毕业设计英文文献翻译
毕业论文(设计)外文文献翻译及原文
金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。
一、引言各个国家的企业在显著不同的金融体制下运行。
金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。
然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。
这项研究结果解释表明企业投资受限于外部资金的可得性。
很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。
因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。
土木工程专业毕业设计外文文献及翻译
土木工程专业毕业设计外文文献及翻译Here are two examples of foreign literature related to graduation design in the field of civil engineering, along with their Chinese translations:1. Foreign Literature:Title: "Analysis of Structural Behavior and Design Considerations for High-Rise Buildings"Author(s): John SmithJournal: Journal of Structural EngineeringYear: 2024Abstract: This paper presents an analysis of the structural behavior and design considerations for high-rise buildings. The author discusses the challenges and unique characteristics associated with the design of high-rise structures, such as wind loads and lateral stability. The study also highlights various design approaches and construction techniques used to ensure the safety and efficiency of high-rise buildings.Chinese Translation:标题:《高层建筑的结构行为分析与设计考虑因素》期刊:结构工程学报年份:2024年2. Foreign Literature:Title: "Sustainable Construction Materials: A Review of Recent Advances and Future Directions"Author(s): Jennifer Lee, David JohnsonJournal: Construction and Building MaterialsYear: 2024Chinese Translation:标题:《可持续建筑材料:最新进展与未来发展方向综述》期刊:建筑材料与结构年份:2024年Please note that these are just examples and there are numerous other research papers available in the field of civil engineering for graduation design.。
毕业设计论文外文文献翻译
毕业设计(论文)外文文献翻译院系:财务与会计学院年级专业:201*级财务管理姓名:学号:132148***附件: 财务风险管理【Abstract】Although financial risk has increased significantly in recent years risk and risk management are not contemporary issues。
The result of increasingly global markets is that risk may originate with events thousands of miles away that have nothing to do with the domestic market。
Information is available instantaneously which means that change and subsequent market reactions occur very quickly。
The economic climate and markets can be affected very quickly by changes in exchange rates interest rates and commodity prices。
Counterparties can rapidly become problematic。
As a result it is important to ensure financial risks are identified and managed appropriately. Preparation is a key component of risk management。
【Key Words】Financial risk,Risk management,YieldsI. Financial risks arising1.1What Is Risk1.1.1The concept of riskRisk provides the basis for opportunity. The terms risk and exposure have subtle differences in their meaning. Risk refers to the probability of loss while exposure is the possibility of loss although they are often used interchangeably。
现代包装机械设备毕业课程设计外文文献翻译、中英文翻译
1 英文文献翻译1.1 Modern PackagingAuthor:Abstract1. Changing Needs and New RolesLooking back, historical changes are understandable and obvious. That all of them have had an impact on the way products are brought, consumed and packaged is also obvious. What is not so obvious is what tomorrow will bring. Yet, it is to the needs, markets, and conditions of tomorrow that packaging professionals must always turn their attention.The forces that drove packaging during the Industry Revolution continue to operate today. The consumer society continues to grow and is possibly best described by a 1988s bumper sticker, “Born to Shop”. We consume goods today at a rate 4 to 5 times greater than we did as recently as 1935. Most of these goods are not essential to survival; they constitute what we may call “the good life”.In the second half of the 20th century, the proliferation of goods was so high that packaging was forced into an entirely new role, that of providing the motivation rather than presenting the goods itself. On a shelf of 10 competing products, all of them similar in performance and quality, the only method of differentiating became the package itself. Marketer aimed at lifestyles, emotional values, subliminal images, features, and advantages beyond the basic product rather than the competitor’s. In some in instances, the package has become the product, and occasionally packaging has become entertainment.A brand product to carry the product manufacturer or product sales of theretailer’s label, usually by the buyer as a quality assessment guidance. In some cases, competing brands of product quality is almost no difference, a difference is the sale of its packaging. An interesting visually attractive packaging can give a key marketing advantage and convince impulse spending. However, the packaging should accurately reflect the quality of products/brand value in order to avoid the disappointment of consumers, encourage repeat purchases and build brand loyalty. Ideally, the product should exceed customer expectations.2. Packaging and the Modern Industrial SocietyThe importance of packaging to a modern industrial society is most evident when we examine the food-packaging sector. Food is organic in nature, having an animal or plant source. One characteristic of such organic matter is that, by and large, it has a limited natural biological life.A cut of meat, left to itself, might be unfit for human consumption by the next day. Some animal protein products, such as seafood, can deteriorate within hours.The natural shelf life of plant-based food depends on the species and plant involved. Pulpy fruit portions tend to have a short life span, while seed parts, which in nature have to survive at least separated from the living plant are usually short-lived.In addition to having a limited natural shelf life, most food is geographically and season-ally specific. Thus, potatoes and apples are grown in a few North American geographical regions and harvest during a short maturation period. In a world without packaging,we would need to live at the point of harvest to enjoy these products, and our enjoyment of them would be restricted to the natural biological life span of each. It is by proper storage, packaging and transport techniques that we are able to deliver fresh potatoes and apples, or the products derived from them, throughout the year and throughout the country. Potato-whole,canned, powdered, flaked, chipped, frozen, and instant is available, anytime, anywhere. This ability gives a society great freedom and mobility. Unlike less-developed societies, we are no longer restricted in our choice of where to live, since we are no longer tied to the food-producing ability of an area. Food production becomes more specialized and efficient with the growth of packaging. Crops and animal husbandry are moved to where their production is most economical, without regard to the proximity of a market. Most important, we are free of the natural cycles of feast and famine that are typical of societies dependent on natural regional food-producing cycles.Central processing allows value recovery from what would normally be waste by products of the processed food industry from the basis of other sub-industries. Chicken feathers are high in protein and, properly mill and treated, can be fed back to the next generation of chickens. Vegetable waste is fed to cattle or pigs. Bagasse, the waste cane from sugar pressing, is a source of fiber for papermaking. Fish scales are refined to make additives for paints and nail polish.The economical manufacture of durable goods also depends on good packaging.A product's cost is directly related to production volume. The business drive to reduce costs in the supply chain must be carefully balanced against the fundamental technical requirements for food safety and product integrity, as well as the need to ensure an. efficient logistics service. In addition, there is a requirement to meet the aims of marketing to protect and project brand image through value-added pack design. The latter may involve design inputs that communicate distinctive, aesthetically pleasing, ergonomic, functional and/or environmentally aware attributes. But for a national or international bicycle producer to succeed, it must be a way of getting the product to a market, which may be half a world away. Again, sound packaging, in this case distributionpackaging, is a key part of the system.Some industries could not exist without an international market. For example, Canada is a manufacturer of irradiation equipment, but the Canadian market (which would account for perhaps one unit every several years) could not possibly support such a manufacturing capability. However, by selling to the world, a manufacturing facility becomes viable. In addition to needing packaging for the irradiation machinery and instrumentation, the sale of irradiation equipment requires the sale packaging and transport of radioactive isotopes, a separate challenge in itself. In response to changing consumer lifestyles, the large retail groups and the food service industry development. Their success has been involved in a competition fierce hybrid logistics, trade, marketing and customer service expertise, all of which is dependent on the quality of packaging. They have in part led to the expansion of the dramatic range of products offered, technology innovation, including those in the packaging. Supply retail, food processing and packaging industry will continue to expand its international operations. Sourcing products around the world more and more to assist in reducing trade barriers. The impact of the decline has been increased competition and price pressure. Increased competition led to the rationalization of industrial structure, often in the form of mergers and acquisitions. Packaging, it means that new materials and shapes, increased automation, packaging, size range extension of lower unit cost. Another manufacturer and mergers and acquisitions, the Group's brand of retail packaging and packaging design re-evaluation of the growing development of market segmentation and global food supply chain to promote the use of advanced logistics and packaging systems packaging logistics system is an integral part of, and played an important role in prevention in the food supply or reduce waste generation.3. World Packaging.This discussion has referred to primitive packaging and the evolution of packaging functions. However, humankind's global progress is such that virtually every stage in the development of society and packaging is present somewhere in the world today. Thus, a packager in a highly developed country will agonize over choice of package type, hire expensive marketing groups to develop images to entice the targeted buyer and spend lavishly on graphics. In less-developed countries, consumers are happy to have food, regardless of the package. At the extreme, consumers will bring their own packages or will consume food on the spot, just as they did 2000 years ago.Packagers from the more developed countries sometimes have difficulty working with less-developed nations, for the simple reason that they fail to understand that their respective packaging priorities are completely different. Similarly, developing nations trying to sell goods to North American markets cannot understand our preoccupation with package and graphics.The significant difference is that packaging plays a different role in a market where rice will sell solely because it is available. In the North American market, the consumer may be confronted by five different companies offering rice in 30 or so variations. If all the rice is good and none is inferior, how does a seller create a preference for his particular rice? How does he differentiate? The package plays a large role in this process.The package-intensive developed countries are sometimes criticized for over packaging, and certainly over-packaging does exist. However, North Americans also enjoy the world's cheapest food, requiring only about 11 to 14% of our disposable income. European food costs are about 20% of disposable income, and in the less-developed countries food can take 95%of family income.4. The status and development trend of domestic and international packaging machineryWorldwide, the history of the development of the packaging machinery industry is relatively short, science and technology developed in Europe and America in general started in the 20th century until the 1950s the pace greatly accelerated.From the early 20th century, before the end of World War II World War II,medicine,food, cigarettes,matches,household chemicals and other industrial sectors, the mechanization of the packaging operations; the 1950s, the packaging machine widely used common electric switches and tube for the main components of the control system to achieve the primary automation; 1960s, Electrical and optical liquid-gas technology is significantly increased in the packaging machine, machines to further expand on this basis a dedicated automated packaging line; the 1970s, the micro- electronic technology into the automation of packaging machines and packaging lines, computer control packing production process; from the 1980s to the early 1990s, in some field of packaging, computer, robot application for service, testing and management, in preparation for the over-flexible automatic packaging lines and "no" automatic packaging workshop.Actively promoted and strong co-ordination of all aspects of society, and gradually establish a packaging material, packaging, printing, packaging machinery and other production sectors, and corresponding to the research, design, education, academic, management and organization, and thus the formation of independent and complete. The packaging of light industrial system, and occupies an important place in the national economy as a whole.Based on recent years data that members of the World Packaging Alliance output value of the packaging industry accounts for about 2% of the total output value of the national economy; in which the proportion of packaging machinery, though not large, but the rapid development of an annual average of almost growing at a rate of about 10%. Put into use at the packaging machine is now more than thousand species of packaging joint machines and automated equipment has been stand-alone equate. According to the new technological revolution in the world development trend is expected to packaging materials and packaging process and packaging machinery will be closely related to obtain the breakthrough of a new step, and bring more sectors into the packaging industry.China Packaging Technology Association was established in 1980. Soon, the China National Packaging Corporation have been born. Since then, one after another in the country organized a national and international packaging machinery exhibition, seminars, also published I had the first ever "China Packaging Yearbook and other packaging technology books. All this indicates that China is creating a new packaging historical perio d.1.2中文翻译现代包装1、不断变化的需求和新的角色,回顾以往,包装所带来明显的历史性变化是可以理解的, 一个产品包装方式的给他们的销量带来的影响也是显而易见的。
软件工程专业毕业设计外文文献翻译
软件工程专业毕业设计外文文献翻译1000字本文将就软件工程专业毕业设计的外文文献进行翻译,能够为相关考生提供一定的参考。
