合金元素对不锈钢性能的影响
元素含量对奥氏体不锈钢性能的影响

元素含量对奥氏体不锈钢性能的影响奥氏体不锈钢是一种常用的不锈钢材料,其具有优异的耐腐蚀性能和良好的加工性能。
元素含量对奥氏体不锈钢性能的影响十分重要,下面将详细介绍不同元素含量对奥氏体不锈钢性能的影响。
1.镍(Ni):镍对奥氏体不锈钢的影响非常显著。
适量添加镍可以提高奥氏体不锈钢的强度、塑性和耐腐蚀性能。
镍可以稳定奥氏体相并抑制铁素体相的形成,从而提高材料的耐蚀性和力学性能。
高镍含量的奥氏体不锈钢具有良好的耐高温和耐腐蚀性能,适用于化工、航空航天等领域。
2.铬(Cr):铬是不锈钢的主要合金元素,对奥氏体不锈钢的影响也非常显著。
铬可以形成致密的氧化铬层,保护不锈钢材料不受腐蚀。
适量添加铬可以提高奥氏体不锈钢的耐蚀性能,特别是在酸性环境和氯化物环境中的耐蚀性。
此外,铬还能提高奥氏体不锈钢的强度和硬度,延长材料的使用寿命。
3.碳(C):碳是奥氏体不锈钢的强化元素,适量的碳含量可以提高材料的强度和硬度。
但过高的碳含量会降低耐蚀性能,容易发生晶间腐蚀。
因此在奥氏体不锈钢中,碳含量一般低于0.08%,以保证良好的耐蚀性能。
4.锰(Mn):锰是奥氏体不锈钢的合金元素之一,可以提高材料的强度和硬度。
适量的锰添加也可以改善耐蚀性能,但过高的锰含量会降低材料的塑性。
5.氮(N):适量的氮含量可以有效提高奥氏体不锈钢的强度和硬度,同时还能改善材料的耐蚀性能。
氮会强化奥氏体相,提高材料的塑性和韧性。
除了上述主要元素外,还有一些其他合金元素也对奥氏体不锈钢的性能有影响。
例如钼(Mo)可以提高奥氏体不锈钢的耐蚀性,特别是在高温环境下的耐蚀性。
钛(Ti)和铌(Nb)可以防止晶间腐蚀,改善奥氏体不锈钢的焊接性。
硅(Si)可以提高奥氏体不锈钢的强度和耐蚀性能。
总之,不同元素的含量对奥氏体不锈钢的性能有明显的影响。
合理调控元素含量可以提高奥氏体不锈钢的强度、硬度、塑性和耐蚀性能,使其适应不同环境和工程应用的需求。
合金元素对不锈钢性能的影响

合金元素对不锈钢性能的影响不锈钢是一种具有耐腐蚀性的合金钢,在制造工业中广泛应用。
适当调整不锈钢中的合金元素含量可以改变不锈钢的性能,下面将对几种常见的合金元素对不锈钢性能的影响进行详细阐述。
1.铬(Cr):铬是不锈钢中最主要的合金元素,能够形成一层致密的氧化铬膜,阻隔了氧气与金属表面的接触,从而提供了不锈钢的耐腐蚀性。
在一般的不锈钢中,铬的含量大约在10-30%之间。
2.镍(Ni):镍可以提高不锈钢的强度、塑性和耐腐蚀性。
镍还能够提高不锈钢的抗氧化性能,在高温环境下不易失去光泽和变色。
此外,镍还能够提高不锈钢的焊接性能。
在不锈钢中,镍的含量通常在8-20%之间。
3.钼(Mo):钼能够增加不锈钢的耐腐蚀性能特别是对于硫酸、硝酸和盐酸等强酸。
钼还能够提高不锈钢在高温下的力学性能和抗蠕变性能。
通常情况下,不锈钢中的钼含量在2-3%之间。
4.锰(Mn):锰可以提高不锈钢的硬度和强度,并有利于钢的淬火性能。
此外,锰还能改善不锈钢的抗氧化性能和耐腐蚀性能。
在不锈钢中,锰的含量一般在1-2%之间。
5.钛(Ti):钛能够阻止不锈钢在高温下的晶粒长大,提高不锈钢的耐腐蚀性能、焊接性能和高温强度。
钛的含量一般在0.5-1.5%之间。
综上所述,合金元素对不锈钢性能的影响是多样的。
铬是最关键的合金元素,确定了不锈钢的耐腐蚀性能;镍和钼能够提高不锈钢的力学性能和抗腐蚀性能;锰可以改善不锈钢的淬火性能和抗氧化性能;钛则能够提高不锈钢的高温性能。
合理调整不锈钢中合金元素的含量,可以根据具体的应用需求,改变不锈钢的性能,使其更适合各种工业领域的使用。
Cr、Si、Al对不锈钢的影响

Cr、Si、Al对不锈钢的影响Cr、Si、Al是F形成元素,是不锈钢获得耐腐蚀性能的主要合金元素。
Cr在不锈钢表面形成致密的(FeCr)2O3,起强烈的钝化作用并使不锈钢的化学稳定性得到提高。
Si、Al也起同样作用,但是Si含量过高,会造成不锈钢的力学性能下降,以及可焊性降低。
Al主要用于沉淀硬化不锈钢,起细化晶粒,固溶强化的作用;用来提高不锈钢室温和高温的强度。
Ni对不锈钢的影响Ni是扩大A元素,当Ni大到9%时,可以获得稳定的A组织。
Ni能使不锈钢表面钝化,扩大钢在酸中的钝化范围。
单独使用Ni来获得A需要的数量很大,一般与Cr元素配合使用。
Mo和Cu对不锈钢的影响Mo是F形成元素。
不锈钢中加入Mo有以下作用:1.提高钢在非氧化介质中的稳定性。
2.抵抗Cl离子产生点腐蚀。
3.提高A钢的热强性。
由于是F化元,加入Mo时,应相应提高Ni的含量,以维持钢的全A。
Mo的增加会降低A不锈钢的韧性。
Cu可以提高钢对非氧化介质的抗腐蚀能力。
Cr-Ni不锈钢中加入Cu会产生弥散硬化组织,提高钢的热强性。
Ti和Nb对不锈钢的影响Ti和Nb对C的亲和力大于Cr,因而可以优先形成稳定的碳化物,降低晶间腐蚀倾向。
在Cr-Ni不锈钢中,Ti的加入量一般大于5倍的C,Nb的加入量一般大于8倍的C,这样可以使大部分的C形成碳化物,避免形成Cr23C6,从而减少了贫Cr区的存在。
例如:321中的Ti,347中的Nb。
它们的晶间腐蚀倾向小于304.S和P对不锈钢的影响属于有害元素,一般来说越低越好。
由于脱硫、脱磷存在一定矛盾,同时降S、P有一定困难。
目前不锈钢的S含量都比较低,而P含量偏高。
c对不锈钢的影响C是A形成元素,也可以提高钢的强度,但是对耐蚀性不利。
因为C与Cr的结合会造成晶界的贫Cr层。
C的增加还会造成可焊性降低。
不锈钢中的C含量一般控制在0.08%以下,对于含C量低于0.03%的用后缀L标识。
合金元素对不锈钢的影响各不相同,当加入多种元素时,它们的作用不是简单的叠加或抵消,因为它们相互之间有时会发生新的物理化学作用。
各种金属元素在钢中的作用

