【答案】B 【详解】解:由双曲线方程可得,点F 坐标为3,0,将3x =代入双曲线方程,得8y =±, 由于点P 在第一象限,所以点P 坐标为()3,8,双曲线的渐近线方程为0y ±=,点P Q 是双曲线渐近线上的动点,所以PQ的最小值为8833=.故选:B .4.若直线31y x =-与双曲线22:1C x my -=的一条渐近线平行,则实数m 的值为( ) A .19B .9C .13D .3【答案】A 【详解】22:1C x my -=的渐近线方程满足=x ,所以渐进线与31y x =-平行,所以渐近线方程为3y x =±,故19m = 故选:A5.江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x 轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A.221169x y -=B .2214x y -=C .22189x y -=D .22143x y -=【答案】D 【详解】由题意可知该双曲线的焦点在x 轴上,实轴长为4,点()4,3在该双曲线上. 设该双曲线的方程为()222210,0x y a b a b-=>>,则222224,431,a a b =⎧⎪⎨-=⎪⎩解得2a =,b =故该双曲线的标准方程是22143x y -=.故选:D.6.如图,双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,,F F M 为双曲线右支上一点,直线1MF 与圆222x y a +=相切于点Q ,2MQ MF =,则双曲线的离心率为( )A .5B .6C .52D .62【答案】A 【详解】由题可得11FQ MF MQ =-,因为2MQ MF =,所以1122FQ MF MF a =-=,则在1Rt FQO 中,222(2)a a c +=,即c ,即ce a= 故选:A.7.已知点()F 是双曲线()2222:10,0x yC a b a b-=>>的右焦点,过F 作双曲线C 的一条渐近线的垂线,垂足为M ,若△OMF (点O 为坐标原点)的面积为8,则C 的实轴长为( )A .8B .C .6D .【答案】A 【详解】由题意可得2232a b +=.取渐近线b y x a =,易知点()F 到直线by x a=的距离为b ,则OM a =,所以182OMF S ab ==△,联立得4a b ==.所以C 的实轴长为8. 故选:A8.双曲线22:148x y C -=,已知O 是坐标原点,A 是双曲线C 的斜率为正的渐近线与直线x =F 是双曲线C 的右焦点,D 是线段OF 的中点,若B 是圆221x y +=上的一点,则△ABD 的面积的最大值为( )A B C .3 D【答案】A 【详解】根据题意,双曲线斜率为正的渐近线方程为y =,F 因此点A的坐标是⎛,点D 是线段OF 的中点,则直线AD的方程为y x =-, 点B 是圆221x y +=上的一点,点B 到直线AD 距离的最大值max d 也就是圆心O 到直线AD 的距离d 加上半径,即1d +,max 11d d =+=1==,则max 1122ABDSAD d =⋅⋅==故选:A9.已知方程22:(1)(3)(1)(3)E m x m y m m -+-=--,则E 表示的曲线形状是( ) A .若13m <<,则E 表示椭圆 B .若E 表示双曲线,则1m <或3m > C .若E 表示双曲线,则焦距是定值 D .若E,则53m =【答案】B 【详解】由题意得,当13m <<时,22:(1)(3)(1)(3)E m x m y m m -+-=--,即22131x ym m +=--,要表示椭圆,需满足301031m m m m ->⎧⎪->⎨⎪-≠-⎩,解得13m <<且2m ≠, 故A 错误;若E 表示双曲线,则(1)(3)m m --不能为0,故22:(1)(3)(1)(3)E m x m y m m -+-=--化为22131x y m m +=--, 则(1)(3)0m m --<,即1m <或3m >,故B 正确;由B 的分析知,1m <时,23142c m m m =-+-=- ,此时c 不确定,故焦距不是定值,C 错误; 若E的离心率为2,则此时曲线表示椭圆,由A 的分析知,13m <<且2m ≠,当31m m ->-时,12m <<,此时2223,1,42a m b m c m =-=-=- , 则42132m m -=-,解得53m = , 当31m m -<-时,23m <<,此时2221,3,24a m b m c m =-=-=- , 则24112m m -=-,解得73m = ,故D 错误, 故选:B10.我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:1F 、2F 是双曲线的左、右焦点,从2F 发出的光线m 射在双曲线右支上一点P ,经点P 反射后,反射光线的反向延长线过1F ;当P 异于双曲线顶点时,双曲线在点P 处的切线平分12F PF ∠.若双曲线C 的方程为上221916x y -=,则下列结论不正确...的是( ) A .射线n 所在直线的斜率为k ,则44,33k ⎛⎫∈- ⎪⎝⎭B .当m n ⊥时,1232PF PF ⋅=C .当n 过点()7,5Q 时,光由2F 到P 再到Q 所经过的路程为13D .若()1,0T ,直线PT 与C 相切,则212PF = 【答案】C 【详解】在双曲线221916x y -=中,3a =,4b =,则5c =,易知点()15,0F -、()25,0F , 设1PF u =,2PF v =,对于A 选项,因为双曲线221916x y -=的渐近线方程为43y x =±,当点P 在第一象限内运动时,随着0x 的增大,射线n 慢慢接近于直线43y x =,此时403k <<,同理可知当点P 在第四象限内运动时,403k -<<,当点P 为双曲线的右顶点时,0k =,综上所述,k 的取值范围是44,33⎛⎫- ⎪⎝⎭,A 对;对于B 选项,当m n ⊥时,26u v a -==,()2222236210u v u v uv uv +=-+=+=,所以,1232PF PF uv ⋅==,B 对;对于C 选项,113FQ =,故n 过点()7,5Q 时,光由2F 到P 再到Q 所经过的路程为211267PF PQ PF a PQ FQ +=-+=-=,C 错; 对于D 选项,若()1,0T ,由角平分线定理可得1211226342PF T PF TS PF FT S PF F T====△△, 即22632PF PF +=,解得212PF =,D 对. 故选:C. 二、多选题11.已知双曲线22221x y a b -=(a >0,b >0)的左、右两个顶点分别是A 1、A 2,左、右两个焦点分别是F 1、F 2,P 是双曲线上异于A 1、A 2的任意一点,给出下列命题,其中是真命题的有( ) A .122PA PA a -=B .直线P A 1、P A 2的斜率之积等于定值22b aC .使得△PF 1F 2为等腰三角形的点P 有且仅有8个D .△PF 1F 2的面积为212tan 2b A PA ∠【答案】BC 【详解】根据双曲线的定义可得:122PF PF a -=,A 错误;设()00,P x y ,则2200221x y a b -=,即()2222002b y x a a=-△()()12,0,,0A a A a -,则120000,PA PA y y k k x a x a==+- △1222000222000PA PA y y y b k k x a x a x a a =⨯==+--,B 正确;不妨P 在第一象限,根据双曲线的定义可知12PF PF ≠若1122PF F F c ==,结合图象易知1PF a c >+,则满足条件的点存在且唯一 若2122PF F F c ==,结合图象易知2PF c a >-,则满足条件的点存在且唯一 根据双曲线的对称性可知使得△PF 1F 2为等腰三角形的点P 有且仅有8个,C 正确; 不妨P 在第一象限,则12122,2PF PF a F F c -== ()2222212121212121212122cos 22PF PF PF PF F F P P F PF F F F F PF PF PF PF -+=⨯--∠⨯=+⨯2221212121244222PF PF PF PF PF P a c b F PF PF +⨯-⨯-⨯==⨯△212121cos 2b PF PF P F F ⨯=-∠则12212122212121221212122sincos sin 2sin 1cos tan 112sin 22122PF F F F F FF F SPF PF F F F F F F F F P P b b P b P P P P ∠∠∠⨯⨯∠===∠∠-∠⎛⎫-- ⎪⎝⎭=D 不正确; 故选:BC .12.已知双曲线2222:1(0)x y M a b a b-=>>的焦距为4,两条渐近线的夹角为60︒,则下列说法正确是( ) A .M B .M 的标准方程为2213y x -=C .M 的渐近线方程为y x =D .直线20x y +-=经过M 的一个焦点【答案】ACD 【详解】根据题意双曲线 2222:1(0)x y M a b a b-=>> 的焦距为 4 ,两条渐近线的夹角为 60︒ , 有2224a b c +== ,△, 双曲线的两条渐近线的夹角为 60︒ ,则过一三象限的渐近线的斜率为或, 即b a =或b a =,△联立△△可得: 21a = , 23b = , 24c = 或 23a = , 21b = , 24c = ; 因为 a b > ,所以 23a = , 21b = , 24c = ,故双曲线的方程为 2213x y -=对A ,则离心率为,故 A 正确 . 对B ,双曲线的方程为 2213x y -= ,故 B 错误;对C ,渐近线方程为y = ,故 C 正确; 对D ,直线 20x y +-= 经过 M 的一个焦点 (2,0) ,所以 D 正确 . 故选: ACD 三、解答题13.设1F 、2F 分别为双曲线()2222:10,0x yC a b a b-=>>的左右焦点,且2F 也为抛物线28y x =的的焦点,若点()0,2P b ,1F ,2F 是等腰直角三角形的三个顶点.(1)双曲线C 的方程; (2)若直线l :112y x =-与双曲线C 相交于A 、B 两点,求AB . 【答案】(1)2213x y -=(2)【解析】(1)解:抛物线28y x =的焦点为()2,0F ,所以2c =,即()12,0F -,()22,0F ,又点()0,2P b ,1F ,2F 是等腰直角三角形的三个顶点,所以22b =,即1b =,又222c a b =+,所以23a =, 所以双曲线方程为2213x y -=.(2)解:依题意设()11,A x y ,()22,B x y , 由2211213y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩消去y 整理得213604x x +-=,由()213461504⎛⎫∆=-⨯⨯-=> ⎪⎝⎭,所以1212x x +=-,1224x x =-,所以AB ===14.已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点. (1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值. 【答案】(1)2214x y -=(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩ 则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x = 易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m +=-=-=--,则12402M x x kx m+==->,即0km < 则222216444Mk x m m==+>,即2M x >△此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.15.