转 金属学及热处理的基本知识
金属材料热处理基础知识大全,附详细热处理工艺
金属材料热处理基础知识大全,附详细热处理工艺热处理是指通过对工件的加热、保温和冷却,使金属或合金的组织结构发生变化,从而获得预期的性能(如机械性能、加工性能、物理性能和化学性能等)的操作工艺称为热处理。
工件热处理的目的是通过热处理这一重要手段,来改变(或改善)工件内部组织结构,从而获得所需要的性能并提高工件的使用寿命。
热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。
这些过程互相衔接,不可间断。
加热是热处理的重要工序之一。
1、金属热处理工艺基本知识热处理过程中4个重要因素:在热处理时,因工件的大小不同,形状不同,材料的化学成分不同,所以在具体热处理过程中,要用不同的加热速度、最高的加热温度、保温时间和冷却速度。
通常把加热速度、最高加热温度、保温时间和冷却速度称为工件热处理的四个要素,也称工艺参数。
正确地确定和保证实施好工艺,就能获得预期的效果,并将得到满意的性能。
从数学的观点看,热处理的质量是温度和时间的函数,所以工件的热处理工艺规范可用时间一温度为坐标表示出来,任何工件的热处理,都应包括:球化退火将共析钢或过共析钢加热到Ac1 +20~30℃,保温适当时间后缓慢冷却的热处理工艺称为球化退火。
目的:降低硬度,改善切削加工性能;形成球状珠光体,为后面的淬火作组织准备。
扩散退火将工件加热到略低于固相线温度,保温后缓慢冷却的热处理工艺称为扩散退火。
目的:消除成份偏析。
去应力退火将工件加热到Ac1以下某一温度,保温后随炉冷却的热处理工艺称为去应力退火。
目的:消除铸、锻、焊的内应力。
分级淬火法将加热的工件在Ms点附近的盐浴或碱浴中淬火,然后取出缓冷的淬火方法。
其特点是显著减少淬火变形与开裂,是用于截面尺寸较小淬透性较高的钢件。
等温淬火将加热工件在稍高于Ms点附近温度的盐浴或碱浴中冷却并保温足够时间而获得下贝氏体组织的淬火方法。
其特点是工件具有良好的综合力学性能,一般不必回火。
多用于形状复杂和要求较高的小件。
金属热处理基本知识
金属热处理基本知识金属热处理是一种通过加热和冷却来改变金属结构和性能的工艺,广泛应用于工业制造过程中。
本文将介绍金属热处理的基本知识,包括常见的热处理方法、热处理的目的以及热处理对金属材料性能的影响。
一、常见的热处理方法1. 固溶处理固溶处理是一种通过加热金属至其固溶温度,然后迅速冷却以增加金属的硬度和强度的方法。
常见的固溶处理方法包括淬火和时效处理。
淬火是将金属加热至固溶温度,然后迅速冷却以形成固溶体,从而提高金属的硬度和强度。
时效处理是在淬火后,将金属加热至适当温度保持一段时间,以达到固溶体中的晶粒溶解和析出硬化相的目的,提高金属的综合性能。
2. 马氏体转变马氏体转变是一种通过加热金属至马氏体起始温度,然后迅速冷却以在金属中形成马氏体组织的方法。
马氏体转变可以显著提高金属的强度和硬度,同时还可以改善其耐磨性能和韧性。
常见的马氏体转变方法包括淬火和回火。
淬火是将金属加热至马氏体起始温度,然后迅速冷却以形成马氏体,进而提高金属的硬度和强度。
回火是在淬火后,将金属加热至适当温度保持一段时间,使马氏体转变为较为稳定的组织,从而提高金属的韧性。
3. 回火处理回火处理是一种通过加热金属至适当温度,然后保温一段时间以改善金属的组织和性能的方法。
回火处理可以降低金属的硬度和强度,提高其韧性和延展性。
不同的回火处理参数可以得到不同的金属组织和性能。
常见的回火处理方法包括低温回火、中温回火和高温回火,分别适用于不同的金属材料和应用需求。
二、热处理的目的金属热处理的主要目的是改善金属材料的组织和性能,以满足特定的工艺和使用要求。
具体来说,热处理可以实现以下几个方面的目标:1. 提高金属的硬度和强度:通过热处理,可以使金属中的晶体细化,晶体界面增多,从而提高金属的硬度和强度。
2. 改善金属的韧性和延展性:热处理可以消除金属中的内应力和缺陷,减少晶界的孔洞,从而提高金属的韧性和延展性。
3. 提高金属的耐磨性和耐蚀性:通过调整金属的组织和相态,热处理可以增加金属的耐磨性和耐蚀性,提高其在恶劣环境下的使用寿命。
金属材料及热处理基础知识.ppt
2 .洛氏硬度
以顶角为120度的金刚石圆锥体或直径1.588mm的淬火 钢球作为压头,以一定的压力使其压入材料表面,测量压痕 深度来确定其硬度,即为洛氏硬度。被测材料硬度,可直接 在硬度计刻盘读出。
洛氏硬度常用的有三种,分别以HRA、HRB、HRC来表示。 洛氏硬度符号、试验条件和应用表
下贝氏体:无方向性的针状铁素体上弥散分布着细小颗粒的 渗碳体
7、魏氏组织
魏氏组织是在比较大的过冷度下形成的。奥氏体过冷到这 一温度区内,便会形成魏氏组织。魏氏组织铁索体是以切变机 理形成的其生长往往都是由晶界网状铁索体分枝,许多铁赢体 片平行地向晶粒内部长大。铁素体片之间的奥氏体随后变成珠 光体。魏氏组织会降低钢的塑性和韧性,尤其是冲击韧性。
3.维氏硬度 测定维氏硬度的原理基本上和布氏硬度相同,区别在于压头
采用锥面夹角为136度的金刚石正四棱锥体,压痕是四方锥形。 维氏硬度值用HV表示。
压痕面
4. 里氏硬度
原理:当材料被一个冲击体撞击时,较硬材料使冲击体产生 的反弹速度大于较软者。
5. 硬度与强度值的对应关系 由于硬度值综合反映了材料在局部范围内对塑性变形等 的抵抗能力,故它与强度值也有一定关系。 工程上:
冷却速度对晶粒大小的影响
快速冷却,形核点多,晶粒细小 冷却速度慢,均匀长大,晶粒粗大
1.2.2 铁碳合金的基本组织 铁 碳含量>2%--弱而脆
铁碳合金
铁素体—碳熔于α铁或δ铁中的固溶体 F
钢 奥氏体—碳熔于γ铁中的固溶体 A 强而韧 碳含量 0.02%-2%