各种金属元素在钢中的作用1.铁(Fe):铁是钢的主要成分,赋予钢良好的强度和塑性。
纯铁本身并不适合作为结构材料,但与其他元素合金后可形成钢,使其具有更高的强度和耐用性。
2.碳(C):碳是钢中最重要的合金元素之一、适量的碳能提高钢的硬度和强度,增加其耐磨性和耐蚀性。
其中,碳含量在0.02%至2.1%之间的钢被广泛应用。
3.锰(Mn):锰能够提高钢的硬度和韧性,使钢更加耐磨和耐冲击。
锰还可以与硫、磷等杂质结合,形成易于熔化的夹杂物,从而提高钢的可塑性和加工性能。
4.硅(Si):硅在钢中作为脱氧剂,能够有效降低钢中的氧含量,从而减少气孔和夹杂物的形成。
硅对钢的强度和塑性影响有限,但有助于改善钢的耐腐蚀性能。
5.磷(P):磷的掺入可以提高钢的硬度和抗拉强度。
然而,高磷含量会降低钢的可塑性和韧性,并增加冷脆倾向。
因此,磷含量通常应控制在较低水平。
6.硫(S):硫主要存在于原材料中的钢中,并往往是不可避免的。
过高的硫含量会导致钢的脆化和冷脆倾向。
因此,控制硫含量对于保证钢的可锻性和韧性至关重要。
7.铬(Cr):铬是不锈钢中的主要合金元素之一,能够形成耐蚀的氧化层,提高钢的耐腐蚀性能。
铬还可以增加钢的硬度和强度,同时改善钢的高温强度和抗氧化性能。
8.镍(Ni):镍可以提高钢的韧性和可塑性,改善冷加工性能。
镍还能增加钢的耐腐蚀性能和高温强度,使钢具有更好的抗剪切、耐磨和耐腐蚀性能。
9.钼(Mo):钼能够提高钢的强度和韧性,特别是在高温下。
钼还能增加钢的耐腐蚀性能、抗磨性和切削性能,因此常用于制造高速钢和高温合金。
10.钛(Ti):钛能够提高钢的耐高温性能和抗腐蚀性能。
钛还能够与氮结合形成细小的碳化钛,提高钢的硬度和强度。
由于钛的昂贵和难处理性,其含量通常较低。
除了上述主要的金属元素外,钢中还可能含有其他元素,如铜、铝、氮等,它们也会对钢的性能产生影响。
这些元素的含量、相互作用和加工过程都将影响到钢的力学性能、耐蚀性能、可加工性等特性。
合金元素对铁素体不锈钢组织和性能的影响

合金元素对铁素体不锈钢组织和性能的影响合金元素是指添加到铁素体不锈钢中的非铁元素。
根据添加的合金元素的种类和添加量的不同,可以对铁素体不锈钢的组织和性能进行调控和改善。
以下是一些常见的合金元素对铁素体不锈钢组织和性能的影响。
1.碳(C):碳是铁素体不锈钢中最常见的合金元素之一、适量的碳添加可以增加不锈钢的硬度和强度,但会降低其耐腐蚀性能。
过量的碳添加会导致不锈钢产生铬碳化物沉淀而形成铁素体组织。
2.铬(Cr):铬是铁素体不锈钢中最重要的合金元素之一,主要起到抵抗腐蚀的作用。
铬与氧化剂反应生成致密的铬氧化物膜,形成有力的防护层,阻止了金属内部的腐蚀。
通常,铁素体不锈钢中铬含量应达到12%以上,以保证其良好的耐腐蚀性能。
3.钼(Mo):钼的主要作用是提高铁素体不锈钢的耐点蚀性和耐氯离子腐蚀性能。
添加适量的钼可以使不锈钢在酸性溶液和高氯离子环境中具有更好的耐腐蚀性。
此外,钼还可以降低铁素体不锈钢在高温下的晶间腐蚀敏感性。
4.镍(Ni):镍的主要作用是提高铁素体不锈钢的机械性能和耐冲击性。
适量的镍添加可以提高不锈钢的延展性和抗拉伸性能,同时增加其塑性和冷加工性能。
此外,镍还可以改善铁素体不锈钢的焊接性能。
5.锰(Mn):锰主要起到一些促进和稳定化的作用。
适量的锰添加可以改善铁素体不锈钢的热加工性能,并提高其强度和塑性。
高锰不锈钢具有良好的抗磁性能。
6.钛(Ti)和铌(Nb):钛和铌主要用于稳定不锈钢的碳化物和氮化物。
它们能够抑制铁素体的析出并提高不锈钢的耐腐蚀性能。
7.硼(B):硼的主要作用是改善不锈钢的热稳定性。
适量的硼添加可以降低铁素体不锈钢的热蚀变和固溶体的析出。
8.硫(S)和磷(P):硫和磷是常见的杂质元素,它们对铁素体不锈钢的性能有不利影响。
硫和磷会降低铁素体不锈钢的热加工性能、塑性和韧性,并导致晶间腐蚀倾向增加。
总之,合金元素的添加可以显著改善铁素体不锈钢的组织和性能。
合理控制合金元素的含量和比例,可以根据不同的应用需求,调整不锈钢的力学性能、耐腐蚀性能和加工性能。
各类合金元素在不锈钢中的作用

各类合金元素在不锈钢中的作用不锈钢是一种具有高抗腐蚀性能的合金材料,主要由铁、铬和碳组成。
然而,除了这些主要元素外,不锈钢中还经常添加其他合金元素以改善其性能和特性。
以下是各类合金元素在不锈钢中的作用:1.镍(Ni):镍是不锈钢中最常见的合金元素之一、它可以增加不锈钢的强度、延展性和耐腐蚀性能。
此外,镍还可以改良不锈钢的焊接能力和耐高温性能。
2.钼(Mo):钼可以提高不锈钢的耐腐蚀性能,特别是对酸性环境和氯离子的抵抗能力。
钼还可增加不锈钢的抗拉强度和硬度,改善其热稳定性和耐腐蚀性。
3.铌(Nb)和钛(Ti):这些元素可在高温下稳定铌和钛碳化物的形成,从而防止晶间腐蚀和析出物形成。
它们还能增加不锈钢的强度和耐腐蚀性,特别是在高温和氧化环境下。
4.铜(Cu):铜可以提高不锈钢的耐腐蚀性能,特别是对于硫酸等酸性环境的腐蚀。
此外,铜还可以增加不锈钢的抗热氧化性能、强度和硬度。
5.硼(B):硼主要用于改善不锈钢的焊接性能。
它可防止晶界腐蚀和析出物形成,提高不锈钢的抗氧化性能。
6.铝(Al):铝能够形成致密的氧化物保护膜,有效地防止不锈钢的腐蚀。
此外,铝还能提高不锈钢的强度、硬度和耐蚀性。
7.硅(Si):硅可增加不锈钢的硬度和强度,改善其耐磨性和耐蚀性。
它还能降低不锈钢的热膨胀系数,改善其高温稳定性和焊接性能。
8.磷(P)和硫(S):磷和硫在不锈钢中被认为是污染元素,因为它们会降低不锈钢的耐腐蚀性和机械性能。
因此,在不锈钢制造过程中,通常需要控制磷和硫的含量。
综上所述,不锈钢中的合金元素具有不同的作用,可以改善其耐蚀性、强度、硬度、热稳定性和焊接性能。
通过选择合适的合金元素组合,可以生产出具有各种特性的不锈钢材料,以满足不同应用需求。
各元素对不锈钢的性能和组织的影响和作用

