最新可控硅工作原理及应用课件ppt
可控硅的工作原理(带图)

可控硅的工作原理(带图)可控硅是可控硅整流器的简称。
它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。
图3-29是它的结构、外形和图形符号可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。
当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看岀PN结处于反向,具有类似二极管的反向特性。
当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。
但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。
加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。
此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。
可控硅一旦导通,控制极便失去其控制作用。
就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。
图3-30是可控硅的伏安特性曲线。
图中曲线I为正向阻断特性。
无控制极信号时,可控硅正向导通电压为正向转折电压(U BO);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。
当控制极电流大到一定程度时,就不再出现正向阻断状态了。
曲线H为导通工作特性。
可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。
若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。
曲线山为反向阻断特性。
当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。
只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。
正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。
可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。
电子技术第20讲可控硅

电感性负载(如直流电动机的激磁线圈)
电路及工作原理
G
A
K
uL
u1
uT
u2
D
R –
L
+
u2正半周时晶闸管导通,u2过零后,电感产生 反电动势。
由于电感反电动势的存在,晶闸管在一定时间内 仍维持导通,失去单向导电作用。
解决办法:加续流二极管D,加入D的目的就是消 除反电动势的影响,使晶闸管在u2过零时关断
uG
u2 (B) u2 (A)
T2
A
-
RL u2
D1
+
B
uL
T1
T2
RL
D1
D2
T2 、D1导通, T1 、D2截止
T1、T2 --晶闸管 D1、D2 --晶体管
(2) 工作波形 u2
uG
uL uT1
A +
uL
u2
T1
T2 RL
B
D1 D2
t
t t t
(3) 输出电压及电流的平均值
UL
=
DSM 电压
17.3 可控整流电路
1. 单相半波可控整流电路
(1) 电路及工作原理 uG
A
G
K
u1
uT u2
RL
uL
(2) 工作波形(设u1为正弦波)
u2
u1
uG
uL uT
uG
A
G
K
u2 uT
RL uL
t
u2 > 0 时,加上触
发电压 uG ,晶闸
t 管导通 。且 uL
的大小随 uG 加入
的早晚而变化;
1
可控硅器件的工作原理

可控硅器件的工作原理
可控硅器件的工作原理是依靠外加正向电压使pn结正向导通,由于pn结的击穿电场作用在导通后的反向偏压上,使其成为具有两个电极的电子器件。
当外加正向电压超过某一数值时,电流将由一个方向流向另一个方向;反之则电流为零。
可控硅是由两个PN结加正向电压而形成的PNP型半导体器件,其工作过程是将输入的直流电压变为控制信号,然后驱动可控硅导通和关断。
在电流的控制下,使被控制电路中的交流功率开关元件按预定方向动作。
当接通或切断一定数量的电流后,由于PN结正向导通的交替变化而产生热量而使温度升高;同时由于漏源极之间存在一定的电阻值,因此会产生一定的反向电动势将多余的电能消耗掉;最后通过调节触发角的大小就可以达到对负载进行调制的目的。
《可控硅产品资料》课件

