2014朝阳初三数学二模试题及答案

合集下载

2014年北京市各城区中考二模数学——四边形的证明与计算题19题汇总

2014年北京市各城区中考二模数学——四边形的证明与计算题19题汇总

DCBAADCB 2014年北京市各城区中考二模数学——四边形的证明与计算题19题汇总1、(2014年门头沟二模)19. 如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 的中点.(1)求证:四边形AEFD 是平行四边形; (2)若∠A =60°,AB =6,AD =4,求BD 的长.2、(2014年丰台二模)19.如图,在四边形ABCD中,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB=4,AD=6,求AC 的长.3、(2014年平谷二模)19.如图,在四边形ABCD中,对角线BD 平分∠ABC ,∠A =120°, ∠C =60°,AB =5,AD =3.(1)求证:AD =DC ;(2)求四边形ABCD 的周长.4、(2014年顺义二模) 19.如图,在ABC △中,D 、E 分别是AB 、AC的中点,BE =2DE ,过点C 作CF ∥BE 交DE 的延长线于F . (1)求证:四边形BCFE 是菱形;(2)若4CE =,120BCF ∠=°,求菱形BCFE 的面积.5、(2014年石景山二模)19.如图1,在△OAB 中,∠OAB =90°,∠AOB =30°,BA =2.以OB 为边,向外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.FEDCB AECBFC B6、(2014年海淀二模)19.如图,在△ABC 中,点D 、E 分别是边BC 、AC 的中点,过点A 作AF ∥BC交DE 的延长线于F 点,连接CF . (1)求证:四边形ABDF 是平行四边形;(2)若∠CAF =45°,BC=4,CAF 的面积. 7、(2014年西城二模)19.如图,在四边形ABCD 中,AB ∥DC , DB 平分∠ADC , E 是CD 的延长线上一点,且12AEC ADC ∠=∠.(1)求证:四边形ABDE 是平行四边形.(2)若DB ⊥CB ,∠BCD =60°,CD =12,作AH ⊥BD 于H ,求四边形AEDH 的周长.8、(2014年通州二模)20.如图,在平行四边形ABCD 中,E 为BC 边上的一点,连接AE 、BD 交于点F ,AE =AB .(1)若∠AEB =2∠ADB ,求证:四边形ABCD 是菱形. (2)若AB =10,BE =2EC ,求EF 的长.EO G A B CFBGDC BAEF9、(2014年东城二模)19.在平行四边形ABCD 中,AB =6, AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,42BG ,求EFC V 的周长.AB =34,10、(2014年朝阳二模)19.如图,在四边形ABCD 中,∠DAB =90°,∠B =60°,AC ⊥BC .(1)求AC 的长.(2)若AD=2,求CD 的长.11、(2014年密云二模)19.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,求AE 的长.12、(2014年延庆二模)13、(2014年房山二模) 19. 已知:如图,梯形ABCD 中,AD=BC ,F 为BC 的中点,AB=2,∠A =120°,过点F 作EF ⊥BC 交DC 于点E ,且EF = 3 ,求DC 的长.14、(2014年昌平二模)18.如图,已知□ABCD ,E ,F 是对角线BD 上的两点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)当AE 垂直平分BC 且四边形AECF 为菱形时,直接写出AE ∶AB 的值.15、(2014年怀柔二模)19.如图,已知△ABC 是等边三角形,点D 、F 分别在线段BC 、AB 上,∠EFB=60°,DC=EF .(1)求证:四边形EFCD 是平行四边形; (2)若BF=EF ,求证:AE=AD .FE DCBA16、(2014年大兴二模)19.已知: 如图,在平行四边形ABCD 中,点E 、F 分别是AB 、CD 的中点 .(1)求证:四边形AEFD 是平行四边形; (2)若∠A =60°,AB=8,AD=4,求BD 的长 .ABCD17、(2014年燕山二模)19. 如图,在四边形中,BC AD //,25=AB ,4=BC ,连接BD ,BAD ∠的平分线交BD 于点E ,且CD AE //.(1)求AD 的长; (2)若︒=∠30C ,求四边形ABCD 的周长.ED CBA。

北京市朝阳区中考数学二模试题(1)

北京市朝阳区中考数学二模试题(1)

F ECBA北京市朝阳区2014年中考数学二模试题一、选择题(本题共32分,每小题4分)1.2014北京车展约850 000的客流量再度刷新历史纪录,将850 000用科学记数法表示应为A .85×106B .8.5×106C .85×104D .8.5×1052.23-的倒数是( )A .32-B .23-C .32 D .233.一个多边形的内角和是外角和的3倍,则这个多边形的边数为A .6B .7C .8D .9 4.数据1,3,3,1,7,3 的平均数和方差分别为 A .2和4B .2和16C .3和4D .3和245.若关于x 的一元二次方程mx 2+3x +m 2-2m =0有一个根为0,则m 的值等于 A .1 B .2 C .0或2 D .0 6.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连结AC 、BC ,在AC 上取点E ,使AE =3EC ,作EF ∥AB 交BC 于点F ,量得EF =6 m ,则AB 的长为A .30 mB .24mC .18mD .12m7.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为P 1,摸出的球上的数字小于4的概率记为P 2;摸出的球上的数字为5的概率记为P 3.则P 1、P 2、P 3的大小关系是A .P 1<P 2<P 3B .P 3<P 2<P 1C .P 2<P 1 <P 3D .P 3<P 1<P 2 8.如图,在三角形纸片ABC 中,∠ABC =90°,AB =5,BC =13,过点A 作直线l ∥BC ,折叠三角形纸片ABC ,使点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随着移动,并限定M 、N 分别在AB 、BC 边上(包括端点)移动,若设AP 的长为x ,MN 的长为y ,则下列选项,能表示y 与x 之间的函数关系的大致图象是N M B二、填空题(本题共16分,每小题4分) 9.若分式41-+x x 值为0,则x 的值为________. 10.请写出一个多边形,使它满足“绕着某一个点旋转180°,旋转后的图形与原来的图形重合”这一条件,这个多边形可以是 .11.如图,菱形ABCD 的周长为16,∠C =120°,E 、F 分别为AB 、AD 的中点.则EF 的长为 .12.把长与宽之比为2的矩形纸片称为标准纸.如果将一张标准纸ABCD进行如下操作:即将纸片对折并沿折痕剪开,则每一次所得到的两个矩形纸片都是标准纸(每一次的折痕如下图中的虚线所示).若宽AB =1,则第2次操作后所得到的其中一个矩形纸片的周长是_________;第3次操作后所得到的其中一个矩形纸片的周长是_________;第30次操作后所得到的其中一个矩形纸片的周长是_________.三、解答题(本题共30分,每小题5分)13.已知:如图,点E 、F 在AC 上,且AE =CF ,AD ∥BC ,AD =CB .求证: DF =BE .14.计算:︒+-+--30tan 220145310.15.解分式方程:xx x -=+--23123 .第一次第二次第三次…16.已知50x y -=,求222232x y x yx xy y x y-+⋅-++的值.17.列方程或方程组解应用题:母亲节来临之际,小红去花店为自己的母亲选购鲜花,在花店中同一种鲜花每支的价格相同.小红如果选择由三支康乃馨和两支百合组成的一束花,则需要花34元;如果选择由两支康乃馨和三支百合组成的一束花,则需要花36元.一支康乃馨和一支百合花的价格分别是多少?18.已知关于x 的一元二次方程3x 2-6x +1-k =0 有实数根,k 为负整数. (1)求k 的值;(2)若此方程有两个整数根,求此方程的根.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,AB =34,∠DAB =90°,∠B =60°,AC ⊥BC .(1)求AC 的长.(2)若AD=2,求CD 的长.20.某校对部分初三学生的体育训练成绩进行了随机抽测,并绘制了如下的统计图:女生篮球障碍运球成绩折线统计图 男生引体向上成绩条形统计图根据以上统计图解答下列问题:(1)所抽测的女生篮球障碍运球成绩的众数是多少?极差是多少?(2)该校所在城市规定“初中毕业升学体育现场考试”中,男生做引体向上满13次,可以获得满分10分;满12次,可以获9.5分;满11次,可以获得9分;满10次,可以获得8.5分;满9次,可以获得8分. ①所抽测的男生引体向上得分..的平均数是多少? ②如果该校今年有120名男生在初中毕业升学体育现场考试中报名做引体向上,请你根据本次抽测的数据估计在报名的这些学生中得分不少于9分的学生有多少人?21.如图,AB 是⊙O 的直径, BC 交⊙O 于点D ,E 是»BD的中点,连接AE 交BC 于点F ,∠ACB =2∠EAB . (1)求证:AC 是⊙O 的切线; (2)若2cos 3C,AC =6,求BF 的长.22.类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P 是斜坐标系xOy 中的任意一点,过点P 分别作两坐标轴的平行线,与x 轴、y 轴交于点M 、N ,如果M 、N 在x 轴、y 轴上分别对应的实数是a 、b ,这时点P 的坐标为(a ,b ).(1)如图2,在斜坐标系xOy 中,画出点A (-2,3);(2)如图3,在斜坐标系xOy 中,已知点B (5,0)、C (0,4),且P (x ,y )是线段CB 上的任意一点,则y 与 x 之间的等量关系式为 ;(3)若(2)中的点P 在线段CB 的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,点P (m ,0)为x 轴正半轴上的一点,过点P 做x 轴的垂线,分别交抛物线y =-x 2+2x 和y =-x 2+3x 于点M ,N .(图1)xPy NOM(图2)x-1y1O 1(图3)P (x ,y )CB OxyF OADBC(1)当21=m 时, _____MN PM =;(2)如果点P 不在这两条抛物线中的任何一条上.当四条线段OP ,PM ,.PN ,MN 中恰好有三条线段相等时, 求m 的值.24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明; (2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,25.如图,在平面直角坐标系中xOy ,二次函数y =ax 2-2ax +3的图象与x 轴分别交于点A 、B ,与y 轴交于点C ,AB =4,动点P 从B 点出发,沿x 轴负方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线BC ,垂足为Q .设P 点移动的时间为t 秒(t >0),△BPQ 与△ABC 重叠部分的面积为S . (1)求这个二次函数的关系式; (2)求S 与t 的函数关系式;(3)将△BPQ 绕点P 逆时针旋转90°,当旋转后的△BPQ 与二次函数的图象有公共点时,求t 的取值范围(直接写出结果).P EC 图2 C B 图1 yxN MOPy x A C B O数学试卷参考答案及评分标准 2014.6一、选择题(本题共32分,每小题4分)1.D 2.A 3.C 4.C 5.B 6.B 7.D 8.C二、填空题(本题共16分,每小题4分)9.-1 10.答案不唯一,如平行四边形 11.2312.1+2,222+,14122+ (第1、2每个空各1分,第3个空2分) 三、解答题(本题共30分,每小题5分) 13. 证明:∵ AE =CF ,∴ AE +EF =CF +EF .即 AF =CE .…………………… 1分 ∵ AD ∥BC ,∴ ∠A =∠C .…………………… 2分 又∵AD =BC ,…………………… 3分 ∴ △ADF ≌△CBE .…………… 4分 ∴ DF =BE .……………………… 5分14. 解:原式13531323=-+-+? ………………………………………… 4分 =112. …………………………………………………………………… 5分 15. 解:将方程整理,得331022x x x -++=--. 去分母,得 x -3+3+x -2 = 0. ……………………………………………2分解得 x = 1. (3)分经检验 x = 1是原分式方程的解. ………………………………………………4 分∴原分式方程的解为x = 1. …………………………………………………………5 分16. 解:原式=2()()3()x y x y x yx y x y+-+⋅-+ ……………………………………………2 分 =3x yx y+-. …………………………………………………………3 分 ∵ x -5y =0,∴ x =5y . …………………………………………………………………4分 ∴ 原式=5325y yy y+=-.…………………………………………………………5分17. 解:设一支康乃馨的价格是x 元,一支百合的价格是y 元. …………………1分根据题意,得 3234,2336.x y x y ì+=ïí+=ïî ……………………………………………3分解得 6,8.x y ì=ïí=ïî ……………………………………………………4分答:一支康乃馨的价格是6元,一支百合的价格是8元.………… …………5分18. 解:(1)根据题意,得Δ≥0.………………………………………………………………………1分即26-)(-4×3(1-k )≥0.解得 k ≥-2 .………………………………………………………………2分 ∵k 为负整数,∴k =-1,-2.………………………………………………………………3分 (2)当k =-1时,不符合题意,舍去;…………………………………………4分当k =-2时,符合题意,此时方程的根为x 1=x 2=1.……………………5分四、解答题(本题共20分,题每小题5分) 19.解:(1)在Rt△ABC 中,∵AB =34,∠B =60°,∴AC =AB ·sin60°=6. …………………………2分(2)作DE ⊥AC 于点E ,∵∠DAB =90°,∠BAC =30°, ∴∠DAE =60°, ∵AD =2,∴DE =3.…………………………3分 AE=1. ∵AC =6,∴CE =5. ……………………………4分 ∴在Rt△DEC 中,22CE DE CD +=.∴72=CD .………………………5分20.解:(1)14.5, 3.4;………………………………………………………………2分 (2)①818.52949.5610712467⨯+⨯+⨯+⨯+⨯++++=9.4(分);………………………4分② 120×46710220++=(人) …………….…………………………………5分估计在报名的学生中有102人得分不少于9分.21. (1)证明:如图①,连接AD .A∵ E是»BD的中点,∴»»DE BE=.∴ ∠DAE=∠EAB.∵ ∠C=2∠EAB,∴∠C=∠BAD.∵ AB是⊙O的直径,∴ ∠ADB=∠ADC=90°.∴ ∠C+∠CAD=90°.∴ ∠BAD+∠CAD=90°.即BA⊥AC.∴ AC是⊙O的切线.………………………2分(2)解:如图②,过点F做FH⊥AB于点H.∵ AD⊥BD,∠DAE=∠EAB,∴ FH=FD,且FH∥AC.在Rt△ADC中,∵2cos3C=,AC=6,∴ CD=4.…………………………………………………3分同理,在Rt△BAC中,可求得BC=9.∴ BD=5.设DF=x,则FH=x,BF=5-x.∵ FH∥AC,∴ ∠BFH=∠C.∴2 cos3FHBFHBF∠==.即253xx=-.………………………………………………4分解得x=2.∴ BF=3.…………………………………………………5分22. 解:(1)如图H FOAD B图②……………………………………………………1分(2)445y x =-+;……………………………………………………………………………………………………3分(3)当点P 在线段CB 的延长线上时,(2)中结论仍然成立.理由如下:过点P 分别作两坐标轴的平行线,与x 轴、y 轴分别交于点M 、N , 则四边形ONPM 为平行四边形,且PN=x ,PM=-y .∴ OM =x ,BM =5-x .∵PM ∥OC ,∴ △PMB ∽△COB .…………4分∴PM BMOC OB =, 即545y x --=. ∴445y x =-+.……………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)1;………………………………………………………………………………1分 (2)∵ OP =m ,MN =(-m 2+3m )-(-m 2+2m ) =m ,∴ OP =MN .…………………………………………………………………………2分 ①当0<m <2时,∵PM =-m 2+2m , PN =-m 2+3m .∴若PM= OP=MN ,有-m 2+2m =m ,解得m =0,m =1(舍). ……………3分 若PN= OP=MN ,有-m 2+3m =m ,解得m =0(舍),m =2(舍). ……………4分 ②当2<m <3时,不存在符合条件的m 值. ……………………………………5分 ③当m >3时,∵PM =m 2-2m , PN =m 2-3m .∴若PM= OP=MN ,有m 2-2m =m ,解得m =0(舍),m =3(舍). ……………6分 若PN= OP=MN ,有m 2-3m =m ,解得m =0(舍),m =4. …………………7分 综上,当 m =1或m =4,这四条线段中恰有三条线段相等.24. 解:(1)△CDF 是等腰直角三角形 .………………1分 证明:∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC .∴FD =DC .…………………………………………2分 ∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°.即∠CDF =90°. ……………………………………3分 ∴△CDF 是等腰直角三角形.(2)过点A 作AF ⊥AB ,并截取AF =BD ,连接DF 、CF .…………………………4分 ∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC . ∴FD =DC ,∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF =90°.∴△CDF 是等腰直角三角形.………………………………………………………5分 ∴∠FCD =∠APD =45°. ∴FC ∥AE .∵∠ABC =90°,AF ⊥AB , ∴AF ∥CE .∴四边形AFCE 是平行四边形. …………………………………………………6分 ∴AF =CE .312CB 132FPECB∴BD =CE .……………………………………………………………………………7分25. 解:(1)由y =ax 2-2ax +3可得抛物线的对称轴为x =1.…………………1分∵AB =4,∴A (-1,0),B (3,0).∴a =-1.∴y =-x 2+2x +3. ………………………………………………………2分(2)由题意可知,BP =t ,∵B (3,0),C (0,3),∴OB =OC .∴∠PBQ =45°.∵PQ ⊥BC , ∴PQ =QB=22t . ① 当0<t ≤4时,S =PBQ S ∆=14t 2 .……………………………………………3分 ② 当4<t <6时,设PQ 与AC 交于点D ,作DE ⊥AB 于点E ,则DE =PE .∵tan∠DAE =DE OC AE OA==3. ∴DE =PE =3AE =32PA . ∵PA =t -4,∴DE =34)2t -(. ∴23612.4PAD S t t =-+△ ………………4分 ∵PBQ PAD S S S =-△△, ∴216122S t t =-+-. …………………………………………………5分 ③ 当t ≥6时,S =ABC S ∆=6 . ……………………………………………6分 综上所述, 2? 2? 1(0441612(4626(6t t S t t t t ⎧⎪⎪⎪=-+-⎨⎪⎪≥⎪⎩<≤)<<) ) (3)229≤t ≤4.…………………………………………………………………8分y x E D Q P A C B O说明:各解答题其它正确解法请参照给分.。