渗碳体—铁碳金属化合物含碳6.67% Fe3C
许用应力 o
n
安全系数
金属热处理基本知识
金属热处理基本知识热处理是一种加工金属的过程,通过改变金属的晶体结构和力学性能来应对各种需求。
金属热处理分为几个阶段,包括加热、保温和冷却。
本文将介绍金属热处理的基本知识,包括热处理的目的、热处理的类型、热处理的影响因素以及如何进行热处理实验。
热处理的目的热处理的主要目的是调整金属的物理和机械性能,使其适应不同的工程需求。
具体来说,热处理可以改变金属的硬度、塑性、耐蚀性、强度、韧性、磁性和导电性等性质,并使之达到最佳状态,以适应各种加工和使用要求。
热处理的类型热处理分为几种类型,包括退火、正火、淬火、回火、表面强化和时效等。
1. 退火退火是把金属加热到一定温度后,慢慢降温使其达到一种晶体结构更稳定、更均一以及更柔软的热处理方式。
退火可用于软化金属、改善可加工性、减少残余应力、优化晶粒尺寸并消除缺陷等。
2. 正火正火是把金属加热到一定温度,将其保温一段时间,然后进行适当的冷却。
这种方法常用于提高金属的强度、硬度和弹性模量等性能。
3. 淬火淬火是将金属加热到一定温度后迅速冷却到室温以下,以获得高硬度和高强度的一种热处理方式。
淬火对金属的晶粒尺寸会有一定的影响,在钢铁行业,淬火非常重要,因为它可以产生非常高的硬度和强度,同时保持较高的持久性能。
4. 回火回火是将已经淬火的金属加热到一定温度,然后以适宜方式冷却。
这种方法可以使金属达到合适的硬度和韧性。
回火可以提高淬火后的金属中弯曲问题的韧性和强度。
5. 表面强化表面强化是将金属表面加热并冷却以改善金属表面强度和硬度。
这种方法常用于硬化和淬火表面层的非平衡组织的金属。
6. 时效时效是通过一种持续时间的加热和冷却操作来改变金属的物理和化学性质。
针对不同的合金,其时效工艺也有不同,相应的性质也会有较大的变化。
热处理的影响因素金属热处理的影响因素主要包括金属类型、加热温度、保温时间、冷却速度等。
1. 金属类型不同类型的金属具有不同的性质,因此不同的金属对热处理的需求也不同。
金属学与热处理复习资料(本)
金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。
2、非晶体:指原子呈不规则排列的固态物质。
3、晶格:一个能反映原子排列规律的空间格架。
4、晶胞:构成晶格的最基本单元。
5、晶界:晶粒和晶粒之间的界面。
6、单晶体:只有一个晶粒组成的晶体。
7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
8、组元:组成合金最基本的、独立的物质称为组元。
9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
11、结晶:纯金属或合金由液体转变为固态的过程。
12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。
13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。
14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。
15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。
16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。
17、珠光体:是由铁素体与渗碳体组成的机械化合物。
18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。
19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。
20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。
21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。
22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。
根据形貌不同又可分为上贝氏体和下贝氏体。
23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。
24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。
25、调质处理:淬火后高温回火的热处理工艺组合。
金属学及热处理基础知识
第一章金属学及热处理基础知识一、金属的基本结构金属材料的化学成分不同,其性能也不同。
但是对于同一种成分的金属材料,通过不同的加工处理工艺,改变材料内部的组织结构,也可以使其性能发生极大的变化,可见,金属的内部结构和组织状态也是决定金属材料性能的重要因素。
金属和合金在固态下通常都是晶体,因此首先要了解其晶体结构。
1、金属的原子结构及原子的结合方式(1)金属原子的结构特点最外层的电子数很少,一般为1~2个,最多不超过4个,这些外层电子与原子核的结合力很弱,很容易脱离原子核的束缚而变成自由电子,此时的原子即变为正离子,而对于过渡族金属元素来说,除具有以上金属原子的特点外,还有一个特点,即在次外层尚未填满电子的情况下,最外层就先填充了电子。
因此,过渡族金属的原子不仅容易丢失最外层电子,而且还容易丢失次外层的1~2个电子,这就出现了过渡族金属化合价可变的现象。
当过渡族金属的原子彼此相互结合时,不仅最外层电子参与结合,而且次外层电子也参与结合。