已知F 1(0),F 2,0)为双曲线C 的两个焦点,点(2,1)P -在双曲线C 上. (1)求双曲线C 的方程;(2)已知点A ,B 是双曲线C 上异于P 的两点,直线P A ,PB 与y 轴分别相交于M ,N 两点,若0OM ON +=,证明:直线AB 过定点. 【答案】(1)22133y x -=(2)证明见解析 【解析】 (1)设双曲线C 的方程为22221x y a b -=(0,0a b >>),由题意知22411c a b ⎧⎪⎨-=⎪⎩,因为222+=a b c,所以解得a b ⎧=⎪⎨=⎪⎩△双曲线C 的方程为22133y x -= (2)设直线AB 的方程为y kx m =+,1122(,),(,)A x y B x y ,(2,1)P -由223y kx m x y =+⎧⎨-=⎩,整理得222(1)230k x kmx m ----=, 则210k -≠,222244(1)(3)0k m k m ∆=+-->,得22330m k -+>, 212122223,11km m x x x x k k --+==--直线P A 方程为()111212y y x x +=--- 令0x =,则M (0,11122x y x +-),同理N (0,22222x y x +-). 由0OM ON +=,可得21221222022x y x y x x +++=--, △()()1122122222x kx m x kx m x x +++++=--0,()()()()122121222122k x m x k x m x ⎡⎤⎡⎤++-+++-=⎣⎦⎣⎦0,△()()()12124224280k m x x k x x m +-+-++=, △()()22223422428011km m k m k m k k ---+⋅-++=--,△()()()()22212213410k m km k m m k -+⋅++++-=,△22222422263440k m km km km k m m mk -++++++-=△243260m m km k ++++=,△(3)(21)0m m k +++=当210m k ++=时,21m k =--此时直线AB 方程为()21y k x =--恒过定点(2,1)P -,显然不可能 △3m =-,直线AB 方程为恒过定点(0,3)-E。
利用二级结论秒杀椭圆双曲线(解析版)
利用二级结论秒杀椭圆双曲线【考点目录】考点一:椭圆焦点三角形的面积秒杀公式考点二:中点弦问题(点差法)秒杀公式考点三: 双曲线焦点到渐近线的距离为b考点四:双曲线中,焦点三角形的内心I 的轨迹方程为x =a (−b <y <b ,y ≠0).考点五:椭圆与双曲线共焦点的离心率关系秒杀公式考点六:圆锥曲线定比分焦点弦求离心率秒杀公式考点七:双曲线中定比分渐近线求离心率秒杀公式【考点分类】考点一:椭圆焦点三角形的面积为S =b 2⋅tan θ2(θ为焦距对应的张角)证明:设PF 1=m ,PF 2=nm +n =2a 1 2c 2=m 2+n 2-2mn cos θ2 S △F 1PF 2=12mn sin θ3 ,1 2-2 :mn =2b 21+cos θ⇒S △F 1PF 2=b 2⋅sin θ1+cos θ=b 2⋅2sin θ2cos θ22cos 2θ2=b 2tanθ2.双曲线中焦点三角形的面积为S =b 2tan θ2(θ为焦距对应的张角)【精选例题】1(2021年全国高考甲卷数学(理)试题)已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且PQ =F 1F 2 ,则四边形PF 1QF 2的面积为.【答案】8【解析】因为P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,所以四边形PF 1QF 2为矩形,设|PF 1|=m ,|PF 2|=n ,则m +n =8,m 2+n 2=48,所以64=(m +n )2=m 2+2mn +n 2=48+2mn ,mn =8,即四边形PF 1QF 2面积等于8.故答案为:8.2设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为()A.72B.3C.52D.2【答案】B 【解析】由已知,不妨设F 1(-2,0),F 2(2,0),则a =1,c =2,∵|OP |=1=12|F 1F 2|,∴点P 在以F 1F 2为直径的圆上]即△F 1F 2P 是以P 为直角顶点的直角三角形,故|PF 1|2+|PF 2|2=|F 1F 2|2,即|PF 1|2+|PF 2|2=16,又|PF 1|-|PF 2| =2a =2,∴4=|PF 1|-|PF 2| 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|=16-2|PF 1||PF 2|,解得|PF 1||PF 2|=6,∴S △F 1F 2P =12|PF 1||PF 2|=3,故选B .【跟踪训练】1设P 为椭圆x 225+y 29=1上一点,F 1,F 2为左右焦点,若∠F 1PF 2=60°,则P 点的纵坐标为()A.334B.±334C.934D.±934【答案】B【分析】根据椭圆中焦点三角形的面积公式S =b 2tan θ2求解即可.【详解】由题知S △F 1PF 2=9×tan60°2=3 3.设P 点的纵坐标为h ,则12⋅F 1F 2 ⋅h =33⇒h =±334.故选:B2设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 解法二:由题意知,双曲线的焦点三角形面积为S PF 1F 2=b 2tan θ2.∴b 2tan45°=4,则b =2,又∵e =ca=5,∴a =1.考点二:中点弦问题(点差法)秒杀公式若椭圆与直线l 交于AB 两点,M 为AB 中点,且k AB 与k OM 斜率存在时,则k AB ⋅K OM =−b 2a 2;(焦点在x 轴上时),当焦点在y 轴上时,k AB ⋅K OM =−a 2b2若AB 过椭圆的中心,P 为椭圆上异于AB 任意一点,k PA ⋅K PB =−b 2a 2(焦点在x 轴上时),当焦点在y轴上时,k PA ⋅K PB =−a 2b2下述证明均选择焦点在x 轴上的椭圆来证明,其他情况形式类似.直径问题证明:设P (x 0,y 0),A (x 1,y 1),因为AB 过原点,由对称性可知,点B (-x 1,-y 1),所以k PA ⋅k PB=y 0−y 1x 0−x 1⋅y 0+y 1x 0+x 1=y 02−y 12x 02−x 12.又因为点P (x 0,y 0),A (x 1,y 1)在椭圆上,所以有x 02a 2+y 02b 2=1(1)x 12a 2+y 12b 2=1(2).两式相减得y 02−y 12x 02−x 12=−b 2a 2,所以k PA ⋅k PB =−b 2a2.中点弦问题证明:设A x 1,y 1 ,B x 2,y 2 ,M x 0,y 0 则椭圆x 12a 2+y 12b 2=11x 22a 2+y 22b 2=12两式相减得y 22-y 12x 22-x 12=-b 2a2k AB ⋅k OM =y 2-y 1x 2-x 1⋅y 0x 0=y 2-y 1x 2-x 1⋅y 1+y 22x 1+x 22=y 22-y 12x 22-x 12=-b 2a2=e 2-1.双曲线中焦点在x 轴上为k OM ⋅k AB =b 2a 2,焦点在y 轴上为k OM ⋅k AB =a 2b 2,【精选例题】3已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则G 的方程为A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=-2,x 21a 2+y 21b 2=1, ① x 22a 2+y 22b 2=1, ②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a2,又k AB =0+13-1=12,所以b 2a 2=12,又9=c 2=a 2-b 2,解得b 2=9,a 2=18,所以椭圆方程为x 218+y 29=1,故选D4过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点且斜率不为0的直线交C 于A ,B 两点,D 为AB 中点,若k AB ⋅k OD =12,则C 的离心率为()A.6B.2C.3D.62【答案】D【分析】先设出直线AB 的方程,并与双曲线C 的方程联立,利用设而不求的方法及条件k AB ⋅k OD =12得到关于a 、c 的关系,进而求得双曲线C 的离心率【详解】不妨设过双曲线C 的焦点且斜率不为0的直线为y =k (x -c ),k ≠0,令A (x 1,y 1),B (x 2,y 2)由x 2a 2-y 2b 2=1y =k (x -c ),整理得b 2-a 2k 2x 2+2a 2k 2cx -a 2k 2c 2+a 2b 2=0则x 1+x 2=2a 2k 2c a 2k 2-b 2,x 1x 2=a 2k 2c 2+a 2b 2a 2k 2-b 2,D a 2k 2c a 2k 2-b 2,kb 2ca 2k 2-b2则k OD =kb 2c a 2k 2c =b 2a 2k ,由k AB ⋅k OD =12,可得b 2a 2k ⋅k =12则有a 2=2b 2,即3a 2=2c 2,则双曲线C 的离心率e =c a =62,故选:D 5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,上、下顶点分别为B 1,B 2.点M为C 上不在坐标轴上的任意一点,且MA 1,MA 2,MB 1,MB 2四条直线的斜率之积大于19,则C 的离心率可以是A.33B.63C.23D.73【答案】AC【分析】根据椭圆的概念、标准方程及简单几何性质,结合题意即可求解.【详解】设M x 0,y 0 ,依题意可得x 20a 2+y 20b 2=1,则y 20=b 2a 2a 2-x 20 ,x 20=a 2b2b 2-y 20 ,又A 1-a ,0 ,A 2a ,0 ,B 10,b ,B 20,-b ,所以k MA 1⋅k MA 2⋅k MB 1⋅k MB 2=y 0x 0+a ⋅y 0x 0-a ⋅y 0-b x 0⋅y 0+b x 0=y 20x 20-a 2⋅y 20-b2x 20=b 2a 22>19,b 2a 2>13,从而e =1-b 2a2∈0,63 .故选:AC .【跟踪训练】3已知M 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点,A 为双曲线右支上一点,若点A 关于双曲线中心O 的对称点为B ,设直线MA 、MB 的倾斜角分别为α、β,且tan α⋅tan β=14,则双曲线的离心率为()A.5B.3C.62D.52【答案】D【分析】设出A,B坐标,根据题意得k MA⋅k MB=14,代入斜率公式,由A点在双曲线上,消元整理得到a,b的关系,进一步求得双曲线的离心率.【详解】设A x0,y0,则B-x0,-y0,因为tanαtanβ=14,即k MA⋅k MB=14,由M(a,0),所以y0-0x0-a⋅-y0-0 -x0-a =y20x20-a2=14,因为x20a2-y20b2=1,所以y20=b2a2x20-a2,即b2a2x20-a2x20-a2=14,得b2a2=14,所以b a =12,即b=12a,又c2=a2+b2,所以c2=a2+14a2,即c2=54a2,所以e=ca=52,故双曲线的离心率为e=52.