北京市各区县2014年中考数学二模试题分类汇编 一次、反比例函数题-(有答案)

北京市各区县2014年中考数学二模试题分类汇编 一次、反比例函数题-(有答案)

一次、反比例函数题-(密云)17.如图所示,已知一次函数y=kx+b (k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数(0)my m x=≠ 的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若OA=OB=OD=1. (1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式. (密云)17. (1) ∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (﹣1,0),B (0,1),D (1,0); (3)分(2)∵点A 、B 在一次函数y=kx+b (k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.……………………………………………………………4分∵点C 在一次函数y=x+1的图象上,且CD⊥x 轴, ∴点C 的坐标为(1,2), 又∵点C 在反比例函数(0)my m x=≠ 的图象上, ∴m=2;∴反比例函数的解析式为y=. (5)分(燕山)18.如图,在平面直角坐标系中,点O 为坐标原点,直线l 分别交x 轴、y 轴于A 、B 两点,OB OA <,且OA 、OB 的长分别是一元二次方程01272=+-x x 的两根.(1)求直线AB 的函数表达式;(2)点P 是y 轴上的点,点Q A 、B 、P 、Q 为顶点的四边形是菱形,请直接..写出Q 点的坐标. (燕山)18.解:(1)∵01272=+-x x , ∴0)4)(3(=--x x , ∴31=x ,42=x .∴ 点A 的坐标为(3,0),点B 的坐标为(0,4) . ……………2分 ∵设直线AB 的函数表达式为)0(≠+=k b kx y∴⎩⎨⎧=+=.4,30b b k ∴⎪⎩⎪⎨⎧=-=434b k∴直线AB 的函数表达式为434+-=x y . ……………3分 (2)Q 点的坐标是(3,5)或(3,825). ……………5分(怀柔)18.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). ⑴求点D 的坐标;⑵求经过点C 的反比例函数表达式. (怀柔)18.解:(1)根据题意得AO=4,BO=3,∠AOB=90°, ∴AB=22AO BO =2243=5. ………………………………………1分∵四边形ABCD 为菱形,所以AD=AB=5, ∴OD=AD-AO=1, ∵点D 在y 轴负半轴,∴点D 的坐标为(-1,0). ………………………………3分 (2)设反比例函数表达式为k y x. ∵BC=AB=5,OB=3,∴点C 的坐标为(-3,-5). ………………………………………4分 ∵反比例函数表达式ky x经过点C, ∴反比例函数表达式为15y x.………………………………………5分(大兴)17. 已知:如图,在平面直角坐标系xOy 中, 一次函数84+-=x y 的图象分别与x y 、轴交于 点A 、 B ,点P 在x 轴的负半轴上,△ABP 的面积为12.若一次函数y=kx+b 的图象经过点P 和点B ,求这个一次函数y=kx+b 表达式. (大兴)17.解:令0y =,得 2x = ∴A 点坐标为(2 ,0) 令0x =, 得 8=y∴B 点坐标为(0 ,8) ……………………………1分 ∵12=∆APB S ∴12821=⨯⨯AP 即AP =3∴P 点的坐标分别为)0,1(1-P 或)0,5(2P …………………2分 ∵点P 在x 轴的负半轴上,∴P (-1,0) ……………………………3分 ∵一次函数y=kx+b 的图象经过点P 和点B ∴⎩⎨⎧==+-,8,0b b k ……………………4分∴⎩⎨⎧==.8,8b k ∴ 这个一次函数y kx b =+的表达式为88+=x y …………5分xyBA11O xyBA11O (丰台)18.已知反比例函数1ky x的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和 点B (m ,﹣2)。

朝阳中考数学二模试题及答案

朝阳中考数学二模试题及答案

北京市朝阳区九年级综合练习(二)数学试卷学校 班级 姓名一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.??的绝对值是A .?2B .12-C .12D .22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在千克以下.将用科学记数法表示为A .57.510´ B.57.510-´C .40.7510-´ D.67510-´ 3.如图,在△ABC 中,DE ∥BC ,如果AD =3,BD =5,那么DEBC的值是 A. 35 B. 925 C. 38D.584.从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为A .19B .18C .29D .135.如图,圆锥的底面半径OA 为2,母线AB 为3,则这个圆锥的侧面积为 π B. 6π C. 12πD. 18π6.如图,下列水平放置的几何体中,主视图不是..长方形的是7. 某校篮球课外活动小组21名同学的身高如下表则该篮球课外活动小组21名同学身高的众数和中位数分别是 A .176,176 B .176,177 C .176,178 D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第 3格、第4格、第5格,此时这个正方体朝上..一面的字是 A .我 B .的 C .梦 D .中二、填空题(本题共16分,每小题4分) 9.在函数y =x 的取值范围是 .10.分解因式:32242x x x -+= .11.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,点F 在弧AC 上,若∠BCD =32°,则∠AFD 的度数为 .12.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B ,且A(-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA 3B 3C 3;……则第3个矩形OA 3B 3C 3的面积是 ;第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共30分,每小题5分)13.计算:)214452-⎛⎫︒ ⎪⎝⎭.14.计算:2312()111x x x -÷-+- .15.如图,为了测量楼AB 的高度,小明在点C 处测得楼AB 的顶端A 的仰角为30o ,又向前走了20米后到达点D ,点B 、D 、C 在同一条直线上,并在点D 测得楼AB 的顶端A 的仰角为60o ,求楼AB 的高.16.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF .求证:AB ∥CD .17.如图,在平面直角坐标系xOy 中,一次函数y kx =-2的图象与x 、y 轴分别交于点A 、B ,与反比例函数32y x =-(x <0)的图象交于点3()2M n -,. (1)求A 、B 两点的坐标;(2)设点P 是一次函数y kx =-2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.18.某新建小区要铺设一条全长为2200米的污水排放管道,为了尽量减少施工对周边居民所造成的影响,实际施工时,每天铺设的管道比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?B四、解答题(本题共20分,每小题5分)19.如图,在平行四边形ABCD 中,AD = 4,∠B =105o ,E 是BC 边的中点,∠BAE =30o ,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.20.如图,在△ABC 中,AC=BC ,D 是BC 上的一点,且满足∠BAD =12∠C ,以AD 为直径的⊙O 与AB 、AC 分别相交于点E 、F . (1)求证:直线BC 是⊙O 的切线; (2)连接EF ,若tan ∠AEF =43,AD =4,求BD 的长.21.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题: (1)频数分布表中的a = ,b = ; (2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?B (元)教育支出频数分布表 教育支出频数分布直方图22.阅读下列材料:小华遇到这样一个问题,如图1, △ABC 中,∠ACB =30o ,BC =6,AC =5,在△ABC 内部有一点P ,连接P A 、PB 、PC ,求P A +PB +PC 的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C 顺时针旋转60o ,得到△EDC ,连接PD 、BE ,则BE 的长即为所求.(1)请你写出图2中,P A +PB +PC 的最小值为 ; (2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD 中,∠ABC =60o ,在菱形ABCD 内部有一点P ,请在图3中画出并指明长度等于P A +PB +PC 最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当P A +PB +PC 值最小时PB 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程x 2?(4?m )x ?1?m = 0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是?3,在平面直角坐标系xOy 中,将抛物线y ?x 2?(4?m )x ?1?m向右平移3个单位,得到一个新的抛物线,当直线y ?x ?b 与这个新抛物线有且只有一个公共点时,求b 的值.24.如图,在平面直角坐标系xOy 中,抛物线y ? ax 2?bx ?4与x 轴交于点A (?2,0)、B (6,0),与y 轴交于点C ,直线CD ∥x 轴,且与抛物线交于点D ,P 是抛物线上一动 点.B图2B图3C B 图1(1)求抛物线的解析式; (2)过点P 作PQ ⊥CD 于点Q ,将△CPQ 绕点C 顺时针旋转,旋转角为α(0o ﹤α﹤90o ),当cos α=35,且旋转后点P 的对应点'P 恰好落在x 轴上时,求点P 的坐标.25. 在□ABCD 中,E 是AD 上一点,AE =AB ,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .(1)如图1,当EF 与AB 相交时,若∠EAB =60°,求证:EG =AG +BG ; (2)如图2,当EF 与AB 相交时,若∠EAB = α(0o ﹤α﹤90o ),请你直接写出线段EG 、AG 、BG 之间的数量关系(用含α的式子表示);(3)如图3,当EF 与CD 相交时,且∠EAB =90°,请你写出线段EG 、AG 、BG 之间的数量关系,并证明你的结论.北京市朝阳区九年级综合练习(二)数学试卷参考答案一、选择题(本题共32分,每小题4分) 二、填空题(本题共16分,每小题4分) 9. x ≥23 10. 22(1)x x - 11. 32° ,2n 2+2n图3图2 F 图1 F三、解答题(本题共30分,每小题5分)13.解:)214452-⎛⎫︒ ⎪⎝⎭4312=-+-……………………………………………………4分 1=. ………………………………………………………………………5分 14. 解:2312111x x x 骣÷ç-?÷ç÷ç桫-+- ()()3(1)11(1)1(1)x x x x x x ⎡⎤++=-⎢⎥+-+-⎣⎦221x ¸-………………………………2分 ()()2242111x x x x +=÷+--…………………………………………………………………3分()()()()1124112x x x x x +-+=⋅+-…………………………………………………………4分 2x =+.……………………………………………………………………………………5分15. 解: 由题意可知∠ACB =30°,∠ADB =60°,CD =20,在Rt △ABC 中,()tan 30=20AB BC BD =⋅︒+.………………………………1分 在Rt △ABD中,tan 60=AB BD BD =⋅︒………………………………………2分∴()20BD BD +…………………………………………………………3分 ∴10BD =.…………………………………………………………………………4分∴AB =.……………… ……………………………………………………5分16. 证明:∵AE ∥DF ,∴∠AEB =∠DFC . ………………………………………………………………1分 ∵BF =CE ,∴BF +EF =CE +EF .即BE =CF . ………………………………………………………………………2分 在△ABE 和△DCF 中,AE DF AEB DFC BE CFì=ïïï??íïï=ïïî∴△ABE ≌△DCF . … ……………………………………………………………3分 ∴∠B =∠C . ………………………………………………………………………4分 ∴AB ∥CD . … ……………………………………………………………………5分17. 解:(1)∵点3()2M n -,在反比例函数32y x=-(x <0)的图象上, ∴1n =.…………………………………………………………………………1分∴3()2M -,1.∵一次函数y kx =-2的图象经过点3()2M -,1, ∴3122k =--. ∴2k =-.∴一次函数的解析式为22y x =--.∴A (?1,0),B (0,?2) . ………………………………………………………3分 (2)P 1(?3,4),P 2(1,?4) . ………………………………………………………5分18. 解:设原计划每天铺设x 米管道.…………………………………………………1分由题意,得220022005(110%)x x=++ ……………………………………………3分解得 40x =. ……………………………………………………………4分经检验40x =是原方程的根. …………………………………………………5分答:原计划每天铺设40米管道.四、解答题(本题共20分,每小题5分) 19.解:作BG ⊥AE ,垂足为点G , ∴∠BGA =∠BGE =90o.在平行四边形ABCD 中,AD = 4, ∵E 是BC 边的中点,∴11 2.22BE EC BC AD ====……………………………………………………1分 ∵∠BAE =30o ,∠ABC =105o , ∴∠BEG =45o.由已知得△ABE ≌△AFE .∴AB =AF ,BE =FE ,∠BEF =90o.在Rt △BGE 中,BG =GE……… ………………………………………………………………2分 在Rt △ABG 中,∴AB =AF=………………………………………………………………………3分 在Rt △ECF 中,FC = ………………………………………………… ……4分 ∴四边形ABCF的周长4+……………………………………………………5分20. (1)证明:在△ABC 中,∵AC=BC ,∴∠ CAB = ∠B .∵∠ CAB +∠B +∠C =180o , ∴2∠B +∠C =180o. ∴12BC ??=90o. ……………………………………………………1分∵∠BAD =12∠C , ∴B BAD ??=90o.∴∠ADB =90o. ∴AD ⊥BC.∵AD 为⊙O 直径的,∴直线BC 是⊙O 的切线. …………………………………………………2分(2)解:如图,连接DF ,∵AD 是⊙O 的直径,∴∠AFD = 90o. ……………………………………………………………………3分 ∵∠ADC =90o ,∴∠ADF +∠FDC =∠CD +∠FDC =90o.∴∠ADF =∠C . …………………………………………………………………4分∵∠ADF =∠AEF ,tan ∠AEF =43, ∴tan ∠C =tan ∠ADF =43. 在Rt △ACD 中,设AD =4x ,则CD =3x .∴5.AC x ==∴BC =5x ,BD =2x .∵AD =4,∴x =1.∴BD =2. …………………………………………………………………………5分21.解:(1)a =3,b =; ……………………………………………………………2分 (2)…………………………3分B(3)500(0.050.15)100⨯+=.所以该小区家庭中,教育支出不足1500元的家庭大约有100户.…………5分21.解:(11分(2)①如图,…………………………………………2分BD;……………………………………………………………………………3分(3. …………………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. (1)证明:∵△=()()2441m m---.………………………………………………1分=2412m m-+=()228m-+…………………………………………………………2分∴△>0.…………………………………………………………………3分∴无论m取何值,方程总有两个不相等的实数根.(2)把x=-3代入原方程,解得m=1.…………………………………………………4分∴23y x x=+.即23924y x⎛⎫=+-⎪⎝⎭.依题意,可知新的抛物线的解析式为239'24y x⎛⎫=--⎪⎝⎭. ………………………5分即2'3y x x=+∵抛物线'y与直线y x b=+只有一个公共点,∴23x x x b-=+..…………………………………………………………………6分即240x x b--=.∵△=0.∴()()2440b--⨯-=.解得b= -4. ……………………………………………………………………7分24. 解:(1)根据题意得424036640a ba b-+=⎧⎨++=⎩,.…………………………………………………………1分解得1343ab⎧=-⎪⎪⎨⎪=⎪⎩,.B所以抛物线的解析式为214433y x x =-++.………………………………2分(2)如图1,过点Q 的对应点'Q 作EF ⊥CD 于点E ,交x 轴于点F .设P (x ,y ),则CQ = x ,PQ =4- y .由题意可知'CQ = CQ = x ,''P Q =PQ =4- y ,∠CQP =∠C ''Q P =90°. ∴'''''QCQ CQ E P Q F CQ E ∠+∠=∠+∠=90°.∴'''P Q F QCQ α∠=∠=.……………………………………………………3分 又∵cos α=35, ∴4'5EQ x = ,3'(4)5FQ y =-. ∴43(4)455x y +-=. ∵214433y x x =-++,整理可得2145x =.∴1x =2x =-.∴P .………………………………………………………………5分如图2,过点Q 的对应点'Q 作EF ⊥CD 于点E ,交x 轴于点F . 设P (x ,y ),则CQ =- x ,PQ =4- y .可得'''P Q F QCQ α∠=∠=.……………………………………………………6分又∵cos α=35,∴4'5EQ x =- ,3'(4)5FQ y =-.∴434(4)55x y -+=-.∵214433y x x =-++, 整理可得2145x =.∴1x =,2x =-∴(P -.……………………………………………………………7分∴P或(P -.25. 解:(1)证明:如图,作∠GAH =∠EAB 交GE 于点H .∴∠GAB =∠HAE . ………………………………………………………………1分∵∠EAB =∠EGB ,∠APE =∠BPG ,∴∠ABG =∠AEH .∵又AB =AE ,∴△ABG ≌△AEH . ………………2分 ∴BG =EH ,AG =AH .∵∠GAH =∠EAB =60°, ∴△AGH 是等边三角形. ∴AG =HG .∴EG =AG +BG . …………………………………………………………………3分(2) 2sin.2EG AG BG α=+…………………………………………………………5分(3).EG BG =-……………………………………………………………6分如图,作∠GAH =∠EAB 交GE 于点H .∴∠GAB =∠HAE . ∵∠EGB =∠EAB =90°,∴∠ABG +∠AEG =∠AEG +∠AEH =180°.∴∠ABG =∠AEH .∵又AB =AE ,∴△ABG ≌△AEH . ………………7分∴BG =EH ,AG =AH .∵∠GAH =∠EAB =90°, ∴△AGH 是等腰直角三角形.=HG .∴.EG BG -…………………………………………………………8分说明:各解答题其它正确解法请参照给分.F。