因此,过渡族金属的原子间结合力特别强,宏观表现为熔点高。
强度高。
由此可见,原子外层参与结合的电子数目,不仅决定着原子间结合键的本质,而且对其化学性能和强度等特性也具有重要影响。
(2)金属键处以集聚状态的金属原子,全部或大部将它们的价电子贡献出来,为其整个原子集体所公有,称之为电子云或电子气。
这些价电子或自由电子,已不再只围绕自己的原子核转动,而是与所有的价电子一起在所有原子核周围按量子力学规律运动着。
贡献出价电子的原子,则变为正离子,沉浸在电子云中,它们依靠运动于其间的公有化的自由电子的静电作用而结合起来,这种结合方式叫做金属键,它没有饱和性和方向性。
(3)结合力与结合能固态金属中两原子之间的相互作用力包括:正离子与周围自由电子间的吸引力,正离子与正离子以及电子与电子间的排斥力。
结合能是吸引能与排斥能的代数和,当形成原子集团比分散孤立的原子更稳定,即势能更低时,在吸引力的作用下把远处的原子移近所做的功是使原子的势能降低,所以吸引能是负值,相反,排斥能作用下把远处的原子移近平衡距离d 0时,其结合能最低,原子最稳定。
金属材料和热处理基本知识(培训内容)
第四章金属材料的基础知识和热处理的基本知识1、钢的分类:|(1)-碳钢:含碳量低于2%的铁碳合金;-合金钢:在钢中特意加入一种或几种其它合金元素组成的钢;-生铁:含碳量高于2%的铁碳合金.,可通过铸造方法制造零件,所以又称铸铁.(2)按化学成分分类:碳钢-低碳钢:含碳量小于0.25%;-中碳钢:含碳量为0.25~0.55%;-高碳钢:含碳量大于0.55%.合金钢-低合金钢:合金元素总含量小于3.5%;-中合金钢:合金元素总含量 3.5~10%;-高合金钢:合金元素总含量大于10%;2、洛氏硬度与布氏硬度值近似关系:HRC≈1/10HB3、热处理及其常用工艺方法热处理的定义-利用钢在固态下的组织转变,通过加热和冷却获得不同组织结构,从而得到所需性能的工艺方法统称热处理.常用热处理工艺方法:退火-将钢加热到一定温度,保温一段时间,然后随炉一起缓慢冷却下来,以期得到接近平衡状态组织的一种热处理方法.4、完全退火:AC3以上30~50℃,用于消除钢的某些组织缺陷和应力,改善切削加工性能;等温退火:加热到AC3,以上30~50℃,较快的冷却到略低于Ar1的温度,并在此温度下等温到奥氏体全部分解为止,然后出炉空冷.适用于亚共析钢、共析钢,尤其广泛用于合金钢的退火。
优点是周期短,组织和硬度均匀。
5、正火-正火和退火加热方法相似,只是冷却速度比退火稍快(空冷),得到的是细片状珠光体(索氏体),强度、硬度比退火的高,与退火相比,工艺周期短,设备利用率高。
主要用于低碳钢获得满意的机械性能和切削性能、过共析工具钢消除网状渗碳体、中碳钢代替退火或作为淬火前的预先热处理。
6、淬火-将钢加热到AC1以上30~50℃(共析钢、过共析钢)或AC3以上30~50℃(亚共析钢),保温一段时间,然后快冷得到高硬度的马氏体组织的工艺方法。
用以提高工件的耐磨性。
7、回火-将淬火后的工件加热到A1以下某一温度,保温一段时间,然后以一定的方式冷却(炉冷、空冷、油冷、水冷等)-目的:1)降低淬火工件的脆性,消除内应力(热应力和组织应力),使淬火组织趋于稳定,同时也使工件尺寸趋于稳定;2)获得所需的硬度和综合机械性能。
金属学与热处理基础知识
5500C-Ms(2400C)之间,转变产物为上贝氏 体(500-3500C,塑性差)、下贝氏体(3503200C,硬度高、韧性较好) ;
③ . 低温转变区:
Ms(2400C)-Mf之 间 , 转变产物为马氏体 (脆性大、韧性低、延伸率低)。
2021/9/12
20
3、钢的热处理工艺
2021/9/12
26
如:16Mn、15MnV、16MnR、15Mng、 16MnDR、16MnHP 、15CrMoR、16MnHC、 09Mn2NiR等。
“16” —碳含量0.16%;
“DR” —低温容器用钢;
“HC” —高压多层压力容器用钢;
“HP” —焊接钢瓶用钢。
④高合金钢
碳含量+合金元素符号+合金元素含量
例) : ① . 奥氏体晶核产生(铁素体与渗碳体交
界处) ; ② . 奥氏体晶粒长大(碳的扩散); ③ . 殘余渗碳体溶解; ④ . 奥氏体成份均匀化。
2021/9/12
19
⑵、钢在冷却时的转变
① . 高温转变区:
723-5500C之间,依转变温度高,转变产物低 依次为粗珠光体、索氏体(细珠光体,6500C)和 屈氏体(极细珠光体,5400C);
11
⑶、铁碳合金的基本组织
①、铁素体(F)—铁素体是碳溶解于α-
Fe中的固溶体。铁素体含碳量低(室温下溶解度 为0.006%),塑性、韧性好, 强度、硬度低, 在 770℃ 以下具有铁磁性, 超过 770 ℃ 则丧失铁 磁性。
②、渗碳体(Fe3C)—铁和碳的化合物。其 性能是熔点高, 硬而脆。钢中含碳量增加, 渗碳 体增加, 硬度强度提高, 塑性韧性下降。渗碳体在 217 ℃ 以下具有铁磁性。
金属热处理基础入门必须了解的二十个知识点
金属热处理基础入门必须了解的二十个知识点1、什么是热处理将固态金属或合金采取适当方式进行加热,保温一定的时间,以一定的冷却速度冷却以改变其组织,从而获得所需性能的一种工艺方法。
2、热处理的目的是什么通过适当的热处理工艺改变钢的内部组织结构,来控制相变过程中组织转变的程度和转变产物的形态,从而改善钢的性能。
3、热处理的条件是什么必须有固态相变转变的合金才可以进行热处理。
4、热处理的工艺过程是什么(1)加热:临界点+△T值(2)保温(3)冷却:临界点- △T值一定冷却速度5、主要参数有哪些(1)加热温度T(2)保温时间 t(3)冷却速度V,冷却介质决定冷却速度,如:水、盐水、碱水、空气6、按处理阶段及目的可分为哪几种(1)预处理目的是消除偏析、内应力,为最终热处理或后续的加工获得平衡组织。