故选:D.4已知A,B,P是双曲线x2a2-y2b2=1(a>0,b>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积为43,则该双曲线的离心率为()A.52B.62C.2D.213【答案】D【分析】设A x1,y1,P x2,y2,根据对称性,知B-x1,-y1,然后表示出k PA⋅k PB,又由于点A,P在双曲线上,所以将其坐标代入方程中,两式相减,结合前面的式子可得k PA⋅k PB=b2a2=43,化简可求出离心率【详解】设A x1,y1,P x2,y2,根据对称性,知B-x1,-y1,所以k PA⋅k PB=y2-y1x2-x1⋅y2+y1x2+x1=y22-y21x22-x21.因为点A,P在双曲线上,所以x21a2-y21b2=1x22a2-y22b2=1,两式相减,得x22-x12a2=y22-y12b2,所以b2a2=y22-y12x22-x12所以k PA⋅k PB=b2a2=43,所以e2=a2+b2a2=73,所以e=213.故选:D5已知双曲线x24-y2b2=1(b>0)的左、右焦点分别为F1、F2,过左焦点F1作斜率为2的直线与双曲线交于A,B两点,P是AB的中点,O为坐标原点,若直线OP的斜率为14,则双曲线的离心率是()A.62B.2 C.32D.2【答案】A【分析】设A(x1,y1),B(x2,y2),P(m,n),利用点差法,结合直线的斜率公式可求出b2,从而可求出c,进而可求出离心率【详解】A(x1,y1),B(x2,y2),P(m,n),则x124-y12b2=1,x224-y22b2=1,两式相减得14(x1-x2)(x1+x2)-1b2(y1-y2)(y1+y2)=0,所以(y1-y2)(y1+y2)(x1-x2)(x1+x2)=b24,因为P是AB的中点,所以x1+x2=2m,y1+y2=2n,因为直线OP的斜率为14,所以nm=14,因为过左焦点F1作斜率为2的直线与双曲线交于A,B两点,所以k AB=y1-y2x1-x2=2,所以y1-y2x1-x2⋅2n2m=b24,2×14=b24,得b2=2,所以c=a2+b2=4+2=6,所以离心率为e=ca=62故选:A考点三:双曲线焦点到渐近线的距离为b 【精选例题】1若双曲线x2a2-y2b2=1的焦点F2,0到其渐近线的距离为3,则双曲线的渐近线方程为()A.y=±3xB.y=±3xC.y=±13x D.y=±33x【答案】B【分析】由题可得b=3,a=1,即得.【详解】双曲线x2a2-y2b2=1a>0,b>0的焦点c,0到渐近线:y=bax,即bx-ay=0的距离为:d=bca2+b2=bcc=b=3,而c=2,从而a=1,故渐近线y=±bax即y=±3x.故选:B.2已知F是双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为A.3B.3C.3mD.3m【答案】A【解析】双曲线方程为x23m-y23=1,焦点F到一条渐近线的距离为b=3,故选A.【跟踪训练】1已知双曲线x2a2-y2b2=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.x 24-y 212=1B.x 212-y 24=1C.x 23-y 29=1D.x 29-y 23=1【答案】C【解析】设双曲线的右焦点坐标为F c ,0 c >0 ,则x A =x B =c ,由c 2a 2-y 2b2=1可得:y =±b 2a ,不妨设:A c ,b 2a ,B c ,-b 2a ,双曲线的一条渐近线方程为:bx -ay =0,据此可得:d 1=bc -b 2 a 2+b 2=bc -b 2c ,d 2=bc +b 2a 2+b 2=bc +b 2c ,则d 1+d 2=2bc c =2b =6,则b =3,b 2=9,双曲线的离心率:e =c a =1+b 2a2=1+9a2=2,据此可得:a 2=3,则双曲线的方程为x 23-y 29=1,故选C .2已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1【答案】A 【解析】圆C :(x -3)2+y 2=4,c =3,而3bc=2,则b =2,a 2=5,故选A .考点四:双曲线中,焦点三角形的内心I 的轨迹方程为x =a (−b <y <b ,y ≠0).【精选例题】3已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,离心率为2,焦点到渐近线的距离为 6.过F 2作直线l 交双曲线C 的右支于A ,B 两点,若H ,G 分别为△AF 1F 2与△BF 1F 2的内心,则HG 的取值范围为()A.22,4B.3,2C.2,433D.22,463【答案】D【详解】由题意,在C :x 2a 2-y 2b2=1a >0,b >0 中,根据焦点到渐近线的距可得b =6,离心率为2,∴e =c a=1+b 2a 2=1+6a2=2,解得:a =2,∴c =b 2+a 2=22∴双曲线的方程为C :x 22-y 26=1.记△AF 1F 2的内切圆在边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,则H ,E 横坐标相等AM =AN ,F 1M =F 1E ,F 2N =F 2E ,由AF 1 -AF 2 =2a ,即AM +MF 1 -AN +NF 2 =2a ,得MF 1 -NF 2 =2a ,即F 1E -F 2E =2a ,记H 的横坐标为x 0,则E x 0,0 ,于是x 0+c -c -x 0 =2a ,得x 0=a ,同理内心G 的横坐标也为a ,故HG ⊥x 轴.设直线AB 的倾斜角为θ,则∠OF 2G =θ2,∠HF 2O =90°-θ2(Q 为坐标原点),在△HF 2G 中,HG =c -a tan θ2+tan 90°-θ2 =c -a ⋅sin θ2cos θ2+cos θ2sin θ2=c -a ⋅2sin θ=22sin θ,由于直线l 与C 的右支交于两点,且C 的一条渐近线的斜率为ba=3,倾斜角为60°,∴60°<θ<120°,即32<sin θ≤1,∴HG 的范围是22,463.故选:D .4(多选题)双曲线x 2a 2-y 2b 2=1的左、右焦点分别F 1、F 2,具有公共焦点的椭圆与双曲线在第一象限的交点为P ,双曲线和椭圆的离心率分别为e 1,e 2,△PF 1F 2的内切圆的圆心为I ,过F 2作直线PI 的垂线,垂足为D ,则()A.I 到y 轴的距离为aB.点D 的轨迹是双曲线C.若OP =F 1F 2 ,则1e 21+1e 22=5 D.若S △IPF 1-S △IPF 2≥12S △IF 1F2,则1<e 1≤2【答案】ACD【详解】设圆I 与△PF 1F 2三边PF 1,PF 2,F 1F 2的切点为A ,B ,C ,F 1C =F 1A =PF 1 -PB =PF 1 -PF 2 -F 2B =2a +F 2C ,又F 1C +F 2C =2c ,故F 2C =c -a ,故OC =a ,所以I到y轴的距离为a ,故A 正确;过F 2作直线PI 的垂线,垂足为D ,延长F 2I 交PF 1于点E ,因为△PED ≅△PF 2D ,则D 为F 2E 的中点且PF 2 =PE ,于是OD =12F 1E =12PF 1 -PE =12PF 1 -PF 2 =a ,故点D 的轨迹是在以O 为圆心,半径为a 的圆上,故B 不正确;设椭圆的长半轴长为a 1,它们的半焦距为c ,并设PF 1 =m ,PF 2=n,根据椭圆和双曲线的定义可得:m+n=2a1,m-n=2a,所以m=a1+a,n=a1-a,在△POF1中,由余弦定理得:PF12=OF12+OP2-2OF1OPcos∠POF1,即m2=c2+4c2-2×c×2c cos∠POF1,在△POF2中,由余弦定理得:PF22=OF22+OP2-2OF2OPcos∠POF2,即n2=c2+4c2-2×c×2c cos∠POF2,由∠POF2=π-∠POF1,两式相加,则n2+m2=10c2,又n2+m2=2a21+2a2,所以2a21 +2a2=10c2,所以a21+a2=5c2,所以a21c2+a2c2=5,即1e21+1e22=5,故C正确;S△IPF1-S△IPF2≥12S△IF1F2,即PF1-PF2≥c,所以2a≥c,即1<e1≤2,故D正确.故选:ACD.5(多选题)已知F1,F2分别为双曲线x2-y23=1的左、右焦点,过F2的直线与双曲线的右支交于A,B两点,记△AF1F2的内切圆O1的面积为S1,△BF1F2的内切圆O2的面积为S2,则()A.圆O1和圆O2外切B.圆心O1在直线AO上C.S1⋅S2=π2D.S1+S2的取值范围是2π,3π【答案】AC【详解】双曲线x2-y23=1的a=1,b=3,c=2,渐近线方程为y=3x、y=-3x,两渐近线倾斜角分别为π3和2π3,设圆O1与x轴切点为G过F2的直线与双曲线的右支交于A,B两点,可知直线AB的倾斜角取值范围为π3,2π3,O1、O2的的横坐标为x,则由双曲线定义AF1-AF2=2a,所以由圆的切线长定理知x-(-c)-c-x=2a,所以x=a.O1、O2的横坐标均为a,即O1O2与x轴垂直.故圆O1和圆O2均与x轴相切于G1,0,圆O1和圆O2两圆外切.选项A正确;由双曲线定义知,△AF1F2中,AF1>AF2,则AO只能是△AF1F2的中线,不能成为∠F1AF2的角平分线,则圆心O1一定不在直线AO上.选项B错误;在△O1O2F2中,∠O1F2O2=90°,O1O2⊥F2G,则由直角三角形的射影定理可知F2G2=O1G⋅O2G,即(c-a)2=r1⋅r2则r1⋅r2=1,故S1⋅S2=πr21⋅πr22=π2.选项C正确;由直线AB 的倾斜角取值范围为π3,2π3 ,可知∠AF 2F 1的取值范围为π3,2π3,则∠O 1F 2F 1的取值范围为π6,π3,故r 1=F 2G ⋅tan ∠O 1F 2F 1=tan ∠O 1F 2F 1∈33,3 ,又r 1⋅r 2=1,则S 1+S 2=πr 21+r 22 =πr 21+1r 21,r 1∈33,3 令f x =x +1x ,x ∈13,3 ,则f x 在13,1 单调递减,在1,3 单调递增.f 1 =2,f 13 =103,f 3 =103,f x =x +1x ,x ∈13,3 值域为2,103 故S 1+S 2=πr 21+1r 21,r 1∈33,3 的值域为2π,103π .选项D 错误.故选:AC .【跟踪训练】3已知双曲线方程是x 2-y 23=1,过F 2的直线与双曲线右支交于C ,D 两点(其中C 点在第一象限),设点M 、N 分别为△CF 1F 2、△DF 1F 2的内心,则MN 的范围是.【答案】2,433【详解】 因x 2-y 23=1,故a =1,b =3,c =a 2+b 2=2,如图,过M 点分别作MA ⊥F 1F 2,MP ⊥F 2C ,MQ ⊥F 1C ,垂足分别为A ,P ,Q ,因M 为△CF 1F 2的内心,所以AF 1 -AF 2 =QF 1 -PF 2 =CF 1 -CF 2 =2a =2,故A 点也在双曲线上,即A 为双曲线的右顶点,同理NA ⊥F 1F 2,所以M ,A ,N 三点共线,设直线CD 的倾斜角为θ,因双曲线的渐近线方程为y =±3x ,倾斜角为π3,根双曲线的对称性,不妨设π3<θ≤π2,因AF 2 =c-a =2-1=1,所以MA =MA AF 1=tan ∠MF 2A =tanπ-θ2,NA =NA NF 1=tan ∠NF 2A =tan θ2,所以MN =MA +NA =tan π-θ2+tan θ2=sin π-θ2cos π-θ2+sin θ2cos θ2=cos θ2sin θ2+sin θ2cos θ2=1sin θ2cos θ2=2sin θ,因π3<θ≤π2,所以sin θ∈32,1 ,所以2sin θ∈2,433,故答案为:2,4334(多选题)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1、F 2,离心率为2,焦点到渐近线的距离为 6.