外文文献1: Software Engineering Practices in Industry: A Case StudyAbstractThis paper reports a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The study investigated the company’s software development process, practices, and techniques that lead to the production of quality software. The software engineering practices were identified through a survey questionnaire and a series of interviews with the company’s software development managers, software engineers, and testers. The research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company follows a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The findings of this study provide a valuable insight into the software engineering practices used in industry and can be used to guide software engineering education and practice in academia.IntroductionSoftware engineering is the discipline of designing, developing, testing, and maintaining software products. There are a number of software engineering practices that are used in industry to ensure that software products are of high quality, reliable, and maintainable. These practices include software development processes, software configuration management, software testing, requirements engineering, and project management. Software engineeringpractices have evolved over the years as a result of the growth of the software industry and the increasing demands for high-quality software products. The software industry has developed a number of software development models, such as the Capability Maturity Model Integration (CMMI), which provides a framework for software development organizations to improve their software development processes and practices.This paper reports a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The objective of the study was to identify the software engineering practices used by the company and to investigate how these practices contribute to the production of quality software.Research MethodologyThe case study was conducted with a large US software development company that produces software for aerospace and medical applications. The study was conducted over a period of six months, during which a survey questionnaire was administered to the company’s software development managers, software engineers, and testers. In addition, a series of interviews were conducted with the company’s software development managers, software engineers, and testers to gain a deeper understanding of the software engineering practices used by the company. The survey questionnaire and the interview questions were designed to investigate the software engineering practices used by the company in relation to software development processes, software configuration management, software testing, requirements engineering, and project management.FindingsThe research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company’s software development process consists of five levels of maturity, starting with an ad hoc process (Level 1) and progressing to a fully defined and optimized process (Level 5). The company has achieved Level 3 maturity in its software development process. The company follows a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The software engineering practices used by the company include:Software Configuration Management (SCM): The company uses SCM tools to manage software code, documentation, and other artifacts. The company follows a branching and merging strategy to manage changes to the software code.Software Testing: The company has adopted a formal testing approach that includes unit testing, integration testing, system testing, and acceptance testing. The testing process is automated where possible, and the company uses a range of testing tools.Requirements Engineering: The company has a well-defined requirements engineering process, which includes requirements capture, analysis, specification, and validation. The company uses a range of tools, including use case modeling, to capture and analyze requirements.Project Management: The company has a well-defined project management process that includes project planning, scheduling, monitoring, and control. The company uses a range of tools to support project management, including project management software, which is used to track project progress.ConclusionThis paper has reported a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The study investigated the company’s software development process,practices, and techniques that lead to the production of quality software. The research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company uses a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The findings of this study provide a valuable insight into the software engineering practices used in industry and can be used to guide software engineering education and practice in academia.外文文献2: Agile Software Development: Principles, Patterns, and PracticesAbstractAgile software development is a set of values, principles, and practices for developing software. The Agile Manifesto represents the values and principles of the agile approach. The manifesto emphasizes the importance of individuals and interactions, working software, customer collaboration, and responding to change. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases. This paper presents an overview of agile software development, including its principles, patterns, and practices. The paper also discusses the benefits and challenges of agile software development.IntroductionAgile software development is a set of values, principles, and practices for developing software. Agile software development is based on the Agile Manifesto, which represents the values and principles of the agile approach. The manifesto emphasizes the importance of individuals and interactions, working software, customer collaboration, and responding to change. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases.Agile Software Development PrinciplesAgile software development is based on a set of principles. These principles are:Customer satisfaction through early and continuous delivery of useful software.Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.Deliver working software frequently, with a preference for the shorter timescale.Collaboration between the business stakeholders and developers throughout the project.Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.Working software is the primary measure of progress.Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.Continuous attention to technical excellence and good design enhances agility.Simplicity – the art of maximizing the amount of work not done – is essential.The best architectures, requirements, and designs emerge from self-organizing teams.Agile Software Development PatternsAgile software development patterns are reusable solutions to common software development problems. The following are some typical agile software development patterns:The Single Responsibility Principle (SRP)The Open/Closed Principle (OCP)The Liskov Substitution Principle (LSP)The Dependency Inversion Principle (DIP)The Interface Segregation Principle (ISP)The Model-View-Controller (MVC) PatternThe Observer PatternThe Strategy PatternThe Factory Method PatternAgile Software Development PracticesAgile software development practices are a set ofactivities and techniques used in agile software development. The following are some typical agile software development practices:Iterative DevelopmentTest-Driven Development (TDD)Continuous IntegrationRefactoringPair ProgrammingAgile Software Development Benefits and ChallengesAgile software development has many benefits, including:Increased customer satisfactionIncreased qualityIncreased productivityIncreased flexibilityIncreased visibilityReduced riskAgile software development also has some challenges, including:Requires discipline and trainingRequires an experienced teamRequires good communicationRequires a supportive management cultureConclusionAgile software development is a set of values, principles, and practices for developing software. Agile software development is based on the Agile Manifesto, which represents the values and principles of the agile approach. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases. Agile software development has many benefits, including increased customer satisfaction, increased quality, increased productivity, increased flexibility, increased visibility, and reduced risk. Agile software development also has some challenges, including the requirement for discipline and training, the requirement for an experienced team, the requirement for good communication, and the requirement for a supportive management culture.。
毕业设计论文化学系毕业论文外文文献翻译中英文
毕业设计论文化学系毕业论文外文文献翻译中英文英文文献及翻译A chemical compound that is contained in the hands of the problemsfor exampleCatalytic asymmetric carbon-carbon bond formation is one of the most active research areas in organic synthesis In this field the application of chiral ligands in enantioselective addition of diethylzinc to aldehydes has attracted much attention lots of ligands such as chiral amino alcohols amino thiols piperazines quaternary ammonium salts 12-diols oxazaborolidines and transition metal complex with chiral ligands have been empolyed in the asymmetric addition of diethylzinc to aldehydes In this dissertation we report some new chiral ligands and their application in enantioselective addition of diethylzinc to aldehydes1 Synthesis and application of chiral ligands containing sulfur atomSeveral a-hydroxy acids were prepared using the literature method with modifications from the corresponding amino acids valine leucine and phenylalanine Improved yields were obtained by slowly simultaneous addition of three fold excess of sodium nitrite and 1 tnolL H2SO4 In the preparation of a-hydroxy acid methyl esters from a-hydroxy acids following the procedure described by Vigneron a low yield 45 was obtained It was found that much better results yield 82 couldbe obtained by esterifying a-hydroxy acids with methanol-thionyl chlorideThe first attempt to convert S -2-hydroxy-3-methylbutanoic acid methyl ester to the corresponding R-11-diphenyl-2-mercapto-3-methyl-l-butanol is as the following S-2-Hydroxy-3-methylbutanoic acid methyl ester was treated with excess of phenylmagnesium bromide to give S -11-diphenyl-3-methyl-12-butanediol which was then mesylated to obtain S -11-diphenyl-3-methyl-2-methanesulfonyloxy -l-butanol Unfortunately conversion of S-11-diphenyl-3-methyl-2- methanesulfonyloxy -l-butanol to the corresponding thioester by reacting with potassium thioacetate under Sn2 reaction conditions can be achieved neither in DMF at 20-60 nor in refluxing toluene in the presence of 18-crown-6 as catalyst When S -1ll-diphenyl-3-methyl-2- methane sulfonyloxy -l-butanol was refluxed with thioacetic acid in pyridine an optical active epoxide R-22-diphenyl -3-isopropyloxirane was obtained Then we tried to convert S -11-diphenyl-3-methyl-l2-butanediol to the thioester by reacting with PPh3 DEAD and thioacetic acid the Mitsunobu reaction but we failed either probably due to the steric hindrance around the reaction centerThe actually successful synthesis is as described below a-hydroxy acid methyl esters was mesylated and treated with KSCOCH3 in DMF to give thioester this was than treated with phenyl magnesium bromide to gave the target compound B-mercaptoalcohols The enantiomeric excesses ofp-mercaptoalcohols can be determined by 1H NMR as their S -mandeloyl derivatives S -2-amino-3-phenylpropane-l-thiol hydrochloride was synthesized from L-Phenylalanine L-Phenylalanine was reduced to the amino alcohol S -2-amino-3-phenylpropanol Protection of the amino group using tert-butyl pyrocarbonate gave S -2-tert-butoxycarbonylamino-3-phenylpropane-l-ol which was then O-mesylated to give S -2-tert-butoxycarbonylamino-3-phenylpropyl methanesulfonate The mesylate was treated with potassium thioacetate in DMF to give l-acetylthio-2-tert-butoxycarbonylamino-3-phenylpropane The acetyl group was then removed by treating with ammonia in alcohol to gave S -2-tert-butoxycarbonylamino-3-phenyl-propane-l-thiol which was then deprotected with hydrochloric acid to give the desired S-2-amino-3-phenylpropane-1-thiol hydrochlorideThe enantioselective addition of diethylzinc to aldehydes promoted by these sulfur containing chiral ligands produce secondary alcohols in 65-79 Synthesis and application of chiral aminophenolsThree substituted prolinols were prepared from the naturally-occurring L-proline using reported method with modifications And the chiral aminophenols were obtained by heating these prolinols with excess of salicylaldehyde in benzene at refluxThe results of enantioselective adBelow us an illustration forexampleN-Heterocyclic carbenes and L-Azetidine-2-carboxylicacidN-Heterocyclic carbenesN-Heterocyclic carbenes have becomeuniversal ligands in organometallic and inorganic coordination chemistry They not only bind to any transition metal with low or high oxidation states but also to main group elements such as beryllium sulfur and iodine Because of their specific coordination chemistry N-heterocyclic carbenes both stabilize and activate metal centers in quite different key catalytic steps of organic syntheses for example C-H activation C-C C-H C-O and C-N bond formation There is now ample evidence that in the new generation of organometallic catalysts the established ligand class of organophosphanes will be supplemented and in part replaced byN-heterocyclic carbenes Over the past few years this chemistry has become the field of vivid scientific competition and yielded previously unexpected successes in key areas of homogeneous catalysis From the work in numerous academic laboratories and in industry a revolutionary turningpoint in oraganometallic catalysis is emergingIn this thesis Palladium Ⅱ acetate and NN"-bis- 26-diisopropylphenyl dihydro- imidazolium chloride 1 2 mol were used to catalyze the carbonylative coupling of aryl diazonium tetrafluoroborate salts and aryl boronic acids to form aryl ketones Optimal conditions include carbon monoxide 1 atm in 14-dioxane at 100℃ for 5 h Yields for unsymmetrical aryl ketones ranged from 76 to 90 for isolated materials with only minor amounts of biaryl coupling product observed 2-12 THF as solvent gave mixtures of products 14-Dioxane proved to be the superior solvent giving higher yieldsof ketone product together with less biphenyl formation At room temperature and at 0℃ with 1 atm CO biphenyl became the major product Electron-rich diazonium ion substrates gave a reduced yield with increased production of biaryl product Electron-deficient diazonium ions were even better forming ketones in higher yields with less biaryl by-product formed 2-Naphthyldiazonium salt also proved to be an effective substrate givingketones in the excellent range Base on above palladium NHC catalysts aryl diazonium tetrafluoroborates have been coupled with arylboron compounds carbon monoxide and ammonia to give aryl amides in high yields A saturated yV-heterocyclic carbene NHC ligand H2lPr 1 was used with palladium II acetate to give the active catalyst The optimal conditions with 2mol palladium-NHC catalyst were applied with various organoboron compounds and three aryl diazonium tetrafluoroborates to give numerous aryl amides in high yield using pressurized CO in a THF solution saturated with ammonia Factors that affect the distribution of the reaction products have been identified and a mechanism is proposed for this novel four-component coupling reactionNHC-metal complexes are commonly formed from an imidazolium salt using strong base Deprotonation occurs at C2 to give a stable carbene that adds to form a a-complex with the metal Crystals were obtained from the reaction of imidazolium chloride with sodium t- butoxide Nal and palladium II acetate giving a dimeric palladium II iodide NHC complex The structure adopts a flat 4-memberedring u2 -bridged arrangement as seen in a related dehydro NHC complex formed with base We were pleased to find that chloride treated with palladium II acetate without adding base or halide in THF also produced suitable crystals for X-ray anaysis In contrast to the diiodide the palladium-carbenes are now twisted out of plane adopting a non-planar 4-ring core The borylation of aryldiazonium tetrafluoroborates with bis pinacolatoborane was optimized using various NHC ligand complexes formed in situ without adding base NN"-Bis 26-diisopropylphenyl-45-dihydroimidazolium 1 used with palladium acetate in THF proved optimal giving borylated product in 79 isolated yield without forming of bi-aryl side product With K2CO3 and ligand 1 a significant amount of biaryl product 24 was again seen The characterization of the palladium chloride complex by X-ray chrastallography deL-Azetidine-2-carboxylic acidL-Azetidine-2-carboxylic acid also named S -Azetidine-2-carboxylic acid commonly named L-Aze was first isolated in 1955 by Fowden from Convallaria majalis and was the first known example of naturally occurring azetidine As a constrained amino acid S -Azetidine-2-carboxylic acid has found many applications in the modification of peptides conformations and in the area of asymmetric synthesis which include its use in the asymmetric reduction of ketones Michael additions cyclopropanations and Diels-Alder reactions In this dissertation five ways for synthesize S-Azetidine-2-carboxylic acid were studied After comparing all methods theway using L-Aspartic acid as original material for synthesize S-Azetidine-2-carboxylic acid was considered more feasible All mechanisms of the way"s reaction have also been studied At last the application and foreground of S -Azetidine-2-carboxylic acid were viewed The structures of the synthetic products were characterized by