(2)最终处理作为工件处理的最后工序,获得最终组织。
7、按热处理工艺参数可分为哪几种(1)普通热处理这是生产中最常用的热处理工艺,如退火、正火、淬火、回火等。
这类的热处理一般不会额外的加入其他元素,主要是通过自身组织转变来得到所需要的性能。
(2)化学热处理这类在热处理在齿轮、轴等耐磨件上会经常用到。
工件进行化学热处理时,会在表面一层渗入其他的元素,而对心部的成分不会产生什么影响。
一般渗入什么元素,我们就称为渗×处理,如表面渗C、渗N,C、N共渗等。
(3)表面热处理综合了上述两类热处理的特点,即热处理时不加入其他元素,而且只是针对表面进行的热处理,不影响心部的组织,如表面淬火,但其要求工件的含碳量较高。
8、什么是退火退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。
总之退火组织是接近平衡状态的组织。
9、退火的目的是什么(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。
(2)细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。
金属学和热处理知识大全
⾦属学和热处理知识⼤全⾦属的晶体结构(物质是由原⼦组成的)根据原⼦在物质内部的排列⽅式不同,可将物质分为晶体和⾮晶体两⼤类。
凡内部原⼦呈规则排列的物质称为晶体。
所有固态⾦属都是晶体。
凡内部原⼦呈不规则排列的物质称为⾮晶体。
如:玻璃,松⾹,沥青等。
电⼦显微镜观察到晶体内部原⼦各种规则排列,称为⾦属的晶体结构。
晶体内部原⼦的排列⽅式称为晶体结构。
⾦属原⼦是通过正离⼦与⾃由电⼦的相互作⽤⽽结合的,称为⾦属键。
常见纯⾦属的晶体结构有:体⼼⽴⽅晶格、⾯⼼⽴⽅晶格、密排六⽅晶格。
什么是晶格?晶格:⽤假想的直线将原⼦中⼼连接起来所形成的三维空间格架。
直线的交点(原⼦中⼼)称结点。
晶胞:能够完整地反映晶格特征的最⼩⼏何单元。
体⼼⽴⽅晶胞Body Centered Cubic Lattice(BCC)体⼼⽴⽅晶胞中的原⼦数为1/8x8+1=2个,致密度为0.68。
体⼼⽴⽅:Cr铬、W钨、V钒、Cb铌、Ta钽、Mo钼、钢铁(α-Fe、δ-Fe)。
⾯⼼⽴⽅晶胞Face Centered Cubic Lattice(FCC)⾯⼼⽴⽅晶胞中的原⼦数为1/8x8+1/2x6=4个,致密度为0.74。
⾯⼼⽴⽅:Al铝、Cu铜、Au⾦、Pb铅、Ni镍、Pt铂、Ag银、钢铁(γ-Fe)。
密排六⽅晶胞Hexagonal Close Packed Lattice(HCP)密排六⽅晶胞中的原⼦数为1/6x12+1/2x2+3=6个,致密度为0.74。
密排六⽅:Zn锌、Mg镁、Zr锆、Ca钙、Co钴、Mn锰、Ti钛。
冲击韧度是指材料在外加冲击载荷作⽤下断裂时消耗能量⼤⼩的特性。
体⼼⽴⽅晶格的冲击韧性值会急剧降低,具有脆韧转变温度。
实际使⽤的⾦属是由许多晶粒组成的,⼜叫多晶体。
每⼀晶粒相当于⼀个单晶体,晶粒内的原⼦的排列是相同的,但不同晶粒的原⼦排列的位向是不同的。
晶粒之间的界⾯称为晶界。
⾼温的液态⾦属冷却转变为固态⾦属的过程,是⼀个结晶过程态,即原⼦由不规则态(液态)过渡到规则状态(固态)的过程。
金属学与热处理知识点总结
金属学与热处理知识点总结金属学是研究金属材料的物理特性、化学特性和力学特性,以及金属原材料的加工工艺的学科。
热处理是指将金属材料通过加热、保温和冷却等工艺过程来改变金属材料的性能,改善金属材料的加工性能。
本文结合实例,从金属学和热处理两个方面对相关知识点进行总结。
一、金属学1、金属的性质金属的性质是由元素的原子结构和组成决定的,因此,金属的物理性质、化学性质和力学性质均受它的原子结构和组成的影响。
金属的主要性质有导电性、导热性、耐腐蚀性等。
它们的性质决定了金属在工业生活中的重要作用。
2、金属的加工工艺金属加工是指采用机械、热处理、电子和化学等不同类型的加工方法,改变金属原材料的形状、性能和结构,以达到使用和生产需要的加工工艺。
常见的金属加工工艺有冲压、锻造、焊接、切削等。
二、热处理1、热处理的种类热处理是指通过加热、保温和冷却等技术,改变金属材料的组织结构,以改善材料性能的一种技术手段。
热处理的分类很多,其中包括:硬化、回火、淬火、正火、调质等。
2、热处理的作用热处理的主要作用是改变金属材料的组织结构,从而改善金属材料的性能。
热处理可以增加材料的强度、耐磨性、耐腐蚀性,同时热处理还可以改变材料的尺寸、形状和外观等。
热处理是衡量金属材料质量的关键性步骤之一,因此,热处理技术的发展有助于提高金属材料的使用性能。
综上所述,金属学是研究金属材料的物理特性、化学特性和力学特性,及其原材料加工工艺的学科,金属加工工艺可以改变金属原材料的形状、性能和结构,以达到使用和生产需要。
热处理是通过加热、保温、冷却等技术,改变金属材料的组织结构,以改善材料性能的技术手段,可以改变材料的性能、尺寸、形状和外观等。
正确运用金属学和热处理知识,可以有效提高金属材料的使用性能。
金属学与热处理-期末复习重点
第一章金属的晶体结构第一节金属1度系数为负值。
第二节金属的晶体结构1、晶体的特征:1、具有一定的熔点2、各向异性非晶体为各向同性23、为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子抽象为纯粹的几何点,称之为点阵。
这些点阵有规则地周期性重复排列所形成的三维空间阵列称为空间点阵。