各元素对不锈钢的性能和组织的影响和作用不锈钢是一种耐腐蚀的金属材料,通常由铁、铬、镍和一些其他元素组成。
不同元素的添加和含量会对不锈钢的性能和组织造成影响。
以下是各元素对不锈钢性能和组织的主要影响和作用。
1.铁(Fe):铁是不锈钢的主要成分,提供了不锈钢的韧性和强度。
铁的含量决定了不锈钢的晶粒度、硬度和强度。
2.铬(Cr):铬是不锈钢的主要合金元素,具有耐腐蚀性。
当铬含量达到10.5%以上时,形成一层致密的铬氧化物膜(即钝化层),可以防止常见的腐蚀介质侵蚀不锈钢表面。
3.镍(Ni):镍可以提高不锈钢的强度、塑性和耐腐蚀性能,同时也有助于提高焊接性能。
镍含量越高,不锈钢的抗晶粒腐蚀能力越强。
4.碳(C):碳含量对不锈钢的合金化程度和硬度有较大影响。
低碳不锈钢有良好的韧性和可焊性,而高碳不锈钢则具有较高的硬度和耐磨性。
5.锰(Mn):锰对不锈钢的强度和硬度有一定影响。
适量的锰可以提高热处理硬化的效果,并影响不锈钢的晶体结构。
6.非金属元素(氮、硫、氧):非金属元素的含量会影响不锈钢的耐腐蚀性能。
氮与铬结合能够显著改善不锈钢的耐腐蚀性能,而硫和氧会对不锈钢的耐腐蚀性能产生负面影响。
7.磷(P)和硅(Si):磷和硅的含量会对不锈钢的热处理过程和组织形成产生影响。
适量的磷可以提高不锈钢的强度和耐蚀性,而硅的添加则可提高不锈钢的高温氧化和耐蚀性能。
8.氢(H):氢会导致不锈钢脆性的产生,因此在制备和使用过程中要严格控制氢含量。
以上是各元素对不锈钢性能和组织的主要影响和作用。
不锈钢的配方和处理工艺可以根据具体的应用要求进行调整,以获得所需的力学性能、耐腐蚀性能和加工性能。
各化学元素对钢材的影响

各化学元素对钢材的影响钢材是一种重要的结构材料,用于建筑、制造、汽车等领域。
化学元素可以对钢材的性能产生不同的影响,包括强度、硬度、耐腐蚀性等。
下面将详细讨论各化学元素对钢材的影响。
1.碳(C):碳是钢材中最重要的元素之一,它对钢的强度和韧性有重要影响。
高碳钢具有较高的强度和硬度,但韧性较差。
低碳钢具有较好的可塑性和韧性,但强度较低。
适度的碳含量可以使钢材获得最佳的强度和韧性平衡。
2.硅(Si):硅可以提高钢材的硬度和抗腐蚀性。
在不锈钢制备过程中,硅可以帮助形成氧化铬层,从而提高钢材的耐腐蚀性能。
同时,硅还可以降低钢铁的磁性。
3.锰(Mn):锰可提高钢材的强度和硬度,并改善钢材的韧性。
锰和碳一起形成的碳化锰有助于提高钢的硬度和均匀性。
4.磷(P)和硫(S):磷和硫是常见的杂质元素,在通常情况下不利于钢材的性能。
磷会导致钢材脆性增加,而硫则会降低钢材的韧性。
因此,在钢材制备过程中,通常需要控制磷和硫的含量。
5.铬(Cr):铬是不锈钢中的重要合金元素,可以提高钢材的耐腐蚀性和抗氧化性。
铬与氧反应形成的氧化铬层可以防止钢材进一步氧化和腐蚀。
6.镍(Ni):镍可以提高不锈钢的抗腐蚀性和强度。
镍与铬一起形成的不锈钢可以在氧化环境下维持其表面亮度和防腐蚀能力。
7.钼(Mo):钼可以改变钢材的显微组织,提高钢材的强度和硬度,提高对热和机械应力的抵抗能力。
钼还可以增加钢材的耐蚀性,提高其在恶劣环境条件下的使用寿命。
8.钛(Ti):钛可以增加钢材的强度和硬度,并提高抗腐蚀性能。
通过与碳一起反应,钛可以形成碳化钛,改善钢材的耐磨性。
综上所述,化学元素对钢材的影响非常重要。
不同元素的含量可以调节钢材的强度、硬度、可塑性和抗腐蚀性能。
因此,在钢材制备和合金设计过程中,必须仔细控制化学元素的含量,以获得最佳性能的钢材。
合金元素对304不锈钢的影响

3合金元素对组织和性能的影响(1)铬是形成铁素体的元素,并具有良好的耐腐蚀性能,随着其含量的增加耐点腐蚀耐缝隙腐蚀性能提高。
铬在不锈钢中的决定作用:决定不锈钢属性的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。
迄今为止,还没有不含铬的不锈钢。
铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其内部的矛盾运动向有利于抵抗腐蚀破坏的方面发展。
这种变化可以从以下方面得到说明:①铬使铁基固溶体的电极电位提高。
②铬吸收铁的电子使铁钝化。
钝化是由于阳极反应被阻止而引起金属与合金耐腐蚀性能被提高的现象。
构成金属与合金钝化的理论很多,主要有薄膜论、吸附论及电子排列论。
(2)镍形成并稳定奥氏体,使钢获得完全奥氏体组织。
降低。
相的形成倾向。
增加碳化物的析出,抗高温氧化性增强。
镍是优良的耐腐蚀材料,也是合金钢的重要合金化元素。
镍在钢中是形成奥氏体的元素,但低碳镍钢要获得纯奥氏体组织,含镍量要达到24%;而只有含镍27%时才使钢在某些介质中的耐腐蚀性能显著改变。
所以镍不能单独构成不锈钢。
但是镍与铬同时存在于不锈钢中时,含镍的不锈钢却具有许多可贵的性能。
基于上面的情况可知,镍作为合金元素在不锈钢中的作用,在于它使高铬钢的组织发生变化,从而使不锈钢的耐腐蚀性能及工艺性能获得某些改善。
(3)钼的作用仅次于铬,使钢更易获得铁素体,提高钢的耐蚀性,促进仅’和。
相特别是X相的析出。
同时可以提高钢在还原性介质中的腐蚀性能。
(4)碳和氮,在铁素体不锈钢中,使脆性转变温度提高,缺口敏感性增大,焊后耐腐蚀性下降,碳和氮在铁素体中,溶解度很低,在高温加热后冷却过程中有氮化物,碳化物和氮化物,氧化物析出导致韧性降低,脆性转变温度升高。
在奥氏体中,碳是强烈形成,并稳定奥氏体,扩大奥氏体区的元素,形成奥氏体的能力为镍的30倍。
氮代镍节约贵重金属镍,形成并稳定奥氏体,且扩大奥氏体,作用相当于碳,可以抑制碳化物的析出和形成。
合金元素对钢的影响