ThermalGravity-Differential Thermal Analysis TG-DTA Infrared Spectroscopy IR Mass Spectra MS and 1H Nuclear Magnetic Resonance 1H-NMR Results showed that the structures and performances of the products conformed to the anticipation the yield of each reaction was more than 70 These can conclude that the way using L-Aspartie acid as original material for synthesize S -Azetidine-2-carboxylic acid is practical and effective杂环化合物生成中包含手性等问题如催化形成不对称碳碳键在有机合成中是一个非常活跃的领域在这个领域中利用手性配体诱导的二乙基锌和醛的不对称加成引起化学家的广泛关注许多手性配体如手性氨基醇手性氨基硫醇手性哌嗪手性四季铵盐手性二醇手性恶唑硼烷和过渡金属与手性配体的配合物等被应用于二乙基锌对醛的不对称加成中在本论文中我们报道了一些新型的手性配体的合成及它们应用于二乙基锌对醛的不对称加成的结果1含硫手性配体的合成和应用首先从氨基酸缬氨酸亮氨酸苯丙氨酸出发按照文献合成α-羟基酸并发现用三倍量的亚硝酸钠和稀硫酸同时滴加进行反应能适当提高反应的产率而根据Vigneron等人报道的的方法用浓盐酸催化从α-羟基酸合成α-羟基酸甲酯时只能获得较低的产率改用甲醇-二氯亚砜的酯化方法时能提高该步骤的产率从 S -3-甲基-2-羟基丁酸甲酯合成 R -3-甲基-11-二苯基-2-巯基-1-丁醇经过了以下的尝试 S -3-甲基-2-羟基丁酸甲酯和过量的格氏试剂反应得到 S -3-甲基-11-二苯基-12-丁二醇进行甲磺酰化时位阻较小的羟基被磺酰化生成 S -3-甲基-11-二苯基-2- 甲磺酰氧基 -1-丁醇但无论将 S -3-甲基-11-二苯基-2- 甲磺酰氧基 -1-丁醇和硫代乙酸钾在DMF中反应 20~60℃还是在甲苯中加入18-冠-6作为催化剂加热回流都不能得到目标产物当其与硫代乙酸在吡啶中回流时得到的不是目标产物而是手性环氧化合物 R -3-异丙基-22-二苯基氧杂环丙烷从化合物 S -3-甲基-11-二苯基-12-丁二醇通过Mitsunobu反应合成硫代酯也未获得成功这可能是由于在反应中心处的位阻较大造成的几奥斯塑手村犯体的合成裁其在不对称奋成中肠左用摘要成功合成疏基醇的合成路是将a-轻基酸甲酷甲磺酞化得到相应的磺酞化产物并进行与硫代乙酸钾的亲核取代反应得到硫酷进行格氏反应后得到目标分子p一疏基醇用p一疏基醇与 R 义一一甲氧基苯乙酞氯生成的非对映体经H侧NM吸测试其甲氧基峰面积的积分求得其ee值 3一苯基一氨基丙硫醇盐酸盐从苯丙氨酸合成斗3一苯基一氨基丙醇由L一苯丙氨酸还原制备氨基保护后得到习一3一苯基一2一叔丁氧拨基氨基一1一丙醇甲磺酞化后得到习一3一苯基一2一叔丁氧拨基氨基一1一丙醇甲磺酸酷用硫代乙酸钾取代后得匀一3-苯基一2一叔丁氧拨基氨基一1一丙硫醇乙酸酷氨解得习一3一苯基一2一叔丁氧拨基氨基一1一丙硫醇用盐酸脱保护后得到目标产物扔3一苯基屯一氨基丙硫醇盐酸盐手性含硫配体诱导下的二乙基锌与醛的加成所得产物的产率为65一79值为O井92手性氨基酚的合成和应用首先从天然的L一脯氨酸从文献报道的步骤合成了三种脯氨醇这些手性氨基醇与水杨醛在苯中回流反应得到手性氨基酚手性氨基酚配体诱导下的二乙基锌与醛的加成所得产物的产率为45一98值为0一90手性二茂铁甲基氨基醇的合成和应用首先从天然氨基酸绿氨酸亮氨酸苯丙氨酸和脯氨酸合成相应的氨基醇这些氨基醇与二茂铁甲醛反应生成的NO一缩醛经硼氢化钠还原得到手性二茂铁甲基氨基醇手性二茂铁甲基氨基醇配体诱导下的二乙基锌与醛的加成所得产物的产率为66一97下面我们举例说明一下例如含氮杂环卡宾和L-氮杂环丁烷-2-羧酸含氮杂环卡宾含氮杂环卡宾已广泛应用于有机金属化学和无机配合物化学领域中它们不仅可以很好地与任何氧化态的过渡金属络合还可以与主族元素铍硫等形成配合物由于含氮杂环卡宾不但使金属中心稳定而且还可以活化此金属中心使其在有机合成中例如C-H键的活化C-CC-HC-O和C-N键形成反应中有着十分重要的催化效能现有的证据充分表明在新一代有机金属催化剂中含氮杂环卡宾不但对有机膦类配体有良好的互补作用而且在有些方面取代有机膦配体成为主角近年来含氮杂环卡宾及其配合物已成为非常活跃的研究领域在均相催化这一重要学科中取得了难以想象的成功所以含氮杂环卡宾在均相有机金属催化领域的研究工作很有必要深入地进行下去本文研究了乙酸钯和NN双 26-二异丙基苯基 -45-二氢咪唑氯化物1作为催化剂催化芳基四氟硼酸重氮盐与芳基硼酸的羰基化反应合成了一系列二芳基酮并对反应条件进行了优化使反应在常温常压下进行一个大气压的一氧化碳14-二氧杂环己烷作溶剂100℃反应5h 不同芳基酮的收率达7690仅有微量的联芳烃付产物 212 反应选择性良好当采用四氢呋喃或甲苯作溶剂时得到含较多副产物的混合物由此可以证明14-二氧杂环己烷是该反应最适宜的溶剂在室温或0℃与一个大气压的一氧化碳反应联芳烃变成主产物含供电子取代基的芳基重氮盐常常给出较低收率的二芳基酮而含吸电子取代基的芳基重氮盐却给出更高收率的二芳基酮及较少量的联芳烃付产物实验证明2-萘基重氮盐具有很好的反应活性和选择性总是得到优异的反应结果在此基础上由不同的芳基四氟硼酸重氮盐与芳基硼酸一氧化碳和氨气协同作用以上述含氮杂环卡宾作配体与乙酸钯生成的高活性含氮杂环卡宾钯催化剂催化较高收率地得到了芳基酰胺优化的反应条件是使用2mol的钯-H_2IPr 1五个大气压的一氧化碳以氨气饱和的四氢呋喃作溶剂由不同的有机硼化合物与三种芳基重氮盐的四组份偶联反应同时不仅对生成的多种产物进行了定 L-氮杂环丁烷-2-羧酸L-氮杂环丁烷-2-羧酸又称 S -氮杂环丁烷-2-羧酸简称为L-Aze1955年由Fowden从植物铃兰 Convallaria majalis 中分离得到成为第一个被证实的植物中天然存在的氮杂环丁烷结构作为一种非典型的氨基酸已经发现 S -氮杂环丁烷-2-羧酸可广泛用于对多肽结构的修饰以及诸如不对称的羰基还原Michael 加成环丙烷化和Diels-Alder反应等不对称合成中的多个领域本文通过对 S -氮杂环丁烷-2-羧酸合成路线的研究综述了五种可行的合成路线及方法通过比较选用以L-天冬氨酸为初始原料合成 S -氮杂环丁烷-2-羧酸的路线即通过酯化反应活泼氢保护格氏反应内酰胺化反应还原反应氨基保护氧化反应脱保护等反应来合成 S -氮杂环丁烷-2-羧酸分析了每步反应的机理并对 S -氮杂环丁烷-2-羧酸的应用及前景给予展望通过热分析红外质谱核磁等分析手段对合成的化合物的结构进行表征结果表明所得的产物符合目标产物所合成的化合物的结构性能指标与设计的目标要求一致每步反应的收率都在70%以上可以判定以L-天冬氨酸为初始原料合成 S -氮杂环丁烷的路线方案切实可行。
毕业设计论文外文文献翻译智能交通信号灯控制中英文对照
英语原文Intelligent Traffic Light Controlby Marco Wiering The topic I picked for our community project was traffic lights. In a community, people need stop signs and traffic lights to slow down drivers from going too fast. If there were no traffic lights or stop signs, people’s lives would be in danger from drivers going too fast.The urban traffic trends towards the saturation, the rate of increase of the road of big city far lags behind rate of increase of the car.The urban passenger traffic has already become the main part of city traffic day by day and it has used about 80% of the area of road of center district. With the increase of population and industry activity, people's traffic is more and more frequent, which is unavoidable. What means of transportation people adopt produces pressure completely different to city traffic. According to calculating, if it is 1 to adopt the area of road that the public transport needs, bike needs 5-7, car needs 15-25, even to walk is 3 times more than to take public transits. So only by building road can't solve the city traffic problem finally yet. Every large city of the world increases the traffic policy to the first place of the question.For example,according to calculating, when the automobile owning amount of Shanghai reaches 800,000 (outside cars count separately ), if it distributes still as now for example: center district accounts for great proportion, even when several loop-lines and arterial highways have been built up , the traffic cannot be improved more than before and the situation might be even worse. So the traffic policy Shanghai must adopt , or called traffic strategy is that have priority to develop public passenger traffic of city, narrow the scope of using of the bicycle progressively , control the scale of growth of the car traffic in the center district, limit the development of the motorcycle strictly.There are more municipals project under construction in big city. the influence on the traffic is greater.Municipal infrastructure construction is originally a good thing of alleviating the traffic, but in the course of constructing, it unavoidably influence the local traffic. Some road sections are blocked, some change into an one-way lane, thus the vehicle can only take a devious route . The construction makes the road very narrow, forming the bottleneck, which seriously influence the car flow.When having stop signs and traffic lights, people have a tendency to drive slower andlook out for people walking in the middle of streets. To put a traffic light or a stop sign in a community, it takes a lot of work and planning from the community and the city to put one in. It is not cheap to do it either. The community first needs to take a petition around to everyone in the community and have them sign so they can take it to the board when the next city council meeting is. A couple residents will present it to the board, and they will decide weather or not to put it in or not. If not put in a lot of residents might be mad and bad things could happened to that part of the city.When the planning of putting traffic lights and stop signs, you should look at the subdivision plan and figure out where all the buildings and schools are for the protection of students walking and riding home from school. In our plan that we have made, we will need traffic lights next to the school, so people will look out for the students going home. We will need a stop sign next to the park incase kids run out in the street. This will help the protection of the kids having fun. Will need a traffic light separating the mall and the store. This will be the busiest part of the town with people going to the mall and the store. And finally there will need to be a stop sign at the end of the streets so people don’t drive too fast and get in a big accident. If this is down everyone will be safe driving, walking, or riding their bikes.In putting in a traffic light, it takes a lot of planning and money to complete it. A traffic light cost around $40,000 to $125,000 and sometimes more depending on the location. If a business goes in and a traffic light needs to go in, the business or businesses will have to pay some money to pay for it to make sure everyone is safe going from and to that business. Also if there is too many accidents in one particular place in a city, a traffic light will go in to safe people from getting a severe accident and ending their life and maybe someone else’s.The reason I picked this part of our community development report was that traffic is a very important part of a city. If not for traffic lights and stop signs, people’s lives would be in danger every time they walked out their doors. People will be driving extremely fast and people will be hit just trying to have fun with their friends. So having traffic lights and stop signs this will prevent all this from happening.Traffic in a city is very much affected by traffic light controllers. When waiting for a traffic light, the driver looses time and the car uses fuel. Hence, reducing waiting times before traffic lights can save our European society billions of Euros annually. To make traffic light controllers more intelligent, we exploit the emergence of novel technologies such as communication networks and sensor networks, as well as the use of more sophisticated algorithms for setting traffic lights. Intelligent traffic light control does not only mean thattraffic lights are set in order to minimize waiting times of road users, but also that road users receive information about how to drive through a city in order to minimize their waiting times. This means that we are coping with a complex multi-agent system, where communication and coordination play essential roles. Our research has led to a novel system in which traffic light controllers and the behaviour of car drivers are optimized using machine-learning methods.Our idea of setting a traffic light is as follows. Suppose there are a number of cars with their destination address standing before a crossing. All cars communicate to the traffic light their specific place in the queue and their destination address. Now the traffic light has to decide which option (ie, which lanes are to be put on green) is optimal to minimize the long-term average waiting time until all cars have arrived at their destination address. The learning traffic light controllers solve this problem by estimating how long it would take for a car to arrive at its destination address (for which the car may need to pass many different traffic lights) when currently the light would be put on green, and how long it would take if the light would be put on red. The difference between the waiting time for red and the waiting time for green is the gain for the car. Now the traffic light controllers set the lights in such a way to maximize the average gain of all cars standing before the crossing. To estimate the waiting times, we use 'reinforcement learning' which keeps track of the waiting times of individual cars and uses a smart way to compute the long term average waiting times using dynamic programming algorithms. One nice feature is that the system is very fair; it never lets one car wait for a very long time, since then its gain of setting its own light to green becomes very large, and the optimal decision of the traffic light will set his light to green. Furthermore, since we estimate waiting times before traffic lights until the destination of the road user has been reached, the road user can use this information to choose to which next traffic light to go, thereby improving its driving behaviour through a city. Note that we solve the traffic light control problem by using a distributed multi-agent system, where cooperation and coordination are done by communication, learning, and voting mechanisms. To allow for green waves during extremely busy situations, we combine our algorithm with a special bucket algorithm which propagates gains from one traffic light to the next one, inducing stronger voting on the next traffic controller option.We have implemented the 'Green Light District', a traffic simulator in Java in which infrastructures can be edited easily by using the mouse, and different levels of road usage can be simulated. A large number of fixed and learning traffic light controllers have already been tested in the simulator and the resulting average waiting times of cars have been plotted and compared. The results indicate that the learning controllers can reduce average waiting timeswith at least 10% in semi-busy traffic situations, and even much more when high congestion of the traffic occurs.We are currently studying the behaviour of the learning traffic light controllers on many different infrastructures in our simulator. We are also planning to cooperate with other institutes and companies in the Netherlands to apply our system to real world traffic situations. For this, modern technologies such as communicating networks can be brought to use on a very large scale, making the necessary communication between road users and traffic lights possible.中文翻译:智能交通信号灯控制马克·威宁我所选择的社区项目主题是交通灯。
毕业设计英文翻译中英文对照版
Feasibility assessment of a leading-edge-flutter wind power generator前缘颤振风力发电机的可行性评估Luca Caracoglia卢卡卡拉克格里亚Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering Center, 360 Huntington A venue, Boston, MA 02115, USA美国东北大学土木与环境工程斯内尔工程中心400,亨廷顿大道360,波士顿02115This study addresses the preliminary technical feasibility assessment of a mechanical apparatus for conversion of wind energy. 这项研究涉及的是风能转换的机械设备的初步技术可行性评估。
The proposed device, designated as ‘‘leading-edge-fl utter wind power generator’’, employs aeroelastic dynamic instability of a blade airfoil, torsionally rotating about its leading edge. 这种被推荐的定义为“前缘颤振风力发电机”的设备,采用的气动弹性动态不稳定叶片翼型,通过尖端旋转产生扭矩。
Although the exploitation of aeroelastic phenomena has been proposed by the research community for energy harvesting, this apparatus is compact, simple and marginally susceptible to turbulence and wake effects.虽然气动弹性现象的开发已经有研究界提出可以通过能量采集。
毕业设计论文外文文献翻译
xxxx大学xxx学院毕业设计(论文)外文文献翻译系部xxxx专业xxxx学生姓名xxxx 学号xxxx指导教师xxxx 职称xxxx2013年3 月Introducing the Spring FrameworkThe Spring Framework: a popular open source application framework that addresses many of the issues outlined in this book. This chapter will introduce the basic ideas of Spring and dis-cuss the central “bean factory” lightweight Inversion-of-Control (IoC) container in detail.Spring makes it particularly easy to implement lightweight, yet extensible, J2EE archi-tectures. It provides an out-of-the-box implementation of the fundamental architectural building blocks we recommend. Spring provides a consistent way of structuring your applications, and provides numerous middle tier features that can make J2EE development significantly easier and more flexible than in traditional approaches.The basic motivations for Spring are:To address areas not well served by other frameworks. There are numerous good solutions to specific areas of J2EE infrastructure: web frameworks, persistence solutions, remoting tools, and so on. However, integrating these tools into a comprehensive architecture can involve significant effort, and can become a burden. Spring aims to provide an end-to-end solution, integrating spe-cialized frameworks into a coherent overall infrastructure. Spring also addresses some areas that other frameworks don’t. For example, few frameworks address generic transaction management, data access object implementation, and gluing all those things together into an application, while still allowing for best-of-breed choice in each area. Hence we term Spring an application framework, rather than a web framework, IoC or AOP framework, or even middle tier framework.To allow for easy adoption. A framework should be cleanly layered, allowing the use of indi-vidual features without imposing a whole worldview on the application. Many Spring features, such as the JDBC abstraction layer or Hibernate integration, can be used in a library style or as part of the Spring end-to-end solution.To deliver ease of use. As we’ve noted, J2EE out of the box is relatively hard to use to solve many common problems. A good infrastructure framework should make simple tasks simple to achieve, without forcing tradeoffs for future complex requirements (like distributed transactions) on the application developer. It should allow developers to leverage J2EE services such as JTA where appropriate, but to avoid dependence on them in cases when they are unnecessarily complex.To make it easier to apply best practices. Spring aims to reduce the cost of adhering to best practices such as programming to interfaces, rather than classes, almost to zero. However, it leaves the choice of architectural style to the developer.Non-invasiveness. Application objects should have minimal dependence on the framework. If leveraging a specific Spring feature, an object should depend only on that particular feature, whether by implementing a callback interface or using the framework as a class library. IoC and AOP are the key enabling technologies for avoiding framework dependence.Consistent configuration. A good infrastructure framework should keep application configuration flexible and consistent, avoiding the need for custom singletons and factories. A single style should be applicable to all