2014年北京市各城区中考二模数学

2014年北京市各城区中考二模数学

图2图1EDCA2014年北京市各城区中考二模数学——几何综合题24题汇总考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.例一(2014年平谷二模)(1)如图1,在四边形ABCD 中,∠B =∠C =90°,E 为BC 上一点,且CE =AB ,BE =CD ,连结AE 、DE 、AD ,则△ADE 的形状是_________________________.(2)如图2,在90ABC A ∆∠=︒中,,D 、E 分别为AB 、AC 上的点,连结BE 、CD ,两线交于点P .①当BD=AC ,CE=AD 时,在图中补全图形,猜想BPD ∠的度数并给予证明. ②当BD CEAC AD==时,BPD ∠的度数____________________.24.(1)等腰直角三角形 ----------------------------------------------------1分(2) 45°. ------------------------------------------------------------2分证明:过B 点作FB ⊥AB ,且FB=AD . ∴90FBD A ∠=∠=︒, ∵BD=AC ,∴△FBD ≌△DAC. ∴∠FDB=∠DCA ,ED=DC ∵∠DCA+∠CDA=90︒,∴∠FDB +∠CDA=90︒,∴∠CDF=90︒,∴∠FCD=∠CFD =45︒. ∵AD =CE ,∴BF =CE∵90FBD A ∠=∠=︒,∴180FBD A ∠+∠=︒. ∴BF ∥EC .∴四边形BECF 是平行四边形. ∴BE ∥FC .∴45BPD FCD ∠=∠=︒.----------------------------------------------6分 (3)60︒. ------------------------------------------------7分练、(2014年海淀二模)24.在ABC △中,90ABC ∠= ,D 为平面内一动点,AD a =,AC b =,其中a ,b 为常数,且a b <.将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E .连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示); (3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图24.解:(1)…………………………………………………2分(2)连接BF .∵将ABD △沿射线BC 方向平移,得到FCE △,ABCABC∴AD ∥EF , AD =EF ;AB ∥FC , AB =FC . ∵∠ABC=90°,∴四边形ABCF 为矩形. ∴AC =BF .……………………………………3分∵AD BE ⊥, ∴EF BE ⊥. …………………………………4分∵AD a =,AC b =, ∴EF a =,BF b =.∴BE .………………………………………………………………5分 (3)180α︒-; α.……………………………………………………………7分练、(2014年朝阳二模)24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC . (1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明;(2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD =45°,求证BD =CE .24.解:(1)△CDF 是等腰直角三角形.………………1分 证明:∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC .∴FD =DC .…………………………………………2分∠1=∠2.∵∠1+∠3=90°, ∴∠2+∠3=90°.即∠CDF =90°. ……………………………………3分 ∴△CDF 是等腰直角三角形.(2)过点A 作AF ⊥AB ,并截取AF =BD ,连接DF 、CF .…………………………4分 ∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC . ∴FD =DC ,∠1=∠2.∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF =90°.∴△CDF 是等腰直角三角形.………………………………………………………5分∴∠FCD =∠APD =45°. ∴FC ∥AE .∵∠ABC =90°,AF ⊥AB , ∴AF ∥CE .∴四边形AFCE 是平行四边形.…………………………………………………6分∴AF =CE .∴BD =CE .……………………………………………………………………………7分图2图1考点二、轴对称变换 1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点.轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形. 2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上. ④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ).A.20B.22C.24D.30第5题7.如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿AD 对折,点C 落在点C '的位置,则C B '与BC 之间的数量关系是.8.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于度.第7题 第8题10.如图,在∆ABC 中,MN//AC ,直线MN 将∆ABC 分割成面积相等的两部分,将∆BMN 沿直线MN 翻折,点B 恰好落在点E 处,联结AE ,若AE//CN ,则AE:NC=.第10题 第11题11.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折痕,使点A 落在BC 边上的点D 的位置,且,BC ED ⊥则CE 的长是. 12.(2013门头沟二模)如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N .若12CE CD =,则BN 的长是,AM BN的值 等于;若1CE CD n=(2n ≥,且n 为整数), 则AMBN的值等于 (用含n 的式子表示).22(2010年北京中考题)小贝遇到一个有趣的问题:在矩形ABCD 中,AD =8cm ,AB =6cm 。

北京中考二模数学2014---23题汇编

北京中考二模数学2014---23题汇编

23.在平面直角坐标系xOy 中,点P (m ,0)为x 轴正半轴上的一点,过点P 做x 轴的垂线,分别交抛物线y =-x 2+2x 和y =-x 2+3x 于点M ,N . (1)当21=m 时, _____MN PM=; (2)如果点P 不在这两条抛物线中的任何一条上.当四条线段OP ,PM ,.PN ,MN 中恰好有三条线段相等时, 求m 的值.14大兴23.已知:关于x 的一元二次方程2)13()1(22=+---x k x k (1)当方程有两个相等的实数根时,求k 的值;(2)若k 是整数,且关于x 的一元二次方程02)13()1(22=+---x k x k 有两个不相等的整数根时,把抛物线2)13()1(22+---=x k x k y 向右平移21个单位长度,求平移后抛物线的顶点坐标.23.经过点(1,1)的直线l : 2 (0)y kx k =+≠与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1),与y 轴交于点D .(1)求直线l 对应的函数表达式及反比例函数G 1的表达式; (2)反比例函数G 2::2 (0)ty t x=≠, ①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA =EB ,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<t 的取值范围.14房山23. 已知关于x 的一元二次方程0132=-+-k x x 有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个不为0的整数根时,将关于x 的二次函数132-+-=k x x y 的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象G .当直线5y x b =+与图象G 有3个公共点时,请你直接写出b 的取值范围.23.已知关于x 的方程:2(1)0x m x m ---=①和2(9)2(1)3x m x m --++=②,其中0m >. (1)求证:方程①总有两个不相等的实数根;(2)设二次函数21(1)y x m x m =---的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),将A 、B 两点按照相同的方式平移后,点A 落在点'(1,3)A 处,点B 落在点'B 处,若点'B 的横坐标恰好是方程②的一个根,求m 的值;(3)设二次函数22(9)2(1)y x m x m =--++,在(2)的条件下,函数1y ,2y 的图象位于直线3x =左侧的部分与直线y kx =(0k >)交于两点,当向上平移直线y kx =时,交点位置随之变化,若交点间的距离始终不变,则k 的值是________________.14顺义23.已知关于的一元二次方程2440mx x m ++-=.(1)求证:方程总有两个实数根;(2)若m 为整数,当此方程有两个互不相等的负整数根时,求m 的值;(3)在(2)的条件下,设抛物线244y mx x m =++-与x 轴交点为A 、B (点B 在点A的右侧),与y 轴交于点C .点O 为坐标原点,点P 在直线BC 上,且OP =12BC ,求点P 的坐标.x23.已知抛物线2(31)2(1)(0)y ax a x a a =-+++≠.(1)求证:无论a 为任何非零实数,该抛物线与x 轴都有交点;(2)若抛物线2(31)2(1)y ax a x a =-+++与x 轴交于A (m ,0)、 B (n ,0)两点,m 、n 、a 均为整数,一次函数y =kx +b (k ≠0)的图象经过点P (n -l ,n +l )、Q (0,a ),求一次函数的表达式.14东城23.已知:关于x 的一元二次方程2(3)-30mx m x +-=. (1)求证:无论m 取何值,此方程总有两个实数根;(2)设抛物线2(3)-3y mx m x =+-,证明:此函数图像一定过x 轴,y 轴上的两个定点(设x 轴上的定点为点A ,y 轴上的定点为点C );(3)设此函数的图像与x 轴的另一交点为B ,当△ABC 为锐角三角形时,求m 的取值范围.14丰台23.如图,二次函数2y x bx c =++经过点(-1,0)和点(0,-3). (1)求二次函数的表达式;(2)如果一次函数4y x m =+的图象与二次函数的图象有且只有一个公共点,求m 的值和 该公共点的坐标;(3)将二次函数图象y 轴左侧部分沿y 轴翻折,翻折后得到的图象与原图象剩余部分组成 一个新的图象,该图象记为G ,如果直线4y x n =+与图象G 有3个公共点,求n 的值.14门头沟23. 已知二次函数223y x x =-++图象的对称轴为直线.14平谷23.已知关于x 的一元二次方程210x mx m -+-=. (1)求证:无论m 取任何实数时,方程总有实数根;(2)关于x 的二次函数211y x mx m =-+-的图象1C 经过2(168)k k k --+,和2(568)k k k -+-+,两点.①求这个二次函数的解析式;②把①中的抛物线1C 沿x 轴翻折后,再向左平移2个单位,向上平移8个单位得到抛物线2C .设抛物线2C 交x 轴于M 、N 两点(点M 在点N 的左侧),点P (a ,b )为抛物线2C 在x 轴上方部分图象上的一个动点.当∠MPN ≤45°时,直接写出a 的取值范围.。

北京中考二模数学2014---25题汇编

北京中考二模数学2014---25题汇编

14朝阳25.如图,在平面直角坐标系中xOy,二次函数y=ax2-2ax+3的图象与x轴分别交于点A、B,与y轴交于点C,AB=4,动点P从B点出发,沿x轴负方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线BC,垂足为Q.设P点移动的时间为t秒(t>0),△BPQ与△ABC重叠部分的面积为S.(1)求这个二次函数的关系式;(2)求S与t的函数关系式;(3)将△BPQ绕点P逆时针旋转90°,当旋转后的△BPQ与二次函数的图象有公共点时,求t的取值范围(直接写出结果).14大兴25. 已知:E是线段AC上一点,AE=AB,过点E作直线EF,在EF上取一点D,使得∠EDB=∠EAB,联结AD.(1)若直线EF与线段AB相交于点P,当∠EAB=60°时,如图1,求证:ED =AD+BD;(2)若直线EF与线段AB相交于点P,当∠EAB= α(0º﹤α﹤90º)时,如图2,请你直接写出线段ED、AD、BD之间的数量关系(用含α的式子表示);(3)若直线EF与线段AB不相交,当∠EAB=90°时,如图3,请你补全图形,写出线段ED、AD、BD之间的数量关系,并证明你的结论.25.在平面直角坐标系xOy 中,对于⊙A 上一点B 及⊙A 外一点P ,给出如下定义:若直线PB 与 x 轴有公共点(记作M ),则称直线PB 为⊙A 的“x 关联直线”,记作PBM l . (1)已知⊙O 是以原点为圆心,1为半径的圆,点P (0,2),①直线1l :2y =,直线2l :2y x =+,直线3l :2y +,直线4l :22y x =-+都经过点P ,在直线1l , 2l , 3l , 4l 中,是⊙O 的“x 关联直线”的是 ;②若直线PBM l 是⊙O 的“x 关联直线”,则点M 的横坐标M x 的最大值是 ; (2)点A (2,0),⊙A 的半径为1,①若P (-1,2),⊙A 的“x 关联直线”PBM l :2y kx k =++,点M 的横坐标为M x ,当M x 最大时,求k 的值;②若P 是y 轴上一个动点,且点P 的纵坐标2p y >,⊙A 的两条“x 关联直线”PCM l ,PDN l 是⊙A 的两条切线,切点分别为C ,D ,作直线CD 与x 轴点于点E ,当点P 的位置发生变化时, AE 的长度是否发生改变?并说明理由.25. 如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)如图,△OAB 是抛物线()2=-+>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由;(3)在(2)的条件下,若以点E 为圆心,r 为半径的圆与线段AD 只有一个公共点,求出r 的取值范围.25.对于半径为r 的⊙P 及一个正方形给出如下定义:若⊙P 上存在到此正方形四条边距离都相等的点,则称⊙P 是该正方形的“等距圆”.如图1,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 的坐标为(2,4),顶点C 、D 在x 轴上,且点C 在点D 的左侧. (1)当r=①在P 1(0,-3),P 2(4,6),P 3(2)中可以成为正方形ABCD 的“等距圆”的圆心的是;②若点P 在直线2y x =-+上,且⊙P 是正方形ABCD 的“等距圆”,则点P 的坐标为; (2)如图2,在正方形ABCD 所在平面直角坐标系xOy 中,正方形EFGH 的顶点F 的坐标为(6,2),顶点E 、H 在y 轴上,且点H 在点E 的上方. ①若⊙P 同时为上述两个正方形的“等距圆”,且与BC 所在直线相切,求⊙P 在y 轴上截得的弦长;②将正方形ABCD 绕着点D 旋转一周,在旋转的过程中,线段HF 上没有一个点能成为它的“等距圆”的圆心,则r 的取值范围是.图1 图2xy FGDAO BCE H25.如图,在平面直角坐标系xOy 中,抛物线2)y x bx c =++过点(1,0)A ,B ,这条抛物线的对称轴与x 轴交于点C ,点P 为射线CB 上一个动点(不与点C 重合),点D 为此抛物线对称轴上一点,且∠CPD =60︒. (1)求抛物线的解析式;(2)若点P 的横坐标为m ,△PCD 的面积为S ,求S 与m 之间的函数关系式; (3)过点P 作PE ⊥DP ,连接DE ,F 为DE 的中点,试求线段BF 的最小值.25.如图,已知点A(1,0),B(0,3),C(-3,0),动点P(x,y)在线段AB上,CP交y轴于点D,设BD的长为t.(1)求t关于动点P的横坐标x的函数表达式;(2)若S△BCD:S△AOB=2:1,求点P的坐标,并判断线段CD与线段AB的数量及位置关系,说明理由;(3)在(2)的条件下,若M为x轴上的点,且∠BMD最大,请直接写出点M的坐标.14东城25.定义:对于数轴上的任意两点A ,B 分别表示数1,2x x ,用12x x -表示他们之间的距离;对于平面直角坐标系中的任意两点1122(,),(,)A x y B x y 我们把1212x x y y -+-叫做A ,B 两点之间的直角距离,记作d (A ,B ).(1)已知O 为坐标原点,若点P 坐标为(-1,3),则d (O,P )=_____________; (2)已知C 是直线上y =x +2的一个动点,①若D (1,0),求点C 与点D 的直角距离的最小值;②若E 是以原点O 为圆心,1为半径的圆上的一个动点,请直接写出点C 与点E 的直角距离的最小值.xy14丰台25.如图,经过原点的抛物线2y x bx=-+(2b>)与x轴的另一交点为A,过点P(1,2b)作直线PN⊥x轴于点N,交抛物线于点B.点B关于抛物线对称轴的对称点为C.连结CB,CP. (1)当b=4时,求点A的坐标及BC的长;(2)连结CA,求b的适当的值,使得CA⊥CP;(3)当b=6时,如图2,将△CBP绕着点C按逆时针方向旋转,得到△CB’P’,CP与抛物线对称轴的交点为E,点M为线段B’P’(包含端点)上任意一点,请直接写出线段EM长度的取值范围.图114门头沟25.如图25-1,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F .(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.(3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.备用图图25-114平谷25.定义:任何一个一次函数y px q =+,取出它的一次项系数p 和常数项q ,有序数组][q p ,为其特征数.例如:y =2x +5的特征数是]52[,,同理,[]a b ,,c 为二次函数2y ax bx c =++的特征数。