合金元素对钢的影响钢是一种由铁和碳组成的合金材料,常用于建筑、机械制造、汽车制造等领域。
除了碳以外,合金元素可以通过添加的方式对钢的性能进行调节,以满足不同的使用要求。
以下是合金元素对钢的一些主要影响。
1.硅(Si)硅是一种常见的合金元素,可改善钢的润湿性和热处理性能。
添加适量的硅可以减少钢液在浇注过程中的气孔和缩松缺陷。
此外,硅还可以提高钢的抗疲劳性能和耐腐蚀性能。
例如,不锈钢中的硅可以提高钢的耐酸性能。
2.锰(Mn)锰是一种常用的合金元素,可提高钢的硬度和强度。
适量的锰可以增加钢的韧性和冷加工性能。
锰还能够提高钢的抗腐蚀性能和抗疲劳性能,同时减少钢材在热处理过程中的变形和开裂问题。
3.硒(Se)硒是一种稀有的合金元素,可以提高铸造钢的强度和韧性。
适量的硒可以改善钢的发红敏感性,防止钢在热处理过程中产生氧化和开裂问题。
4.镍(Ni)镍是一种典型的合金元素,常用于制造耐高温材料,例如高温合金和耐热钢。
添加镍可以大幅度提高钢的抗腐蚀性能,尤其是对于抵抗硫酸腐蚀和海水腐蚀的能力。
此外,镍还能够改善钢的延展性和冷加工性能。
5.钼(Mo)钼是一种特殊的合金元素,可提高钢的硬度、强度和耐热性能。
添加适量的钼可以提高钢的耐高温性能和耐蚀性能,例如在制造高温合金和不锈钢中广泛使用。
6.铝(Al)铝是一种常见的合金元素,可以调节钢的微观结构和物理性能。
添加适量的铝可以减少钢中的热处理变形和开裂问题,提高钢的抗腐蚀性能和焊接性能。
铝还可以提高钢的强度和韧性,同时降低钢的密度。
7.硼(B)硼是一种特殊的合金元素,通过形成硼化物的方式,可以提高钢的硬度和热处理性能。
添加适量的硼可以提高钢的切削性能和耐磨性能,使其适用于制造工具钢和切削工具。
除了上述几种常见的合金元素,还有其他一些合金元素如钒、钨、铬、铌等都可以对钢的性能产生重要影响。
选择合适的合金元素以及添加的含量,能够使钢材更好地适应不同的使用环境和要求。
然而,合金元素的添加也需要考虑其对钢的成本、焊接性能和加工性能的影响,以及可能引起的其他问题,如氧化、变色等。
不锈钢中各元素作用

不锈钢中各元素作用不锈钢是一种具有良好抗腐蚀性能的合金材料,由铁与其他元素(如铬、镍、钼)合金化而成。
这些元素在不锈钢中起着关键的作用,决定了不锈钢的物理性能、化学性能和耐腐蚀性能。
1.铁(Fe):铁是不锈钢的主要成分,提供了不锈钢的力学性能,如强度和硬度。
它还有助于提高不锈钢的热导性能和磁导性能。
2.铬(Cr):铬是不锈钢最重要的合金元素之一,可提供不锈钢的耐腐蚀性能。
当铬含量达到10.5%以上时,会在不锈钢表面形成一层致密的氧化铬膜(钝化膜),避免了金属与外界氧气的直接接触,从而有效防止了不锈钢的腐蚀。
此外,铬还能提高不锈钢的强度、硬度和耐磨性。
3.镍(Ni):镍是提高不锈钢耐腐蚀性能的关键合金元素之一、镍的加入可以增加不锈钢的钝化能力,使其在更恶劣的环境条件下具有更好的耐腐蚀性。
镍还可以提高不锈钢的韧性和可塑性。
4.钼(Mo):钼通常被用于提高不锈钢的耐蚀性、耐点蚀性和耐高温性能。
特别是在含有氯离子的环境中,钼能够改善不锈钢的抗腐蚀性能,降低晶间腐蚀倾向。
5.锰(Mn):锰是一种强氧化剂,能够与金属中的硫产生反应,减少硫对不锈钢的影响。
因此,锰可以提高不锈钢的耐腐蚀性能和机械性能。
6.碳(C):碳是调控不锈钢硬度和强度的关键元素。
适当的碳含量可以提高不锈钢的硬度,但过高的碳含量可能会导致不锈钢的脆性增加。
7.硅(Si):硅的加入可提高不锈钢的强度和抗蚀性能。
此外,硅还有助于提高不锈钢的耐高温和耐腐蚀性能。
8.氮(N):氮在不锈钢中的主要作用是增强不锈钢的硬度和强度,并提高其抗腐蚀性能。
氮还可以降低不锈钢在焊接过程中的敏感性。
除了以上主要元素外,不锈钢还可能含有其他微量元素(如铜、钛、铌、钙等),它们各自通过增强不锈钢的其中一种性能或起到合金化的效果。
总的来说,各种元素在不锈钢中的合金化作用使不锈钢具有出色的耐腐蚀性、力学性能和工艺性能。
通过调控不同元素的含量,可以在不锈钢中获得多种不同的性能特点,使其适应不同的应用领域。
3 合金元素对不锈钢耐蚀性能的影响

3 合金元素对不锈钢耐蚀性能的影响影响不锈钢耐蚀性的因素很多,本部分及以下部分重点讨论不锈钢点腐蚀与晶界腐蚀的影响因素,大致可以分为内在因素与环境因素两大类。
环境因素包括温度、湿度、PH值、氯离子浓度等。
内在因素主要有钢的化学成分(合金元素)、微观组织、金属表面粗糙度等,其中化学成分,即合金元素,就是最根本的内在因素。
本部分总结了多种合金元素对不锈钢的电腐蚀与晶界腐蚀性能的影响。
表3-1合金元素对不锈钢的作用添加目的合金元素Cr Ni Mn N Ti Nb Si Mo Cu C S Se Al 形成铁素体中———强中中中————强形成奥氏体—中弱强————弱强———形成碳化物中—弱—强强—弱—————耐氧化性酸强—————中——————耐还原性酸—强————中强强————抗晶界腐蚀————强强中弱—————抗点蚀——————中强—————抗应力腐蚀—强———————————抗氧化性强中——中—强—————强抗高温蠕变—中弱中中强—中—中———降时效硬化————中强中—中———中细化晶粒———弱强中———————提机加性能——————————强强—大量研究报道了不同合金元素对不锈钢性能的影响,数据结果如表3-1所示。
关于合金元素对不锈钢耐蚀性能的具体影响如下:铬(Cr):铬就是增加不锈钢耐蚀性能的基本元素之一, 铬主要作用就是提高钢的钝化膜的修复能力或称再生能力,提高不锈钢的耐点蚀性能。
铬含量增加时,有利于贫铬区与富铬区含铬量的平衡,从而降低了晶间腐蚀的敏感性。
一般不锈钢中的铬含量必须在12%以上。
镍(Ni):镍就是优良的耐腐蚀材料,也镍就是不锈钢的主要元素之一,提高奥氏体含量,同时提高钢的抗腐蚀能力。
没有铬,只有含镍27%时才使钢在某些介质中的耐腐蚀性能显著改变,所以镍不能单独构成不锈钢。
镍在不锈钢中的作用在于它使高铬钢的组织发生变化,使不锈钢的耐腐蚀性能获得改善, 不仅能耐酸(如硫酸、醋酸、草酸),而且能抗非氧化性介质的耐蚀性,如碱与大气的腐蚀,中性盐等,但对高温含硫气体不耐腐蚀。
不锈钢中锑的含量及其对性能的影响