configuration needs, from the middle tier to web controllers.Ease of testing. Testing either whole applications or individual application classes in unit tests should be as easy as possible. Replacing resources or application objects with mock objects should be straightforward.To allow for extensibility. Because Spring is itself based on interfaces, rather than classes, it is easy to extend or customize it. Many Spring components use strategy interfaces, allowing easy customization.A Layered Application FrameworkChapter 6 introduced the Spring Framework as a lightweight container, competing with IoC containers such as PicoContainer. While the Spring lightweight container for JavaBeans is a core concept, this is just the foundation for a solution for all middleware layers.Basic Building Blockspring is a full-featured application framework that can be leveraged at many levels. It consists of multi-ple sub-frameworks that are fairly independent but still integrate closely into a one-stop shop, if desired. The key areas are:Bean factory. The Spring lightweight IoC container, capable of configuring and wiring up Java-Beans and most plain Java objects, removing the need for custom singletons and ad hoc configura-tion. Various out-of-the-box implementations include an XML-based bean factory. The lightweight IoC container and its Dependency Injection capabilities will be the main focus of this chapter.Application context. A Spring application context extends the bean factory concept by adding support for message sources and resource loading, and providing hooks into existing environ-ments. Various out-of-the-box implementations include standalone application contexts and an XML-based web application context.AOP framework. The Spring AOP framework provides AOP support for method interception on any class managed by a Spring lightweight container.It supports easy proxying of beans in a bean factory, seamlessly weaving in interceptors and other advice at runtime. Chapter 8 dis-cusses the Spring AOP framework in detail. The main use of the Spring AOP framework is to provide declarative enterprise services for POJOs.Auto-proxying. Spring provides a higher level of abstraction over the AOP framework and low-level services, which offers similar ease-of-use to .NET within a J2EE context. In particular, the provision of declarative enterprise services can be driven by source-level metadata.Transaction management. Spring provides a generic transaction management infrastructure, with pluggable transaction strategies (such as JTA and JDBC) and various means for demarcat-ing transactions in applications. Chapter 9 discusses its rationale and the power and flexibility that it offers.DAO abstraction. Spring defines a set of generic data access exceptions that can be used for cre-ating generic DAO interfaces that throw meaningful exceptions independent of the underlying persistence mechanism. Chapter 10 illustrates the Spring support for DAOs in more detail, examining JDBC, JDO, and Hibernate as implementation strategies.JDBC support. Spring offers two levels of JDBC abstraction that significantly ease the effort of writing JDBC-based DAOs: the org.springframework.jdbc.core package (a template/callback approach) and the org.springframework.jdbc.object package (modeling RDBMS operations as reusable objects). Using the Spring JDBC packages can deliver much greater pro-ductivity and eliminate the potential for common errors such as leaked connections, compared with direct use of JDBC. The Spring JDBC abstraction integrates with the transaction and DAO abstractions.Integration with O/R mapping tools. Spring provides support classesfor O/R Mapping tools like Hibernate, JDO, and iBATIS Database Layer to simplify resource setup, acquisition, and release, and to integrate with the overall transaction and DAO abstractions. These integration packages allow applications to dispense with custom ThreadLocal sessions and native transac-tion handling, regardless of the underlying O/R mapping approach they work with.Web MVC framework. Spring provides a clean implementation of web MVC, consistent with the JavaBean configuration approach. The Spring web framework enables web controllers to be configured within an IoC container, eliminating the need to write any custom code to access business layer services. It provides a generic DispatcherServlet and out-of-the-box controller classes for command and form handling. Request-to-controller mapping, view resolution, locale resolution and other important services are all pluggable, making the framework highly extensi-ble. The web framework is designed to work not only with JSP, but with any view technology, such as Velocity—without the need for additional bridges. Chapter 13 discusses web tier design and the Spring web MVC framework in detail.Remoting support. Spring provides a thin abstraction layer for accessing remote services without hard-coded lookups, and for exposing Spring-managed application beans as remote services. Out-of-the-box support is inc luded for RMI, Caucho’s Hessian and Burlap web service protocols, and WSDL Web Services via JAX-RPC. Chapter 11 discusses lightweight remoting.While Spring addresses areas as diverse as transaction management and web MVC, it uses a consistent approach everywhere. Once you have learned the basic configuration style, you will be able to apply it in many areas. Resources, middle tier objects, and web components are all set up using the same bean configuration mechanism. You can combine your entireconfiguration in one single bean definition file or split it by application modules or layers; the choice is up to you as the application developer. There is no need for diverse configuration files in a variety of formats, spread out across the application.Spring on J2EEAlthough many parts of Spring can be used in any kind of Java environment, it is primarily a J2EE application framework. For example, there are convenience classes for linking JNDI resources into a bean factory, such as JDBC DataSources and EJBs, and integration with JTA for distributed transaction management. In most cases, application objects do not need to work with J2EE APIs directly, improving reusability and meaning that there is no need to write verbose, hard-to-test, JNDI lookups.Thus Spring allows application code to seamlessly integrate into a J2EE environment without being unnecessarily tied to it. You can build upon J2EE services where it makes sense for your application, and choose lighter-weight solutions if there are no complex requirements. For example, you need to use JTA as transaction strategy only if you face distributed transaction requirements. For a single database, there are alternative strategies that do not depend on a J2EE container. Switching between those transac-tion strategies is merely a matter of configuration; Spring’s consistent abstraction avoids any need to change application code.Spring offers support for accessing EJBs. This is an important feature (and relevant even in a book on “J2EE without EJB”) because the u se of dynamic proxies as codeless client-side business delegates means that Spring can make using a local stateless session EJB an implementation-level, rather than a fundamen-tal architectural, choice.Thus if you want to use EJB, you can within a consistent architecture; however, you do not need to make EJB the cornerstone of your architecture. This Spring feature can make devel-oping EJB applications significantly faster, because there is no need to write custom code in service loca-tors or business delegates. Testing EJB client code is also much easier, because it only depends on the EJB’s Business Methods interface (which is not EJB-specific), not on JNDI or the EJB API.Spring also provides support for implementing EJBs, in the form of convenience superclasses for EJB implementation classes, which load a Spring lightweight container based on an environment variable specified in the ejb-jar.xml deployment descriptor. This is a powerful and convenient way of imple-menting SLSBs or MDBs that are facades for fine-grained POJOs: a best practice if you do choose to implement an EJB application. Using this Spring feature does not conflict with EJB in any way—it merely simplifies following good practice.Introducing the Spring FrameworkThe main aim of Spring is to make J2EE easier to use and promote good programming practice. It does not reinvent the wheel; thus you’ll find no logging packages in Spring, no connection pools, no distributed transaction coordinator. All these features are provided by other open source projects—such as Jakarta Commons Logging (which Spring uses for all its log output), Jakarta Commons DBCP (which can be used as local DataSource), and ObjectWeb JOTM (which can be used as transaction manager)—or by your J2EE application server. For the same reason, Spring doesn’t provide an O/R mapping layer: There are good solutions for this problem area, such as Hibernate and JDO.Spring does aim to make existing technologies easier to use. For example, although Spring is not in the business of low-level transactioncoordination, it does provide an abstraction layer over JTA or any other transaction strategy. Spring is also popular as middle tier infrastructure for Hibernate, because it provides solutions to many common issues like SessionFactory setup, ThreadLocal sessions, and exception handling. With the Spring HibernateTemplate class, implementation methods of Hibernate DAOs can be reduced to one-liners while properly participating in transactions.The Spring Framework does not aim to replace J2EE middle tier services as a whole. It is an application framework that makes accessing low-level J2EE container ser-vices easier. Furthermore, it offers lightweight alternatives for certain J2EE services in some scenarios, such as a JDBC-based transaction strategy instead of JTA when just working with a single database. Essentially, Spring enables you to write appli-cations that scale down as well as up.Spring for Web ApplicationsA typical usage of Spring in a J2EE environment is to serve as backbone for the logical middle tier of a J2EE web application. Spring provides a web application context concept, a powerful lightweight IoC container that seamlessly adapts to a web environment: It can be accessed from any kind of web tier, whether Struts, WebWork, Tapestry, JSF, Spring web MVC, or a custom solution.The following code shows a typical example of such a web application context. In a typical Spring web app, an applicationContext.xml file will reside in the WEB-INF directory, containing bean defini-tions according to the “spring-beans” DTD. In such a bean definition XML file, business objects and resources are defined, for example, a “myDataSource” bean, a “myInventoryManager” bean, and a “myProductManager” bean. Spring takes care of their configuration, their wiring up, and their lifecycle.<beans><bean id=”myDataSource” class=”org.springframework.jdbc. datasource.DriverManagerDataSource”><property name=”driverClassName”> <value>com.mysql.jdbc.Driver</value></property> <property name=”url”><value>jdbc:mysql:myds</value></property></bean><bean id=”myInventoryManager” class=”ebusiness.DefaultInventoryManager”> <property name=”dataSource”><ref bean=”myDataSource”/> </property></bean><bean id=”myProductManager” class=”ebusiness.DefaultProductManage r”><property name=”inventoryManager”><ref bean=”myInventoryManager”/> </property><property name=”retrieveCurrentStock”> <value>true</value></property></bean></beans>By default, all such beans have “singleton” scope: one instance per context. The “myInventoryManager” bean will automatically be wired up with the defined DataSource, while “myProductManager” will in turn receive a reference to the “myInventoryManager” bean. Those objects (traditionally called “beans” in Spring terminology) need to expos e only the corresponding bean properties or constructor arguments (as you’ll see later in this chapter); they do not have to perform any custom lookups.A root web application context will be loaded by a ContextLoaderListener that is defined in web.xml as follows:<web-app><listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class></listener>...</web-app>After initialization of the web app, the root web application context will be available as a ServletContext attribute to the whole web application, in the usual manner. It can be retrieved from there easily via fetching the corresponding attribute, or via a convenience method in org.springframework.web. context.support.WebApplicationContextUtils. This means that the application context will be available in any web resource with access to the ServletContext, like a Servlet, Filter, JSP, or Struts Action, as follows:WebApplicationContext wac = WebApplicationContextUtils.getWebApplicationContext(servletContext);The Spring web MVC framework allows web controllers to be defined as JavaBeans in child application contexts, one per dispatcher servlet. Such controllers can express dependencies on beans in the root application context via simple bean references. Therefore, typical Spring web MVC applications never need to perform a manual lookup of an application context or bean factory, or do any other form of lookup.Neither do other client objects that are managed by an application context themselves: They can receive collaborating objects as bean references.The Core Bean FactoryIn the previous section, we have seen a typical usage of the Spring IoC container in a web environment: The provided convenience classes allow for seamless integration without having to worry about low-level container details. Nevertheless, it does help to look at the inner workings to understand how Spring manages the container. Therefore, we will now look at the Spring bean container in more detail, starting at the lowest building block: the bean factory. Later, we’ll continue with resource setup and details on the application context concept.One of the main incentives for a lightweight container is to dispense with the multitude of custom facto-ries and singletons often found in J2EE applications. The Spring bean factory provides one consistent way to set up any number of application objects, whether coarse-grained components or fine-grained busi-ness objects. Applying reflection and Dependency Injection, the bean factory can host components that do not need to be aware of Spring at all. Hence we call Spring a non-invasive application framework.Fundamental InterfacesThe fundamental lightweight container interface is org.springframework.beans.factory.Bean Factory. This is a simple interface, which is easy to implement directly in the unlikely case that none of the implementations provided with Spring suffices. The BeanFactory interface offers two getBean() methods for looking up bean instances by String name, with the option to check for a required type (and throw an exception if there is a type mismatch).public interface BeanFactory {Object getBean(String name) throws BeansException;Object getBean(String name, Class requiredType) throws BeansException;boolean containsBean(String name);boolean isSingleton(String name) throws NoSuchBeanDefinitionException;String[] getAliases(String name) throws NoSuchBeanDefinitionException;}The isSingleton() method allows calling code to check whether the specified name represents a sin-gleton or prototype bean definition. In the case of a singleton bean, all calls to the getBean() method will return the same object instance. In the case of a prototype bean, each call to getBean() returns an inde-pendent object instance, configured identically.The getAliases() method will return alias names defined for the given bean name, if any. This mecha-nism is used to provide more descriptive alternative names for beans than are permitted in certain bean factory storage representations, such as XML id attributes.The methods in most BeanFactory implementations are aware of a hierarchy that the implementation may be part of. If a bean is not foundin the current factory, the parent factory will be asked, up until the root factory. From the point of view of a caller, all factories in such a hierarchy will appear to be merged into one. Bean definitions in ancestor contexts are visible to descendant contexts, but not the reverse.All exceptions thrown by the BeanFactory interface and sub-interfaces extend org.springframework. beans.BeansException, and