过F 2作直线l 交双曲线C 的右支于A 、B 两点,若H 、G 分别为△AF 1F 2与△BF 1F 2的内心,则()A.C 的渐近线方程为y =±3xB.点H 与点G 均在同一条定直线上C.直线HG 不可能与l 平行D.HG 的取值范围为22,463【答案】ABD【详解】设双曲线C 半焦距为c ,双曲线C 的渐近线方程为y =±b a x ,即bx ±ay =0,双曲线C 的右焦点F 2c ,0 到渐近线的距离为bcb 2+a 2=b =6,由题意知e =ca=1+b 2a2=1+6a2=2,所以a 2=2,所以c =b 2+a 2=22,故双曲线C 的方程为x 22-y 26=1,故渐近线方程为y =±3x ,故A 正确;对于B 选项,记△AF 1F 2的内切圆在边AF 1、AF 2、F 1F 2上的切点分别为M 、N 、E , 由切线长定理可得AM =AN ,F 1M =F 1E ,F 2N =F 2E ,由AF 1 -AF 2 =2a ,即AM +MF 1 -AN +NF 2 =2a ,得MF 1 -NF 2 =2a ,即F 1E -F 2E =2a ,记H 的横坐标为x 0,则E x 0,0 ,于是x 0+c -c -x 0 =2a ,得x 0=a ,同理内心G 的横坐标也为a ,故HG ⊥x 轴,即H 、G 均在直线x =a 上,故B 正确;对于C 选项,当l 与x 轴垂直时,HG ⎳l ,故C 错误;对于D 选项,设直线AB 的倾斜角为θ,则∠OF 2G =θ2,∠HF 2O =90°-θ2(O 为坐标原点),在△HF 2G 中,HG =EG +HE =c -a tan θ2+tan 90°-θ2=c -asin θ2cos θ2+sin 90°-θ2 cos 90°-θ2 .c -a sin θ2cos θ2+cos θ2sin θ2=c -a 1sin θ2cos θ2=c -a ⋅2sin θ=22sin θ,由于直线l 与C 的右支交于两点,且C 的一条渐近线的斜率为b a =3,倾斜角为60°,结合图形可知60°<θ<120°,即32<sin θ≤1,所以,HG =22sin θ∈22,463,故D 正确.故选:ABD .考点五:已知具有公共焦点F 1,F 2的椭圆与双曲线的离心率分别为e 1,e 2,P 是它们的一个交点,且∠F 1PF 2=2θ,则有sin θe 12+cos θe 22=1.【精选例题】6已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线离心率倒数之和的最大值为()A.43B.433C.4D.463【答案】B【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论.【详解】设椭圆的长半轴为a ,双曲线的实半轴为a 1a >a 1 ,半焦距为c ,由椭圆和双曲线的定义可知,设PF 1 =m ,PF 2 =n ,F 1F 2 =2c ,椭圆和双曲线的离心率分别为e 1=c a ,e 2=ca 1,因P 是它们的一个公共点,且∠F 1PF 2=π3,则由余弦定理可得:4c 2=m 2+n 2-2mn cosπ3⋯⋯①在椭圆中,由定义知m +n =2a ,①式化简为:4c 2=4a 2-3mn ⋯⋯②在双曲线中,由定义知m -n =2a 1,①式化简为:4c 2=4a 21+mn ⋯⋯③由②③两式消去mn 得:16c 2=4a 2+12a 21,等式两边同除c 2得4=a 2c 2+3a 21c2,即4=1e 21+3e 22,由柯西不等式得1e 21+3e 221+13 ≥1e 1+3e 2⋅132,∴1e 1+1e 2≤433.故选:B7已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=1(a 2>0,b 2>0)有公共焦点F 1(左焦点),F 2(右焦点),且两条曲线在第一象限的交点为P ,若△PF 1F 2是以PF 1为底边的等腰三角形,C 1,C 2的离心率分别为e 1和e 2,且e 2=2,则()A.a 21-b 21=a 22+b 22B.1e 1+1e 2=2 C.e 1=25D.cos ∠F 1PF 2=34【答案】ACD【分析】A 由已知共焦点及椭圆、双曲线参数的关系判断;B 、C 由椭圆、双曲线的定义可得|PF 1|=2a 1-|PF 2|=2a 2+|PF 2|,而|PF 2|=|F 1F 2|=2c ,即可判定;D 记∠F 1PF 2=θ,应用余弦定理可得cos θ=e 21+e 22-2e 21e 22e 22-e 21,由已知及B 、C 分析,即可判断.【详解】设C 1,C 2的焦距为2c ,由C 1,C 2共焦点知:a 21-b 21=a 22+b 22=c 2,故A 正确;△PF 1F 2是以PF 1为底边的等腰三角形知|PF 2|=|F 1F 2|=2c ,由P 在第一象限知:|PF 1|=2a 1-|PF 2|=2a 2+|PF 2|,即2a 1-2c =2a 2+2c ,即a 1-a 2=2c ,即1e 1-1e 2=2,故B 错;由e 2=2且1e 1-1e 2=2,易得e 1=25,故C 正确;在△PF 1F 2中,记∠F 1PF 2=θ,根据定义PF 1+PF 2=2a 1PF 1-PF 2=2a 2⇒PF 1=a 1+a 2PF 2=a 1-a 2 .由余弦定理有(2c )2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos θ.整理得2c 2=a 21+a 22-(a 21-a 22)cos θ,两边同时除以c 2,可得2=1e 21+1e 22-1e 21-1e 22cos θ,故cos θ=e 21+e 22-2e 21e 22e 22-e 21.将e 1=25,e 2=2代入,得cos θ=34.故D 正确故选:ACD .【跟踪训练】5已知F 是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点,A 为椭圆C 1的下顶点,双曲线C 2:x 2m 2-y 2n 2=1(m >0,n >0)与椭圆C 1共焦点,若直线AF 与双曲线C 2的一条渐近线平行,C 1,C 2的离心率分别为e 1,e 2,则1e 1+2e 2的最小值为.【答案】22【分析】根据直线AF 与C 2的一条渐近线平行,得到b c =nm,再结合双曲线与椭圆共焦点得到e 1e 2=1,再利用基本不等式求解.【详解】解:设C 1的半焦距为c (c >0),则F c ,0 ,又A 0,-b ,所以k AF =b c,又直线AF 与C 2的一条渐近线平行,所以b c =n m ,所以b 2c 2=n 2m 2,所以a 2-c 2c 2=c 2-m 2m 2,所以a 2c 2=c 2m 2,所以e 1e 2=1,又1e 1+2e 2=e 2+2e 1e 1e 2=e 2+2e 1≥22e 1e 2=22,当且仅当e 2=2e 1,即e 1=22,e 2=2时等号成立,即1e 1+1e 2的最小值为22.故答案为:22考点六:设圆锥曲线C 的焦点F 在x 轴上,过点F 且斜率为k 的直线l 交曲线C 于A ,B 两点,若AF =λFB(λ>0),则e =1+k 2λ-1λ+1,即e cos θ =λ-1λ+1.【精选例题】8已知椭圆C :x 24+y 23=1过焦点F 的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF=2FB ,则直线l 的斜率k 的值为.【答案】±52【详解】由题,点A 位于x 轴上方且AF =2FB,则直线l 的斜率存在且不为0,F 1,0 ,设A x 1,y 1 ,B x 2,y 2 ,则可得-y 1=2y 2,设直线l 方程为x =ty +1,联立直线与椭圆x 24+y 23=1x =ty +1可得3t 2+4 y 2+6ty -9=0,∴y 1+y 2=-6t3t 2+4y 1y 2=-93t 2+4,∴y 2=6t 3t 2+4,-2y 22=-93t 2+4,∴-26t 3t 2+42=-93t 2+4,解得t =±255,则直线的斜率为±52.故答案为:±52.9已知F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l 经过点F 且与双曲线相交于A ,B 两点,记该双曲线的离心率为e ,直线l 的斜率为k ,若AF =2FB,则()A.8e 2-k 2=1B.e 2-8k 2=1C.9e 2-k 2=1D.k 2-9e 2=1【答案】C【详解】由题意,设直线l 的方程为x =my +c ,联立方程组x =my +cx 2a2+y 2b 2=1,整理得(b 2m 2-a 2)y 2+2b 2mcy +b 4=0,设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=-2b 2mc b 2m 2-a 2,y 1y 2=b 4b 2m 2-a 2,因为AF =2FB ,即(c -x 1,-y 1)=2(x 2-c ,y 2),可得-y 1=2y 2,代入上式,可得y 2=2b 2mcb 2m 2-a 2-2y 22=b 4b 2m 2-a2,可得-22b 2mcb 2m 2-a22=b 4b 2m 2-a2,整理得-8m 2c 2=b 2m 2-a 2,即(8c 2+b 2)m 2-a 2=0,又由c 2=a 2+b 2,可得(9c 2-a 2)m 2-a 2=0,即(9e 2-1)m 2-1=0,所以(9e 2-1)⋅1k2-1=0,可得9e 2-1-k 2=0,即9e 2-k 2=1.故选:C .10已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左,右焦点,过点F 1倾斜角为30°的直线与双曲线的左,右两支分别交于点A ,B .若AF 2 =BF 2 ,则双曲线C 的离心率为()A.2B.3C.2D.5【答案】A【详解】设AF 1 =t ,则AF 2 =t +2a =BF 2 ,从而BF 1 =t +4a ,进而BA =4a .过F 2作F 2H ⊥AB =H ,则AH =2a .如图:在Rt △F 1F 2H 中,F 2H =2c sin30°=c ,F 1H =2c cos θ=3c =AF 2 ;在Rt △AF 2H 中,3c 2-c 2=2a2,即2c 2=4a 2,所以e = 2.故选:A 【跟踪训练】6斜率为12的直线l 过椭圆C :y 2a 2+x 2b2=1a >b >0 的焦点F ,交椭圆于A ,B 两点,若AF =23AB ,则该椭圆的离心率为.【答案】53【详解】设A x 1,y 1 ,B x 2,y 2 ,由AF =23AB 得:AF =2FB ,∴x 1=-2x 2,即x1x 2=-2;不妨令F 0,c ,则直线l :y =12x +c ,由y =12x +c y 2a 2+x 2b2=1得:b 2+4a 2 x 2+4b 2cx -4b 4=0,∴x 1+x 2=-4b 2cb 2+4a 2x 1x 2=-4b 4b 2+4a2,∴x 1+x 22x 1x 2=x1x 2+x 2x 1+2=-16b 4c 2b 2+4a 2 24b 4b 2+4a 2=-4c 2b 2+4a2=-12,即8c 2=b 2+4a 2=a 2-c 2+4a 2=5a 2-c 2,∴9c 2=5a 2,∴e =c 2a 2=59=53;由椭圆对称性可知:当F 0,-c 时,e =53;∴椭圆的离心率为53.