常人4567、常见的三种晶体结构主要是指体心立方、面心立方和密排六方结构,其中体心立方结构(BCC)每个晶胞含有2原子,其原子配位数为8,致密度是68%面心立方结构(FCC)每个晶胞含有4原子,其原子配位数为12;致密度是74%密排六方结构(HCP)每个晶胞含有6原子,其原子配位数为12,致密度是74% 。
8、密排面的堆垛顺序是AB AB AB……,构成密排六方结构ABCABCABC……,构成面心立方结构9、通常以[uvw]表示晶向指数的普遍形式原子排列相同但空间位向不同的所有晶向成为晶向族,<uvw>表示晶面指数的一般表示形式为(hkl)晶面族用大括号{hkl}表示10、在立方结构的晶体中,当一晶向[uvw]位于或平行于某一晶面(hkl)时,必须满足以下关系:hu+kv+lw=0当某一晶向与某一晶面垂直时,则其晶向指数和晶面指数必须完全相等,即u=b、v=k、w=l。
12、由于多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶体不显示各向异性,称之为伪等向性。
一般金属都是多晶体第三节实际金属的晶体结构1、晶体中的线缺陷就是各种类型的位错,它是在晶体中某处有一列或若干列原子发生了有规律的错排现象。
2、刃型位错的重要特征:1、刃型位错有一额外半原子面;2、位错线是一个具有一定宽度的管道3、位错线与晶体的滑移方向相垂直,位错线运动的方向垂直于位错线螺型位错的重要特征:1、螺型位错没有额外半原子面;2、螺型位错线是一个具有一定宽度的管道,其中只有切应变,而无正应变3、位错线与晶体的滑移方向平行,位错线运动的方向与位错线垂直4、位错线与柏氏矢量垂直就是刃型位错,位错线与柏氏矢量平行,就是螺型位错。
金属热处理基础知识
金属热处理基础知识金属热处理是通过控制金属材料在高温下的加热、保温和冷却过程,以调整其组织和性能的一种工艺。
在金属热处理过程中,我们需要了解一些基础知识,包括常见的热处理工艺、影响金属性能的因素以及常见的热处理设备。
一、常见的热处理工艺1. 固溶处理固溶处理是指将固溶体加热至高温,使其中存在的合金元素完全溶解,然后在适当的温度下保温一段时间,最后通过快速冷却来获得均匀的组织。
固溶处理通常用于合金强化、改善材料的韧性和疲劳性能等方面。
2. 然后冷却处理淬火是一种快速冷却工艺,通过将金属材料迅速从高温加热状态冷却至室温或低温,以使金属材料的组织发生相变,从而获得所需的性能。
淬火可以有效提高金属材料的硬度、抗拉强度和磨损性能。
3. 回火处理回火是指在淬火后,将材料重新加热到较低的温度,保温一段时间后冷却,以减轻淬火带来的材料脆性和应力。
回火可以降低材料的硬度,提高其韧性和可加工性。
二、影响金属性能的因素1. 温度温度是热处理过程中最重要的因素之一。
不同的金属和热处理工艺需要不同的温度范围,过高或过低的温度都会对金属的性能产生负面影响。
2. 时间保温时间是指在加热过程中保持金属材料在一定温度范围内的时间。
适当的保温时间可以使金属内部的相变和晶粒生长完成,从而得到所需的性能。
3. 冷却速度冷却速度会影响金属的组织和性能。
快速冷却可以获得细小且均匀的组织,从而提高金属的强度和硬度。
相反,缓慢冷却则可以使金属的组织更加柔韧。
三、常见的热处理设备1. 炉子炉子是最常见的热处理设备之一,在炉子内加热金属材料可以实现固溶、淬火和回火等工艺。
2. 水槽水槽是用于淬火的设备,在高温加热后,将金属迅速浸入冷却介质(通常是水或油)中,以实现材料的淬火工艺。
3. 回火炉回火炉用于回火处理工艺,将经过淬火处理的材料加热到适当的温度,保温一段时间后进行冷却。
4. 空气冷却器空气冷却器通常用于对材料进行较慢的冷却过程,可以通过控制冷却速度来调整材料的性能。
金属学与热处理-知识点
1.为什么金属结晶时一定要有过冷度,影响过冷度的因素是什么,固态金属熔化时是否会出现过热,为什么?答:由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即?G =GS-GL<0;只有当温度低于理论结晶温度Tm时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度. 影响过冷度的因素:1)金属的本性,金属不同,过冷度大小不同;2)金属的纯度,金属的纯度越高,过冷度越大;3)冷却速度,冷却速度越大,过冷度越大。
固态金属熔化时会出现过热度。
原因:由热力学可知,在某种条件下,熔化能否发生,取决于液相自固态金属熔化时会出现过热度。
固相自由度是否低于固相的自由度,即?G = GL-GS<0;只有当温度高于理论结晶温度Tm 时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。
2.试比较均匀形核和非均匀形核的异同点。
相同点:均匀形核与非均匀形核具有相同的临界晶核半径,非均匀形核的临界形核功也等于三分之一. 不同点:非均匀形核要克服的位垒比均匀形核的小得多,在相变的形核过程通常都是非均匀形核优先进行。
核心总是倾向于以使其总的表面能和应变能最小的方式形成,因而析出物的形状是总应变能和总表面能综合影响的结果。
3.在正温度梯度下,为什么纯金属凝固时不能呈树枝状生长,在正温度梯度下体合金却能呈树枝状成长?答纯金属凝固时,要获得树枝状晶体,必需在负的温度梯度下;在正的温度梯度下,只能以平面状长大。
而固溶体实际凝固时,往往会产生成分过冷,当成分过冷区足够大时,固溶体就会以树枝状长大。
4.何谓成分过冷?成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响?答:在固溶体合金凝固时,在正的温度梯度下,由于固液界面前沿液相中的成分有所差别,导致固液界面前沿的熔体的温度低于实际液相线温度,从而产生的过冷称为成分过冷。
金属学与热处理知识点总结.