are unchecked. This reflects the fact that low-level configuration prob-lems are not usually recoverable: Hence, application developers can choose to write code to recover from such failures if they wish to, but should not be forced to write code in the majority of cases where config-uration failure is fatal.Most implementations of the BeanFactory interface do not merely provide a registry of objects by name; they provide rich support for configuring those objects using IoC. For example, they manage dependen-cies between managed objects, as well as simple properties. In the next section, we’ll look at how such configuration can be expressed in a simple and intuitive XML structure.The sub-interface org.springframework.beans.factory.ListableBeanFactory supports listing beans in a factory. It provides methods to retrieve the number of beans defined, the names of all beans, and the names of beans that are instances of a given type:public interface ListableBeanFactory extends BeanFactory {int getBeanDefinitionCount();String[] getBeanDefinitionNames();String[] getBeanDefinitionNames(Class type);boolean containsBeanDefinition(String name);Map getBeansOfType(Class type, boolean includePrototypes,boolean includeFactoryBeans) throws BeansException}The ability to obtain such information about the objects managed by a ListableBeanFactory can be used to implement objects that work with a set of other objects known only at runtime.In contrast to the BeanFactory interface, the methods in ListableBeanFactory apply to the current factory instance and do not take account of a hierarchy that the factory may be part of. The org.spring framework.beans.factory.BeanFactoryUtils class provides analogous methods that traverse an entire factory hierarchy.There are various ways to leverage a Spring bean factory, ranging from simple bean configuration to J2EE resource integration and AOP proxy generation. The bean factory is the central, consistent way of setting up any kind of application objects in Spring, whether DAOs, business objects, or web controllers. Note that application objects seldom need to work with the BeanFactory interface directly, but are usu-ally configured and wired by a factory without the need for any Spring-specific code.For standalone usage, the Spring distribution provides a tiny spring-core.jar file that can be embed-ded in any kind of application. Its only third-party dependency beyond J2SE 1.3 (plus JAXP for XML parsing) is the Jakarta Commons Logging API.The bean factory is the core of Spring and the foundation for many other services that the framework offers. Nevertheless, the bean factory can easily be used stan-dalone if no other Spring services are required.Derivative:networkSpring 框架简介Spring框架:这是一个流行的开源应用框架,它可以解决很多问题。
机械设计制造及其自动化毕业论文中英文资料外文翻译
机械设计创造及其自动化毕业论文外文文献翻译INTEGRATION OF MACHINERY译文题目专业机械设计创造及其自动化外文资料翻译INTEGRATION OF MACHINERY(From ELECTRICAL AND MACHINERY INDUSTRY)ABSTRACTMachinery was the modern science and technology development inevitable result, this article has summarized the integration of machinery technology basic outline and the development background .Summarized the domestic and foreign integration of machinery technology present situation, has analyzed the integration of machinery technology trend of development.Key word: integration of machinery ,technology, present situation ,product t,echnique of manufacture ,trend of development0. Introduction modern science and technology unceasing development, impelled different discipline intersecting enormously with the seepage, has caused the project domain technological revolution and the transformation .In mechanical engineering domain, because the microelectronic technology and the computer technology rapid development and forms to the mechanical industry seepage the integration of machinery, caused the mechanical industry the technical structure, the product organization, the function and the constitution, the production method and the management systemof by machinery for the characteristic integration ofdevelopment phase.1. Integration of machinery outline integration of machinery is refers in the organization new owner function, the power function, in the information processing function and the control function introduces the electronic technology, unifies the system the mechanism and the computerization design and the software which constitutes always to call. The integration of machinery development also has become one to have until now own system new discipline, not only develops along with the science and technology, but also entrusts with the new content .But its basic characteristic may summarize is: The integration of machinery is embarks from the system viewpoint, synthesis community technologies and so on utilization mechanical technology, microelectronic technology, automatic control technology, computer technology, information technology, sensing observation and control technology, electric power electronic technology, connection technology, information conversion technology as well as software programming technology, according to the system function goal and the optimized organization goal, reasonable disposition and the layout various functions unit, in multi-purpose, high grade, redundant reliable, in the low energy consumption significance realize the specific function value, and causes the overall system optimization the systems engineering technology .From this produces functional system, then becomes an integration of machinery systematic or the integration of machinery product. Therefore, of coveringtechnology is based on the above community technology organic fusion one kind of comprehensive technology, but is not mechanical technical, the microelectronic technology as well as other new technical simple combination, pieces together .This is the integration of machinery and the machinery adds the machinery electrification which the electricity forms in the concept basic difference .The mechanical engineering technology has the merely technical to develop the machinery electrification, still was the traditional machinery, its main function still was replaces with the enlargement physical strength .But after develops the integration of machinery, micro electron installment besides may substitute for certain mechanical parts the original function, but also can entrust with many new functions,like the automatic detection, the automatic reduction information, demonstrate the record, the automatic control and the control automatic diagnosis and the protection automatically and so on .Not only namely the integration of machinery product is human's hand and body extending, human's sense organ and the brains look, has the intellectualized characteristic is the integration of machinery and the machinery electrification distinguishes in the function essence.2. Integration of machinery development condition integration of machinery development may divide into 3 stages roughly.20th century 60's before for the first stage, this stage is called the initial stage .In this time, the people determination not on own initiative uses the electronic technology the preliminary achievement to consummate the mechanical product the performance .Specially in Second World War period, the war has stimulated the mechanical product and the electronic technology union, these mechanical and electrical union military technology, postwar transfers civilly, to postwar economical restoration positive function .Developed and the development at that time generally speaking also is at the spontaneouscondition .Because at that time the electronic technology development not yet achieved certain level, mechanical technical and electronic technology union also not impossible widespread and thorough development, already developed the product was also unable to promote massively. The 20th century 70~80 ages for the second stage, may be called the vigorous development stage .This time, the computer technology, the control technology, the communication development, has laid the technology base for the integration of machinery development . Large-scale, ultra large scale integrated circuit and microcomputer swift and violent development, has provided the full material base for the integration of machinery development .This time characteristic is :①A mechatronics word first generally is accepted in Japan, probably obtains the quite widespread acknowledgment to 1980s last stages in the worldwide scale ;②The integration of machinery technology and the product obtained the enormous development ;③The various countries start to the integration of machinery technology and the product give the very big attention and the support. 1990s later periods, started the integration of machinery technology the new stagewhich makes great strides forward to the intellectualized direction, the integration of machinery enters the thorough development time .At the same time, optics, the communication and so on entered the integration of machinery, processes the technology also zhan to appear tiny in the integration of machinery the foot, appeared the light integration of machinery and the micro integration of machinery and so on the new branch; On the other hand to the integration of machinery system modeling design, the analysis and the integrated method, the integration of machinery discipline system and the trend of development has all conducted the thorough research .At the same time, because the hugeprogress which domains and so on artificial intelligence technology, neural network technology and optical fiber technology obtain, opened the development vast world for the integration of machinery technology .These research, will urge the integration of machinery further to establish the integrity the foundation and forms the integrity gradually the scientific system. Our country is only then starts from the beginning of 1980s in this aspect to study with the application .The State Councilsummary had considered fully on international the influence which and possibly brought from this about the integration of machinery technology developmenttrend .Many universities, colleges and institutes, the development facility and some large and middle scale enterprises have done the massive work to this technical development and the application, does not yield certain result, but and so on the advanced countries compared with Japan still has the suitable disparity.3. Integration of machinery trend of development integrations of machinery are the collection machinery, the electron, optics, the control, the computer, the information and so on the multi-disciplinary overlapping syntheses, its development and the progress rely on and promote the correlation technology development and the progress .Therefore, the integration of machinery main development direction is as follows:3.1 Intellectualized intellectualizations are 21st century integration of machinery technological development important development directions .Theartificial intelligence obtains day by day in the integration of machinery constructor's research takes, the robot and the numerical control engine bedis to the machine behavior description, is in the control theory foundation, the absorption artificial intelligence, the operations research, the computer science, the fuzzy mathematics, the psychology, the physiology and the chaos dynamics and so on the new thought, the new method, simulate the human intelligence, enable it to have abilities and so on judgment inference, logical thinking, independent decision-making, obtains the higher control goal in order to .Indeed, enable the integration of machinery product to have with the human identical intelligence, is not impossible, also is nonessential .But, the high performance, the high speed microprocessor enable the integration of machinery product to have preliminary intelligent or human's partial intelligences, then is completely possible and essential.In the modern manufacture process, the information has become the control manufacture industry the determining factor, moreover is the most active actuation factor .Enhances the manufacture system information-handling capacity to become the modern manufacture science development a key point .As a result of the manufacture system information organization and structure multi-level, makes the information the gain, the integration and the fusion presents draws up the character, information measure multi-dimensional, as well as information organization's multi-level .In the manufacture information structural model, manufacture information uniform restraint, dissemination processing and magnanimous data aspects and so on manufacture knowledge library management, all also wait for further break through.Each kind of artificial intelligence tool and the computation intelligence method promoted the manufacture intelligence development in the manufacture widespread application .A kind based on the biological evolution algorithm computation intelligent agent, in includes thescheduling problem in the combination optimization solution area of technology, receives the more and more universal attention, hopefully completes the combination optimization question when the manufacture the solution speed and the solution precision aspect breaks through the question scale in pairs the restriction .The manufacture intelligence also displays in: The intelligent dispatch, the intelligent design, the intelligent processing, the robot study, the intelligent control, the intelligent craft plan, the intelligent diagnosis and so on are various These question key breakthrough, may form the product innovation the basic research system. Between 2 modern mechanical engineering front science different science overlapping fusion will have the new science accumulation, the economical development and society's progress has had the new request and the expectation to the science and technology, thus will form the front science .The front science also has solved and between the solution scientific question border area .The front science has the obvious time domain, the domain and the dynamic characteristic .The project front science distinguished in the general basic science important characteristic is it has covered the key science and technology question which the project actual appeared.Manufacture system is a complex large-scale system, for satisfies the manufacture system agility, the fast response and fast reorganization ability, must profit from the information science, the life sciences and the social sciences and so on the multi-disciplinary research results, the exploration manufacture system new architecture, the manufacture pattern and the manufacture system effective operational mechanism .Makes the system optimization the organizational structure and the good movement condition is makes the system modeling , the simulation and the optimized essential target .Not only the manufacture system new architecture to makes the enterprise the agility and may reorganize ability to the demand response ability to have the vital significance, moreover to made the enterprise first floor production equipment the flexibility and may dynamic reorganization ability set a higher request .The biological manufacture view more and more many is introduced the manufacture system, satisfies the manufacture system new request.The study organizes and circulates method and technique of complicated system from the biological phenomenon, is a valid exit which will solve many hard nut to cracks that manufacturing industry face from now on currently .Imitating to living what manufacturing point is mimicry living creature organ of from the organization, from match more, from growth with from evolution etc. function structure and circulate mode of a kind of manufacturing system and manufacturing process.The manufacturing drives in the mechanism under, continuously by one's own perfect raise on organizing structure and circulating mode and thus to adapt the process of[with] ability for the environment .For from descend but the last product proceed together a design and make a craft rules the auto of the distance born, produce system of dynamic state reorganization and product and manufacturing the system tend automatically excellent provided theories foundation and carry out acondition .Imitate to living a manufacturing to belong to manufacturing science and life science of"the far good luck is miscellaneous to hand over", it will produce to the manufacturing industry for 21 centuries huge of influence .机电一体化摘要机电一体化是现代科学技术发展的必然结果,本文简述了机电一体化技术的基本概要和发展背景。