不锈钢中锑的含量及其对性能的影响不锈钢是一种优质的合金材料,常用于制造各种耐腐蚀的设备和结构。
其中,合金元素的含量对不锈钢的性能具有重要影响。
本文将探讨不锈钢中锑的含量以及它对不锈钢性能的影响。
一、不锈钢中锑的含量锑(Sb)是一种化学元素,其在不锈钢中的含量通常非常低。
一般情况下,不锈钢中的锑含量在0.001%以下。
尽管锑的含量很低,但它对不锈钢的性能仍然有一定的影响。
二、锑对不锈钢的影响1. 防腐蚀性能:锑可以增加不锈钢的耐腐蚀性能。
这是因为锑可以与不锈钢中的钼(Mo)元素形成稳定的化合物,提高不锈钢的抗腐蚀能力,尤其是对一些强酸、强碱等腐蚀介质的抵抗能力。
2. 机械性能:适量的锑含量可以增加不锈钢的强度和硬度,提高其机械性能。
锑的加入可以改变不锈钢的晶格结构,增强晶界的强度,提高抗拉强度和硬度。
然而,当锑含量过高时,它也可能导致晶界脆化,使材料的韧性下降。
3. 热稳定性:锑的加入可以提高不锈钢的热稳定性,使其在高温下保持较好的性能。
锑能够提高不锈钢的热稳定性,防止晶界析出和相变的发生,减少晶界腐蚀和材料的疲劳破坏。
4. 焊接性能:锑的存在对不锈钢的焊接性能有一定的影响。
合理的锑含量能够改善不锈钢的焊接性能,提高焊接接头的强度和韧性。
然而,锑含量过高可能导致焊接接头的脆化现象,降低焊接接头的力学性能。
综上所述,适量的锑含量可以对不锈钢的性能产生积极的影响,包括提高耐腐蚀性能、机械性能、热稳定性和焊接性能。
然而,要注意锑含量过高可能引起的晶界脆化及焊接接头脆化等问题,因此在实际应用中需要根据具体要求进行调整和控制。
值得一提的是,不锈钢中锑的含量虽然对性能有一定影响,但对于大多数常规应用来说,锑的含量较低,不会对不锈钢的性能产生显著影响。
因此,在选择不锈钢材料时,主要还是要考虑其他关键因素,如耐腐蚀性、机械性能、成本等。
总结起来,不锈钢中锑的含量是影响其性能的一个重要因素。
适量的锑含量可以提高不锈钢的耐腐蚀性能、机械性能、热稳定性和焊接性能。
合金元素对铁素体不锈钢组织和性能的影响

合金元素对铁素体不锈钢组织和性能的影响常用铁素体不绣钢,按钢中铬含量分类主要有Cr11%~15%型、 Cr16%~20%型和Cr21%~30%型三种。
而对铁素体不锈钢组织和性能影响最大的合金元素主要是Cr,Mo,C和N以及Ni。
当然,有的铁素体不锈钢中还含有Ti,Nb,Cu等,它们对铁素体不锈钢的组织和性能也有—定的影响,下面将就这些合金元素的作用和影响加以扼要介绍。
1.1 铬的影响铬是使铁素体不锈钠具有铁素体组织并具有良好耐蚀性的主要元素。
铁素体不锈钢中,随铬量的增加对钢的组织的主要影响是加速α'相和σ相的形成和沉淀并使钢的铁素体晶粒更加粗大。
这些因素反映在对铁素体不锈钢性能的影响上,主要是脆化倾向的增加。
表3-2和图3-21~图3-22指出了一些试验结果。
前面已述及σ相的析出将降低铁素体不锈钢的耐蚀性,而α'相的沉淀在一些介质中,同样显著降低钢的耐蚀化(图3-23)。
在铁素体不锈钢中,即使在正常状态下的退火态。
随铬量地增加,钢的韧性也下降。
特别是当铬含量>15%~16%后,其韧性的下降更加明显(图3-24)。
与此同时.随铁素体不锈钢中铬含量的增加,钢的脆性转变温度也显著上移(图3-29)。
研究含铬量对铁素体不锈钢抗拉强度的影响,其结果表明,含铬量在~25%以下,随铬量增加,钢的强度下降;而当高于~25%后,则铬量增加,钢的强度稍有提高(图3-25)。
这种现象一般解释为.Cr<~25%时,随铬量增加,纯铁素体组织抑制了马氏体的形成;Cr<~ 25%后,随铬量增加,铬的固溶强化作用而使钢的强度提高。
铬是不锈钢获得不锈性和耐蚀性的最主要的元素,在铁素体不锈钢中也不例外,铁素体不绣钢在氧化性介质中,铬能使不锈钢表面上迅速生成氧化铬(例如Cr2O3)的钝化膜,这层膜是非常致密和稳定的。
即使一旦被破坏也能迅速修复。
不同含铬量的Fe-Cr合金在H2SO4介质中的阳极极化曲线以及腐蚀电位E,临corr界钝化电位E与铬含量的关系分别示于图3-27和图3-28中。
各种元素对不锈钢的性能和组织的影响和作用

各种元素对不锈钢的性能和组织的影响和作用不锈钢是一种合金材料,具有抗腐蚀、耐热、耐磨等优良性能,被广泛应用于制造、建筑、化工、医疗设备等领域。
不锈钢的性能和组织主要受材料中各种元素的影响和作用。
下面将详细介绍各种元素对不锈钢性能和组织的影响。
1.铁(Fe):铁是不锈钢的主要组成元素,与其他特定元素形成不同种类的不锈钢合金。
纯铁容易生锈,添加铬等元素后,形成铬氧化层保护铁层,从而提高了不锈钢的抗腐蚀性能。
2.碳(C):碳是不锈钢中的常见元素,对不锈钢的硬度和强度有显著影响。
通过调整碳含量,可以获得不同强度和硬度的不锈钢。
3.铬(Cr):铬是不锈钢最重要的合金元素之一,其含量决定了不锈钢的耐腐蚀性能。
当铬含量达到10.5%时,可以形成致密的铬氧化层,使钢材具有优良的耐腐蚀性能。
4.镍(Ni):镍可以提高不锈钢的耐腐蚀性和可焊性。
高镍不锈钢对腐蚀介质更具抵抗能力,并且在低温下表现出良好的延展性。
5.钼(Mo):钼对不锈钢的耐蚀性和耐热性有显著影响。
添加钼可以提高钢材的耐腐蚀性能,使其在酸性介质和高温环境下具有出众的性能。
6.锰(Mn):锰是不锈钢的合金元素之一,具有抗热和抗腐蚀的特性。
适量的锰可以提高不锈钢的强度和耐蚀性。
7.硅(Si):硅可以提高不锈钢的耐蚀性和抗氧化性能。
硅还可以增加不锈钢的流动性,有利于制造工艺。
8.磷(P)和硫(S):磷和硫含量越低,不锈钢的耐腐蚀性能越好。
磷和硫是不良的合金元素,容易引起晶间腐蚀和氧化。
9.氮(N):氮是不锈钢中常见的合金元素,可以提高钢材的强度和硬度。
氮合金化对不锈钢的耐腐蚀性能有一定影响。
10.稀土元素:稀土元素可以提高不锈钢的热强度和热耐蚀性能。
添加适量的稀土元素有助于提高不锈钢的耐高温性能。
11.碳化物:碳化物的形成会对不锈钢的组织和性能产生重要影响。
碳化物的含量和尺寸会影响不锈钢的硬度、抗拉强度和耐蚀性能。
12.氧化物:氧化物的形成会对不锈钢的表面质量和抗腐蚀性能产生重要影响。
不锈钢成分中合金元素的作用