金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。
晶体的特征、晶体中的空间点阵。
晶格类型晶胞中的原子数原子半径配位数致密度体心立方 2 a438 68%面心立方 4 a4212 74%密排六方 6 a2112 74% 晶格类型fcc(A1) bcc(A2) hcp(A3)间隙类型正四面体正八面体四面体扁八面体四面体正八面体间隙个数8 4 12 6 12 6原子半径r Aa42a432a间隙半径r B ()423a-()422a-()435a-()432a-()426a-()212a-晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
金属学与热处理基础知识
金属学与热处理基础知识目录1. 金属学与热处理基础知识概述 (3)1.1 金属材料的分类 (4)1.2 金属材料的性能及其影响因素 (4)1.3 热处理的基本概念 (6)2. 金属的热处理原理 (7)2.1 金属在加热过程中的变化 (8)2.2 金属在冷却过程中的变化 (8)2.3 热处理的目的和工艺选择 (9)3. 固态相变原理 (11)3.1 晶体结构与滑移机制 (12)3.2 固态相变的微观机制 (13)3.3 铁碳合金的相图分析 (15)4. 加热和冷却原理 (16)4.1 热传导原理 (17)4.2 热处理过程中的温度控制 (19)4.3 冷却速度对金属性能的影响 (21)5. 热处理基本工艺 (22)5.1 退火工艺 (22)5.2 正火工艺 (24)5.3 淬火与回火工艺 (25)5.4 表面热处理工艺 (27)6. 特殊热处理 (28)6.1 渗碳、渗氮工艺 (29)6.2 高温回火、低温回火工艺 (31)6.3 电子束熔炼和热等静压处理 (32)7. 金属学与热处理的应用 (33)7.1 机械制造业中的应用 (35)7.2 航空航天材料的热处理 (37)7.3 能源和交通运输领域中的应用 (38)8. 热处理设备与材料 (40)8.1 热处理炉及其类型 (41)8.2 热处理材料的选择与加工 (43)8.3 热处理过程中的环境保护措施 (44)9. 金属学与热处理的实验与检测 (45)9.1 金属材料的力学和物理性能测试 (48)9.2 热处理后的金属材料分析 (49)9.3 质量控制和检验方法 (50)10. 金属学与热处理的未来发展趋势 (51)10.1 先进材料的热处理工程化 (53)10.2 智能制造在热处理中的应用 (54)10.3 绿色热处理技术的发展 (55)1. 金属学与热处理基础知识概述金属学与热处理是金属材料科学与工程领域中的核心课程,它们为理解和应用金属材料提供了基础理论和技术支持。
转 金属学及热处理的基本知识
转金属学及热处理的基本知识一、金属晶体结构的一般知识众所周知,世界上的物质都是由化学元素组成的,这些化学元素按性质可分成两大类:第一大类是金属,化学元素中有83种是金属元素。
固态金属具有不透明、有光泽、有延展性、有良好的导电性和导热性等特性,并且随着温度的升高,金属的导电性降低,电阻率增大,这是金属独具的一个特点。
常见的金属元素有铁、铝、铜、铬、镍、钨等。
第二大类是非金属,化学元素中有22种,非金属元素不具备金属元素的特征。
而且与金属相反,随着温度的升高,非金属的电阻率减小,导电性提高。
常见的非金属元素有碳、氧、氢、氮、硫、磷等。
我们所焊接的材料主要是金属,尤其是钢材,钢材的性能不仅取决于钢材的化学成分,而且取决于钢材的组织,为了了解钢材的组织及对性能的影响,我们必须先从晶体结构讲起。
(一)晶体的特点对于晶体,大家并不生疏。
食盐、水结成的冰,都是晶体。
一般的固态金属及合金也都是晶体。
并非所有固态物质都是晶体。
如玻璃、松香之类就不是晶体,而属于非晶体。
晶体与非晶体的区别不在外形,而在内部的原子排列。
在晶体中,原子按一定规律排列得很整齐。
而在非晶体中,原子则是散乱分布着,至多有些局部的短程规则排列。
由于晶体与非晶体中原子排列不同,因此性能也不相同。
(二)典型的金属晶体结构金属的原子按一定方式有规则地排列成一定空间几何形状的结晶格子,称为晶格。
金属的晶格常见的有体心立方晶格和面心立方晶格,如图1-4所示。
体心立方晶格的立方体的中心和八个顶点各有一个铁原子,而面心立方晶格的立方体的八个顶点和六个面的中心各有一个铁原子。
图1-4典型的金属晶体结构(a)体心立方晶格(b)面心立方晶格铁属于立方晶格,随着温度的变化,铁可以由一种晶格转变为另一种晶格。
这种晶格的转变,称为同素异晶转变。
纯铁在常温下是体心立方晶格(称为α-Fe);当温度升高到910℃时,纯铁的晶格由体心立方晶格转变为面心立方晶格(称为γ-Fe);再升温到1390℃时,面心立方晶格又重新转变为体心立方晶格(称为δ-Fe),然后一直保持到纯铁的熔化温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转金属学及热处理的基本知识一、金属晶体结构的一般知识众所周知,世界上的物质都是由化学元素组成的,这些化学元素按性质可分成两大类:第一大类是金属,化学元素中有83种是金属元素。