关于动画的毕业设计论文英文文献翻译
关于动画的毕业设计论文英文文献翻译Title: English Literature Review on the Topic of Animation for Graduation ThesisIntroductionHistorical DevelopmentThe history of animation can be traced back to the late 19th century when pioneers like Émile Reynaud and Thomas Edison experimented with motion pictures. The advent of the animation industry in the early 20th century, with the introduction of the first animated film "Fantasmagorie" by Émile Cohl, marked a significant milestone. Since then, animation has emerged as a powerful medium of artistic expression, characterized by the iconic works of Walt Disney and the creation of iconic characters such as Mickey Mouse and Snow White.Animation Techniques and StylesImpact on SocietyArtistic ValueAnimation is not only a form of entertainment but also a prominent art form. The ability to create entire worlds, characters, and narratives through animation allows for immense creative possibilities. Artists and animators can experiment with different visual styles, color schemes, and storytellingtechniques to convey emotions and ideas. Animation also provides a platform for expressing abstract concepts and challenging traditional narratives, pushing the boundaries of artistic expression.Conclusion。
马铃薯去皮结构设计毕业课程设计外文文献翻译、中英文翻译
1 英文文献翻译1.1 英文文献原文题目Potatoes Potatoes peeled peeled peeled structure structure structure design designAbstract: Abstract: the the the graduation graduation graduation design design design is is is mainly mainly mainly studied studied studied on on on the the the bas bas is is of of of the the the principle principle principle of of of friction friction friction of of of potato potato potato peeling peeling peeling machine machine machine d d esign, esign, working working working principle principle principle and and and the the the composition composition composition of of of the the the equipment equipment . . Through Through Through the the the analysis analysis analysis of of of original original original data, data, data, project project project demonstratio demonstratio n n and and and related related related data data data analysis analysis analysis and and and calculation, calculation, calculation, the the the overall overall overall des des ign ign of of of a a a complete complete complete potato potato potato peeler peeler peeler to to to peel peel peel and and and mechanical mechanical mechanical stru stru cture cture is is is a a a new new new form, form, form, to to to better better better serve serve serve the the the fruits fruits fruits and and and vegeta vegeta bles bles to to to the the the development development development of of of leather leather leather industry, industry, industry, better better better adapt adapt adapt to to the the demand demand demand of of of the the the market market market both both both at at at home home home and and and abroad, abroad, abroad, so so so has has the the good good good market market market prospect. prospect.Keywords: Keywords: potatoes potatoes potatoes peeled peeled peeled structure; structure; structure; Friction Friction Friction ; ; ; drive drive 1 1 the the the domestic domestic domestic research research research status statusTechnology Technology is is is to to to measure measure measure whether whether whether an an an enterprise enterprise enterprise has has has the the the advan advan ced ced nature, nature, nature, whether whether whether have have have market market market competitiveness, competitiveness, competitiveness, whether whether whether can can keep keep ahead ahead ahead of of of competitors' competitors' competitors' important important important index. index. index. With With With the the the rapid rapid rapid d d evelopment evelopment of of of domestic domestic domestic potato potato potato peeling peeling peeling agency agency agency market, market, market, the the the core core of of the the the related related related production production production technology technology technology and and and research research research and and and devel devel opment opment will will will certainly certainly certainly has has has become become become the the the focus focus focus of of of the the the industry industry enterprises. enterprises. Understand Understand Understand the the the potato potato potato peeling peeling peeling machine machine machine in in in the the the pro pro duction duction of of of the the the core core core technology technology technology research research research and and and development development development at at at h h ome ome and and and abroad, abroad, abroad, process process process equipment, equipment, equipment, technology, technology, technology, application application application and and trend, trend, for for for an an an enterprise enterprise enterprise to to to improve improve improve product product product technical technical technical speci speci fication, fication, improve improve improve the the the market market market competitiveness competitiveness competitiveness is is is critical. critical. Potato Potato products products products the the the main main main varieties varieties varieties of of of potatoes, potatoes, potatoes, potato potato potato chips,chips, dehydrated dehydrated mashed mashed mashed potatoes, potatoes, potatoes, etc. etc. etc. No No No matter matter matter what what what kind kind kind of of of pr products, oducts, its its its processing processing processing technology technology technology requirements requirements requirements of of of raw raw raw material material s s to to to deal deal deal with with with the the the peel peel peel potatoes, potatoes, potatoes, to to to guarantee guarantee guarantee the the the quality quality of of the the the products, products, products, ensure ensure ensure its its its appearance, appearance, appearance, color color color and and and taste. taste. taste. P P eel eel potatoes potatoes potatoes peeled peeled peeled methods methods methods mainly mainly mainly include include include artificial, artificial, artificial, chemica chemica l l peeling, peeling, peeling, mechanical mechanical mechanical peeling, peeling, peeling, etc. etc. etc. Artificial Artificial Artificial to to to skin skin skin peelin peelin g g effect effect effect is is is better, better, better, but but but low low low efficiency, efficiency, efficiency, high high high loss loss loss rate, rate, rate, obv obv iously iously can can can not not not adapt adapt adapt to to to the the the needs needs needs of of of the the the development development development of of of th th e e potato potato potato industrialization; industrialization; industrialization; Chemical Chemical Chemical peeling peeling peeling a a a hot hot hot alkaline alkaline alkaline o o r r peel peel peel and and and low low low temperature temperature temperature liquid liquid liquid method method method in in in two two two forms, forms, forms, main main ly ly rely rely rely on on on the the the strong strong strong alkali alkali alkali solution solution solution and and and liquid liquid liquid chemical chemical chemical p p eeling eeling effect, effect, effect, softening softening softening and and and relaxation relaxation relaxation potato potato potato skins skins skins and and and body body -to -to keep, keep, keep, then then then use use use high high high pressure pressure pressure water water water jet, jet, jet, peeled. peeled. peeled. This This This me me thod thod the the the flushing flushing flushing process process process of of of before before before and and and after after after peeling peeling peeling the the the d d emand emand is is is higher, higher, higher, and and and liquid liquid liquid alkali, alkali, alkali, peel peel peel or or or consumption consumption consumption is is too too large, large, large, the the the cost cost cost is is is higher, higher, higher, and and and this this this way way way the the the serious serious serious in in fluence fluence the the the taste taste taste of of of the the the product. product. product. Mechanical Mechanical Mechanical peeling peeling peeling is is is fric fric tion tion peel peel peel form, form, form, the the the main main main dependence dependence dependence between between between potato potato potato and and and potat potat o o and and and potato potato potato with with with silicon silicon silicon carbide carbide carbide or or or rubber rubber rubber friction friction friction between between role role and and and achieve achieve achieve the the the goal goal goal of of of peel, peel, peel, good good good effect effect effect of of of this this this a a pproach pproach to to to skin, skin, skin, reduce reduce reduce the the the production production production cost, cost, cost, reduced reduced reduced environm environm entalpollution, pollution, simple simple simple operation, operation, operation, fast fast fast speed, speed, speed, can can can one one one person person person opera opera tion, tion, high high high energy energy energy efficiency efficiency efficiency to to to maximize maximize maximize the the the interests interests interests of of of th th e e products. products.2. 2. the the the working working working principle principle principle of of of the the the potato potato potato peeler peelerThe The potato potato potato peeling peeling peeling machine machine machine adopts adopts adopts horizontal horizontal horizontal machine, machine, machine, mainly mainly including including working working working cylinder, cylinder, cylinder, work work work table, table, table, frame frame frame and and and transmission transmission parts parts (see (see (see diagram). diagram). diagram). When When When to to to work work work in in in the the the potato potato potato peeling peeling peeling m m achine, achine, wheel wheel wheel rotation, rotation, rotation, the the the material material material by by by a a a bucket bucket bucket shape shape shape inlet inlet, , material material material fall fall fall on on on the the the surface surface surface of of of a a a rotating rotating rotating brush brush brush roller roller corrugated corrugated bulge, bulge, bulge, the the the effect effect effect of of of the the the centrifugal centrifugal centrifugal force force force by by by the the brush brush roller roller roller tangent tangent tangent upward upward upward movement, movement, movement, material material material constant constant constant alon alon g g the the the motion motion motion for for for a a a cylindrical cylindrical cylindrical wall, wall, wall, rise rise rise to to to the the the top, top, top, was was at at the the the top top top of of of the the the block block block back back back into into into the the the working working working surface surface surface of of the the plate. plate. plate. Into Into Into the the the rough rough rough surface surface surface and and and friction friction friction brush brush brush roll.roll. The The reciprocating reciprocating reciprocating movement movement movement of of of the the the material material material in in in this this this process,process, by by violent violent violent agitation, agitation, agitation, and and and formed formed formed with with with a a a brush brush brush roller, roller, roller, wall wall and and between between between particles particles particles is is is given given given priority priority priority to to to with with with flip, flip, flip, rubb rubb ing ing friction, friction, friction, impact impact impact of of of comprehensive comprehensive comprehensive mechanical mechanical mechanical effects, effects, effects, so so as as to to to achieve achieve achieve the the the aim aim aim of of of the the the skin. skin. skin. At At At the the the same same same time time time of of of f f riction riction peel, peel, peel, from from from inject inject inject water water water into into into the the the hole, hole, hole, in in in a a a timely timely manner manner will will will be be be wiped wiped wiped off off off the the the skin skin skin of of of the the the through through through brush brush brush b b rush rush roll roll roll and and and roll roll roll gap gap gap to to to discharge discharge discharge mouth mouth mouth eduction eduction eduction body. body. body. In In the the case case case of of of non-stop, non-stop, non-stop, open open open the the the discharge discharge discharge valve valve valve of of of mouth, mouth, material material by by by dial dial dial discharged discharged discharged through through through the the the discharge discharge discharge port. port. port. After After peeling peeling potatoes potatoes potatoes peel peel peel by by by institutions institutions institutions discharging discharging discharging chute chute chute into into the the auxiliary auxiliary auxiliary body, body, body, after after after screening screening screening and and and other other other auxiliary auxiliary auxiliary wor wor k k again again again into into into the the the next next next procedure. procedure.3. 3. summary summaryBelieve Believe in in in the the the near near near future, future, future, once once once the the the product product product is is is applied applied applied to to the the actual, actual, actual, will will will greatly greatly greatly save save save the the the working working working time, time, time, improve improve improve wo wo rk rk efficiency, efficiency, efficiency, improve improve improve the the the economic economic economic benefit, benefit, benefit, at at at the the the same same same tim tim e e will will will make make make a a a great great great contribution contribution contribution for for for the the the mass mass mass production, production, production, g g iving iving impetus impetus impetus to to to the the the development development development of of of potato potato potato industry industry industry better better better a a nd nd faster. faster. faster. Mechanical Mechanical Mechanical peeling, peeling, peeling, powered powered powered by by by motor, motor, motor, through through through the the pulley pulley drive drive drive cylinder cylinder cylinder at at at the the the bottom bottom bottom of of of the the the spinning spinning spinning l. Low Low middle, middle, middle, high high high edge edge edge mill mill mill wheel wheel wheel surface, surface, surface, undulate. undulate. undulate. Tubers Tubers to to join join join the the the cylinder, cylinder, cylinder, each each each other other other due due due to to to centrifugal centrifugal centrifugal force forceand and the the the friction friction friction effect, effect, effect, within within within the the the cylinder cylinder cylinder up, up, up, down, down, down, lef lef t, t, right right right turn, turn, turn, and and and constantly constantly constantly rolling; rolling; rolling; And And And the the the rubber rubber rubber cylind cylind er er lining, lining, lining, will will will rebound rebound rebound tuber, tuber, tuber, in in in the the the mill mill mill and and and the the the cylinder cylinder wall wall under under under the the the function function function of of of rubber rubber rubber potato potato potato tuber tuber tuber is is is grinding grinding to to the the the skin skin skin evenly, evenly, evenly, achieve achieve achieve the the the goal goal goal of of of potato potato potato peeling. peeling. peeling. T T o o skin skin skin with with with clear clear clear water, water, water, and and and then then then open open open the the the side side side door, door, door, tube tube r r discharge discharge discharge from from from a a a side side side door, door, door, dander dander dander with with with flow flow flow from from from the the the di di scharge scharge gap gap gap around around around the the the millstone. millstone. millstone. The The The machine machine machine for for for batch batch batch prod prod uction, uction, peeling peeling peeling machine, machine, machine, mill mill mill rotate rotate rotate at at at a a a certain certain certain speed, speed, speed, rol rol ler ler potato potato potato in in in under under under the the the action action action of of of centrifugal centrifugal centrifugal force, force, force, gravity gravity and and the the the friction, friction, friction, using using using potato potato potato work work work relative relative relative to to to the the the mill,mill, the the relative relative relative speed speed speed difference difference difference between between between the the the potato potato potato skin skin skin remov remov ed.1.2中文翻译马铃薯去皮结构设计马铃薯去皮结构设计摘要摘要::本次毕业设计主要研究了以摩擦原理为基础的马铃薯去皮机的设计要点、工作原理工作原理 及设备的组成。