不锈钢成分中合金元素的作用不锈钢是一种合金材料,由铁、碳以及其他合金元素组成。
合金元素在不锈钢中起到了至关重要的作用,它们能够影响不锈钢的化学性质、物理性质和机械性能。
以下是合金元素在不锈钢中的主要作用:1.铬(Cr):铬是不锈钢中最重要的合金元素,它能够形成一层致密的氧化铬膜,使不锈钢具有抗腐蚀性能。
这层铬氧化膜能够防止氧气进一步与铁发生反应,形成氧化物,从而避免了不锈钢的进一步腐蚀。
铬还能够提高不锈钢的高温氧化和耐火性。
2.镍(Ni):镍能够改善不锈钢的耐蚀性、强度和塑性。
添加适量的镍可以降低不锈钢的磁性,提高面积磁导率,改善不锈钢的电磁性能,因此广泛应用于制造电子元器件和医疗设备。
3.钼(Mo):钼具有很强的耐蚀性和抗腐蚀性能,能够提高不锈钢在强酸和强碱介质中的耐蚀性能。
添加适量的钼可以提高不锈钢的强度和硬度。
4.铜(Cu):铜能够提高不锈钢的耐蚀性和强度。
在一些特殊环境下,铜还能够提高不锈钢的抗菌性能。
5.钒(V):钒具有很强的强化效果,能够提高不锈钢的强度和硬度。
同时,钒还能够提高不锈钢的氧化和耐热性能。
6.钛(Ti):钛能够与氮结合形成氮化钛,从而能够提高不锈钢的力学性能和耐腐蚀性。
7.铌(Nb):铌能够形成稳定的碳化物,提高不锈钢的强度和耐磨性。
8.锰(Mn):锰可以提高不锈钢的塑性和冷加工性能。
9.钡(Ba)、锶(Sr)和钙(Ca):这些元素能够与硫形成硫化物,从而对不锈钢的腐蚀起到抑制作用。
除上述合金元素外,还有其他一些合金元素如氮(N)、硅(Si)、磷(P)、硫(S)等也有一定的作用。
氮能够提高不锈钢的强度和耐蚀性,硅能够提高不锈钢的抗氧化和耐热性,磷和硫能够提高不锈钢的加工性能。
总的来说,合金元素在不锈钢中起到了很重要的作用,它们能够提高不锈钢的耐蚀性、强度、塑性、耐磨性和耐热性等性能,从而使不锈钢在各个领域得到广泛应用。
合金元素在钢中的主要作用

合金元素在钢中的主要作用1.强度增加:合金元素的添加可以显著提高钢的强度。
例如,镍和铬被广泛用于制造不锈钢,它们可以提高钢的强度和耐腐蚀性能。
其他合金元素如硼、钼、钛和钒等也可以提高钢的强度。
2.耐腐蚀性提高:合金元素的添加可以提高钢的耐腐蚀性。
例如,铬的添加可以形成一层钝化膜,保护钢材不受环境腐蚀的影响。
因此,不锈钢中添加了较高比例的铬来提高其抗腐蚀性。
3.硬度增加:合金元素对钢的硬度有直接的影响。
添加硅和锰可以增加钢的硬度,从而提高其抗磨损性能。
硬度的提高对于汽车发动机零件、刀具和轴承等耐磨件来说是非常重要的。
4.可加工性改善:有些合金元素可以提高钢的可加工性,使得钢更容易被切削、锻造和焊接。
铝和钛等元素可以形成易于切削和锻造的中间相,从而提高钢材的可塑性。
5.热处理性能改善:合金元素的添加可以改善钢的热处理性能,使得钢更容易通过热处理来改变其组织和性质。
例如,铌和钛等合金元素的添加可以在钢中形成稳定的碳化物,从而提高硬化深度和抗热脆性。
6.电磁性能调节:合金元素的加入还可以影响钢的电磁性能。
例如,镍和锰等元素的添加可以提高钢的磁导率,使其更适合用于电磁设备和电动机。
7.温度变化下的性能稳定性:合金元素的添加可以使钢在温度变化下保持稳定的性能。
例如,锰和硅等元素的添加可以减轻钢在高温下的软化倾向,从而提高其高温下的机械性能。
值得注意的是,不同的合金元素对钢的性质有不同的影响。
合金元素的种类、含量、配比和钢的制造工艺等因素都会对钢的性能产生显著的影响。
因此,在具体的钢材制造中,需要根据不同的要求和使用环境来选择合适的合金元素组合,以达到最佳的性能。
各种化学元素在不锈钢中的作用

各种化学元素在不锈钢中的作用不锈钢是一种合金材料,由铁、铬、镍等元素组成。
它的特点是具有高强度、耐腐蚀、耐高温等优良性能。
化学元素在不锈钢中的作用主要体现在以下几个方面:1.铁(Fe):铁是不锈钢的主要成分之一,它赋予不锈钢良好的强度和可塑性。
同时,铁的存在使得不锈钢具备了磁性。
2.铬(Cr):铬是不锈钢中最重要的合金元素。
通过添加铬元素,能够形成致密的氧化铬层,从而防止不锈钢表面的金属继续氧化。
这种氧化铬层是保护不锈钢抗腐蚀性的关键,只有当其厚度达到一定标准时,不锈钢才能真正发挥其耐腐蚀的特性。
3.镍(Ni):镍对不锈钢的作用主要体现在增强抗腐蚀性能方面。
镍的加入可以提高不锈钢的抗酸性、碱性和耐高温性能。
此外,镍还能改善钢的可塑性和韧性。
4.锰(Mn):锰是不锈钢中的合金元素之一、它的作用是增加不锈钢的塑性和强度,并提高其耐腐蚀性。
5.钼(Mo):钼主要用于改善不锈钢的耐酸性和耐腐蚀性能。
它可以提高不锈钢在高温和酸性环境下的稳定性。
6.硅(Si):硅是一种既能增强不锈钢抗氧化性能又能提高其韧性的合金元素。
硅能够促进铬在钢中的溶解度和氧化铬层的形成。
7.钛(Ti):钛能够与铬形成一种稳定的氧化物,可以提高不锈钢的抗氧化性能和耐蚀性。
8.铌(Nb):铌主要用于改善不锈钢的耐腐蚀性和强化效果。
添加适量的铌可以提高不锈钢的抗应力腐蚀性和抗晶间腐蚀性能。
9.钠(Na):钠在不锈钢中的含量通常很低,但它对抗菌性能和耐腐蚀性有一定的作用。
总之,不锈钢中的各种化学元素通过相互配合作用,形成了一种优良的合金材料,使得不锈钢具有了高强度、耐腐蚀、耐高温等特性。
同时,化学元素的掺杂和调整,也使得不锈钢在特定环境下具备了更好的耐腐蚀性和抗腐蚀性能。
这使得不锈钢广泛应用于建筑、化工、医药、食品加工等领域。
合金元素在不锈钢中的作用

合金元素在不锈钢中的作用合金元素指的是在炼金属的时候加入一定量一种或多种的金属或非金属元素可以获得材料的特殊性能,如提高强度、改善抗氧化性能、提高塑性和工艺性能等。
而这些加进去的辅助性元素材料就叫作合金元素。
各种元素对不锈钢的性能和组织的影响和作用1.铬(Cr)在不锈钢中的决定作用:决定不锈钢性属的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。
由于铬形成的致密、稳定的三氧化二铬,阻止了介质对金属机体的继续深入腐蚀。
迄今为止,还没有不含铬的不锈钢。
铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其材料机体向有利于抵抗腐蚀破坏的方面发展。
这种变化可以从以下方面得到说明:①铬使铁基固溶体的电极电位提高②铬吸收铁的电子使铁钝化,钝化是由于阳极反应被阻止而引起金属与合金耐腐蚀性能被提高的现象。
2.碳(C)在不锈钢中的两重性碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。
碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成—系列复杂的碳化物。
所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。
认识了这一影响的规律,我们就可以从不同的使用要求出发,选择不同含碳量的不锈钢。
例如工业中应用最广泛的,也是最起码的不锈钢——0Crl3~4Cr13这五个钢号的标准含铬量规定为12~14%,就是把碳要与铬形成碳化铬的因素考虑进去以后才决定的,目的即在于使碳与铬结合成碳化铬以后,固溶体中的含铬量不致低于11.7%这一最低限度的含铬量。
同时,含碳量不同,强度与耐腐蚀性能也是有区别的,0Cr13~2Crl3钢的耐腐蚀性较好但强度低于3Crl3和4Cr13钢,多用于制造结构零件,后两个钢号由于含碳较高而可获得高的强度多用于制造弹簧、刀具等要求高强度及耐磨的零件。
不锈钢中各元素作用