固态金属具有不透明、有光泽、有延展性、有良好的导电性和导热性等特性,并且随着温度的升高,金属的导电性降低,电阻率增大,这是金属独具的一个特点。
常见的金属元素有铁、铝、铜、铬、镍、钨等。
第二大类是非金属,化学元素中有22种,非金属元素不具备金属元素的特征。
而且与金属相反,随着温度的升高,非金属的电阻率减小,导电性提高。
常见的非金属元素有碳、氧、氢、氮、硫、磷等。
我们所焊接的材料主要是金属,尤其是钢材,钢材的性能不仅取决于钢材的化学成分,而且取决于钢材的组织,为了了解钢材的组织及对性能的影响,我们必须先从晶体结构讲起。
(一)晶体的特点对于晶体,大家并不生疏。
食盐、水结成的冰,都是晶体。
一般的固态金属及合金也都是晶体。
并非所有固态物质都是晶体。
如玻璃、松香之类就不是晶体,而属于非晶体。
晶体与非晶体的区别不在外形,而在内部的原子排列。
在晶体中,原子按一定规律排列得很整齐。
而在非晶体中,原子则是散乱分布着,至多有些局部的短程规则排列。
由于晶体与非晶体中原子排列不同,因此性能也不相同。
(二)典型的金属晶体结构金属的原子按一定方式有规则地排列成一定空间几何形状的结晶格子,称为晶格。
金属的晶格常见的有体心立方晶格和面心立方晶格,如图1-4所示。
体心立方晶格的立方体的中心和八个顶点各有一个铁原子,而面心立方晶格的立方体的八个顶点和六个面的中心各有一个铁原子。
图1-4典型的金属晶体结构(a)体心立方晶格(b)面心立方晶格铁属于立方晶格,随着温度的变化,铁可以由一种晶格转变为另一种晶格。
这种晶格的转变,称为同素异晶转变。
纯铁在常温下是体心立方晶格(称为α-Fe);当温度升高到910℃时,纯铁的晶格由体心立方晶格转变为面心立方晶格(称为γ-Fe);再升温到1390℃时,面心立方晶格又重新转变为体心立方晶格(称为δ-Fe),然后一直保持到纯铁的熔化温度。
纯铁的这种特性非常重要,是钢材所以能通过各种热处理方法来改变其内部组织,从而改善性能的内在因素之一,也是焊接热影响区中各个区域与母材相比,具有不同组织和性能的原因之一。
二、合金的组织、结构及铁碳合金的基本知识(一)合金的组织两种或两种以上的元素(其中至少一种是金属元素),组合成的金属,叫做合金。
根据两种元素相互作用的关系,以及形成晶体结构和显微组织的特点可将合金的组织分为三类:(1)固溶体固溶体是一种物质的原子均匀地溶解在另一种物质的晶格内,形成单相晶体结构。
根据原子在晶格上分布的形式,固溶体可分为置换固溶体和间隙固溶体。
某一元素晶格上的原子部分地被另一元素的原子所取代,称为置换固溶体;如果另一元素的原子挤入某元素晶格原子之间的空隙中,称为间隙固溶体,见图1-5所示。
图1-5固溶体示意图(a)置换固溶体;(b)间隙固溶体两种元素的原子大小差别愈大,形成固溶体后所引起的晶格扭曲程度越大。
扭曲的晶格增加了金属塑性变形的阻力,所以固溶体比纯金属硬度高、强度大。
(2)化合物两种元素的原子按一定比例相结合,具有新的晶体结构,在晶格中各元素原子的相互位置是固定的,叫化合物。
通常化合物具有较高的硬度,低的塑性,脆性也较大。
(3)机械混合物固溶体和化合物均为单相的合金,若合金是由两种不同的晶体结构彼此机械混合组成,称为机械混合物。
它往往比单一的固溶体合金有更高的强度、硬度和耐磨性;塑性和压力加工性能则较差。
(二)钢中常见的显微组织(1)铁素体(F):铁素体是少量的碳和其它合金元素固溶于α-铁中的固溶体。
α-铁为体心立方晶格,碳原子以填隙状态存在,合金元素以置换状态存在。
铁素体溶解碳的能力很差,在723℃时为0.02%,室温时仅0.006%。
铁素体的强度和硬度低,但塑性和韧性很好,所以含铁素体多的钢(如低碳钢)就表现出软而韧的性能。
(2)渗碳体(Fe3C)渗碳体是铁与碳的化合物,分子式是Fe3C,其性能与铁素体相反,硬而脆,随着钢中含碳量的增加,钢中渗碳体的量也增多,钢的硬度、强度也增加,而塑性、韧性则下降。
(3)珠光体(P)珠光体是铁素体和渗碳体的机械混合物,含碳量为0.8%左右,只有温度低于723℃时才存在。
珠光体的性能介于铁素体和渗碳体之间。
(4)奥氏体(A)奥氏体是碳和其它合金元素在γ-铁中的固溶体。
在一般钢材中,只有高温时存在。
当含有一定量扩大γ区的合金元素时,则可能在室温下存在,如铬镍奥氏体不锈钢则在室温时的组织为奥氏体。
奥氏体为面心立方晶格,奥氏体的强度和硬度不高,塑性和韧性很好。
奥氏体的另一特点是没有磁性。
(5)马氏体(M)马氏体是碳在α-铁中的过饱和固溶体,一般可分为低碳马氏体和高碳马氏体。
马氏体的体积比相同重量的奥氏体的体积大,因此,由奥氏体转变为马氏体时体积要膨胀,局部体积膨胀后引起的内应力往往导致零件变形、开裂。
高碳淬火马氏体具有很高的硬度和强度,但很脆,延展性很低,几乎不能承受冲击载荷。
低碳回火马氏体则具有相当高的强度和良好的塑性和韧性相结合的特点。