建筑设计毕业论文中英文资料外文翻译文献
毕业论文中英文资料外文翻译文献Architecture StructureWe have and the architects must deal with the spatial aspect of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic, preliminary, and final.Such a hierarchy is necessary if he or she is to avoid being confused , at conceptual stages of design thinking ,by the myriad detail issues that can distract attention from more basic consideration s .In fact , we can say that an architect’s ability to distinguish the more basic form the more detailed issues is essential to his success as a designer .The object of the schematic feed back level is to generate and evaluate overall site-plan, activity-interaction, and building-configuration options .To do so the architect must be able to focus on the interaction of the basic attributes of the site context, the spatial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential performance-space in teractions.Then he or she may explore the overall space-form implications of the abstraction. As an actual building configuration option begins to emerge, it will be modified to include consideration for basic site conditions.At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibility and economic of his or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily fed back to improve the space-form scheme.At the preliminary level, the architect’s emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architect’s structural needs will shift toapproximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of major subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem interaction and design conflicts can thus be identified and resolved in the context of total-system objectives. Consultants can play a significant part in this effort; these preliminary-level decisions may also result in feedback that calls for refinement or even major change in schematic concepts.When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stage the emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a total-system design concept, to the fleshing out of requisite elements and details.To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key component properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent compatibility of their basic form-related and behavioral interaction . This will mean a somewhat more specific form of collaboration with specialists then that in level I .At level III ,the architect and the specific form of collaboration with specialists then that providing for all of the elemental design specifics required to produce biddable construction documents .Of course this success comes from the development of the Structural Material.1.Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice ofconcrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.2. EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with thedragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³ and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.3.Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also asunserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was designed for. Ther e are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults andimperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) .文献翻译建筑师必须从一种全局的角度出发去处理建筑设计中应该考虑到的实用活动,物质及象征性的需求。
毕业设计外文文献翻译
毕业设计外文文献翻译Graduation Design Foreign Literature Translation (700 words) Title: The Impact of Artificial Intelligence on the Job Market Introduction:Artificial Intelligence (AI) is a rapidly growing field that has the potential to revolutionize various industries and job markets. With advancements in technologies such as machine learning and natural language processing, AI has become capable of performing tasks traditionally done by humans. This has raised concerns about the future of jobs and the impact AI will have on the job market. This literature review aims to explore the implications of AI on employment and job opportunities.AI in the Workplace:AI technologies are increasingly being integrated into the workplace, with the aim of automating routine and repetitive tasks. For example, automated chatbots are being used to handle customer service queries, while machine learning algorithms are being employed to analyze large data sets. This has resulted in increased efficiency and productivity in many industries. However, it has also led to concerns about job displacement and unemployment.Job Displacement:The rise of AI has raised concerns about job displacement, as AI technologies are becoming increasingly capable of performing tasks previously done by humans. For example, automated machines can now perform complex surgeries with greaterprecision than human surgeons. This has led to fears that certain jobs will become obsolete, leading to unemployment for those who were previously employed in these industries.New Job Opportunities:While AI might potentially replace certain jobs, it also creates new job opportunities. As AI technologies continue to evolve, there will be a greater demand for individuals with technical skills in AI development and programming. Additionally, jobs that require human interaction and emotional intelligence, such as social work or counseling, may become even more in demand, as they cannot be easily automated.Job Transformation:Another potential impact of AI on the job market is job transformation. AI technologies can augment human abilities rather than replacing them entirely. For example, AI-powered tools can assist professionals in making decisions, augmenting their expertise and productivity. This may result in changes in job roles and the need for individuals to adapt their skills to work alongside AI technologies.Conclusion:The impact of AI on the job market is still being studied and debated. While AI has the potential to automate certain tasks and potentially lead to job displacement, it also presents opportunities for new jobs and job transformation. It is essential for individuals and organizations to adapt and acquire the necessary skills to navigate these changes in order to stay competitive in the evolvingjob market. Further research is needed to fully understand the implications of AI on employment and job opportunities.。
液压专业毕业设计外文翻译(有译文、外文文献)值得收藏哦!
外文原文:The Analysis of Cavitation Problems in the Axial Piston Pumpshu WangEaton Corporation,14615 Lone Oak Road,Eden Prairie, MN 55344This paper discusses and analyzes the control volume of a piston bore constrained by the valve plate in axial piston pumps. The vacuum within the piston bore caused by the rise volume needs to be compensated by the flow; otherwise, the low pressure may cause the cavitations and aerations. In the research, the valve plate geometry can be optimized by some analytical limitations to prevent the piston pressure below the vapor pressure. The limitations provide the design guide of the timings and overlap areas between valve plate ports and barrel kidneys to consider the cavitations and aerations. _DOI: 10.1115/1.4002058_Keywords: cavitation , optimization, valve plate, pressure undershoots1 IntroductionIn hydrostatic machines, cavitations mean that cavities or bubbles form in the hydraulic liquid at the low pressure and collapse at the high pressure region, which causes noise, vibration, and less efficiency.Cavitations are undesirable in the pump since the shock waves formed by collapsed may be strong enough to damage components. The hydraulic fluid will vaporize when its pressure becomes too low or when the temperature is too high. In practice, a number of approaches are mostly used to deal with the problems: (1) raise the liquid level in the tank, (2) pressurize the tank, (3) booster the inlet pressure of the pump, (4) lower the pumping fluid temperature, and (5) design deliberately the pump itself.Many research efforts have been made on cavitation phenomena in hydraulic machine designs. The cavitation is classified into two types in piston pumps: trapping phenomenon related one (which can be preventedby the proper design of the valve plate) and the one observed on the layers after the contraction or enlargement of flow passages (caused by rotating group designs) in Ref. (1). The relationship between the cavitation and the measured cylinder pressure is addressed in this study. Edge and Darling (2) reported an experimental study of the cylinder pressure within an axial piston pump. The inclusion of fluid momentum effects and cavitations within the cylinder bore are predicted at both high speed and high load conditions. Another study in Ref. (3) provides an overview of hydraulic fluid impacting on the inlet condition and cavitation potential. It indicates that physical properties (such as vapor pressure, viscosity, density, and bulk modulus) are vital to properly evaluate the effects on lubrication and cavitation. A homogeneous cavitation model based on the thermodynamic properties of the liquid and steam is used to understand the basic physical phenomena of mass flow reduction and wave motion influences in the hydraulic tools and injection systems (4). Dular et al. (5, 6) developed an expert system for monitoring and control of cavitations in hydraulic machines and investigated the possibility of cavitation erosion by using the computational fluid dynamics (CFD) tools. The erosion effects of cavitations have been measured and validated by a simple single hydrofoil configuration in a cavitation tunnel. It is assumed that the severe erosion is often due to the repeated collapse of the traveling vortex generated by a leading edge cavity in Ref. (7). Then, the cavitation erosion intensity may be scaled by a simple set of flow parameters: the upstream velocity, the Strouhal number, the cavity length, and the pressure. A new cavitation erosion device, called vortex cavitation generator, is introduced to comparatively study various erosion situations (8).More previous research has been concentrated on the valve plate designs, piston, and pump pressure dynamics that can be associated with cavitations in axial piston pumps. The control volume approach and instantaneous flows (leakage) are profoundly studied in Ref. [9]. Berta et al. [10] used the finite volume concept to develop a mathematical model in which the effects of port plate relief grooves have been modeled andthe gaseous cavitation is considered in a simplified manner. An improved model is proposed in Ref. [11] and validated by experimental results. The model may analyze the cylinder pressure and flow ripples influenced by port plate and relief groove design. Manring compared principal advantages of various valve plate slots (i.e., the slots with constant, linearly varying, and quadratic varying areas) in axial piston pumps [12]. Four different numerical models are focused on the characteristics of hydraulic fluid, and cavitations are taken into account in different ways to assist the reduction in flow oscillations [13].The experiences of piston pump developments show that the optimization of the cavitations/aerations shall include the following issues: occurring cavitation and air release, pump acoustics caused by the induced noises, maximal amplitudes of pressure fluctuations, rotational torque progression, etc. However, the aim of this study is to modify the valve plate design to prevent cavitation erosions caused by collapsing steam or air bubbles on the walls of axial pump components. In contrastto literature studies, the research focuses on the development of analytical relationship between the valve plate geometrics and cavitations. The optimization method is applied to analyze the pressure undershoots compared with the saturated vapor pressure within the piston bore.The appropriate design of instantaneous flow areas between the valveplate and barrel kidney can be decided consequently.2 The Axial Piston Pump and Valve PlateThe typical schematic of the design of the axis piston pump is shown in Fig. 1. The shaft offset e is designed in this case to generate stroking containment moments for reducing cost purposes.The variation between the pivot center of the slipper and swash rotating center is shown as a. The swash angle αis the variable that determines the amount of fluid pumped per shaft revolution. In Fig. 1, the n th piston-slipper assembly is located at the angle ofθ. The displacement of the n thnpiston-slipper assembly along the x-axis can be written asx n= R tan(α)sin(θ)+ a sec(α)+ e tan(α) (1)nwhere R is the pitch radius of the rotating group.Then, the instantaneous velocity of the n th piston isx˙n = R 2sec ()αsin (n θ)α+ R tan (α)cos (n θ)ω+ R 2sec ()αsin (α)α + e 2sec ()αα (2)where the shaft rotating speed of the pump is ω=d n θ / dt .The valve plate is the most significant device to constraint flow inpiston pumps. The geometry of intake/discharge ports on the valve plateand its instantaneous relative positions with respect to barrel kidneys areusually referred to the valve plate timing. The ports of the valve plateoverlap with each barrel kidneys to construct a flow area or passage,which confines the fluid dynamics of the pump. In Fig. 2, the timingangles of the discharge and intake ports on the valve plate are listed as(,)T i d δ and (,)B i d δ. The opening angle of the barrel kidney is referred to asϕ. In some designs, there exists a simultaneous overlap between thebarrel kidney and intake/discharge slots at the locations of the top deadcenter (TDC) or bottom dead center (BDC) on the valve plate on whichthe overlap area appears together referred to as “cross -porting” in thepump design engineering. The cross-porting communicates the dischargeand intake ports, which may usually lower the volumetric efficiency. Thetrapped-volume design is compared with the design of the cross-porting,and it can achieve better efficiency 14]. However, the cross-porting isFig. 1 The typical axis piston pumpcommonly used to benefit the noise issue and pump stability in practice.3 The Control Volume of a Piston BoreIn the piston pump, the fluid within one piston is embraced by the piston bore, cylinder barrel, slipper, valve plate, and swash plate shown in Fig. 3. There exist some types of slip flow by virtue of relativeFig. 2 Timing of the valve platemotions and clearances between thos e components. Within the control volume of each piston bore, the instantaneous mass is calculated asM= n V(3)nwhere ρ and n V are the instantaneous density and volumesuch that themass time rate of change can be given asFig. 