2014--朝阳--二模数学文

2014--朝阳--二模数学文

北京市朝阳区高三年级第二次综合练习 数学学科测试(文史类) 2014.5第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)若全集{},,,U a b c d =,,,则集合{}d 等于( ). (A ) (B )A B (C ) (D )(2)下列函数中,既是奇函数又在区间上单调递增的函数为( ).(A )sin y x = (B )ln y x = (C )3y x = (D )2xy =(3)已知抛物线,则它的焦点坐标是( ).(A ) (B ) (C ) (D )1,02⎛⎫⎪⎝⎭(4)执行如图所示的程序框图.若输入,则输出的值是( ).(A )2 (B )3 (C )4 (D )5(5)由直线10x y -+=,50x y +-=和10x -=所围成的三角形区域(包括边界)用不等式组可表示为( ).(A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩ (B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩ (C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩ (D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩(6)在区间上随机取一个实数,则事件:“”的概率为( ). (A ) (B ) (C ) (D )(7)设等差数列的公差为,前项和为.若11a d ==,则的最小值为( ). (A ) (B ) (C ) (D )(8)已知平面上点{2200(,)()()16,P x y x x y y ∈-+-=其中}22004x y +=,当0x ,0y 变化时,则满足条件的点P 在平面上所组成图形的面积是 ( ).(A )4π (B )16π ( C )32π (D )36π第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.计算12i1i+=- .10.已知两点()1,1A ,()1,2B -,若12BC BA =,则C 点的坐标是 .11.圆心在x 轴上,半径长是4,且与直线5x =相切的圆的方程是 .12.由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积是 .13.设一列匀速行驶的火车,通过长860的隧道时,整个车身都在隧道2侧视图正视图里的时间是.该列车以同样的速度穿过长790的铁桥时,从车头上桥,到车尾下桥,共用时,则这列火车的长度为___.14.在如图所示的棱长为2的正方体1111ABCD A B C D -中,作与平面1ACD 平行的截面,则截得的三角形中,面积最大的值是___;截得的平面图形中,面积最大的值是___.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC 中,,,分别是角的对边.已知a =π3A =.(Ⅰ)若b =C 的大小; (Ⅱ)若2c =,求边b 的长.A16.(本小题满分13分)2014--朝阳--二模数学文组距频率0.010.07 0.02 0.04 0.06 O O社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.17. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD . (Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ; (Ⅱ)求证:PA ⊥CD ; (Ⅲ)若2PA PD AD ==,求证:平面PAB ⊥平面PCD .A已知函数e ()xa f x x⋅=(a ∈R ,0a ≠).(Ⅰ)当1a =时,求曲线()y f x =在点()1,(1)f 处切线的方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当()0,x ∈+∞时,()f x 1≥恒成立,求a 的取值范围.19.(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l 10mx y ++=与椭圆C 交于,A B 两点,是否存在实数m ,使OA OB O A O B +=-成立?若存在,求m 的值;若不存在,请说明理由.已知函数对任意都满足,且,数列满足:,. (Ⅰ)求(0)f 及(1)f 的值; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)若311()()42n naa nb +=-,试问数列{}n b 是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.北京市朝阳区高三年级第二次综合练习数学学科测试文史类答案 2014.5一、选择题(满分40分)二、填空题(满分30分)15.(本小题满分13分) (Ⅰ)解:由正弦定理, 得,解得.由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=. ………6分 (Ⅱ)依题意,222cos 2b c a A bc +-=,即2141224b b+-=.整理得2280b b --=,又0b >,所以4b =. ………13分 另解:由于sin sin a cA C=2sin C =,解得1sin 2C =. 由于a c >,所以π6C =. 由π3A =,得π2B =. 由勾股定理222b c a =+,解得4b =. ………13分16.(本小题满分13分) 解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人), 参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人). 所以参加社区服务时间不少于90小时的学生人数为 4+26=(人). ………5分 (Ⅱ)设所选学生的参加服务时间在同一时间段内为事件A . 由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ; 参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB共15种情况.事件A 包括,,,,,,ab ac ad bc bd cd AB 共7种情况. 所以所选学生的服务时间在同一时间段内的概率7()15P A =.………13分 17. (本小题满分14分) 证明:(Ⅰ)如图,连结AC .因为底面ABCD 是正方形,所以AC 与BD 互相平分. 又因为F 是BD 中点, 所以F 是AC 中点.在△PAC 中,E 是PC 中点,F 是AC 中点, 所以EF ∥PA .又因为EF ⊄平面PAD ,PA ⊂平面PAD ,所以EF ∥平面PAD . ………4分 (Ⅱ)因为平面PAD ⊥底面ABCD ,且平面PAD平面=ABCD AD ,A又CD AD ⊥,CD ⊂平面ABCD ,所以CD ⊥面PAD .又因为PA ⊂平面PAD ,所以CD PA ⊥.即PA ⊥CD . ………9分(Ⅲ)在△PAD 中,因为2PA PD AD ==, 所以PA PD ⊥.由(Ⅱ)可知PA ⊥CD ,且=CDPD D ,所以PA ⊥平面PCD .又因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . ………14分18. (本小题满分13分) (Ⅰ)22e e e (1)()x x x ax a a x f x x x⋅--'==,0x ≠. 当1a =时,2e (1)()x x f x x-'=. 依题意(1)0f '=,即在1x =处切线的斜率为0.把1x =代入e ()xf x x=中,得(1)e f =. 则曲线()f x 在1x =处切线的方程为e y =. (4)(Ⅱ)函数()f x 的定义域为{}0x x ≠. 22e e e (1)()x x x ax a a x f x x x⋅--'==. (1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数;当()0f x '<,即0x <和01x <<时,函数()f x 为减函数.(2)若0a <,当()0f x '>,即0x <和01x <<时,函数()f x 为增函数;当()0f x '<,即1x >时,函数()f x 为减函数.综上所述,0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1. 0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞. (9)(Ⅲ)当()0,x ∈+∞时,要使()f x =e 1xa x⋅≥恒成立,即使e x x a ≥在()0,x ∈+∞时恒成立. 设()e x x g x =,则1()ex x g x -'=.可知在01x <<时,()0g x '>,()g x 为增函数; 1x >时,()0g x '<,()g x 为减函数.则max 1()(1)e g x g ==.从而1ea ≥. 另解:(1)当时,()e 1a f a =<,所以()f x 不恒成立. (2)当0a >且()0,x ∈+∞时,由(Ⅰ)知,函数()f x 的单调增区间为()1,+∞,单调减区间为()0,1.所以函数()f x 的最小值为(1)e f a =,依题意(1)e 1f a =≥,解得1ea ≥. 综上所述,1ea ≥. ………………….13分 19. (本小题满分14分)(Ⅰ)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c . 依题意1,21.c e a a c ⎧==⎪⎨⎪-=⎩ 解得1c =,2a =,所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. ………………….4分 (Ⅱ)不存在实数m ,使||||OA OB OA OB +=-,证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=.由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>.设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+.依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=. 即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=, 整理得21212(1)()10m x x m x x ++++=, 所以2(1)m +2843m -+2281043m m -+=+, 整理得2512m =-,矛盾.所以不存在实数m ,使||||OA OB OA OB +=-. ………………….14分 20. (本小题满分13分)解:(Ⅰ)在中,取,得,在中,取,得,…………2分(Ⅱ)在中,令,,得,即.所以是等差数列,公差为2,又首项,所以,.…………6分 (Ⅲ)数列存在最大项和最小项令,则,显然,又因为,所以当,即时,的最大项为.当,即时, 的最小项为.…………13分。

2014届中考二模数学试题含答案

2014届中考二模数学试题含答案

2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。

2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。

3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。

4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卷的整洁。

考试结束时,将试卷和答题卷一并交回。

一、选择题(本大题共10小题,每小题3分,共30分。

在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。

朝阳市数学中考二模联考试卷

朝阳市数学中考二模联考试卷

朝阳市数学中考二模联考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)﹣3的倒数是()A . 3B . ±3C .D . -2. (2分)(2012·来宾) 下列运算正确的是()A . 6a﹣(2a﹣3b)=4a﹣3bB . (ab2)3=ab6C . 2x3•3x2=6x5D . (﹣c)4÷(﹣c)2=﹣c23. (2分)下图中几何体的正视图是()A .B .C .D .4. (2分) (2019九上·余杭期中) 已知关于x的二次函数y=-(x-m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A . m≤0B . 0<m≤1C . m≤1D . m≥15. (2分) (2019八下·太原期中) 不等式组的最小整数解为()A . -1B . 0C . 1D . 26. (2分) (2020八下·越城期中) 如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,那么k的取值范围是()A . k>﹣B . k>﹣且k≠0C . k<﹣D . k 且k≠07. (2分)(2016·武侯模拟) 如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A . πB . πC . 2 πD . 2π8. (2分)(2020·铁东模拟) 如图,点在反比例函数上,点在反比例函数上,,轴,则k的值为()A . -16B . -8C . -6D . -49. (2分)已知函数y=ax2+bx+c,当y>0时,﹣<x<.则函数y=cx2﹣bx+a的图象可能是图中的()A .B .C .D .10. (2分)如图,在直角三角形ABC中,∠B=90°,以下式子成立的是()A . a2+b2=c2B . a2+c2=b2C . b2+c2=a2D . (a+c)2=b2二、填空题 (共6题;共6分)11. (1分) (2019七下·瑞安期末) 如果整式x2+10x+m恰好是一个整式的平方,则m的值是________ .12. (1分)(2020·下城模拟) 一枚质地均匀的骰子,每个面分别标有1,1,2,3,4,4,投掷后,朝上一面的数字是4的概率为________.13. (1分)已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________14. (1分)在等腰三角形ABC中,AC为腰,O为BC中点,OD平行AC,∠C=30°,求∠AOD=________.15. (1分)(2014·崇左) 如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为________.16. (1分)(2020·南宁模拟) 如图,在矩形中,,,以点为圆心,的长为半径作交于点;以点为圆心,的长为半径作交于点,则图中阴影部分的面积为________.三、解答题 (共8题;共90分)17. (10分)计算:(2015﹣π)0+()﹣1+|﹣1|﹣3tan30°+.18. (10分)如图,Rt△ABC中,∠ACB=90°,CA=3cm,CB=4cm,设点P、Q为AB、CB上动点,它们分别从A、C同时出发向B点匀速移动,移动速度都为1cm/秒,移动时间为t秒(0≤t≤4),在整个移动过程中,(1)当∠CPQ=90°时,求t的值.(2)当t为多少时,△CPQ是等腰三角形.19. (10分) (2020九上·大丰期末) 九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.20. (10分) (2018九上·瑞安月考) 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m .设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y 最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.21. (10分) (2018八下·青岛期中) 已知:线段a,m.求作:△ABC,使AB=AC,BC=a,中线AD=m.22. (10分) (2018九上·义乌期中) 如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB 以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.(1)当CQ=10时,求的值.(2)当x为何值时,PQ∥BC;(3)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP的长,若不存在,请说明理由.23. (15分) (2016九上·绵阳期中) 某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24. (15分)如图(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO= ,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=________°,AB=________.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO= ,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共90分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、。

朝阳中考二模数学试题及答案解析(1)

朝阳中考二模数学试题及答案解析(1)
适合学员 现代文阅读答题技巧掌握不够全面,想稳固提高的初中生 赠送
《中学语文知识地图—中学文言文必考 140 字》
课程特色: 全面地检测与分析学生考试丢分的问题,
让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点 教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。 适合学员 想夯实语文基础知识,成绩稳步提高的初中生
课程目标:
·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领 先
·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的 知识和方法
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收 获适合人群
适合人群:
·初一年级同步学生
朝阳中考二模数学试题及答案解析(1)
总结:话题作文与学期梳理
课程特色: 以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课 仍会讲解 2—3 篇阅读题,作为对应练习和提高。学习时,要求学生熟记理解 每一讲的”地图内容”,以便考试时融会运用。 适合学员 想扎实写作基础,稳固提高作文水平的初中生 赠送
《语文阅读得高分策略与技巧》(小学版)
第二节:说明文专题
课程特色: 针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。该课程两个 重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个 方面是对概括能力、理解能力,表述能力的训练。 适合学员 阅读能力迅速提升的 5—7 级学生 赠送
《原创作文·专题突破》
课程特色: 本班是黄老师整个课程的精华。阅读上,将踩分点进行了系统梳理,列举 的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写 的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲 解。 适合学员 写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生 赠送