• 3、对于工作温度在300℃以上、有较强腐 蚀性的介质,须采用含有Ti或Nb稳定化元素 或超低碳不锈钢焊条。 如A137或A002等。
• 4、对于含有稀硫酸或盐酸的介质,常选用含 Mo或含Mo和Cu的不锈钢焊条。 如:A032、A052等。
• 钼(Mo):可以抑制合金钢由于火而引起 的脆性。
• 钛(Ti):使钢的内部组织致密,细化晶粒 力;降低时效敏感性和冷脆性。改善焊接 性能。在铬18镍9奥氏体不锈钢中加入适当 的钛,可避免晶间腐蚀。
• 钒(V)能细化钢的晶粒组织,提高钢的强 度,韧性和耐磨性.当它在高温熔入奥氏 体时,可增加钢的淬透性。
• 钨(W)能提高钢的耐磨性
• 铜(Cu)改善普通低合金钢的抗大气腐蚀 性能,特别是和磷配合使用时更为明显。
• 氮(N)能提高钢的强度,低温韧性和焊接 性,增加时效敏感性。
• 从以上图片可以看出:
1、Cr:防锈,不锈钢的主要组成; 2、Ni:奥氏体的形成元素;镍对酸碱有较高 的耐腐蚀能力,在高温下有防锈和耐热能力;
5、对于在低温条件下工作的奥氏体不锈钢,应 保证焊接接头在使用温度的低温冲击韧性,故 采用纯奥氏体焊条。
如A402、A407。
6、双相奥氏体钢焊缝碱性药皮与钛钙型药皮 焊条的差别不像碳钢焊条那样显著。因此在 实际应用中,从焊接工艺性能方面着眼较多,大 都采用药皮类型代号为17或16的焊条
如A102A、A102、A132等。
• M 马氏体不锈钢 • F 铁素体不锈钢 • A 奥氏体不锈钢 • A一F 双相不锈钢。
三、不锈钢的焊条选用要点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合金元素对不锈钢性能和特性的影响不锈钢中的化学成分决定着电极电位差的大小和腐蚀电流的大小。
1.铬铬称为铁素体形成元素,它有促使铁素体向奥氏体转变的倾向,对于非常低的碳含量,含铬量要超过13%,才能维持铁素体组织。
在含量大约为12%时,该元素通过自发形成一种稳定的、透明的钝化膜来延缓腐蚀。
较高的合金含量可通过强化薄膜和快速自我修复薄膜来提高抗腐蚀性。
商业品牌的不锈钢铬含量上限约为30%。
富铬氧化物具有尖晶石点阵,在许多介质中都有很高的稳定性。
铬含量越多,则其耐点蚀和缝隙腐蚀的能力就越强。
所谓的γ环区(奥氏体)是在铬含量约为11-13%情况下产生的。
如果其它奥氏体形成元素增加的话,铬含量可扩大至约16-18% 。
特别应该注意的是碳、氮和镍的影响,它们可扩大稳定奥氏体的范围。
如果不锈钢在加热和冷却过程中通过γ相区。
它经过铁素体——奥氏体——马氏体转变,而称为马氏体不锈钢,一般这样的不锈钢是磁性的类似铁并且可以通过热处理使其硬化。
另一方面,含铬17%的合金(很少甚至没有奥氏体形成元素)位于γ环的外边,保留了铁素体结构,但通过热处理不能使其硬化。
也有磁性(由于铁素体结构)称之为铁素体不锈钢,铁素体不锈钢在所有温度下为一同相。
2.镍如果铁用约18%的铬和8%的镍来合金化,γ环区则可扩大。
铁素体仍然在形成,但转变速度非常缓慢,以致当含铬18%合金中的镍含量达到8%,甚至温度在零下时,奥氏体还继续存在。
奥氏体合金的特征是虽然热处理也不能马氏体化和淬硬化。
这些特征对所有奥氏体牌号都是共同的。
由于镍可促进奥氏体相的稳定,所以它被称为奥氏体化元素,可将奥氏体使用范围扩大到低温区。
碳和氮很早就表现出它们有类似的性能,即允许用低的镍含量去达到相同的奥氏体级别或允许加入较多的辅助合金而不出现二次相沉淀。
图4-7所示为含碳很低的三元合金在室温情况仍存在奥氏体的成分范围。
奥氏体合金可以通过冷加工来硬化,与此同时产生少量的铁素体或马氏体,并具有轻微的马氏体特征,强度也有所提高。
在生产异形铸造产品时,经过慎重考虑使之含有少量的铁素体,以改善其可铸造性并将成为引人注意的马氏体组织。
镍可提高韧性和延展性,这就使之更容易加工、制造和焊接。
同时,对酸的抗腐蚀能力也增强了,另外还可降低酸耗。
镍还可提高保持钝化膜的能力以及在腐蚀介质中的抗蚀能力。
镍较难氧化,故氧化膜中含镍量极低;氧化膜下富集镍,可增加氧化膜的稳定性。
铬不锈钢中加入镍,可提高其在硫酸、醋酸、草酸及中性盐中的耐腐蚀性。
3. 碳碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成—系列复杂的碳化物。
所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。
认识了这一影响的规律,我们就可以从不同的使用要求出发,选择不同含碳量的不锈钢。
例如工业中应用最广泛的,也是最起码的不锈钢——0Crl3~4Cr13这五个钢号的标准含铬量规定为12~14%,就是把碳要与铬形成碳化铬的因素考虑进去以后才决定的,目的即在于使碳与铬结合成碳化铬以后,固溶体中的含铬量不致低于11.7%这一最低限度的含铬量。
就这五个钢号来说由于含碳量不同,强度与耐腐蚀性能也是有区别的,0Cr13~2Crl3钢的耐腐蚀性较好但强度低于3Crl3和4Cr13钢,多用于制造结构零件,后两个钢号由于含碳较高而可获得高的强度多用于制造弹簧、刀具等要求高强度及耐磨的零件。
又如为了克服18-8铬镍不锈钢的晶间腐蚀,可以将钢的含碳量降至0.03%以下,或者加入比铬和碳亲和力更大的元素(钛或铌),使之不形成碳化铬,再如当高硬度与耐磨性成为主要要求时,我们可以在增加钢的含碳量的同时适当地提高含铬量,做到既满足硬度与耐磨性的要求,又兼顾—定的耐腐蚀功能,工业上用作轴承、量具与刃具有不锈钢9Cr18和9Cr17MoVCo钢,含碳量虽高达0.85~0.95%,由于它们的含铬量也相应地提高了,所以仍保证了耐腐蚀的要求。
总的来讲,目前工业中获得应用的不锈钢的含碳量都是比较低的,大多数不锈钢的含碳量在0.1~0.4%之间,耐酸钢则以含碳0.1~0.2%的居多。