故答案为:53.7已知双曲线x 2a 2-y2b 2=1a ,b >0 的左、右焦点分别为F 1,F 2,过点F 1且倾斜角为π6的直线l 与双曲线的左、右支分别交于点A ,B ,且AF 2 =BF 2 ,则该双曲线的离心率为()A.2B.3C.22D.23【答案】A【详解】解:过F 2作F 2N ⊥AB 于点N ,设AF 2 =BF 2 =m ,因为直线l 的倾斜角为π6,所以在直角三角形F 1F 2N 中,NF 2 =c ,NF 1 =3c ,由双曲线的定义可得BF 1 -BF 2 =2a ,所以BF 1 =2a +m ,同理可得AF 1 =m -2a ,所以AB =BF 1 -AF 1 =4a ,即AN =2a ,所以AF 1 =3c -2a ,因此m =3c ,在直角三角形ANF 2中,AF 2 2=NF 2 2+AN 2,所以3c 2=4a 2+c 2,所以c =2a ,则e =ca= 2.故选:A .考点七:已知双曲线方程为x 2a 2-y 2b 2=1a >0,b >0 的右焦点为F ,过点F 且与渐近线y =ba x 垂直的直线分别交两条渐近线于P ,Q 两点.情形1.如图1.若FP =λFQ λ>0,λ≠1 ,则e 2=2λλ−1(*)图1图2如图2.若QF =λFP(0<λ<1),则e 2=2λ+1【精选例题】11过双曲线x 2a 2−y 2b2=1(a >0,b >0)的右焦点做一条渐近线的垂线,垂足为A ,与双曲线的另一条渐近线交于点B ,若FB =2FA,则此双曲线的离心率为【答案】满足情形1,即λ=2,故e 2=2λλ−1,则e =212已知双曲线C :x 2a 2-y 2b 2=1,(a >0,b >0)过C 的右焦点F 作垂直于渐近线的直线l 交两渐近线于A 、B 两点A 、B 两点分别在一、四象限,若AF BF =12,则双曲线C 的离心率为()A.233B.2C.3D.5【答案】A【详解】解:由题意知:双曲线的右焦点F c ,0 ,渐近线方程为y =±b a x ,即bx ±ay =0,如下图所示:由点到直线距离公式可知:FA =bcb 2+a2=b ,又∵c 2=a 2+b 2,∴OA =a ,∵AF BF=12,即BF =2b ,设∠AOF =α,由双曲线对称性可知∠AOB =2α,而tan α=b a ,tan2α=AB OA=3ba ,由正切二倍角公式可知:tan2α=2tan α1-tan 2α=2×b a 1-b a2=2ab a 2-b 2,即3b a =2ab a 2-b 2,化简可得:a 2=3b 2,即b 2a2=13,由双曲线离心率公式可知:e =ca =1+b 2a2=1+13=233.故选:A .【跟踪训练】8已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为直线l 1,l 2,经过右焦点F 且垂直于l 1的直线l 分别交l 1,l 2于A ,B 两点,且FB =2AF,则该双曲线的离心率为()A.233B.3C.43D.433【答案】满足情形2,即λ=2,e 2=2λ+1⇒e =233.9F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左右焦点,过F 1且斜率为1的直线与两条渐近线分别交于A ,B 两点,若AB =2BF 1,则双曲线的离心率为A.52B.5C.103D.10【答案】B【详解】设直线方程为y =x +c ,与渐近线方程y =±b a x 联立方程组解得y B =bc a +b ,y A =bc b -a,因为AB =2BF 1 ,所以y B -y A =2(0-y B )y A =3y B ∴3bc a +b =bc b -a,∴b =2a ,∴c =5a ,e =5,选B .1已知点P 在椭圆x 2a 2+y 2b 2=1a >b >0 上,F 1,F 2是椭圆的左、右焦点,若PF 1 ⋅PF 2 =3,且△PF 1F 2的面积为2,则b 2=()A.2B.3C.4D.5【答案】C【分析】画出图形,结合解三角形知识、数量积的定义、椭圆的定义以及平方关系即可求解.【详解】PF 1 +PF 2=2a 如图所示:设∠F 1PF 2=θ,由题意PF 1 ⋅PF 2 =PF 1 ⋅PF 2 cos θ=3,S △PF 1F 2=12PF 1⋅PF 2 sin θ=2,两式相比得tan θ=sin θcos θ=43,又θ∈0,π ,且cos 2θ+sin 2θ=1,所以cos θ=35,sin θ=45,PF 1⋅PF 2 =5,而由余弦定理有2c 2=F 1F 2 2=PF 1 2+PF 2 2-2PF 1 ⋅PF 2cos θ=PF 1 2+PF 2 2-6,即2c 2+6=PF 1 2+PF 2 2,且由椭圆定义有2a 2=PF 1 +PF 2 2=PF 1 2+PF 2 2+2PF 1 ⋅PF 2=2c 2+6+10,所以4b 2=4a 2-4c 2=16,解得b 2=4.故选:C .2椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,连接原点与线段MN 中点所得直线的斜率为22,则mn 的值是()A.22B.233C.922D.2327【答案】A【分析】设M (x 1,y 1),N (x 2,y 2),利用点差法可推出y 1+y 2x 1+x 2⋅y 1-y 2x 1-x 2=-mn,设线段MN 中点为(x 0,y 0),结合题意推出y 0x 0=22,y 1-y 2x 1-x 2=-1,代入y 1+y 2x 1+x 2⋅y 1-y 2x 1-x 2=-mn化简,即可得答案.【详解】设M (x 1,y 1),N (x 2,y 2),则mx 21+ny 21=1,mx 22+ny 22=1,两式相减得m (x 21-x 22)+n (y 21-y 22)=0,由已知椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,可知x 1≠x 2,故y 21-y 22x 21-x 22=-m n ,即y 1+y 2x 1+x 2⋅y 1-y 2x 1-x 2=-m n ,设线段MN 中点为(x 0,y 0),则x 1+x 2=2x 0,y 1+y 2=2y 0,而y 1-y 2x 1-x 2=k MN =-1,连接原点与线段MN 中点所得直线的斜率为22,即y 0x 0=22,故22⋅(-1)=-m n ,即m n =22,故选:A3已知双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的离心率为2,焦点到渐近线距离为3,则双曲线C 实轴长()A.3B.3C.23D.6【答案】D【解析】由双曲线的性质可得双曲线渐近线方程,由点到直线的距离公式可得b =3,再结合离心率即可得解.【详解】由题意,双曲线的一个渐近线为y =-ba x 即bx +ay =0,设双曲线的的右焦点为F c ,0 ,c >0,则c 2=a 2+b 2,所以焦点到渐近线的距离d =bca 2+b 2=bcc=b =3,又离心率e =ca=2,所以a =3,所以双曲线C 实轴长2a =6.故选:D .4(多选题)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,且经过点3,32,P 在椭圆上,则()A.PF 1 的最大值为3B.△PF 2F 1的周长为4C.若∠F 2PF 1=60°,则△PF 2F 1的面积为3D.若PF 1 PF 2 =4,则∠F 2PF 1=60°【答案】ACD【分析】先求出椭圆方程,然后根据椭圆的几何性质逐项判断即可.【详解】由题意,椭圆离心率为12,则a :b :c =2:3:1⇒a =23b ,则x 2a 2+y 2b 2=1⇒3x 24b 2+y 2b 2=1,代入3,32 ,得b 2=3⇒a 2=4,所以C :x 24+y 23=1,对A ,由题意PF 1 max =a +c =3,故A 正确;对B ,△PF 2F 1的周长为2a +2c =6,故B 错误;对C ,若∠F 2PF 1=60°,则由余弦定理得:F 2F 12=PF 1 2+PF 2 2-2PF 1 PF 2 cos60°=PF 1 +PF 2 2-3PF 1 ⋅PF 2 .即(2c )2=(2a )2-3PF 1 ⋅PF 2 ,故PF 1 ⋅PF 2 =4,故S △PF 2F 1=12PF 1 ⋅PF 2 sin60°=3,故C 正确;对D ,由余弦定理F 2F 12=PF 1 2+PF 2 2-2PF 1 ⋅PF 2 cos ∠F 2PF 1=PF 1 +PF 2 2-2PF 1 ⋅PF 2 ⋅1+cos ∠F 2PF 1 ,即4=16-2×41+cos ∠F 2PF 1 ,解得cos ∠F 2PF 1=12,故∠F 2PF 1=60°,故D 正确,故选:ACD5(多选题)设椭圆的方程为x 22+y 24=1,斜率为k 的直线不经过原点O ,而且与椭圆相交于A ,B 两点,M 为线段AB 的中点,下列结论不正确的是()A.直线AB 与OM 垂直B.若点M 坐标为(1,1),则直线方程为2x +y -3=0C.若直线方程为y =x +1,则点M 坐标为13,43D.若直线方程为y =2x +2,则|AB |=432【答案】AC【分析】根据椭圆中点弦的性质k AB ∙k OM =-42=-2,可以判断ABC ,对于D ,直线方程与椭圆方程联立,利用弦长公式即可求得|AB |,从而判断正误.【详解】对于A :设A x 1,y 1 ,B x 2,y 2 ,则x 222+y 224=1x 212+y 214=1,相减可得x 21-x 222+y 21-y 224=0,所以y 1-y 2x 1-x 2⋅x 1+x 2y 1+y 2=-42=-2≠-1,故A 错误;对于B :根据k AB ∙k OM =-2,k OM =1,所以k AB =-2,所以直线方程为y -1=-2(x -1),即2x +y -3=0,故B 正确;对于C :若直线方程为y =x +1,点M 13,43,则k AB ∙k OM =1×4=4≠-2,所以C 错误;对于D :若直线方程为y =2x +2,与椭圆方程x 22+y 24=1联立,得到2x 2+(2x +2)2-4=0,整理得:3x 2+4x =0,解得x 1=0,x 2=-43,所以|AB |=1+12∙-43-0 =423,故D 正确;故选:AC .6(多选题)设A ,B 是双曲线x 2-y 24=1上的两点,下列四个点中可以为线段AB 中点的是()A.0,2B.-1,2C.1,1D.1,4【分析】A选项由双曲线的对称性可直接判断,B、C、D选项,首先根据点差法分析可得k AB⋅k=4,结合双曲线的渐近线斜率可判断B,C、D可通过联立直线方程与双曲线方程,利用判别式即可判断.【详解】对于选项A:因为双曲线关于y轴对称,所以当直线AB的方程为y=2时,线段AB的中点为(0,2),故A正确;当直线AB的斜率存在且不为0时,设A x1,y1,B x2,y2,则AB的中点Mx1+x22,y1+y22,可得k AB=y1-y2x1-x2,k=y1+y22x1+x22=y1+y2x1+x2,因为A,B在双曲线上,则x21-y214=1x22-y224=1,两式相减得x21-x22-y21-y224=0,所以k AB⋅k=y21-y22x21-x22=4.对于选项B:可得k=-2,k AB=-2,则AB:y-2=2(x+1),即y=2x+4,双曲线的渐近线方程为y=±2x,由于y=2x+4与其中一条渐近线平行,故不可能有两个交点,故B 错误;对于选项C:可得k=1,k AB=4,则AB:y-1=4(x-1),即y=4x-3,联立方程y=4x-3x2-y24=1,消去y得12x2-24x+13=0,此时Δ=242-4×12×13=-48<0,故直线AB与双曲线没有交点,故C错误;对于选项D:k=4,k AB=1,则AB:y-4=x-1,即y=x+3,联立方程y=x+3x2-y24=1,消去y得3x2-6x-13=0,此时Δ=-62+4×3×13>0,故直线AB与双曲线有交两个交点,故D正确;故选:AD.7(多选题)若P是椭圆C1:x2a2+y2b2=1a>b>0与双曲线C2:x2m2-y2n2=1m>0,n>0在第一象限的交点,且C1,C2共焦点F1,F2,∠F1PF2=θ,C1,C2的离心率分别为e1,e2,则下列结论中正确的是()A.PF1=m+a,PF2=m-a B.cosθ=b2-n2 b2+n2C.