2014年中考二模数学试卷及答案

2014年中考二模数学试卷及答案

xABB.初三数学第二次模拟试题(考试时间120分钟满分150分)第一部分选择题(共24分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.2012年元月的某一天,我市的最低气温为-3℃,最高气温为4℃,那么这一天我市的日温差是A.3℃B.4℃C.-7℃D.7℃2.下列运算,结果正确的是A.422aaa=+B.()222baba-=-C.()()aabba222=÷D.()422263baab=3.图中圆与圆之间不同的位置关系有A.2种B.3种C.4种D.5种4.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A.25°B.35°C.40°D.60°5.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C.丙D.丁6.如右图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是A.π24B.π21C.π20D.π157.反比例函数ky=的图象如左图所示,那么二次函数y = kx2-k2x —1图象大致为8.下列说法正确的个数是①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程232x mx+=-的解是正数,那么m的取值范围为6m>-A.5 B.4 C.3 D.2第二部分选择题(共126分)二、填空题(每小题3分,共30分)9.在函数xy32-=中,自变量x的取值范围是.10.我市今年初中毕业生为12870人,将12870用科学记数法表示为______(保留两个有效数字).11.如图,人民币旧版壹角硬币内部的正九边形每个内角的度数是______.12.如图,直线1l:11y x=+与直线2l:2y mx n=+相交于点),1(bP.当12y y>时,x的取值范围为.13.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为.14.如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,-4) ,若以原点O为位似中心,在第二象限内画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的位似比等于12,则点A'的坐标为.第11题第12题第14题15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.定义:如图,若双曲线xky=(0>k)与它的其中一条对称轴y x=相交于两点A,B,则线段AB的长称为双曲线xky=(0>k)的对径.若某双曲线xky=(0>k)的对径是26,则k的值为.17.如图,已知四边形ABCD是菱形,∠A=70°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度.18.在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边与G,则折痕FG=_____________第4题第5题第3题第15题第16题第17题三、简答题(共96分) 19.(8分)(1)计算:121(2)3-⎛⎫- ⎪⎝⎭-12sin30° (2)解方程:120112x x x x -+=+- 20.(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 21.(8分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35.(1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n -,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 22.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图: 请根据以上不完整的统计图提供的信息, 解答下列问题:(1)扇形统计图中a = ,b = ; 并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少? 23.(10分)如图,自来水公司的主管道从A 小区向北偏东 60° 直线延伸,测绘员在A 处测得要安装自来水的M 小区在A 小区 北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M 位于C 的北偏西60°方向,(1)请你找出支管道连接点N ,使得N 到该小区铺设的管道最短. (在图中标出点N 的位置) (2)求出AN 的长.24.(10分)如图,在△ABC 中,AD 平分∠BAC ,交BC 于D ,将 A 、D 重合折叠,折痕交AB 于E ,交AC 于F ,连接DE 、DF , (1)判断四边形AEDF 的形状并说明理由; (2)若AB=6,AC=8,求DF 的长.25.(10分)已知四边形ABCD 的外接圆⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ²AC ,BD=8, (1)判断△ABD 的形状并说明理由;(2)求△ABD 的面积.26.(10分)某种商品在30天内每件销售价格P (元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q (件)与时间t(天) 之间的函数关系是Q=-t+40(0<t≤30,t 是整数).(1)求该商品每件的销售价格P 与时间t 的函数关系式,并写出自变量t 的取值范围; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中 的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)如图,矩形ABCD 中,AD=8,AB=4,点E 沿A→D 方向在线段AD 上运动,点F 沿D→A 方向在线段DA 上运动,点E 、F 速度都是每秒2个长度单位,E 、F 两点同时出发,且当E 点运动到D 点时两点都停止运动,设运动时间是t(秒). (1)当 0<t<2时,判断四边形BCFE 的形状,并说明理由(2)当0<t<2时,射线BF 、CE 相交于点O ,设S △FEO =y ,求y 与t 之间的函数关系式. (3)问射线BF 与射线CE 所成的锐角是否能等于60°?若有可能,请求出t 的值,若不能,请说明理由.28.(12分)如图(1),分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上)交y 轴于另一点Q ,抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,B 点坐标为(2,2).(1)求抛物线的函数解析式和点E 的坐标;(2)求证:ME 是⊙P 的切线;(3)如图(2),点R 从正方形CDEF 的顶点E 出发以1个单位/秒的速度向点F 运动,同时点S 从点Q 出发沿y 轴以5个单位/秒的速度向上运动,连接RS ,设运动时间为t 秒(0<t<1),在运动过程中,正方形CDEF 在直线RS 下方部分的面积是否变化,若不变,说明理由并求出其值;若变化,请说明理由;初三数学二模试题参考答案1-5 DCACB 6-8 DBD9.x ≤32 10.1.3³104 11.140 12.x >1 13.10% 14.(-21,2) 15.(-2,1) 16.917.95 18.55或45 19.(1)419 (2)5120.a 2+1 (a ≠±1) 21.(1)5 (2)209 22.(1)a=20% b=12% (2)700 (3)66分 23.(1)菱形 理由略 (2)724 24.(1)画MN ⊥AC 即可 (2)503 25.(1)等腰(略) (2)826.(1)P=⎩⎨⎧≤≤+-<<+)3025(100)250(20t t t t(2)W=QP①0<t <25 ②25≤t ≤30W=(-t+40)(t+20) W=(-t+40)(-t+100) =-(t -10)2+900 =t 2-140t+4000 t=10 W 大=900 =(t -70)2-900t=25 W 大=1125 综上所述, 最大值1125 第25天27.(1)等腰梯形 略 (2)y=t t --4)2(82 (3)①t=4-23 ②t =4-33228.(1)y=41x 2-23x+2 E(3,1)(2)证明略(3)不变 21。

2014年北京市朝阳区二模试题数学【理科】试题及答案

2014年北京市朝阳区二模试题数学【理科】试题及答案

北京市朝阳区高三年级第二次综合练习数学学科测试(理工类)2014.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知集合{230}A x x =∈-≥R ,集合2{320}B x x x =∈-+<R ,则AB =(A )32x x ⎧⎫≥⎨⎬⎩⎭ (B )322x x ⎧⎫≤<⎨⎬⎩⎭(C ){}12x x << (D )322x x ⎧⎫<<⎨⎬⎩⎭(2)如果0a b >>,那么下列不等式一定成立的是(A )33log log a b < (B )11()()44a b>(C )11a b< (D )22a b <(3)执行如右图所示的程序框图.若输出的结果为2,则输入的正整数a 的可能取值的集合是 (A ){}1,2,3,4,5 (B ){}1,2,3,4,5,6 (C ){}2,3,4,5 (D ){}2,3,4,5,6(4)已知函数()π()sin (0,0,)2f x A x A ωϕωϕ=+>><的部分图象如图所示,则ϕ=(A )π6- (B )6π(C )π3- (D )π3(5)已知命题p :复数1iiz +=在复平面内所对应的点位于第四象限;命题q :0x ∃>,cos x x =,则下列命题中为真命题的是(A )()()p q ⌝∧⌝ (B )()p q ⌝∧ (C )()p q ∧⌝ (D )p q ∧(6)若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心率的取值范围是(A )(1,2] (B )[2,)+∞ (C) (D)+∞ (7)某工厂分别生产甲、乙两种产品1箱时所需要的煤、电以及获得的纯利润如下表所示.若生产甲、乙两种产品可使用的煤不超过120吨,电不超过60千度,则可获得的最大纯利润和是(A )60万元 (B )80万元 (C )90万元 (D )100万元(8)如图放置的边长为1的正△PMN 沿边长为3的正方形ABCD 的各边内侧逆时针方向滚动.当△PMN 沿正方形各边滚动一周后,回到初始位 置时,点P 的轨迹长度是 (A )83π (B )163π(C )4π (D )5π第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)已知平面向量a ,b 满足1=a ,2=b ,a 与b 的夹角为60︒,则2+=a b ____. (10)5(12)x -的展开式中3x 项的系数为___.(用数字表示)(11)如图,AB 为圆O 的直径,2AB =,过圆O 上一点M 作圆O 的切线,交AB 的延BA长线于点C ,过点M 作MD AB ⊥于点D ,若D 是OB 中点,则AC BC ⋅=_____. (12)由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积是 .(13)已知数列{}n a 的前n 项和为n S ,且满足24()n n S a n *=-∈N ,则n a = ;数列2{log }n a 的前n 项和为 .(14)若存在正实数M ,对于任意(1,)x ∈+∞,都有()f x M ≤,则称函数()f x 在(1,)+∞上是有界函数.下列函数 ①1()1f x x =-; ②2()1x f x x =+; ③ln ()x f x x=; ④()sin f x x x =, 其中“在(1,)+∞上是有界函数”的序号为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3A 2π=,3b =,△ABC的面积为4. (Ⅰ)求边a 的长; (Ⅱ)求cos 2B 的值.A (第11题图)22俯视图侧视图正视图(第12题图)(16)(本小题满分13分)某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参 加社区服务时间不少于90小时的概率; (Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望E ξ.(17)(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为PA ,BD 中点,2PA PD AD ===.(Ⅰ)求证:EF ∥平面PBC ; (Ⅱ)求二面角E DF A --的余弦值; (Ⅲ)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.(18)(本小题满分13分)已知函数21()e 1x f x ax +=-+,a ∈R .(Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线与直线e 10x y ++=垂直,求a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)设32e a <,当[0,1]x ∈时,都有()f x ≥1成立,求实数a 的取值范围.服务时间/小时FABCDP E(19)(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k =+∈R ,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.(20)(本小题满分13分)已知1x ,2x 是函数2()f x x mx t =++的两个零点,其中常数m ,t ∈Z ,设120()nn r rn r T x x n -*==∈∑N .(Ⅰ)用m ,t 表示1T ,2T ; (Ⅱ)求证:543T mT tT =--; (Ⅲ)求证:对任意的,n n T *∈∈N Z .北京市朝阳区高三年级第二次综合练习数学学科测试(理工类)2014.5二、填空题(满分30分)三、解答题(满分80分) 15.(本小题满分13分)解:(Ⅰ)由1sin 2ABC S bc A ∆=得,13sin 23ABC S c ∆2π=⨯⨯=. 所以5c =.由2222cos a b c bc A =+-得,22235235cos493a 2π=+-⨯⨯⨯=, 所以7a =. ……………7分(Ⅱ)由sin sin a bA B=3sin B =,所以sin B =所以271cos 212sin 98B B =-=. ……………13分 16.(本小题满分13分) 解:(Ⅰ)根据题意,参加社区服务时间在时间段[)90,95小时的学生人数为2000.060560⨯⨯=(人), 参加社区服务时间在时间段[]95,100小时的学生人数为2000.020520⨯⨯=(人). 所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. 所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率估计为6020802.2002005P +=== ……………5分(Ⅱ)由(Ⅰ)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为2.5由已知得,随机变量ξ的可能取值为0,1,2,3.所以00332327(0)()()55125P C ξ==⋅=; 11232354(1)()()55125P C ξ==⋅=;22132336(2)()()55125P C ξ==⋅=;3303238(3)()()55125P C ξ==⋅=.随机变量ξ的分布列为因为 ξ~2(3)5B ,,所以355E ξ=⨯=. ……………13分 17.(本小题满分14分)证明:(Ⅰ)如图,连结AC .因为底面ABCD 是正方形, 所以AC 与BD 互相平分. 又因为F 是BD 中点, 所以F 是AC 中点.在△PAC 中,E 是PA 中点,F 是AC 中点,所以EF ∥PC .又因为EF ⊄平面PBC ,PC ⊂平面PBC ,所以EF ∥平面PBC . ……………4分 (Ⅱ)取AD 中点O .在△PAD 中,因为PA PD =, 所以PO AD ⊥.因为面PAD ⊥底面ABCD , 且面PAD面=ABCD AD ,E P DCBAF所以PO ⊥面ABCD .因为OF ⊂平面ABCD 所以PO OF ⊥. 又因为F 是AC 中点,所以OF AD ⊥.如图,以O 为原点,,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系.因为2PA PD AD ===,所以OP =,则(0,0,0)O ,(1,0,0)A ,(1,2,0)B ,(1,2,0)C -,(1,0,0)D -,P ,1(,0,)22E ,(0,1,0)F .于是(0,2,0)AB =,3(2DE =,(1,1,0)DF =. 因为OP ⊥面ABCD,所以OP =是平面FAD 的一个法向量. 设平面EFD 的一个法向量是000=(,,)x y z n .因为0,0,DF DE ⎧⋅=⎪⎨⋅=⎪⎩n n所以00000,30,2x y x z +=⎧⎪⎨+=⎪⎩即0000,.y x z =-⎧⎪⎨=⎪⎩ 令01x =则=(1,1,-n .所以cos ,OP OP OP ⋅<>===⋅n n n由图可知,二面角E-DF-A 为锐角,所以二面角E-DF-A …10分 (Ⅲ)假设在棱PC 上存在一点G ,使GF ⊥面EDF .设111(,,)G x y z ,则111=(,1,)FG x y z -. 由(Ⅱ)可知平面EDF 的一个法向量是=(1,1,-n . 因为GF⊥面EDF ,所以=FG λn .于是,111,1,xy z λλ=-=-=,即111,1,x y z λλ==-=. 又因为点G 在棱PC 上,所以GC 与PC 共线.因为(1,2,PC =-,111(+1,2,)CG x y z =-, 所以111212x y +--==.所以1112λλ+---==,无解. 故在棱PC 上不存在一点G ,使GF ⊥面EDF 成立. ……………14分 18.(本小题满分13分)(Ⅰ)由已知得21()2e x f x a +'=-.因为曲线()f x 在点(0,(0))f 处的切线与直线e 10x y ++=垂直, 所以(0)e f '=.所以(0)2e e f a '=-=.所以e a =. ……………3分 (Ⅱ)函数()f x 的定义域是(),-∞+∞,21()2e x f x a +'=-.(1)当0a ≤时,()0f x '>成立,所以)(x f 的单调增区间为(),-∞+∞. (2)当0a >时,令()0f x '>,得11ln 222a x >-,所以()f x 的单调增区间是11(ln ,)222a -+∞; 令()0f x '<,得11ln 222a x <-,所以()f x 的单调减区间是11(,ln )222a -∞-.综上所述,当0a ≤时,)(x f 的单调增区间为(),-∞+∞;当0a >时,()f x 的单调增区间是11(ln,)222a -+∞, ()f x 的单调减区间是11(,ln )222a -∞-. ……………8分(Ⅲ)当0x =时,(0)e 11f =+≥成立,a ∈R . “当(0,1]x ∈时,21()e 11x f x ax +=-+≥恒成立”等价于“当(0,1]x ∈时,21e x a x+≤恒成立.”设21e ()x g x x+=,只要“当(0,1]x ∈时,min ()a g x ≤成立.”212(21)e ()x x g x x +-'=. 令()0g x '<得,12x <且0x ≠,又因为(0,1]x ∈,所以函数()g x 在1(0, )2上为减函数;令()0g x '>得,12x >,又因为(0,1]x ∈,所以函数()g x 在1(,1]2上为增函数.所以函数()g x 在12x =处取得最小值,且21()2e 2g =.所以22e a ≤. 又因为a 32e <, 所以实数a 的取值范围22(,e ]-∞. ……………13分(Ⅲ)另解:(1)当0a ≤时,由(Ⅱ)可知, ()f x 在[0,1]上单调递增,所以()(0)e 1f x f ≥=+.所以当0a ≤时,有()1f x ≥成立.(2)当02e a <≤时, 可得11ln 0222a -≤. 由(Ⅱ)可知当0a >时,()f x 的单调增区间是11(ln,)222a -+∞, 所以()f x 在[0,1]上单调递增,又()(0)e 1f x f ≥=+,所以总有()f x ≥1成立. (3)当32e 2e a <<时,可得110ln 1222a <-<. 由(Ⅱ)可知,函数()f x 在11[0,ln )222a -上为减函数,在11(ln ,1]222a -为增函数,所以函数()f x 在11ln 222a x =-处取最小值,且ln 211(ln )e ln 1ln 122222222a a a a a a af a -=-++=-+.当[0,1]x ∈时,要使()f x ≥1成立,只需ln 1122a aa -+≥, 解得22e a ≤.所以22e 2e a <≤. 综上所述,实数a 的取值范围22(,e ]-∞.19.(本小题满分14分)(Ⅰ)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c .依题意12c e a ==,由右焦点到右顶点的距离为1,得1a c -=. 解得1c =,2a =. 所以2223b a c =-=. 所以椭圆C 的标准方程是22143x y +=. ……………4分 (Ⅱ)解:存在直线l ,使得22OA OB OA OB +=-成立.理由如下:由22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84120k x kmx m +++-=. 222(8)4(34)(412)0km k m ∆=-+->,化简得2234k m +>. 设1122(,),(,)A x y B x y ,则122834km x x k +=-+,212241234m x x k -=+. 若22OA OB OA OB +=-成立,即2222OA OB OA OB +=-,等价于0OA OB ⋅=.所以12120x x y y +=. 1212()()0x x kx m kx m +++=,221212(1)()0k x x km x x m ++++=,222224128(1)03434m km k km m k k -+⋅-⋅+=++, 化简得,2271212m k =+. 将227112k m =-代入2234k m +>中,22734(1)12m m +->, 解得,234m >. 又由227121212m k =+≥,2127m ≥,从而2127m ≥,m ≥m≤ 所以实数m 的取值范围是2(,[21,)7-∞+∞. ……………14分20.(本小题满分13分)解:(Ⅰ)由12x x m +=-,12x x t =.因为120n n r r n r T xx -==∑,所以11112120r r r T x x x x m -===+=-∑. 222222************()r r r T x x x x x x x x x x m t -===++=+-=-∑. …………3分 (Ⅱ)由120k k r r k r T x x -==∑,得 545455512112214200r r r r r r T xx x x x x x T x --====+=+∑∑. 即55142T xT x =+,同理,44132T xT x =+.所以5241232x T x x T x =+.所以5142412312412343()()T x T x T x x T x x T x x T mT tT =+-=+-=--.……………8分 (Ⅲ)用数学归纳法证明.(1)当1,2n =时,由(Ⅰ)问知k T 是整数,结论成立. (2)假设当1,n k =-n k =(2k ≥)时结论成立,即1,k k T T -都是整数. 由120k k r r k r T xx -==∑,得111112112200k kk r r k r r k k r r T x x x x x x ++--++====+∑∑. 即1112k k k T x T x ++=+.所以112k k k T xT x -=+,121212k k k x T x x T x +-=+.所以11212112121()()k k k k k k T x T x T x x T x x T x x T +--=+-=+-. 即11k k k T mT tT +-=--.由1,k k T T -都是整数,且m ,t ∈Z ,所以1k T +也是整数. 即1n k =+时,结论也成立.由(1)(2)可知,对于一切n *∈N ,120n n r r r x x -=∑的值都是整数. ………13分。