可控硅产业将向绿色 、环保、节能方向发 展,助力实现可持续 发展目标。
智能制造和物联网技 术的快速发展,将进 一步推动可控硅产业 的发展。
竞争格局
01 全球可控硅市场呈现寡头竞争格局,少数大型企 业占据主导地位。
02 国内可控硅企业在技术创新、产品质量和品牌建 设等方面不断提升,逐步扩大市场份额。
产品特点
总结词
可控硅具有高耐压、大电流、低 导通损耗等特点。
详细描述
可控硅能承受高电压和大电流, 具有低导通损耗、高开关速度、 无噪声等优点,广泛应用于电力 电子领域。
产品应用领域
总结词
可控硅主要应用于电力电子、电机控制、自动控制系统等领域。
详细描述
可控硅在电力电子领域中主要用于整流、逆变和斩波等电路中,实现电能的转换和控制。在电机控制领域中,可 控硅用于控制电机的启动、调速和制动等。在自动控制系统中,可控硅用于各种自动调节和控制系统,如温度、 压力、流量等控制系统中。
类似于双向可控硅,但具 有更高的耐压和电流容量 。
规格参数
电压等级
可控硅的额定电压,通 常有300V、600V、 1200V等。
电流等级
可控硅的额定电流,根 据不同的应用需求选择
合适的电压, 通常在1-3V之间。
反向击穿电压
可控硅的反向耐压能力 ,必须大于电路的最高
02
可控硅的工作原理
工作原理概述
可控硅是一种半导体器件,通过 控制输入信号来控制输出电流或
电压。
它由三个电极构成:阳极、阴极 和控制极。
当在控制极和阴极之间施加一个 正向触发信号时,可控硅导通, 电流可以在阳极和阴极之间流动
。
工作参数
01
02
双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图一、双向可控硅的工作原理双向可控硅(Bidirectional Thyristor,简称BRT)是一种具有双向导通特性的半导体器件。
它由四个PN结组成,结构与普通可控硅相似,但具有额外的控制极,使其能够实现双向导通。
双向可控硅的工作原理如下:1. 正向导通:当控制极施加正向电压时,控制极和阳极之间的PN结正向偏置,导通电流从阳极流向阴极。
2. 反向导通:当控制极施加反向电压时,控制极和阴极之间的PN结反向偏置,导通电流从阴极流向阳极。
3. 关断状态:当控制极未施加电压时,双向可控硅处于关断状态,不导通电流。
双向可控硅的导通和关断状态是通过控制极的电压来控制的。
当控制极施加正向电压时,双向可控硅处于正向导通状态;当控制极施加反向电压时,双向可控硅处于反向导通状态;当控制极未施加电压时,双向可控硅处于关断状态。
二、双向可控硅的原理图双向可控硅的原理图如下:```+---------+| |A1 ----| |---- A2| |G ----| |---- K| |K ----| |---- G| |A2 ----| |---- A1| |+---------+```其中,A1和A2是双向可控硅的两个主电极,G是控制极,K是附加极。
三、双向可控硅的应用双向可控硅广泛应用于交流电控制领域,具有以下几个特点和优势:1. 双向导通:双向可控硅能够实现双向导通,可以控制交流电的正向和反向导通,适合于双向开关和控制电路。
2. 高可靠性:双向可控硅具有较高的可靠性和稳定性,能够承受较高的电压和电流,适合于高功率应用。
3. 快速响应:双向可控硅的开关速度较快,响应时间短,适合于需要快速控制的应用场景。
4. 低功耗:双向可控硅的控制电流较小,功耗较低,适合于需要节能的应用。
双向可控硅的应用领域包括电力电子、电动机控制、照明控制、电炉控制等。
例如,双向可控硅可以用于调光控制,通过控制双向可控硅的导通角度和导通时间,实现对灯光亮度的调节;双向可控硅还可以用于交流机电的启动和速度控制,通过控制双向可控硅的导通时间和导通角度,实现对机电的启停和调速。
可控硅工作原理及其应用 新版