若θ=120°,则3e21+1e22=4 D.若θ=90°,则e21+e22的最小值为2【分析】根据给定条件,利用椭圆、双曲线定义计算判断A ;由余弦定理计算判断B ;再结合B ,基本不等式等讨论CD 选项即可.【详解】解:依题意,PF 1+ PF 2 =2aPF 1- PF 2 =2m ,解得PF 1 =a +m ,PF 2 =a -m ,A 不正确;令|F 1F 2|=2c ,由余弦定理得:cos θ=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(a +m )2+(a -m )2-4c 22(a +m )(a -m )=a 2+m 2-2c 2a 2-m 2,因为在椭圆C 1中a 2-c 2=b 2,在双曲线C 2中,m 2-c 2=-n 2,所以cos θ=a 2+m 2-2c 2a 2-m 2=b 2-n 2b 2+n 2,故B 选项正确;当θ=120°时,cos θ=b 2-n 2b 2+n 2=-12,即3b 2=n 2,所以3a 2+m 2=4c 2,即3a c2+m c2=4,所以,3e 21+1e 22=4,故C 选项正确;当θ=90°时,b 2=n 2,即a 2+m 2=2c 2,所以,a c2+m c 2=2,有1e 21+1e 22=2,因为0<e 21<1<e 22,所以,e 21+e 22=2e 21e 22<2e 21+e 2222,解得e 21+e 22>2,D 不正确;故选:BC8(多选题)如图,P 是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2m 2-y 2n 2=1(m >0,n >0)在第一象限的交点,且C 1,C 2共焦点F 1,F 2,∠F 1PF 2=θ,C 1,C 2的离心率分别为e 1,e 2,则下列结论正确的是()A.PF 1 =a +m ,PF 2 =a -mB.若θ=60°,则1e 21+3e 22=4C.若θ=90°,则e 21+e 22的最小值为2D.tanθ2=nb【答案】ABD【分析】根据给定条件结合椭圆、双曲线定义计算判断A ;借助余弦定理、离心率公式、均值不等式计算判断B ,C ,D 作答.【详解】由椭圆和双曲线的定义得:PF 1 +PF 2 =2aPF 1 -PF 2 =2m ,解得PF 1 =a +m ,PF 2 =a -m ,A 正确;在△F 1PF 2中,由余弦定理得:a -m 2+a +m 2-2a -m a +m cos θ=2c 2,整理得a 21-cos θ +m 21+cos θ =2c 2,a 21-cos θ c 2+m 21+cos θ c 2=2,即1-cos θe 21+1+cos θe 22=2,当θ=60°时,12e 21+32e 22=2,即1e 21+3e 22=4,B 正确;当θ=90°时,1e 21+1e 22=2,e 21+e 22=121e 21+1e 22(e 21+e 22)=1+12e 22e 21+e 21e 22≥1+e 22e 21⋅e 21e 22=2,当且仅当e 1=e 2=1时取“=”,而0<e 1<1,e 2>1,C 不正确;在椭圆中,2|PF 1||PF 2|cos θ=|PF 1|2+|PF 2|2-|F 1F 2|2=4a 2-4c 2-2|PF 1||PF 2|,即|PF 1||PF 2|=2b 21+cos θ,在双曲线中,2|PF 1||PF 2|cos θ=|PF 1|2+|PF 2|2-|F 1F 2|2=4m 2-4c 2+2|PF 1||PF 2|,即|PF 1||PF 2|=2n 21-cos θ,于是得2n 21-cos θ=2b 21+cos θ⇔n 2b 2=1-cos θ1+cos θ=2sin 2θ22cos 2θ2=tan 2θ2,而0<θ2<π2,则tan θ2=n b ,D 正确.故选:ABD【点睛】方法点睛:双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、双曲线定义,得到a ,c 的关系.9己知椭圆C :x 2m 2+y 26=1的焦点分别为F 10,2 ,F 20,-2 ,设直线l 与椭圆C 交于M ,N 两点,且点P 12,12为线段MN 的中点,则直线l 的方程为.【答案】3x +y -2=0【分析】先由题意求出m 2,再由点差法可以求出直线l 的斜率,由直线的点斜式化简即可求解.【详解】根据题意,因为焦点在y 轴上,所以6-m 2=4,则m 2=2,即椭圆C :x 22+y 26=1,所以P 点为椭圆内一点,设M x 1,y 1 ,N x 2,y 2 ,则x 212+y 216=1,x 222+y 226=1,两式相减得x 1+x 2 x 1-x 22=-y 1+y 2 y 1-y 26,变形得y 1-y 2x 1-x 2=-3×x 1+x2y 1+y 2,因为点P 12,12 为线段MN 的中点,所以x 1+x 2y 1+y 2=x 1+x 22y 1+y 22=x P y P=1212=1,所以直线l 的斜率为k =y 1-y 2x 1-x 2=-3×x 1+x2y 1+y 2=-3×1=-3,所以直线l 的方程为y -12=-3x -12,即3x +y -2=0.故答案为:3x +y -2=0.10已知点A ,B ,C 是离心率为2的双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 上的三点, 直线AB ,AC ,BC 的斜率分别是k 1,k 2,k 3,点D ,E ,F 分别是线段AB ,AC ,BC 的中点,O 为坐标原点,直线OD ,OE ,OF 的斜率分别是k '1,k '2,k '3.若1k '1+1k '2+1k '3=3,则k 1+k 2+k 3=【答案】3【分析】本题考查点差法,根据点差法的内容,设点,作差,计算得出y 0y 1-y 2 x 0x 1-x 2 =b 2a 2,结合离心率为2,求得k 1k '1=1.同理求得k 2k '2=1,k 3k '3=1.代入问题计算即可.【详解】因为双曲线Γ的离心率为2, 所以ba=1.不妨设A x 1,y 1 ,B x 2,y 2 ,D x 0,y 0 ,因为点A ,B 在Γ上,所以x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1,两式相减,得x 1+x 2 x 1-x 2a 2=y 1+y 2 y 1-y 2b 2,因为点D 是AB 的中点,所以x 1+x 2=2x 0, y 1+y 2=2y 0,。
高考数学复习考点题型归类解析42双曲线(解析版)
高考数学复习考点题型归类解析专题42双曲线一、关键能力1.了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质.2.建立并掌握双曲线的标准方程,能根据已知条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题.二、教学建议教学中要让学生类比椭圆学习的过程,进而再了解抛物线、双曲线的定义、几何图形和标准方程,知道它们的简单几何性质。
三、自主梳理1.双曲线的定义平面内到两个定点F1、F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性范围x≤-a或x≥a,y∈R x∈R,y≤-a或y≥a3.等轴双曲线实轴与虚轴等长的双曲线叫做等轴双曲线,其标准方程为x 2-y 2=λ(λ≠0),离心率e 渐近线方程为y =±x . 四、高频考点+重点题型 考点一.双曲线的定义及其应用题组一(定义法求轨迹方程)1.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为__________. 答案:x 2-y 28=1(x ≤-1)解析:如图10.3-1所示,设动圆M 与圆C 1及圆C 2外切于点A 和点B .图10.3-1根据两圆外切的充要条件,得|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.因为|MA|=|MB|,所以|MC2|-|MC1|=|BC2|-|AC1|=3-1=2<6.这表明动点M到两定点C2、C1的距离的差是常数2且小于|C1C2|.根据双曲线的定义知.动点M的轨迹为双曲线的左支(点M到C2的距离大,到C1的距离小),且a=1,c=3,则b2=8,设点M的坐标为(x,y),则其轨迹方程为x2-y28=1(x≤-1).2.已知△ABC的顶点A(-5,0),B(5,0),△ABC内切圆的圆心在直线x=2上,则顶点C 的轨迹方程是()A.x24-y221=1(x>2)B.y24-x221=1(y>2)C.x221-y24=1D.y24-x22=1解析:选A如图,△ABC与内切圆的切点分别为G,E,F.|AG|=|AE|=7,|BF|=|BG|=3,|CE|=|CF|,所以|CA|-|CB|=7-3=4.根据双曲线定义,所求轨迹是以A,B为焦点,实轴长为4的双曲线的右支,方程为x24-y221=1(x>2).题组二(焦点三角形之定义使用)1.已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=________.答案:34解析:由双曲线的定义有|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.2.过双曲线x 2-y 24=1的左焦点F 1作一条直线l 交双曲线左支于P ,Q 两点,若PQ =4,F 2是双曲线的右焦点,则△PF 2Q 的周长是________. 答案 12解析:由题意,得PF 2-PF 1=2,QF 2-QF 1=2.∵PF 1+QF 1=PQ =4,∴PF 2+QF 2-4=4,∴PF 2+QF 2=8. ∴△PF 2Q 的周长是PF 2+QF 2+PQ =8+4=12.3.已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为( ) A .1 B.52C .2D. 5解析:选A 不妨设|PF 1|=m ,|PF 2|=n ,则由双曲线的定义可知||PF 1|-|PF 2||=|m -n |=4.又因为∠F 1PF 2=90°,所以|PF 1|2+|PF 2|2=(2c )2=20,即m 2+n 2=20.又||PF 1|-|PF 2||2=|m -n |2=16,所以mn =2.所以△F 1PF 2的面积为S =12mn =1,故选A.题组三(线段的转移)1.已知F是双曲线x24-y212=1的左焦点,A(1,4),P是双曲线右支上的一动点,则|PF|+|P A|的最小值为________.解析:因为F是双曲线x24-y212=1的左焦点,所以F(-4,0),设其右焦点为H(4,0),则由双曲线的定义可得|PF|+|P A|=2a+|PH|+|P A|≥2a+|AH|=4+(4-1)2+(0-4)2=4+5=9.2.(2020·河南省孟州市第一中学模拟)已知双曲线x2-y2=4,F1是左焦点,P1,P2是右支上的两个动点,则|F1P1|+|F1P2|-|P1P2|的最小值是________.【答案】8【解析】设双曲线的右焦点为F2,∵|F1P1|=2a+|F2P1|,|F1P2|=2a+|F2P2|,∴|F1P1|+|F1P2|-|P1P2|=2a+|F2P1|+2a+|F2P2|-|P1P2|=8+(|F2P1|+|F2P2|-|P1P2|)≥8(当且仅当P1,P2,F2三点共线时,取等号),∴|F1P1|+|F1P2|-|P1P2|的最小值是8.3.