朝阳区2014年初三数学试卷及答案

朝阳区2014年初三数学试卷及答案

东城区2013—2014学年第一学期期末统一测试初三数学 2014.1学校 班级 姓名 考号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.以下是回收、绿色包装、节水、低碳四个标志,其中为中心对称图形的是2.用配方法解方程x - 2x - 1=0时,配方后得到的方程为 A .2(1)0x +=B .2(1)0x -=C .2(1)2x +=D .2(1)2x -=3.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列是必然事件的是 A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球4.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径, CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于A .116°B .64°C .58°D .32°5.如图,电线杆上的路灯距离地面8米,身高1.6米的小明 (AB )站在距离电线杆的底部(点O )20米的A 处, 则小 明的影子AM 长为 A .4米 B .5米C .6米D .8米6.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论中正 确的是 A .a >0B .当 -1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大 7.如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形BEF 的半 径为2,圆心角为60°,则图中阴影部分的面积是 A .2π3B .2π3C .πD .π8.如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动.设运动时间为t (s),△OEF 的面积为S (cm 2),则S (cm 2)与t (s)的函数关系可用图象表示为A B C D二、填空题(本题共16分,每小题4分)9.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是 .10.请写出一个开口向上,并且与y 轴交于点(0,-1)的抛物线的解析式__________.11.如图,在Rt △OAB 中,∠B =90°∠AOB =30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB = °. 12.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P为半径的圆与△ABC 的边相切,请写出t 可取的所有值 .DF三、解答题(本题共30分,每小题5分) 13.解方程:21090x x -+=.14.如图,△ABC 和△A B C '''是两个完全重合的直角三角板,30B B '∠=∠=︒,斜边长为10cm .三角形板A B C '''绕直角顶点C顺时针旋转,当点A '落在AB 边上时,求C A ''旋转所构成的扇形的弧长 AA '.15.如图,在平行四边形ABCD 中,E 为CD 上一点,连结AE ,BD ,且AE ,BD 交于点F ,S△DEF ∶S △ABF = 4∶25,求DE ∶EC 的值.16.二次函数2y ax bx c =++的图象与x 轴交于点A (-1, 0),与y 轴交于点C (0,-5),且经过点D (3,-8).(1)求此二次函数的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.17.画图:(1)如右图,已知△ABC 和点O .将△ABC 绕点O 顺时针旋转90°得到△111A B C ,在网格中画出△111A B C ;(2)如图,AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无刻度...的直尺(只能画线)按要求画图.(i )在图1中,画出△ABC 的三条高的交点; (ii )在图2中,画出△ABC 中AB 边上的高.18.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,求EC 的长.四、解答题(本题共20分,每小题5分)19.如图,有四张背面相同的纸牌A ,B ,C ,D ,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张. 请用画树状图或列表的方法求摸出的两张牌均为黑色的概率.20.在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.21.在Rt △ACB 中,∠C =90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC ,AB 分别交于点D ,E ,且∠CBD =∠A .(1)判断直线BD 与⊙O 的位置关系,并证明你的结论; (2)若AD ∶AO =8∶5,BC =3,求BD 的长.图①图②22.阅读理解:如图1,若在四边形ABCD 的边AB 上任取一点E (点E 与点A ,B 不重合),分别连结ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,若∠A =∠B =∠DEC =55°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2,在矩形ABCD 中,AB =5,BC =2,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个强相似点E ;拓展探究:(3)如图3,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处.若点E 恰好是四边形ABCM 的边AB 上的一个强相似点,请直接写出BCAB的值.图1 图2 图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知二次函数2()2()y a x m a x m =---(a , m 为常数,且a ≠0). (1)求证:不论a 与m 为何值,该函数的图象与x 轴总有两个公共点;(2)设该函数的图象的顶点为C ,与x 轴交于A ,B 两点,当△ABC 是等腰直角三角形时,求a 的值.24.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中90,C ∠=︒30B E ∠=∠=︒.(1)操作发现如图2,固定△ABC ,使△DEC 绕点C 顺时针旋转.当点D 恰好落在AB 边上时,填空:图1 图2 ① 线段DE 与AC 的位置关系是 ;② 设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是 ,证明你的结论; (2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中1S 与2S 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想.图325.在平面直角坐标系xOy 中,二次函数2(1)4y x m x m =-+-+的图象与x 轴负半轴交于点A ,与y 轴交于点B (0,4),已知点E (0,1). (1)求m 的值及点A 的坐标; (2)如图,将△AEO 沿x 轴向右平移得到△A ′E ′O ′,连结A ′B 、BE ′.①当点E ′落在该二次函数的图象上时,求AA ′的长;②设AA ′=n ,其中0<n <2,试用含n 的式子表示A ′B 2+BE ′2,并求出使A ′B 2+BE ′2取得最小值时点E ′的坐标;③当A ′B +BE ′取得最小值时,求点E ′的坐标.东城区2013-2014学年第一学期期末统一测试 初三数学参考答案及评分标准 2014.1一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分) 13.解方程:21090x x -+=.解:变形为 2109x x -=-. ………………..1分配方,21025925x x -+=-+. …………..……..2分 整理,得2(5)16x -=. ………………..3分 解得,121,9x x ==. ………………..5分14.解:由题意可求,∠AC A ′=60°,CA=5. ………………..2分所以60π55π1803cm AA ⨯'==. ………………..5分15.解:∵ 四边形ABCD 是平行四边形, ∴ AB ∥CD .∴ △DEF ∽△BAF . ………………..1分 ∴ 24=25DEF ABF S DE S AB =⎛⎫⎪⎝⎭△△. ………………..2分 ∴2=5DEAB . ………………..3分又∵ AB CD =, ………………..4分∴ DE ∶EC =2∶3 . ………………..5分16.解:(1)由题意,有0,5,938.a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩解得⎪⎩⎪⎨⎧-=-==.5,4,1c b a ∴此二次函数的解析式为542--=x x y . ………………..2分 ∴9)2(2--=x y ,顶点坐标为(2,-9). ………………..4分(2)先向左平移2个单位,再向上平移9个单位,得到的抛物线的解析式为y = x2.………………..5分17.(1)………………..3分(2)(i)如图1,点P就是所求作的点;(ii)如图2,CD为AB边上的高.图1 图2 ………………..5分18.解:∵OD⊥AB,∴AC=BC12AB=.………………..1分设AO = x.在Rt△ACO中,222AO AC OC=+.∴2224(2)x x=+-.解得5x=.………………..2分∴AE=10,OC=3.………………..3分连结BE.∵AE是直径,∴∠ABE=90°.由OC是△ABE的中位线可求26BE OC==.………………..4分在Rt△CBE中,222CE BC BE=+.∴CE===………………..5分四、解答题(本题共20分,每小题5分)20.解:设金色纸边的宽为x 分米 . ………………..1分根据题意,得 (2x +6)(2x +8)=80.………………..3分解得:x 1=1,x 2=-8(不合题意,舍去). ………………..4分 答:金色纸边的宽为1分米.………………..5分21.解:(1)直线BD 与⊙O 的位置关系是相切.证明:连结OD ,DE . ∵∠C =90°,∴∠CBD +∠CDB =90°. ∵∠A =∠CBD , ∴∠A +∠CDB =90°. ∵OD = OA , ∴∠A =∠ADO . ∴∠ADO + ∠CDB =90°. ∴∠ODB = 180° - 90°=90°. ∴OD ⊥BD . ∵OD 为半径,∴BD 是⊙O 切线. ………………..2分 (2)∵AD : AO =8 : 5,∴AD AE =810. ∴由勾股定理得AD : DE : AE = 8 : 6 : 10.∵∠C =90°,∠CBD =∠A . ∴△BCD ∽△ADE .∴DC : BC : BD = DE : AD : AE =6 : 8 : 10. ∵BC =3,∴BD =15. ………………..5分………………..2分 图1 图2 )32BC AB=. ………….. 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)证明:2()2()y a x m a x m =---22(22)2.ax am a x am am =-+++ ……………………………..1分22=(22)4(2)a am a a am am ≠∆++-当0时, 24.a = …………………………..2分∵0,a ≠∴240.a >∴不论a 与m 为何值,该函数的图象与x 轴总有两个公共点.…………..3分 (2)2()2()y a x m a x m =---2=(1).a x m a --- (1,).C m a ∴+-…………………………4分 当y =0时, 解得x 1 = m ,x 2 = m + 2.∴AB =(m + 2)- m = 2. ………………………………..5分当△ABC 是等腰直角三角形时,可求出AB 边上高等于1.∴ 1a -=.∴ 1a =±. ……………………………………………..7分24.解:(1)①线段DE 与AC 的位置关系是 平行 . …………………..1分 ②S 1与S 2的数量关系是 相等 .证明:如图2,过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知 △ADC 是等边三角形,DE ∥AC ,∴DN =CF , DN =EM .∴CF =EM .∵90,30ACB B ∠=︒∠=︒,∴2AB AC =.又∵AD AC =,∴BD AC =. 图2 ∵112S CF BD = ,212S AC EM = ,∴1S =2S . …………………..3分(2)证明:如图3,作DG ⊥BC 于点G ,AH ⊥CE 交EC 延长线于点H .∵90,180DCE ACB DCG ACE ∠=∠=︒∴∠+∠=︒.又∵180,ACH ACE ACH DCG ∠+∠=︒∴∠=∠.又∵90,CHA CGD AC CD ∠=∠=︒=,∴△AHC ≌△DGC .∴AH =DG .又∵CE =CB , 图3 ∴12S S =. ……………………..7分25.解:(1)由题意可知 44m =,1m =.∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………..2分(2)①∵ 点E (0,1),由题意可知,241x -+=.解得 x =∴ AA ′ ……………………………..3分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20.∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9,∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27.当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1).……………………………..5分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值. 易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==', ∴AA ′=36277⨯=, ∴EE ′=AA ′=67, ∴点E ′的坐标是(67,1). ………………………………………….8分。