含碳量大于0.4%的不锈钢仅占钢号总数的一小部分,这是因为在大多数使用条件下,不锈钢总是以耐腐蚀为主要目的。
此外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等。
4. 钼钼可提高钝化膜的强度,增强耐点蚀和耐缝隙腐蚀等局部腐蚀的抵抗能力,特别是在卤盐或海水中有氯离子存在的情况下。
钼也可提高对氯化物应力腐蚀裂纹的抵抗能力。
利用固溶强化的方法钼可提高奥氏体牌号的高温强度和马氏体牌号的抗回火能力。
钼能提高不锈钢的钝化能力,扩大不锈钢的钝化介质(热硫酸、稀盐酸、磷酸及有机酸等)范围。
不锈钢中加入钼,可形成含钼的氧化膜,该氧化膜具有更高的稳定性,在许多强氧化介质中都不易溶解。
它可以防止卤族元素离子对氧化膜的破坏。
因Cl-1半径很小,可穿透不够致密的氧化膜,与钢起作用,生成可溶的腐蚀产物,在局部区域形成点腐蚀。
5. 锰和氮锰对于奥氏体的作用与镍相似。
但说得确切一些,锰的作用不在于形成奥氏体,而是在于它降低钢的临界淬火速度,在冷却时增加奥氏体的稳定性,抑制奥氏体的分解,使高温下形成的奥氏体得以保持到常温。
在提高钢的耐腐蚀性能方面,锰的作用不大,如钢中的含锰量从0到10.4%变化,也不使钢在空气与酸中的耐腐蚀性能发生明显的改变。
这是因为锰对提高铁基固溶体的电极电位的作用不大,形成的氧化膜的防护作用也很低,所以工业上虽有以锰合金化的奥氏体钢(如40Mn18Cr4,50Mn18Cr4WN、ZGMn13钢等),但它们不能作为不锈钢使用。
锰可提高铬不锈钢在有机酸(醋酸、甲酸、乙醇酸)中的耐腐蚀性,促使铬不锈钢达到钝化状态。
锰也能提高钢的强度。
氮在钢中稳定奥氏体的作用约为镍的二分之一,即2%的氮在钢中的作用也是稳定奥氏体,并且作用的程度比镍还要大。
例如,欲使含18%铬的钢在常温下获得奥氏体组织,以锰和氮代镍的低镍不锈钢与元镍的铬锰氮不诱钢,目前已在工业中获得应用,有的已成功地代替了经典的18-8铬镍不锈钢。
渗氮可补偿低碳不锈钢强度的降低,提高所用温度下超低碳不锈钢的强度。
渗氮量在0.1~0.25%,超过0.25%,可能会引起气孔、氮化物析出等问题。
氮也可增加金相的稳定性,增加不锈钢的惰性,强化添加Cr、Mo元素的抗腐蚀效果。
在奥氏体及双相不锈钢中可增强耐点蚀、缝隙腐蚀和抗氯离子腐蚀的能力,并减少金属间相(б)在高温或焊接时析出的机会。
金属间相是指由钢中的两种或两种以上的金属元素构成的金属间化合物。
凡以元素周期表中过渡族元素(锰、铁、钴和镍等)为基体,含有A副族元素(钛、钒和铬等)的合金系在适合生成的条件下都能形成一系列金属间相。
4.其它元素硅是一个铁素体形成元素;碳、氮、锰、铜和钴的作用和镍一样可以可促进奥氏体的形成。
有时候对冶炼过程这些元素必然会出现并不是不可避免的,但是有时为了改善特殊性能它们是有意加入的。
碳和氮是间隙合金化元素,它们可提高室温和高温下的机械性能。
此种改善也会导致屈服强度、拉伸强度和蠕变断裂值的提高。
在奥氏体和双相不锈钢中,氮可提高抗点蚀能力并减少金属间相(б)在高温或焊接时析出的机会。
硫、晒和铅可改善机械切削加工性能,但是有降低苛刻条件下耐腐蚀能力的趋向。
钛和铌能优先与碳和氮结合形成碳化物和氮化物。
这样就可以改善高温强度性能并阻止铬的碳化物的形成。
如果形成铬的碳化物,则会在晶界附近形成贫铬区并使之对晶间腐蚀十分敏感。
为了使加入的元素对稳定化不锈钢产生最大的效果,需要进行特殊的热处理。
在ASTM技术规范中包括了该种热处理,它是作为一种补充要求加以规定的。
铌对高温蠕变断裂强度也会有一些帮助。
硅和铝可改善抗氧化性能。
铜的加入可以提高对稀酸的抗酸能力,特别是对硫酸。
铜的大量加入(3-4%)可生成一种具有低加工硬化率的合金,而且易于成形,如紧固件的冷顶锻工序。
铜可提高对稀酸特别是硫酸的抗酸能力;加入3~4%的铜具有较低的加工硬化氯,易于成形,析出的铜离子还有杀菌作用。
硫、硅和铅可改善机械切削性能,但会降低耐腐蚀能力。
钴作为合金元素在钢中应用不多,这是因为钴的价格高及其在其它方面(如高速钢、硬质合金、钴基耐热合金、磁钢或硬磁合金等)有着更重要的用途。
在一般不锈钢中加钴作合金元素的也不多,常用不锈钢如9Crl7MoVCo钢(含1.2-1.8%钴)加钴,目的并不在于提高耐腐蚀性能而在于提高硬度,因为这种不锈钢的主要用途是制造切片机械刃具、剪刀及手术刀片等。
高铬铁素体不锈钢Crl7Mo2Ti钢中加0.005%硼,可使在沸腾的65%醋酸中的耐腐蚀性能提高。
加微量的硼(0.0006~0.0007%)可使奥氏体不锈钢的热态塑性改善。
少量的硼由于形成低熔点共晶体,使奥氏体钢焊接时产生热裂纹的倾向增大,但含有较多的硼(0.5~0.6%)时,反而可防止热裂纹的产生。
因为当含有0.5~0.6%的硼时,形成奥氏体-硼化物两相组织,使焊缝的熔点降低。
熔池的凝固温度低于半溶化区时,母材在冷却时产生的张应力,由处于液态.固态的焊缝金属承受,此时是不致引起裂缝的,即使在近缝区形成了裂纹,也可以为处于液态-固态的熔池金属所填充。
含硼的铬镍奥氏体不锈钢在原子能工业中有着特殊的用途。
稀土元素如铈、镱和镧的加入可提高抗氧化性能并且使之用较低含量的铬和镍即可获得与合金化元素含量较高的合金相似的抗氧化性能。
稀土元素应用于不锈钢,目前主要在于改善工艺性能方面。
如向Crl7Ti钢和Cr17Mo2Ti钢中加少量的稀土元素,可以消除钢锭中因氢气引起的气泡和减少钢坯中的裂纹。
奥氏体和奥氏体-铁素体不锈钢中加0.02~0.5%的稀土元素(铈镧合金),可显著改善锻造性能。
曾有一种含19.5%铬、23%镍以及钼铜锰的奥氏体钢,由于热加工工艺性能在过去只能生产铸件,加稀土元素后则可轧制成各种型材。
Ni、Mn、Co、C、N、Cu等元素与Fe相互作用能扩大γ区,是奥氏体形成元素;而Cr、V、Mo、W、Ti、Al、Si、Nb、Ta、Zr等元素与Fe相互作用能缩小γ区,是铁素体形成元素。