设双曲线C:x28−y2b2=1的左、右焦点分别为F1,F2,过F1的直线与双曲线C交于M,N两点,其中M在左支上,N在右支上,若点F2在线段MN的中垂线上,则MN=()A.8√2B.8C.4√2D.4【解答】A解:如图,由双曲线方程可得a=2√2.由双曲线的定义可知:|F2M|﹣|F1M|=2a=4√2,|F1N|﹣|F2N|=2a=4√2,∴|F2M|=|F1M|+4√2,|F1N|=|F2N|+4√2,∵点F2在线段MN的中垂线上,∴|F2M|=|F2N|,∴|F1N|=|F1M|+8√2,∴|MN|=|F1N|﹣|F1M|=8√2.考点二.双曲线的标准方程1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线标准方程是( ) A.x 24-y 2=1B.x 22-y 2=1C.x 23-y 23=1D .x 2-y 22=1 解析:选B法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0),因为双曲线过点P (2,1),所以4a 2-1b 2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线标准方程是x 22-y 2=1.法二:设所求双曲线标准方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入可得44-λ+11-λ=1,解得λ=2(λ=-2舍去),所以所求双曲线标准方程为x 22-y 2=1.3.经过点P (3,27),Q (-62,7)的双曲线的标准方程为____________. 答案:y 225-x 275=1解析:设双曲线方程为mx 2+ny 2=1(mn <0),因为所求双曲线经过点P (3,27),Q (-62,7),所以⎩⎨⎧9m +28n =1,72m +49n =1,解得⎩⎪⎨⎪⎧m =-175,n =125.故所求双曲线标准方程为y 225-x 275=1.4.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( )A.x 24-y 212=1B.x 27-y 29=1C.x 28-y 28=1D.x 212-y 24=1 答案 A解析因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1.考点三、焦点三角形1.已知点F1,F2分别为双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点,过F1的直线交双曲线C的左支于A,B两点,且|AF2|=3,|BF2|=5,|AB|=4,则△BF1F2的面积为.答案:92解:|AF2|=3,|BF2|=5,|AB|=4,可得三角形ABF2为直角三角形,∠BAF2=90°,设|AF1|=m,|BF1|=n,可得m+n=4,3﹣m=5﹣n=2a,解得m=1,n=3,则△BF1F2的面积为S△ABF2−S△AF1F2=12×3×4−12×1×3=92.故答案为:92.2.已知F1,F2是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,P是双曲线右支上任意一点,M是线段PF1的中点,则以PF1为直径的圆与圆x2+y2=a2的位置关系是()A.相离B.相切C.相交D.以上都有可能【解答】解:∵P在双曲线右支上,∴|PF1|﹣|PF2|=2a,∵M是线段PF1的中点,∴|MF1|=|PM|=12|PF1|,∵O是线段F1F2的中点,∴|MO|=12|PF2|,∴12|PF1|−12|PF2|=a⇒|MF1|−|OM|=a⇒|OM|=|MF1|−a,即圆心距等于两圆的半径之差,∴以线段PF1为直径的圆与圆x2+y2=a2的位置关系是相内切.故选:B.3.从双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左焦点F 引圆x 2+y 2=a 2的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则|MO |﹣|MT |等于( )A .c ﹣aB .b ﹣aC .a ﹣bD .c ﹣b【解答】解:如图所示,设F ′是双曲线的右焦点,连接PF ′. ∵点M ,O 分别为线段PF ,FF ′的中点,由三角形中位线定理得到:|OM |=12|PF ′|=12(|PF |﹣2a )=12|PF |﹣a =|MF |﹣a ,∴|OM |﹣|MT |=|MF |﹣|MT |﹣a =|FT |﹣a ,连接OT ,因为PT 是圆的切线, 则OT ⊥FT ,在Rt △FOT 中,|OF |=c ,|OT |=a , ∴|FT |=√丨OF 丨2−丨OT 丨2=b . ∴|OM |﹣|MT |=b ﹣a . 故选:B .考点三.双曲线的离线率题组一(离心率的值)1.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与双曲线C 在第二象限的交点为P ,O 为原点,|OP |=|OF |,则双曲线C 的离心率为( )A .5B. 5 C.53D.54 [答案] A(2)根据直线4x -3y +20=0与x 轴的交点F 为(-5,0),可知半焦距c =5,设双曲线C 的右焦点为F 2,连接PF 2,根据|OF 2|=|OF |且|OP |=|OF |可得,△PFF 2为直角三角形,如图,过点O 作OA 垂直于直线4x -3y +20=0,垂足为A ,则易知OA 为△PFF 2的中位线,又原点O 到直线4x -3y +20=0的距离d =4,所以|PF 2|=2d =8,|PF |=|FF 2|2-|PF 2|2=6,故结合双曲线的定义可知|PF 2|-|PF |=2a =2,所以a =1,故e =ca =5.2.(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________. 【答案】2【解析】如图,由F 1A →=AB →,得F 1A =AB .又OF 1=OF 2,所以OA 是三角形F 1F 2B 的中位线, 即BF 2//OA ,BF 2=2OA .由F 1B →·F 2B →=0,得F 1B ⊥F 2B ,OA ⊥F 1A , 则OB =OF 1,所以∠AOB =∠AOF 1,又OA 与OB 都是渐近线,得∠BOF 2=∠AOF 1, 又∠BOF 2+∠AOB +∠AOF 1=π, 得∠BOF 2=∠AOF 1=∠BOA =60°, 又渐近线OB 的斜率为ba =tan 60°=3, 所以该双曲线的离心率为e =c a =1+(ba )2=1+(3)2=23.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A.5B.2C.3D. 2解析:选C 不妨设一条渐近线的方程为y =b a x ,则F 2到y =b a x 的距离d =|bc |a 2+b 2=b .在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-a c ,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3.题组二(离心率的范围)1.已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 作垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(2,1+2)D .(1,1+2) [答案] (1)B[解析] (1)若△ABE 是锐角三角形,只需∠AEF <45°,在Rt △AFE 中,|AF |=b 2a ,|FE |=a +c ,则b 2a <a +c ,即b 2<a 2+ac ,即2a 2-c 2+ac >0,则e 2-e -2<0,解得-1<e <2,又e >1,则1<e <2,故选B.2.已知点(1,2)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,则其离心率的取值范围是( ) A.()1,5 B.⎝ ⎛⎭⎪⎫1,52 C.()5,+∞ D.⎝ ⎛⎭⎪⎫52,+∞答案 C解析 已知点(1,2)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,得1a 2-4b 2=1,即b 2a 2=b 2+4, 所以e =ca =1+b 2a 2=b 2+5>5,所以e > 5.考点四 双曲线的渐近线1.(2020·新课标Ⅱ)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D 、E 两点,若ODE 的面积为8,则C 的焦距的最小值为( )A. 4B. 8C. 16D. 32 【答案】B 【解析】2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D 、E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩故(,)D a b 联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩故(,)E a b -∴||2ED b = ∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c=≥==当且仅当a b==∴C的焦距的最小值为8。
双曲线的渐近线方程推导过程
双曲线的渐近线方程推导过程双曲线是平面直角坐标系中的一个曲线,具有两个分离的“支”,有两条渐近线,它们对称于坐标轴。
设双曲线的标准方程为 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1,其中 a>b>0。
双曲线的两条渐近线方程应该满足以下条件:1. 当 x\rightarrow \infty 时,y 也趋近于 \pm\frac{b}{a}x;2. 当 y\rightarrow \infty 时,x 也趋近于 \pm \frac{a}{b}y。
根据第一条条件,我们将 y=\pm \frac{b}{a}x+k 带入双曲线方程中,得到:\frac{x^2}{a^2}-\frac{(\pm \frac{b}{a}x+k)^2}{b^2}=1整理后得到x^2-\frac{a^2-b^2}{a^2}(\pm bx-ak)^2=a^2当 x\rightarrow \infty 时,\pm bx-ak 会趋近于 \pm\frac{a}{b}\sqrt{x^2-\frac{a^2}{a^2-b^2}}。
所以,当x\rightarrow \infty 时,双曲线的两条渐近线方程为:y=\pm \frac{b}{a}x\pm \frac{b}{a}\sqrt{x^2-\frac{a^2}{a^2-b^2}}接下来,我们来证明这就是双曲线的两条渐近线。
令t=x/\sqrt{a^2-b^2},则原方程变形为:\frac{1}{a^2-b^2}x^2-\frac{1}{b^2}y^2=1即t^2-\frac{y^2}{b^2}=1当 t\rightarrow \infty 时,y 也趋近于 \pm bt。
所以,根据直线与双曲线的相交情况,我们可以得到两条渐近线方程的确如上面所述。
同理,我们可将第二条条件 x\rightarrow \infty 的过程对双曲线的另一支应用,可以得到该支的两条渐近线方程为:y=\pm \frac{a}{b}x\pm \frac{a}{b}\sqrt{y^2-\frac{b^2}{a^2-b^2}}。
双曲线的渐近线公式推导
双曲线的渐近线公式推导双曲线是一种常见的二次曲线,它有两条渐近线。
下面我将从多个角度来推导双曲线的渐近线公式。
首先,我们先来定义双曲线。
双曲线的一般方程可以表示为:\[ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \]其中,a和b是双曲线的两个参数。