北京市各区中考二模数学几何综合题题汇总含答案

北京市各区中考二模数学几何综合题题汇总含答案

EDMBC AEDMBC AMBCAE MBC2014年北京市各城区中考二模数学几何综合题24题汇总1、(2014年门头沟二模)24. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图24-1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图24-2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系请给出证明过程;(3) 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图24-3中补全图形,并直接判断△MED 的形状.(1)MD=ME ……………1分(2)如图,作DF ⊥AB ,EG ⊥AC ,垂足分别为F 、G .因为DF 、EG 分别是等腰直角三角形ABD 和等腰直角三角形 ACE 斜边上的高,所以F 、G 分别是AB 、AC 的中点.又∵M 是BC 的中点,所以MF 、MG 是△ABC 的中位线. ∴12MF AC =,12MG AB =,MF 12EG AC =12DF AB =图1,在ABC △中,90ACB ∠=°,2BC =,∠A=30°,点E ,F 分别是线段BC ,AC 的中点,连结EF .(1)线段BE 与AF 的位置关系是________, AFBE =________.(2)如图2,当CEF △绕点C 顺时针旋转α时(0180α<<),连结AF ,BE ,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当CEF △绕点C 顺时针旋转α时(0180α<<),延长FC 交AB 于点D ,如果623AD =-α的度数.DEAFAFA图24-1图24-2图24-3图2图1ED C A解:(12分 (2)答:(1)中结论仍然成立.…………………………………3分 证明:∵点E ,F 分别是线段BC ,AC 的中点,∴EC=12BC ,FC=12AC ∴12EC FC BC AC == ∵BCE ACF α∠=∠= BEC ∴∆∽AFC ∆13tan 30AF AC BE BC ∴===4分12∠=∠ , 延长BE 交AC 于点O ,交AF 于点M∵∠BOC=∠AOM ,∠1=∠2 ∴∠BCO=∠AMO=90°∴BE ⊥AF …………………………………………………5分 (3)∵∠ACB=90°,BC=2,∠A=30° ∴AB=4,∠B=60° 过点D作DH ⊥BC 于H∴DB=4(62--=∴1BH =,3DH =又∵21)3CH =-= ∴CH=BH ………………………………………………………6分∴∠HCD=45°∴∠DCA=45°18045135α∴=-=……………………………………7分 3、(2014年平谷二模)24.(1)如图1,在四边形ABCD 中,∠B=∠C=90°,E 为BC 上一点,且CE=AB ,BE=CD ,连结AE 、DE 、AD ,则△ADE 的形状是_________________________.(2)如图2,在90ABC A ∆∠=︒中,,D 、E 分别为AB 、AC 上的点,连结BE 、CD ,两线交于点P . ①当BD=AC ,CE=AD 时,在图中补全图形,猜想BPD ∠的度数并给予证明. ②当BD CEAC AD==时, BPD ∠的度数____________________.(1)等腰直角三角形 ----------------------------------------------------1分(2) 45°. ------------------------------------------------------------2分DH F EC BAαPFEAC图1F E DC BA 证明:过B 点作FB ⊥AB,且FB=AD. ∴90FBD A ∠=∠=︒,∵BD=AC ,∴△FBD ≌△DAC.∴∠FDB=∠DCA ,ED=DC∵∠DCA+∠CDA=90︒,∴∠FDB +∠CDA=90︒, ∴∠CDF=90︒,∴∠FCD=∠CFD =45︒. ∵AD=CE ,∴BF=CE∵90FBD A ∠=∠=︒,∴180FBD A ∠+∠=︒. ∴BF ∥EC.∴四边形BECF 是平行四边形. ∴BE ∥FC.∴45BPD FCD ∠=∠=︒.-------------------------------------------------6分 (3)60︒. --------------------------------------------7分4、(2014年顺义二模) 24.在△ABC 中, A B AC ,A 0,将线段 B C 绕点 B 逆时针旋转 60得到线段 B D ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上.(1)如图 1,直接写出 A BD 和CFE 的度数; (2)在图1中证明: E CF ; (3)如图2,连接 C E ,判断△CEF 的形状并加以证明.(1)ABD= 15 °,CFE= 45 °.……………………………………… 2分(2)证明:连结CD 、DF .∵线段 B C 绕点 B 逆时针旋转 60得到线段 B D ,∴BD BC ,CBD 0. ∴△BCD 是等边三角形. ∴CD BD .∵线段BD 平移到EF ,∴EF ∥BD ,EF BD .∴四边形BDFE 是平行四边形,EF CD .……… 3分 ∵AB AC ,A 0, ∴ABC ACB .∴ABD ABCCBDACD . ∴DFE ABD ,AEF ABD .∴AEF ACD .………………………………………………… 4分 ∵CFE A+AEF ,∴CFD CFEDFE .∴ACFD .…………………………………………………… 5分 ∴△AEF ≌△FCD (AAS ).图2图1A DEFF E DA图2∴E CF . …………………………………………………………… 6分(3)解:△CEF 是等腰直角三角形.证明:过点E 作EG ⊥CF 于G ,∵CFE ,∴FEG . ∴EG FG . ∵A 0,AGE ,∴12EG AE =.∵E CF ,∴12EG CF =. ∴12FG CF =. ∴G 为CF 的中点.∴EG 为CF 的垂直平分线. ∴EF EC .∴CEF FEG=9.∴△CEF 是等腰直角三角形.………………………………………… 8分5、(2014年石景山二模)24.将△ABC 绕点A 顺时针旋转α得到△ADE ,DE 的延长线与BC 相交于点F ,连接AF .(1)如图1,若BAC ∠=α=︒60,BF DF 2=,请直接写出AF 与BF 的数量 关系;(2)如图2,若BAC ∠<α=︒60,BF DF 3=,猜想线段AF 与BF 的数量关 系,并证明你的猜想;(3)如图3,若BAC ∠<α,mBF DF =(m 为常数),请直接写出BFAF的值 (用含α、m 的式子表示). 解:解:( (2)解:猜想:BF AF 2=.证明:在DF 上截取BF DG =,连接AG (如图). 由旋转得AB AD =, ADG ∠=ABF ∠.∴△ADG ≌△ABF .∴AF AG =,DAG ∠=BAF ∠.∴ GAF GAB BAF ∠=∠+∠∴60GAB DAG DAB =∠+∠=∠=︒.G ABCDEFDAG∴△GAF 是等边三角形. 又∵BF DF 3=.∴BF BF DF DG DF GF AF 2=-=-==.…5分 (3)BFAF 2sin21α-=m . ……………7分6、(2014年海淀二模)24.在ABC △中,90ABC ∠=,D 为平面内一动点,AD a =,AC b =,其中a , b 为常数,且 a b <. 将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E.连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示);(3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图解:(1)…………………………………………………2分(2)连接BF.∵将ABD △沿射线BC 方向平移,得到FCE △, ∴AD ∥EF, AD=EF ;AB ∥FC, AB=FC. ∵∠ABC=90°,∴四边形ABCF 为矩形.∴AC=BF. ……………………………………3分 ∵AD BE ⊥,∴EF BE ⊥. …………………………………4分 ∵AD a =,AC b =, ∴EF a =,BF b =.∴BE . ………………………………………………………………5分 (3)180α︒-; α . ……………………………………………………………7分7、(2014年西城二模)24.在△ABC ,∠BAC 为锐角,AB>AC , AD 平分∠BAC 交BC 于点D .(1)如图1,若△ABC 是等腰直角三角形,直接写出线段AC ,CD ,AB 之间的数量关系; (2)BC 的垂直平分线交AD 延长线于点E ,交BC 于点F .①如图2,若∠ABE=60°,判断AC ,CE ,AB 之间有怎样的数量关系并加以证明;②如图3,若AC AB +=,求∠BAC的度数.解:(1)AB=AC+CD ; ························ 1分 (2)①AB=AC+CE ; ························ 2分AB CAB证明:在线段AB 上截取AH=AC ,连接EH . ∵AD 平分∠BAC ∴12∠=∠. 又∵AE=AE ,∴△ACE ≌△AHE .∴CE=HE . ························ 3分 EF 垂直平分BC ,∴CE=BE . ························· 4分 又∠ABE=60°,∴△EHB 是等边三角形. ∴BH=HE .∴AB=AH+HB=AC+CE . ····················· 5分 ②在线段AB 上截取AH=AC ,连接EH ,作EM ⊥AB 于点M . 易证△ACE ≌△AHE , ∴CE=HE .∴△EHB 是等腰三角形. ∴HM=BM . ∴AC+AB=AH+AB=AM-HM+AM+MB =2AM .∵3AC AB AE +=, ∴3AM AE =. 在Rt △AEM 中,3cos AM EAM AE ∠==, ∴∠EAB=30°.∴∠CAB=2∠EAB=60°. ··················· 7分8、(2014年通州二模)23.已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G .D M HFECAB(1)如图l ,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF=12∠BAF ,AF =23AD ,请你判断线段FM 和FN 之间的数量关系,并证明你的判断是正确的.证明:(1)如图1,连接FE 、FC ∵点F 在线段EC 的垂直平分线上 ∴FE=FC∴∠FEC=∠FCE∵△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ) ∴AB=CB ,∠ABD=∠CBD ∵在△ABF 与△CBF 中AB =CB∠ABD =∠CBD BF =BF ∴△ABF ≌△CBF (SAS ) ∴∠BAF=∠FCE ,FA=FC ∴FE=FA ,∠FEC=∠BAF ∴∠EAF=∠AEF∵∠FEC +∠BEF=180° ∴∠BAF+∠BEF=180°∵∠BAF+∠BEF+∠AFE+∠ABE=360°∴∠AFE+∠ABE=∠AFE+∠ABD+∠CBD =180° 又∵∠AFE+∠EAF+∠AEF=180° ∴∠EAF+∠AEF=∠ABD+∠CBD ∵∠ABD =∠CBD, ∠EAF=∠AEF∴∠EAF=∠ABD………………………………..(3分) (2)FM=72FN 证明: 由(1)可知∠EAF=∠ABD又∵∠AFB=∠GFA∴△AFG ∽△BFA∴∠AGF=∠BAF 又∵∠MBF=12∠BAF . GFCBDENG FDBEM图1图2G FCBDEDBAEQP DC BA∴∠MBF=12∠AGF又∵∠AGF=∠MBG+∠BMG∴∠MBG=∠BMG∴BG=MG∵AB=AD∴∠ADB=∠ABD=∠EAF 又∵∠FGA=∠AGD∴△AGF∽△DGAGF AG AFAG GD AD∴==∵AF=23AD23GF AGAG GD∴==设GF=2a AG=3a.∴GD=92a∴FD=52a∵∠CBD=∠ABD ∠ABD=∠ADB ∴∠CBD=∠ADB∴BE BG EGGD AG=23EG AGBG GD∴==54252===aaFDGFQEGQQEGQ54=4989k89k359k72MF MQFN QE∴==72(6分)9、(2014年东城二模)24.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE ⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化如果不变,求出线段ED的长;如果变化请说明理由;(3)在整个运动过程中,设AP为x,BD为y,求y关于x的函数关系式,并求出当△BDQ为等腰三角形时BD的值.FEQP DCBA解:(1)∵ ∠ACB=90°,AC=BC=4,设AP 为x , ∴PC=4-x ,CQ=4+x. ∵∠BQD=30°, ∴3CQ PC =. ∴43(4)x x +=-.解得843x =-.…………2分(2)当点P ,Q 运动时,线段DE 的长度不会改变.理由如下:作QF⊥AB,交直线AB 的延长线于点F , 又∵PE⊥AB 于E , ∴∠DFQ=∠AEP=90°,∵点P ,Q 做匀速运动且速度相同, ∴AP=BQ .∵△ABC 是等腰直角三角形, ∴可证 PE=QF=AE=BF. ∵∠PDE=∠QDF, ∴△PDE≌△QDF . ∴DE =DF. ∴DE=AB. 又∵AC =BC=4, ∴42AB =∴22DE =∴当点P ,Q 运动时,线段DE 的长度不会改变.…………5分 (3)∵AP =x ,∴22AE x =. ∵AB AE DE BD =++, ∵24222x y =+.即 222y x =-+(0<x <4). 当△BDQ 为等腰三角形时,x=y . ∴424x =-.…………7分 即BD 的值为424-.10、(2014年朝阳二模)24. 已知∠ABC=90°,D 是直线AB 上的点,AD=BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF=BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明; (2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD=45°,求证BD=CE .解:(1)△CDF 是等腰直角三角形 .………………1分 证明:∵∠ABC=90°,AF⊥AB, ∴∠FAD=∠DBC . ∵AD=BC,AF=BD ,∴△FAD≌△DBC .∴FD=DC .…………………………………………2分 ∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°.即∠CDF =90°. ……………………………………3分 ∴△CDF 是等腰直角三角形.(2)过点A 作AF⊥AB,并截取AF=BD ,连接DF 、CF .…………………………4分 ∵∠ABC =90°,AF⊥AB, ∴∠FAD=∠DBC .P EC 图2 C A B 图1 312CB∵AD=BC,AF=BD ,∴△FAD≌△DBC . ∴FD=DC ,∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF=90°.∴△CDF 是等腰直角三角形.………………………………………………………5分 ∴∠FCD=∠APD=45°. ∴FC∥AE.∵∠ABC =90°,AF⊥AB, ∴AF∥CE.∴四边形AFCE 是平行四边形. …………………………………………………6分 ∴AF=CE.∴BD=CE.……………………………………………………………………………7分11、(2014年密云二模)24.已知等腰Rt ABC ∆和等腰Rt AED ∆中,∠ACB=∠AED=90°,且AD=AC (1)发现:如(图1),当点E 在AB 上且点C 和点D 重合时,若点M 、N 分别是DB 、EC 的中点,则MN 与EC 的位置关系是 ,MN 与EC 的数量关系是(2)探究:若把(1)小题中的△AED 绕点A 旋转一定角度,如(图2)所示,连接BD 和EC,并连接DB 、EC 的中点M 、N,则MN 与EC 的位置关系和数量关系仍然能成立吗若成立,以顺时针旋转45°得到的图形(图3)为例给予证明数量关系成立,若不成立,请说明理由;请以逆时针旋转45°得到的图形(图4)为例给予证明位置关系成立,(1)1,2MN EC MN EC ⊥=.------------1分(2)连接EF并延长交BC 于F , ∵∠AED=∠ACB=90°(图2) (图1) (图3) A (图4)∴DE ∥BC∴∠DEM=∠AFM ,∠EDM=∠MBF 又BM=MD ∴△EDM ≌△FBM ∴BF=DE=AE,EM=FM∴1111()()2222MN FC BC BF AC AE EC ==-=-=--------------4分延长ED 到F ,连接AF 、MF ,则AF 为矩形ACFE 对角线,所以比经过EC 的中点N 且AN=NF=EN=NC. 在Rt △BDF 中,M 是BD 的中点,∠B=45° ∴FD=FB∴FM ⊥AB , ∴MN=NA=NF=NC∴点A 、C 、F 、M 都在以N 为圆心的圆上 ∴∠MNC=2∠DAC由四边形MACF 中,∠MFC=135° ∠FMA=∠ACB=90° ∴∠DAC=45°∴∠MNC=90°即MN ⊥FC-------------------7分12、(2014年延庆二模)13、(2014年房山二模) 24. 边长为2的正方形ABCD 的两顶点A 、C 分别在正方形EFGH 的两边DE 、DG 上(如图1),现将正方形ABCD 绕D 点顺时针旋转,当A 点第一次落在DF 上时停止旋转,旋转过程中,AB 边交DF 于点M ,BC 边交DG 于点N . (1)求边DA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时(如图2),求正方形ABCD 旋转的度数;(3)如图3,设MBN ∆的周长为p ,在旋转正方形ABCD 的过程中,p 值是否有变化请证明你的结论. (1)∵A 点第一次落在DF 上时停止旋转, ∴DA 旋转了045.BNMDE∴DA 在旋转过程中所扫过的面积为24523602ππ⨯=......................................2分 (2)∵MN ∥AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒. ∴BMN BNM ∠=∠.∴BM BN =. 又∵BA BC =,∴AM CN =.又∵DA DC =,DAM DCN ∠=∠,∴DAM DCN ∆≅∆. ∴ADM CDN ∠=∠.∴1(90452ADM ∠=︒-︒)=22.5︒. ∴旋转过程中,当MN 和AC 平行时,正方形ABCD 旋转的度数为45︒-22.5︒=22.5︒ (5)分(3)证明:延长BA 交DE 轴于H 点,则045ADE ADM ∠=-∠,000904545CDN ADM ADM ∠=--∠=-∠,∴ADE CDN ∠=∠.又∵DA DC =,01809090DAH DCN ∠=-==∠. ∴DAH DCN ∆≅∆. ....................................................6分∴,DH DN AH CN ==.又∵045MDE MDN ∠=∠=,DM DM =,∴DMH DMN ∆≅∆. ........................................................7分∴MN MH AM AH ==+. ∴MN AM CN =+,∴4p MN BN BM AM CN BN BM AB BC =++=+++=+=.∴在旋转正方形ABCD 的过程中,p 值无变化............................8分14、(2014年昌平二模)24.【探究】如图1,在△ABC 中, D 是AB 边的中点,AE ⊥BC 于点E ,BF ⊥AC于点F ,AE ,BF 相交于点M ,连接DE ,DF. 则DE ,DF 的数量关系为 .【拓展】如图2,在△ A B C 中 ,C B = C A ,点 D 是AB 边的 中点 ,点M 在 △ A B C 的内部 ,且 ∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF. 求证:DE=DF ;【推广】如图3,若将上面【拓展】中的条件“CB=CA ”变为“CB ≠CA ”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.ADBE CMFAD BECMF MABCDFE图3图2图1【探究】DE=DF. …………………………………………………………………………………1分【拓展】如图2,连接CD. ∵在△ A B C 中 ,C B = C A , ∴∠CAB=∠CBA. ∵∠MBC =∠MAC ,∴∠MAB=∠MBA. …………………………… 2分 ∴AM=BM.∵点 D 是 边 AB 的 中点 ,∴点M 在CD 上. ……………………………………………………………………… 3分 ∴CM 平分∠FCE. ∴∠FCD=∠ECD.∵ME ⊥BC 于E ,MF ⊥AC 于F , ∴MF=ME. 又∵CM=CM, ∴△CMF ≌△CME. ∴CF=CE. ∵CD=CD ,∴△CFD ≌△CED.∴DE=DF. ……………………………………………………………………………… 4分图2F MCE BD A【推广】 DE=DF.