(6)魏氏组织魏氏组织是一种过热组织,是由彼此交叉约60°的铁素体针嵌入基体的显微组织。
碳钢过热,晶粒长大后,高温下晶粒粗大的奥氏体以一定速度冷却时,很容易形成魏氏组织。
粗大的魏氏组织使钢材的塑性和韧性下降,使钢变脆。
(二)铁-碳合金平衡状态图钢和铸铁都是铁碳合金。
含碳量低于2.11%的铁碳合金称为钢,含碳量2.11%~6.67%的铁碳合金称为铸铁。
为了全面了解铁碳合金在不同含碳量和不同温度下所处的状态及所具有的组织结构,可用Fe-C合金平衡状态图来表示这种关系,见图1-6。
图上纵座标表示温度,横座标表示铁碳合金中碳的百分含量。
例如,在横座标左端,含碳量为零,即为纯铁;在右端,含碳量为6.67%,全部为渗碳体(Fe3C)。
图1-6Fe-C平衡状态图图中ACD线为液相线,在ACD线以上的合金呈液态。
这条线说明纯铁在1535℃凝固,随碳含量的增加,合金凝固点降低。
C点合金的凝固点最低,为1147℃。
当含碳量大于4.3%以后,随含碳量的增加,凝固点增高。
AHJEF线为固相线。
在AHJEF线以下的合金呈固态。
在液相线和固相线之间的区域为两相(液相和固相)共存。
GS线表示含碳量低于0.8%的钢在缓慢冷却时由奥氏体开始析出铁素体的温度。
ECF水平线,1147℃,为共晶反应线。
液体合金缓慢冷却至该温度时,发生共晶反应,生成莱氏体组织。
PSK水平线,723℃,为共析反应线,表示铁碳合金在缓慢冷却时,奥氏体转变为珠光体的温度。
为了使用方便,PSK线又称为A1线,GS线称为A3线,ES线为Acm线。
正点是碳在奥氏体中最大溶解度点,也是区分钢与铸铁的分界点,其温度为1147℃,含碳量为2.11%。
S点为共析点,温度为723℃,含碳量为0.8%。
S点成分的钢是共析钢,其室温组织全部为珠光体。
S点左边的钢为亚共析钢,室温组织为铁素体+珠光体;S点右边的钢为过共析钢,其室温组织为渗碳体+珠光体。
C点为共晶点,温度为1147℃,含碳量为4.3%。
C点成分的合金为共晶铸铁,组织为莱氏体。
含碳量在2.11%~4.3%之间的合金为亚共晶铸铁,组织为莱氏体+珠光体+渗碳体;含碳量在4.3%~6.67%之间的合金为过共晶铸铁,组织为莱氏体+渗碳体。
莱氏体组织在常温下是珠光体+渗碳体的机械混合物,其性硬而脆。
现以含碳0.2%的低碳钢为例,说明从液态冷却到室温过程中的组织变化。
当液态钢冷却至AC线时,开始凝固,从钢液中生成奥氏体晶核,并不断长大;当温度下降到AE线时,钢液全部凝固为奥氏体;当温度下降到GS(A3)线时,从奥氏体中开始析出铁素体晶核,并随温度的下降,晶核不断长大;当温度下降到PSK(A1)线时,剩余未经转变的奥氏体转变为珠光体;从A1下降至室温,其组织为铁素体+珠光体,不再变化,见图1-7。
图1-7低碳钢由高温冷却下来的组织变化示意图Fe-C合金平衡状态图对于热加工具有重要的指导意义,尤其对焊接,可根据状态图来分析焊缝及热影响区的组织变化,选择焊后热处理工艺等。
三、钢的热处理将金属加热到一定温度,并保持一定时间,然后以一定的冷却速度冷却到室温,这个过程称为热处理。
常用的热处理工艺方法有以下几种:(一)淬火将钢(高碳钢和中碳钢等)加热到A1(对过共析钢)或A3(对亚共析钢)以上30~70℃,在此温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解和合金元素的扩散而形成马氏体组织,称为淬火。
淬火后可以提高钢的硬度及耐磨性。
在焊接中碳钢和某些合金钢时,热影响区中可能发生淬火现象而变硬,易形成冷裂纹,这是在焊接过程中要设法防止的。
(二)回火淬火后进行回火,可以在保持一定强度的基础上恢复钢的韧性。
回火温度在A1以下。
按回火温度的不同可分为低温回火(150~250℃)、中温回火(350~450℃)、高温回火(500~650℃)。
低温回火后得到回火马氏体组织,硬度稍有降低,韧性有所提高。
中温回火后得到回火屈氏体组织,提高了钢的弹性极限和屈服强度,同时也有较好的韧性。
高温回火后得到回火索氏体组织,可消除内应力,降低钢的强度和硬度,提高钢的塑性和韧性。
钢在淬火后再进行高温回火,这一复合热处理工艺称为调质。
调质能得到韧性和强度最好的配合,获得良好的综合力学性能。
(三)正火将钢加热到A3或Acm以上50~70℃,保温后,在空气中冷却,称为正火。
许多碳素钢和低合金结构钢经正火后,各项力学性能均较好,可以细化晶粒,常用来作为最终热处理。
对于焊接结构,经正火后,能改善焊接接头性能,可消除粗晶组织及组织不均匀等。
(四)退火将钢加热到A3以上或A1左右一定范围的温度,保温一段时间后,随炉缓慢而均匀地冷却,称为退火。
退火可降低硬度,使材料便于切削加工,能消除内应力等。
焊接结构焊接以后会产生焊接残余应力,容易导致产生延迟裂纹,因此重要的焊接结构焊后应该进行消除应力退火处理。
消除应力退火属于低温退火,加热温度在A1以下,一般采用600~650℃,保温一段时间,然后随炉缓慢冷却。
亦称焊后热处理。