接下来,我们来推导双曲线的渐近线公式。
1. 水平渐近线:当y趋近于正无穷或负无穷时,双曲线的x趋近于a或-a。
因此,我们可以得到两条水平渐近线的方程:\[ y = \pm \frac{b}{a} \cdot x \]2. 垂直渐近线:当x趋近于正无穷或负无穷时,双曲线的y趋近于b或-b。
因此,我们可以得到两条垂直渐近线的方程:\[ x = \pm \frac{a}{b} \cdot y \]3. 斜渐近线:斜渐近线是双曲线的一条特殊的渐近线,它的斜率不等于0或无穷大。
我们可以通过以下步骤推导斜渐近线的方程:首先,将双曲线的一般方程改写为:\[ y^2 = \frac{b^2}{a^2} \cdot x^2 b^2 \]然后,我们取y为bx,代入上式得到:\[ (bx)^2 = \frac{b^2}{a^2} \cdot x^2 b^2 \]化简得:\[ (b^2 a^2) \cdot x^2 b^2 \cdot a^2 = 0 \]这是一个二次方程,解它可以得到两个x的值,记为x1和x2。
接下来,我们可以求出对应的y值,即y1和y2。
这样,我们就得到了两个点(x1, y1)和(x2, y2)。
然后,我们可以计算斜率k:\[ k = \frac{y2 y1}{x2 x1} \]最后,我们可以得到斜渐近线的方程:\[ y = kx + c \]其中c为常数,可以通过将斜渐近线的方程代入双曲线的一般方程求解得到。
综上所述,我们从水平渐近线、垂直渐近线和斜渐近线三个角度推导了双曲线的渐近线公式。
专题5双曲线的渐近线-学生版
专题5双曲线的渐近线说明:双曲线的渐近线是双曲线所特有的,要掌握渐近线与双曲线方程的联系,另外重点掌握双曲线特有性质,对于解题非常方便。
秒杀题型一:由双曲线的方程求渐近线:秒杀思路:①已知双曲线方程求渐近线方程:22mx ny λ-=220mx ny ⇒-=; ②若焦点在x 轴上,渐近线为x aby ±=; 若焦点在y 轴上,渐近线为x ba y ±=。
秒杀题型二:有共同渐近线双曲线方程的设法:秒杀思路:222222221x y x y a b a bλ-=⇒-=。
秒杀题型三:已知渐近线方程设双曲线方程: 秒杀思路:220()()ax by ax by λ±=⇒-=。
秒杀题型四:双曲线的焦点到渐近线的距离:秒杀思路:双曲线的焦点到渐近线的距离等于虚半轴长()b 。
秒杀公式:焦点到渐近线的距离与顶点到渐近线的距离之比等于双曲线的离心率。
....................................一、单选题 1.双曲线x 24−y 29=1的渐近线方程是( )A .y =±23xB .y =±49xC .y =±94xD .y =±32x2.已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( )A .14y x =±B .13y x =±C .12y x =±D .y x =±3.若双曲线22221x y a b-= )A .y=±2xB .y=C .12y x =±D .2y x =±4.已知双曲线的对称轴为坐标轴,一条渐近线为20x y -=,则双曲线的离心率为( )A .5或54B C D .5或535.双曲线x 2a 2−y 2b 2=1 (a >0, b >0)的离心率为√3,则其渐近线方程为A .y =±√2xB .y =±√3xC .y =±√22xD .y =±√32x6.已知0a b >>,椭圆1C 的方程22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C和2C 2C 的渐近线方程为( )A .0x ±=B 0y ±=C .20x y ±=D .20x y ±=7.已知双曲线C:222210,0x y abab ,以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是( )A B 2 C .a D .b8.双曲线x 26−y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .√3B .2C .3D .69.以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=10.已知双曲线()222210,0x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .22154x y -=B .22145x y -=C .22136x y -=D .22163-=x y11.双曲线2214x y -=的顶点到渐近线的距离等于( )A B .45C .25D 12.双曲线x 24−y 212=1的焦点到渐近线的距离为( )A .2√3B .2C .√3D .113.已知F 为双曲线C :x 2-my 2=3m(m>0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3C mD .3m14.已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于A B .C .3D .515.已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=16.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=A .32B .3C .D .417.设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A B C .2D二、填空题18.设双曲线经过点(2,2),且与2214y x -=具有相同渐近线,则的方程为 ;渐近线方程为 .19.已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为____________________.20.若双曲线的渐近线方程为3y x =±,它的一个焦点的坐标为,则该双曲线的标准方程为 .21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .22.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一,则其离心率的值是________. 23.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________.三、解答题24.求与双曲线221916x y -=有共同渐近线,且过点(-3,的双曲线方程.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秒杀题型一:由双曲线的方程求渐近线:
秒杀思路: 已知双曲线方程求渐近线方程: ;
若焦点在x轴上,渐近线为 ;
若焦点在y轴上,渐近线为 。
1.(高考题)双曲线 的渐近线方程是( )
A. B. C. D.
【解析】:选C。
2.(2013年新课标全国卷 4)已知双曲线 : ( )的离心率为 ,则 的渐近线方程为( )
12.(2018年新课标全国卷I11)已知双曲线 , 为坐标原点, 为 的右焦点,过 的直线
与 的两条渐近线的交点分别为 .若 为直角三角形,则 = ( )
A. B.3C. D.4
【解析】:渐近线方程为 ,∵ 为直角三角形,假设 , ,
∴ ,∴ ,选B。
13.(2018年新课标全国卷 11)设 是双曲线 的左,右焦点, 是坐标原
A. B. C. D.
【解析】:由上题,选C。
7.(2009年新课标全国卷4)双曲线 - =1的焦点到渐近线的距离为( )
A. B.2 C. D.1
【解析】:由秒杀公式得 ,选A。
8.(2014年新课标全国卷I4)已知 是双曲线 : 的一个焦点,则点 到 的一条渐近线的距离为( )
A. B.3 C. D.
【解析】:由秒杀公式得 ,选A。
9.(高考题)已知双曲线 的右焦点与抛物线 的焦点重合,则该双曲线的焦点到其渐近线
的距离等于( )
A. B. C.3 D.5
【解析】:抛物线与双曲线的焦点为 ,则b= ,所以双曲线的焦点到其渐近线的距离等于 ,选
A。
10.(2018年江苏卷)在平面直角坐标系 中,若双曲线 的右焦点 到一条渐近线的距离为 ,则其离心率的值是.
秒杀思路: 。
〖母题1〗求与双曲线 有公共的渐近线,且经过点A 的双曲线的方程.
【解析】:设双曲线方程为: ,代入点A得 ,双曲线方程为: 。
1.(高考题)设双曲线 经过点 ,且与 具有相同渐近线,则 的方程为;渐近线方程
为.
【解析】:设双曲线方程为: ,代入点 得 =-3,双曲线的方程为: ,渐近线方程为 。
点.过 作 的一条渐近线的垂线,垂足为 .若 ,则 的离心率为( )
A. B.2C. D.
【解析】: , ,又.(2016年北京卷)双曲线 的渐近线为正方形 的边 所在的直线,点 为该双曲线的焦点.若正方形 的边长为2,则 =.
【解析】: , ,即 ,而 , 。
A. B. C. D.
【解析】:由 ,得 ,选C。
3.(高考题)若双曲线 的离心率为 ,则其渐近线方程为( )
A. B. C. D.
【解析】:由 ,得 ,选B。
〖母题2〗已知双曲线的对称轴为坐标轴,一条渐近线为 ,则双曲线的离心率为( )
A.5或 B. 或 C. 或 D.5或
【解析】:若焦点在x轴上,则有 , ;若焦点在y轴上,则有 , ;选B。
线的右焦点为圆 的圆心,则该双曲线的方程为( )
A. B. C. D.
【解析】:c=3,r=b=2, a= ,选A。
5.(2007年新课标全国卷13)已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为.
【解析】:由相似成比例可得: 。或由上面的秒杀公式直接得到答案。
6.(高考题)双曲线 的顶点到其渐近线的距离等于( )
4.(2018年新课标全国卷II5)双曲线 的离心率为 ,则其渐近线方程为
( )
A. B. C. D.
【解析】:(秒杀方法)设 ,则 ,选A。
5.(高考题)已知 ,椭圆 的方程为 ,双曲线 的方程为 , 与 的离心率之积为 ,则 的渐近线方程为( )
A. B. C. D.
【解析】: ,得 ,选A。
秒杀题型二:有共同渐近线双曲线方程的设法:
秒杀题型四:双曲线的焦点到渐近线的距离:
秒杀思路:双曲线的焦点到渐近线的距离等于虚半轴长 。
秒杀公式:焦点到渐近线的距离与顶点到渐近线的距离之比等于双曲线的离心率。
1.(高考题)已知双曲线 : ,以 的右焦点为圆心且与 的渐近线相切的圆的半径是( )
A. B. C. D.
【解析】:以 的右焦点为圆心且与 的浙近线相切的圆的半径等于右焦点到渐近线的距离,即等于 ,选D。
2.(高考题)双曲线 的渐近线与圆 相切,则 = ( )
A. B.2 C.3 D.6
【解析】:因为圆心恰为双曲线的右焦点,所以r=b= ,选A。
3.(高考题)以双曲线 的右焦点为圆心,且与其渐近线相切的圆的方程( )
A. B.
C. D.
【解析】:因为圆心恰为双曲线的右焦点,所以r=b= ,选A。
4.(高考题)已知双曲线 的两条渐近线均和圆 : 相切,且双曲
【解析】: ,设 ,所以离心率为2。
11.(2018年天津卷)已知双曲线 的离心率为2,过右焦点且垂直于 轴的直线与双曲线交于 两点.设 到双曲线同一条渐近线的距离分别为 和 ,且 ,则双曲线的方程为( )
A. B. C. D.
【解析】:秒杀方法:由梯形中位线知,焦点到此渐近线的距离为3,即 ,选C。
秒杀题型三:已知渐近线方程设双曲线方程:
秒杀思路: 。
1.(2015年新课标全国卷II)已知双曲线过点 ,且渐近线方程为 ,则该双曲线的标准方程为..
【解析】:设双曲线方程为: ,将点 代入得 ,所以双曲线方程为 。
2.(高考题)若双曲线的渐近线方程为 ,它的一个焦点是 ,则双曲线的方程是.
【解析】:设双曲线方程为: ,因为焦点在x轴上,化简为 , 得 ,双曲线方程为: 。