如图3,作AM 的中点G,BM 的中点H. ∵点 D 是 边 AB 的 中点 ,∴1//,.2DG BM DG BM =同理可得:1//,.2DH AM DH AM =∵ME ⊥BC 于E ,H 是BM 的中点, ∴在Rt △BEM 中, 1.2HE BM BH == ∴DG=HE. ………………………………………………………………………………… 5分 同理可得:.DH FG = ∵DG ∴∠DGM=∠DH M.∵∠MGF=2∠MAC, ∠MHE=2∠MBC, 又∵∠MBC =∠MAC , ∴∠MGF=∠MHE.∴∠DGM+∠MGF =∠DHM+∠MHE.∴∠DGF=∠DHE. ……………………………………………………………………… 6分 ∴△DHE ≌△FGD.∴DE=DF. ………………………………………………………………………………… 7分15、(2014年怀柔二模)24.已知△ABC 是等边三角形,E 是AC 边上一点,F 是BC 边延长线上一点,且CF=AE ,连接BE 、EF .(1)如图1,若E 是AC 边的中点,猜想BE 与EF 的数量关系为 .(2)如图2,若E 是线段AC 上的任意一点,其它条件不变,上述线段BE 、EF 的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E 是线段AC 延长线上的任意一点,其它条件不变,上述线段BE 、EF 的数量关系是否发生变化,写出你的猜想并加以证明.解 :(1)猜想BE 与:BE=EF. …………………1分 (2)猜想BE=EF .证明:将线段BE 绕点B 顺时针旋转60°,AB EF 图AB C E F 图2 AB C E F 图3 图3H GF M CE BD A得线段BE ’,连接E ’C 、E ’E ,………………………………2分∴△EB E ’为等边三角形,∴BE=E E ’,又∵△ABC 为等边三角形,∴AB=BC ,∠ABC=∠ACB= 60°,∴∠1=∠2, ∴△ABE ≌△CB E ’(SAS ),………………………………3分∴AE=C E ’, ∠A=∠3=60°,又∵CF=AE , ∴C E ’=CF ,∵∠ACB=60°,∠3=60°,∴∠AC E ’=∠AC F=120°, ∵EC=EC∴△E C E ’≌△ECF (SAS ),………………………………4分 ∴E E ’=EF . ∴BE=EF .………………………………5分 (3)猜想BE=EF .证明:将线段BE 绕点B 顺时针旋转60°,得线段BE ’,连接E ’C 、E ’E ,∴△EB E ’为等边三角形,∴BE=E E ’, 又∵△ABC 为等边三角形,∴AB=BC ,∠ABC=∠ACB= 60°,∴∠ABE=∠CB E ’,∴△ABE ≌△CB E ’(SAS ),∴AE=C E ’, ∠A=∠B C E ’=60°, 又∵CF=AE ,∴C E ’=CF ,∵∠ACB=60°,∠B C E ’=60°,∴∠EC E ’=∠EC F=60°, ∵EC=EC∴△E E ’C ≌△EFC (SAS ),………………………………6分∴E E ’=EF .又∵BE=E E ’,∴BE=EF .………………………………7分16、(2014年大兴二模)25. 已知:E 是线段AC 上一点,AE=AB ,过点E 作直线EF ,在EF 上取一点D ,使得∠EDB=∠EAB ,联结AD.(1)若直线EF 与线段AB 相交于点P ,当∠EAB=60°时,如图1,求证:ED =AD+BD ;(2)若直线EF 与线段AB 相交于点P ,当∠EAB= α(0o ﹤α﹤90o )时,如图2,请你直接写出线段ED 、AD 、BD 之间的数量关系(用含α的式子表示);4321'F ECB A ABCE F E '(3)若直线EF 与线段AB 不相交,当∠EAB=90°时,如图3,请你补全图形,写出线段ED 、AD 、BD 之间的数量关系,并证明你的结论.(1)证明:作∠DAH=∠EAB 交DE 于点H. …………………………1分∴∠DAB=∠HAE.∵∠EAB=∠EDB ,∠APE=∠BPD , ∴∠ABD=∠AEH. ∵又AB=AE ,∴△ABD ≌△AEH. ………………2分 ∴BD=EH ,AD=AH. ∵∠DAH=∠EAB=60°, ∴△ADH 是等边三角形. ∴AD=HD. ∵ED = HD+EH∴ED =AD+BD. …………………………………………………………………3分 (2) BD AD ED +=2sin 2α ……………………5分(3)ED=BD -2AD ……………6分作∠DAH=∠EAB 交DE 于点H. ∴∠DAB=∠HAE. ∵∠EDB=∠EAB=90°,∴∠ABD+∠1=∠AEH+∠2 =90°. ∵∠1=∠2 ∴∠ABD=∠AEH.∵又AB=AE ,∴△ABD≌△AEH. ……………………………………………………7分 ∴BD=EH ,AD=AH. ∵∠DAH=∠EAB=90°, ∴△ADH 是等腰直角三角形.∵ED=EH-HD∴AD BD ED 2-=……………………………………………………8分17、(2014年燕山二模)24.如图1,已知ABC ∆是等腰直角三角形,︒=∠90BAC ,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接 AE ,BG .(1)试猜想线段BG 和AE 的数量关系是 ; (2)将正方形DEFG 绕点D 逆时针方向旋转)3600(︒≤<︒αα, ①判断(1)中的结论是否仍然成立请利用图2证明你的结论; ②若4==DE BC ,当AE 取最大值时,求AF 的值.图1 图2F GE DC A B B AC D EGF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区九年级综合练习(二)数 学 试 卷 2014.6一、选择题(本题共32分,每小题4分)1.2014北京车展约850 000的客流量再度刷新历史纪录,将850 000用科学记数法表示应为A .85×106B .8.5×106C .85×104D .8.5×1052.23-的倒数是( )A .32-B .23-C .32 D .233.一个多边形的内角和是外角和的3倍,则这个多边形的边数为A .6B .7C .8D .9 4.数据1,3,3,1,7,3 的平均数和方差分别为 A .2和4B .2和16C .3和4D .3和245.若关于x 的一元二次方程mx 2+3x +m 2-2m =0有一个根为0,则m 的值等于 A .1 B .2 C .0或2 D .0 6.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连结AC 、BC ,在AC 上取点E ,使AE =3EC ,作EF ∥AB 交BC 于点F ,量得EF =6 m ,则AB 的长为A .30 mB .24mC .18mD .12m7.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为P 1,摸出的球上的数字小于4的概率记为P 2;摸出的球上的数字为5的概率记为P 3.则P 1、P 2、P 3的大小关系是A .P 1<P 2<P 3B .P 3<P 2<P 1C .P 2<P 1 <P 3D .P 3<P 1<P 2 8.如图,在三角形纸片ABC 中,∠ABC =90°,AB =5,BC =13,过点A 作直线l ∥BC ,折叠三角形纸片ABC ,使点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随着移动,并限定M 、N 分别在AB 、BC 边上(包括端点)移动,若设AP 的长为x ,MN 的长为y ,则下列选项,能表示y 与x 之间的函数关系的大致图象是A B C D二、填空题(本题共16分,每小题4分) 9.若分式41-+x x 值为0,则x 的值为________. 10.请写出一个多边形,使它满足“绕着某一个点旋转180°,旋转后的图形与原来的图形重合”这一条件,这个多边形可以是 .11.如图,菱形ABCD 的周长为16,∠C =120°,E 、F 分别为AB 、AD 的中点.则EF 的长为 .12.把长与宽之比为2的矩形纸片称为标准纸.如果将一张标准纸ABCD进行如下操作:即将纸片对折并沿折痕剪开,则每一次所得到的两个矩形纸片都是标准纸(每一次的折痕如下图中的虚线所示).若宽AB =1,则第2次操作后所得到的其中一个矩形纸片的周长是_________;第3次操作后所得到的其中一个矩形纸片的周长是_________;第30次操作后所得到的其中一个矩形纸片的周长是_________.三、解答题(本题共30分,每小题5分)13.已知:如图,点E 、F 在AC 上,且AE =CF ,AD ∥BC ,AD =CB .求证: DF =BE .14.计算:︒+-+--30tan 220145310.15.解分式方程:xx x -=+--23123 .第一次第二次第三次…16.已知50x y -=,求222232x y x yx xy y x y-+⋅-++的值.17.列方程或方程组解应用题:母亲节来临之际,小红去花店为自己的母亲选购鲜花,在花店中同一种鲜花每支的价格相同.小红如果选择由三支康乃馨和两支百合组成的一束花,则需要花34元;如果选择由两支康乃馨和三支百合组成的一束花,则需要花36元.一支康乃馨和一支百合花的价格分别是多少?18.已知关于x 的一元二次方程3x 2-6x +1-k =0 有实数根,k 为负整数. (1)求k 的值;(2)若此方程有两个整数根,求此方程的根.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,AB =34,∠DAB =90°,∠B =60°,AC ⊥BC .(1)求AC 的长.(2)若AD=2,求CD 的长.20.某校对部分初三学生的体育训练成绩进行了随机抽测,并绘制了如下的统计图:女生篮球障碍运球成绩折线统计图 男生引体向上成绩条形统计图根据以上统计图解答下列问题:(1)所抽测的女生篮球障碍运球成绩的众数是多少?极差是多少?(2)该校所在城市规定“初中毕业升学体育现场考试”中,男生做引体向上满13次,可以获得满分10分;满12次,可以获9.5分;满11次,可以获得9分;满10次,可以获得8.5分;满9次,可以获得8分.①所抽测的男生引体向上得分..的平均数是多少? ②如果该校今年有120名男生在初中毕业升学体育现场考试中报名做引体向上,请你根据本次抽测的数据估计在报名的这些学生中得分不少于9分的学生有多少人?21.如图,AB 是⊙O 的直径, BC 交⊙O 于点D ,E 是BD 的中点,连接AE 交BC 于点F ,∠ACB =2∠EAB .(1)求证:AC 是⊙O 的切线; (2)若2cos 3C =,AC =6,求BF 的长.22.类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P 是斜坐标系xOy 中的任意一点,过点P 分别作两坐标轴的平行线,与x 轴、y 轴交于点M 、N ,如果M 、N 在x 轴、y 轴上分别对应的实数是a 、b ,这时点P 的坐标为(a ,b ).(1)如图2,在斜坐标系xOy 中,画出点A (-2,3);(2)如图3,在斜坐标系xOy 中,已知点B (5,0)、C (0,4),且P (x ,y )是线段CB上的任意一点,则y 与 x 之间的等量关系式为 ;(3)若(2)中的点P 在线段CB 的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,点P (m ,0)为x 轴正半轴上的一点,过点P 做x 轴的垂线,分别交抛物线y =-x 2+2x 和y =-x 2+3x 于点M ,N . (1)当21=m 时, _____MN PM =;(2)如果点P 不在这两条抛物线中的任何一条上.当四条线段OP ,PM ,.PN ,MN 中恰好有三条线段相等时,求m 的值.24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明;(2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD =45°,求证BD =CE .25.如图,在平面直角坐标系中xOy ,二次函数y =ax 2-2ax +3的图象与x 轴分别交于点A 、B ,与y 轴交于点C ,AB =4,动点P 从B 点出发,沿x 轴负方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线BC ,垂足为Q .设P 点移动的时间为t 秒(t >0),△BPQ 与△ABC 重叠部分的面积为S . (1)求这个二次函数的关系式; (2)求S 与t 的函数关系式;(3)将△BPQ 绕点P 逆时针旋转90°,当旋转后的△BPQ 与二次函数的图象有公共点时,求t 的取值范围(直接写出结果).图2图1北京市朝阳区九年级综合练习(二)数学试卷参考答案及评分标准 2014.5一、选择题(本题共32分,每小题4分)1.D 2.A 3.C 4.C 5.B 6.B 7.D 8.C二、填空题(本题共16分,每小题4分)9.-1 10.答案不唯一,如平行四边形 11.2312.1+2,222+,14122+ (第1、2每个空各1分,第3个空2分) 三、解答题(本题共30分,每小题5分) 13. 证明:∵ AE =CF ,∴ AE +EF =CF +EF .即 AF =CE .…………………… 1分 ∵ AD ∥BC ,∴ ∠A =∠C .…………………… 2分 又∵AD =BC ,…………………… 3分 ∴ △ADF ≌△CBE .…………… 4分 ∴ DF =BE .……………………… 5分14. 解:原式1353132………………………………………… 4分 =112. …………………………………………………………………… 5分 15. 解:将方程整理,得331022x x x -++=--. 去分母,得 x -3+3+x -2 = 0. ……………………………………………2分解得 x = 1. ……………………………………………3分经检验 x = 1是原分式方程的解. ………………………………………………4 分∴原分式方程的解为x = 1. …………………………………………………………5 分16. 解:原式=2()()3()x y x y x yx y x y+-+⋅-+ ……………………………………………2 分 =3x yx y+-. …………………………………………………………3 分∵ x -5y =0,∴ x =5y . …………………………………………………………………4分 ∴ 原式=5325y yy y+=-.…………………………………………………………5分17. 解:设一支康乃馨的价格是x 元,一支百合的价格是y 元. …………………1分根据题意,得3234,2336.x y x y ……………………………………………3分解得6,8.x y ……………………………………………………4分 答:一支康乃馨的价格是6元,一支百合的价格是8元.………… …………5分18. 解:(1)根据题意,得Δ≥0.………………………………………………………………………1分即26-)(-4×3(1-k )≥0. 解得 k ≥-2 .………………………………………………………………2分 ∵k 为负整数,∴k =-1,-2.………………………………………………………………3分 (2)当k =-1时,不符合题意,舍去;…………………………………………4分当k =-2时,符合题意,此时方程的根为x 1=x 2=1.……………………5分四、解答题(本题共20分,题每小题5分) 19.解:(1)在Rt△ABC 中,∵AB =34,∠B =60°,∴AC =AB ·sin60°=6. …………………………2分(2)作DE ⊥AC 于点E ,∵∠DAB =90°,∠BAC =30°, ∴∠DAE =60°, ∵AD =2,∴DE =3.…………………………3分 AE=1. ∵AC =6,∴CE =5. ……………………………4分 ∴在Rt△DEC 中,22CE DE CD +=.∴72=CD .………………………5分20.解:(1)14.5, 3.4;………………………………………………………………2分 (2)①818.52949.5610712467⨯+⨯+⨯+⨯+⨯++++=9.4(分);………………………4分② 120×46710220++=(人) …………….…………………………………5分 估计在报名的学生中有102人得分不少于9分.21. (1)证明:如图①,连接AD .∵ E 是BD 的中点,∴DE BE =. ∴ ∠DAE =∠EAB . ∵ ∠C =2∠EAB , ∴∠C =∠BAD . ∵ AB 是⊙O 的直径, ∴ ∠ADB =∠ADC =90°. ∴ ∠C +∠CAD=90°. ∴ ∠BAD +∠CAD =90°. 即 BA ⊥AC .∴ AC 是⊙O 的切线.………………………2分(2)解:如图②,过点F 做FH ⊥AB 于点H .∵ AD ⊥BD ,∠DAE =∠EAB , ∴ FH =FD ,且FH ∥AC . 在Rt△ADC 中,∵ 2cos 3C =,AC =6,∴ CD =4.…………………………………………………3分 同理,在Rt△BAC 中,可求得BC =9. ∴ BD =5.设 DF =x ,则FH =x ,BF =5-x . ∵ FH∥AC, ∴ ∠BFH =∠C . ∴ 2cos 3FH BFH BF ∠==. 即253x x =-.………………………………………………4分 解得x =2.∴ BF =3. …………………………………………………5分图①图②22. 解: (1)如图……………………………………………………1分(2)445y x =-+;……………………………………………………………………………………………………3分(3)当点P 在线段CB 的延长线上时,(2)中结论仍然成立.理由如下:过点P 分别作两坐标轴的平行线,与x 轴、y 轴分别交于点M 、N , 则四边形ONPM 为平行四边形,且PN=x ,PM=-y . ∴ OM =x ,BM =5-x .∵PM ∥OC ,∴ △PMB ∽△COB .…………4分∴PM BMOC OB =, 即545y x --=. ∴445y x =-+.……………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)1;………………………………………………………………………………1分 (2)∵ OP =m ,MN =(-m 2+3m )-(-m 2+2m ) =m ,∴ OP =MN .…………………………………………………………………………2分 ①当0<m <2时,∵PM =-m 2+2m , PN =-m 2+3m .∴若PM= OP=MN ,有-m 2+2m =m ,解得m =0,m =1(舍). ……………3分 若PN= OP=MN ,有-m 2+3m =m ,解得m =0(舍),m =2(舍). ……………4分 ②当2<m <3时,不存在符合条件的m 值. ……………………………………5分 ③当m >3时,∵PM =m 2-2m , PN =m 2-3m .∴若PM= OP=MN ,有m 2-2m =m ,解得m =0(舍),m =3(舍). ……………6分若PN= OP=MN ,有m 2-3m =m ,解得m =0(舍),m =4. …………………7分 综上,当 m =1或m =4,这四条线段中恰有三条线段相等.24. 解:(1)△CDF 是等腰直角三角形 .………………1分 证明:∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC .∴FD =DC .…………………………………………2分 ∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°.即∠CDF =90°. ……………………………………3分 ∴△CDF 是等腰直角三角形.(2)过点A 作AF ⊥AB ,并截取AF =BD ,连接DF 、CF .…………………………4分 ∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC . ∴FD =DC ,∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF =90°.∴△CDF 是等腰直角三角形.………………………………………………………5分 ∴∠FCD =∠APD =45°. ∴FC ∥AE .∵∠ABC =90°,AF ⊥AB , ∴AF ∥CE .∴四边形AFCE 是平行四边形. …………………………………………………6分∴AF =CE .∴BD =CE .……………………………………………………………………………7分25. 解:(1)由y =ax 2-2ax +3可得抛物线的对称轴为x =1.…………………1分∵AB =4,∴A (-1,0),B (3,0). ∴a =-1.∴y =-x 2+2x +3. ………………………………………………………2分(2)由题意可知,BP =t ,∵B (3,0),C (0,3), ∴OB =OC .∴∠PBQ =45°. ∵PQ ⊥BC ,∴PQ =. ① 当0<t ≤4时,S =PBQ S ∆=14t 2.……………………………………………3分 ② 当4<t <6时,设PQ 与AC 交于点D ,作DE ⊥AB 于点E ,则DE =PE .∵tan∠DAE =DE OCAE OA ==3. ∴DE =PE =3AE =32PA .∵PA =t -4,∴DE =34)2t -(.∴23612.4PAD S t t =-+△ ………………4分∵PBQ PAD S S S =-△△,∴216122S t t =-+-. …………………………………………………5分 ③ 当t ≥6时,S =ABC S ∆=6 . ……………………………………………6分综上所述,2?2? 1(0441612(4626(6t t S t t t t ⎧⎪⎪⎪=-+-⎨⎪⎪≥⎪⎩<≤)<<) )(3)229≤t ≤4.…………………………………………………………………8分说明:各解答题其它正确解法请参照给分.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档