可控硅(SCR: Silicon Controlled Rectifier)是可控硅整流器的简称。
可控硅有单向、双向、可关断和光控几种类型它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。
单向可控硅的工作原理单向可控硅原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1 =β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化一、单向可控硅工作原理可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。
以上两个条件必须同时具备,可控硅才会处于导通状态。
另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。
可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。
二、单向可控硅的引脚区分对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。
从外形无法判断的可控硅,可用万用表R×100或R×1K挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的范围)时,黑表笔所接的是控制极G,红表笔所接的是阴极C,余下的一只管脚为阳极A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反向击穿电压
URSM
额定 正向
IFI
平均
电流 IH
URRM
UDRM
U U 正向转折
DSM 电压
(10-14)
3. ITAV:通态平均电流
环境温度为40。C时,在 电阻性负载、单相工频 正弦半波、导电角不小于170o的电路中,晶闸管 允许的最大通态平均电流。普通晶闸管 ITAV 为 1A---1000A。)
(10-8)
晶闸管的工作原理小结
(1)晶闸管具有单向导电性。 正向导通条件:A、K间加正向电 压,G、K间加触发信号。
(2)晶闸管一旦导通,控制极失去作用。 若使其关断,必须降低 UAK 或加 大回路电阻,把阳极电流减小到 维持电流以下。
(10-9)
§10.2 特性与参数
10.2.1 特性 I
额定正向 平均电流
(10-11)
反向特性: 在阳极和阴极间加反向电压。
A P1
这时PN结P1N1、P2N2反向偏置, N1P2正向偏置,晶闸管截止。
N1
随反向电压的增加,反向漏电流
G 稍有增加,当 U = URSM 时,反向
P2
极击穿。正常工作时,反向电压
N2
必须小于URSM。
K
URSM :反向不重复峰值电压。
(10-12)
IF
反向击穿电压
URSM URRM
IH
维持电流
导通后管压降约1V
IG3> IG2 > IG1 IG3 IG2 IG1=0A
U
反向
正向
UDRM UDSM
正向转折电压
U -- 阳极、阴极间的电压 I -- 阳极电流 (10-10)
正向特性: 在阳极和阴极间加正向电压。
A 控制极开路时: PN结P1N1、P2N2正向偏
ßßig
T2
G
T1
ßig
ig
K
等效为由二个 三极管组成
(10-6)
A
ßßig
T2
G
T1
ßig
ig
K
1. UAK > 0 、UGK>0时
T1导通
T2 导通 T1 进一步导通
形成正反馈
晶闸管迅速导通
ig = ib1
ic1 = ig = ib2
ic2 =ßib2 = ig = ib1
2. 晶闸管导通后,去掉UGK 依靠正反馈,晶闸管仍维持导通状态。
长 的 时 间 隧 道,袅
可控硅工作原理及应用
第十章 晶闸管及其应用
§10.1 工作原理 §10.2 特性与参数 §10.3 可控整流电路 §10.4 触发电路 §10.5 单结管触发的可控整流电路 §10.6 晶闸管的其它应用 §10.7 晶闸管的保护及其它类型
(10-2)
晶闸管(Thyristor)
10.2.2 主要参数
1. UDRM:断态重复峰值电压 晶闸管耐压值。一般取 UDRM = 80% UDSM 。 普通晶闸管UDRM 为 100V---3000V
反向击穿电压
URSM
额定 正向
IFI
平均
电流 IH
UDRM
U U 正向转折
DSM 电压
(10-13)
2. URRM:反向重复峰值电压
控制极断路时,可以重复作用在晶闸管上的反 向重复电压。一般取URRM = 80% URSM。普通晶 闸管URRM为100V--3000V)
别名:可控硅(SCR)(Silicon Controlled Rectifier) 是一种大功率半导体器件,出现于70年代。它 的出现使半导体器件由弱电领域扩展到强电领 域。
特点:体积小、重量轻、无噪声、寿命长、 容量大(正 向平均电流达千安、正向耐压达数千伏)。
应用领域:
• 整流(交流 直流) • 逆变(直流 交流) • 变频(交流 交流) • 斩波(直流 直流)
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
此外还可作无触点开关等。
(10-3)
§10.1 工作原理
10.1.1 结构
四 层 半 导 体
A(阳极)
三
P1
个
PN
N1
结
P2
G(控制极)
N2
K(阴极) (10-4)
10.1.2 工作原理 A
A
A G
K 符号
P1
N1 G
P2 N2
K
P
NN G
PP
N
K 示意图
(10-5)
A
P G NN
PP N
K
A
置,N1P2反向偏置,晶闸管截止。
P1
随UAK的加大,阳极电流逐渐增加。当
N1 G
P2
U = UDSM时,PN结N1P2反向极击穿, 晶闸管自动导通。正常工作时, UAK 应小于 UDSM 。
N2
UDSM:断态不重复峰值电压,又称正向
ห้องสมุดไป่ตู้
K
转折电压。
若在G和K间加正向电压:UGK越大,则UDSM越小。
UGK足够大时,正向特性与二极管的正向特性类似。
(10-7)
3. 晶闸管截止的条件:
A
(1) 晶闸管开始工作时 ,UAK加
反向电压,或不加触发信号
ßßig
T2
(即UGK = 0 )。
(2) 晶闸管正向导通后,令其截止
G
T1
ßig
的方法:
ig
• 加大回路电阻,使晶闸管中电
流小于某一值IH时,正反馈效
K
应不能维持。
IH:最小维持电流
• 减小UAK,使晶闸管中电流小 于某一值IH。