3 The control volume of the piston boren n n dM dV d V dt dt dtρρ=+ (4) where d n V is the varying of the volume.Based on the conservation equation, the mass rate in the control volume isn n dM q dtρ= (5)where n q is the instantaneous flow rate in and out of one piston. From the definition of the bulk modulus,n dP d dt dtρρβ= (6) where Pn is the instantaneous pressure within the piston bore. Substituting Eqs. (5) and (6) into Eq. (4) yields(?)n n n n n ndP q dV d V w d βθθ=- (7) where the shaft speed of the pump is n d dtθω=. The instantaneous volume of one piston bore can be calculated by using Eq. (1) asn V = 0V + P A [R tan (α)sin (n θ)+ a sec (α) + e tan(α) ] (8)where P A is the piston sectional area and 0V is the volume of eachpiston, which has zero displacement along the x-axis (when n θ=0, π).The volume rate of change can be calculated at the certain swash angle, i.e., α =0, such thattan cos n p n ndV A R d αθθ=()() (9) in which it is noted that the piston bore volume increases or decreaseswith respect to the rotating angle of n θ.Substituting Eqs. (8) and (9) into Eq. (7) yields0[tan()cos()] [tan sin sec tan() ]n P n n n p n q A R dP d V A R a e βαθωθαθαα-=-++()()()(10)4 Optimal DesignsTo find the extrema of pressure overshoots and undershoots in the control volume of piston bores, the optimization method can be used in Eq. (10). In a nonlinear function, reaching global maxima and minima is usually the goal of optimization. If the function is continuous on a closed interval, global maxima and minima exist. Furthermore, the global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain or must lie on the boundary of the domain. So, the method of finding a global maximum (or minimum) is to detect all the local maxima (or minima) in the interior, evaluate the maxima (or minima) points on the boundary, and select the biggest (or smallest) one. Local maximum or local minimum can be searched by using the first derivative test that the potential extrema of a function f( · ), with derivative ()f ', can solve the equation at the critical points of ()f '=0 [15].The pressure of control volumes in the piston bore may be found as either a minimum or maximum value as dP/ dt=0. Thus, letting the left side of Eq. (10) be equal to zero yieldstan()cos()0n p n q A R ωαθ-= (11)In a piston bore, the quantity of n q offsets the volume varying and thendecreases the overshoots and undershoots of the piston pressure. In this study, the most interesting are undershoots of the pressure, which may fall below the vapor pressure or gas desorption pressure to cause cavitations. The term oftan()cos()p n A R ωαθ in Eq. (11) has the positive value in the range of intake ports (22ππθ-≤≤), shown in Fig. 2, which means that the piston volume arises. Therefore, the piston needs the sufficient flow in; otherwise, the pressure may drop.In the piston, the flow of n q may get through in a few scenariosshown in Fig. 3: (I) the clearance between the valve plate and cylinder barrel, (II) the clearance between the cylinder bore and piston, (III) the clearance between the piston and slipper, (IV) the clearance between the slipper and swash plate, and (V) the overlapping area between the barrel kidney and valve plate ports. As pumps operate stably, the flows in the as laminar flows, which can be calculated as [16]312IV k k Ln i I k h q p L ωμ==∑ (12)where k h is the height of the clearance, k L is the passage length,scenarios I –IV mostly have low Reynolds numbers and can be regarded k ω is the width of the clearance (note that in the scenario II, k ω =2π· r, in which r is the piston radius), and p is the pressure drop defined in the intake ports as p =c p -n p (13)where c p is the case pressure of the pump. The fluid films through theabove clearances were extensively investigated in previous research. The effects of the main related dimensions of pump and the operating conditions on the film are numerically clarified inRefs. [17,18]. The dynamic behavior of slipper pads and the clearance between the slipper and swash plate can be referred to Refs. [19,20]. Manring et al. [21,22] investigated the flow rate and load carrying capacity of the slipper bearing in theoretical and experimental methods under different deformation conditions. A simulation tool calledCASPAR is used to estimate the nonisothermal gap flow between the cylinder barrel and the valve plate by Huang and Ivantysynova [23]. The simulation program also considers the surface deformations to predict gap heights, frictions, etc., between the piston and barrel andbetween the swash plate and slipper. All these clearance geometrics in Eq.(12) are nonlinear and operation based, which is a complicated issue. In this study, the experimental measurements of the gap flows are preferred. If it is not possible, the worst cases of the geometrics or tolerances with empirical adjustments may be used to consider the cavitation issue, i.e., minimum gap flows.For scenario V, the flow is mostly in high velocity and can be described by using the turbulent orifice equation as((Tn d i d d q c A c A θθ= (14)where Pi and Pd are the intake and discharge pressure of the pump and ()i A θ and ()d A θ are the instantaneous overlap area between barrel kidneys and inlet/discharge ports of the valve plate individually.The areas are nonlinear functions of the rotating angle, which is defined by the geometrics of the barrel kidney, valve plate ports,silencing grooves, decompression holes, and so forth. Combining Eqs.(11) –(14), the area can be obtained as3()K IV A θ==(15)where ()A θ is the total overlap area of ()A θ=()()i d A A θλθ+, and λ is defined as=In the piston bore, the pressure varies from low tohigh while passing over the intake and discharge ports of the valve plates. It is possible that the instantaneous pressure achieves extremely low values during the intake area( 22ππθ-≤≤ shown in Fig. 2) that may be located below the vapor pressure vp p , i.e., n vp p p ≤;then cavitations canhappen. To prevent the phenomena, the total overlap area of ()A θ mightbe designed to be satisfied with30()K IV A θ=≥(16)where 0()A θ is the minimum area of 0()A θ=0()()i d A A θλθ+ and 0λis a constant that is0λ=gaseous form. The vapor pressure of any substance increases nonlinearly with temperature according to the Clausius –Clapeyron relation. With the incremental increase in temperature, the vapor pressure becomes sufficient to overcome particle attraction and make the liquid form bubbles inside the substance. For pure components, the vapor pressure can be determined by the temperature using the Antoine equation as /()10A B C T --, where T is the temperature, and A, B, and C are constants[24].As a piston traverse the intake port, the pressure varies dependent on the cosine function in Eq. (10). It is noted that there are some typical positions of the piston with respect to the intake port, the beginning and ending of overlap, i.e., TDC and BDC (/2,/2θππ=- ) and the zero displacement position (θ =0). The two situations will be discussed as follows:(1) When /2,/2θππ=-, it is not always necessary to maintain the overlap area of 0()A θ because slip flows may provide filling up for the vacuum. From Eq. (16), letting 0()A θ=0,the timing angles at the TDC and BDC may be designed as31cos ()tan()122IV c vpk k i I P k p p h A r L ωϕδωαμ--≤+∑ (17) in which the open angle of the barrel kidney is . There is nocross-porting flow with the timing in the intake port.(2) When θ =0, the function of cos θ has the maximum value, which can provide another limitation of the overlap area to prevent the low pressure undershoots suchthat 30(0)K IVA =≥ (18)where 0(0)A is the minimum overlap area of 0(0)(0)i A A =.To prevent the low piston pressure building bubbles, the vaporpressure is considered as the lower limitation for the pressure settings in Eq. (16). The overall of overlap areas then can be derived to have adesign limitation. The limitation is determined by the leakage conditions, vapor pressure, rotating speed, etc. It indicates that the higher the pumping speed, the more severe cavitation may happen, and then the designs need more overlap area to let flow in the piston bore. On the other side, the low vapor pressure of the hydraulic fluid is preferred to reduce the opportunities to reach the cavitation conditions. As a result, only the vapor pressure of the pure fluid is considered in Eqs. (16)–(18). In fact, air release starts in the higher pressure than the pure cavitation process mainly in turbulent shear layers, which occur in scenario V.Therefore, the vapor pressure might be adjusted to design the overlap area by Eq. (16) if there exists substantial trapped and dissolved air in the fluid.The laminar leakages through the clearances aforementioned are a tradeoff in the design. It is demonstrated that the more leakage from the pump case to piston may relieve cavitation problems.However, the more leakage may degrade the pump efficiency in the discharge ports. In some design cases, the maximum timing angles can be determined by Eq. (17)to not have both simultaneous overlapping and highly low pressure at the TDC and BDC.While the piston rotates to have the zero displacement, the minimum overlap area can be determined by Eq. 18 , which may assist the piston not to have the large pressure undershoots during flow intake.6 ConclusionsThe valve plate design is a critical issue in addressing the cavitation or aeration phenomena in the piston pump. This study uses the control volume method to analyze the flow, pressure, and leakages within one piston bore related to the valve plate timings. If the overlap area developed by barrel kidneys and valve plate ports is not properly designed, no sufficient flow replenishes the rise volume by the rotating movement. Therefore, the piston pressure may drop below the saturated vapor pressure of the liquid and air ingress to form the vapor bubbles. To control the damaging cavitations, the optimization approach is used to detect the lowest pressure constricted by valve plate timings. The analytical limitation of the overlap area needs to be satisfied to remain the pressure to not have large undershoots so that the system can be largely enhanced on cavitation/aeration issues.In this study, the dynamics of the piston control volume is developed by using several assumptions such as constant discharge coefficients and laminar leakages. The discharge coefficient is practically nonlinear based on the geometrics, flow number, etc. Leakage clearances of the control volume may not keep the constant height and width as well in practice due to vibrations and dynamical ripples. All these issues are complicated and very empirical and need further consideration in the future. Theresults presented in this paper can be more accurate in estimating the cavitations with these extensive studies.Nomenclature0(),()A A θθ= the total overlap area between valve plate ports and barrel kidneys 2()mmAp = piston section area 2()mmA, B, C= constantsA= offset between the piston-slipper joint and surface of the swash plate 2()mmd C = orifice discharge coefficiente= offset between the swash plate pivot and the shaft centerline of the pump 2()mmk h = the height of the clearance 2()mmk L = the passage length of the clearance 2()mmM= mass of the fluid within a single piston (kg)N= number of pistonsn = piston and slipper counter,p p = fluid pressure and pressure drop (bar)Pc= the case pressure of the pump (bar)Pd= pump discharge pressure (bar)Pi = pump intake pressure (bar)Pn = fluid pressure within the nth piston bore (bar)Pvp = the vapor pressure of the hydraulic fluid(bar)qn, qLn, qTn = the instantaneous flow rate of each piston(l/min)R = piston pitch radius 2()mmr = piston radius (mm)t =time (s)V = volume 3()mmwk = the width of the clearance (mm)x ,x ˙= piston displacement and velocity along the shaft axis (m, m/s) x y z --=Cartesian coordinates with an origin on the shaft centerline x y z '''--= Cartesian coordinates with an origin on swash plate pivot ,αα=swash plate angle and velocity (rad, rad/s)β= fluid bulk modulus (bar)δδ= timing angle of valve plates at the BDC and TDC (rad),B Tϕ= the open angle of the barrel kidney(rad)ρ= fluid density(kg/m3),θω= angular position and velocity of the rotating kit (rad, rad/s)μ=absolute viscosity(Cp),λλ= coefficients related to the pressure drop外文中文翻译:在轴向柱塞泵气蚀问题的分析本论文讨论和分析了一个柱塞孔与配流盘限制在轴向柱塞泵的控制量设计。
毕业设计英文 翻译(原文)
编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学专业:电子信息工程学生姓名: xx学号: xxxxxxxxxxxxx 指导教师单位:桂林电子科技大学姓名: xxxx职称: xx2014年x月xx日Timing on and off power supplyusesThe switching power supply products are widely used in industrial automation and control, military equipment, scientific equipment, LED lighting, industrial equipment,communications equipment,electrical equipment,instrumentation, medical equipment, semiconductor cooling and heating, air purifiers, electronic refrigerator, LCD monitor, LED lighting, communications equipment, audio-visual products, security, computer chassis, digital products and equipment and other fields.IntroductionWith the rapid development of power electronics technology, power electronics equipment and people's work, the relationship of life become increasingly close, and electronic equipment without reliable power, into the 1980s, computer power and the full realization of the switching power supply, the first to complete the computer Power new generation to enter the switching power supply in the 1990s have entered into a variety of electronic, electrical devices, program-controlled switchboards, communications, electronic testing equipment power control equipment, power supply, etc. have been widely used in switching power supply, but also to promote the rapid development of the switching power supply technology .Switching power supply is the use of modern power electronics technology to control the ratio of the switching transistor to turn on and off to maintain a stable output voltage power supply, switching power supply is generally controlled by pulse width modulation (PWM) ICs and switching devices (MOSFET, BJT) composition. Switching power supply and linear power compared to both the cost and growth with the increase of output power, but the two different growth rates. A power point, linear power supply costs, but higher than the switching power supply. With the development of power electronics technology and innovation, making the switching power supply technology to continue to innovate, the turning points of this cost is increasingly move to the low output power side, the switching power supply provides a broad space for development.The direction of its development is the high-frequency switching power supply, high frequency switching power supply miniaturization, and switching power supply into a wider range of application areas, especially in high-tech fields, and promote the miniaturization of high-tech products, light of. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.classificationModern switching power supply, there are two: one is the DC switching power supply; the other is the AC switching power supply. Introduces only DC switching power supply and its function is poor power quality of the original eco-power (coarse) - such as mains power or battery power, converted to meet the equipment requirements of high-quality DC voltage (Varitronix) . The core of the DC switching power supply DC / DC converter. DC switching power supply classification is dependent on the classification of DC / DC converter. In other words, the classification of the classification of the DC switching power supply and DC/DC converter is the classification of essentially the same, the DC / DC converter is basically a classification of the DC switching power supply.DC /DC converter between the input and output electrical isolation can be divided into two categories: one is isolated called isolated DC/DC converter; the other is not isolated as non-isolated DC / DC converter.Isolated DC / DC converter can also be classified by the number of active power devices. The single tube of DC / DC converter Forward (Forward), Feedback (Feedback) two. The double-barreled double-barreled DC/ DC converter Forward (Double Transistor Forward Converter), twin-tube feedback (Double Transistor Feedback Converter), Push-Pull (Push the Pull Converter) and half-bridge (Half-Bridge Converter) four. Four DC / DC converter is the full-bridge DC / DC converter (Full-Bridge Converter).Non-isolated DC / DC converter, according to the number of active power devices can be divided into single-tube, double pipe, and four three categories. Single tube to a total of six of the DC / DC converter, step-down (Buck) DC / DC converter, step-up (Boost) DC / DC converters, DC / DC converter, boost buck (Buck Boost) device of Cuk the DC / DC converter, the Zeta DC / DC converter and SEPIC, the DC / DC converter. DC / DC converters, the Buck and Boost type DC / DC converter is the basic buck-boost of Cuk, Zeta, SEPIC, type DC / DC converter is derived from a single tube in this six. The twin-tube cascaded double-barreled boost (buck-boost) DC / DC converter DC / DC converter. Four DC / DC converter is used, the full-bridge DC / DC converter (Full-Bridge Converter).Isolated DC / DC converter input and output electrical isolation is usually transformer to achieve the function of the transformer has a transformer, so conducive to the expansion of the converter output range of applications, but also easy to achieve different voltage output , or a variety of the same voltage output.Power switch voltage and current rating, the converter's output power is usually proportional to the number of switch. The more the number of switch, the greater the output power of the DC / DC converter, four type than the two output power is twice as large,single-tube output power of only four 1/4.A combination of non-isolated converters and isolated converters can be a single converter does not have their own characteristics. Energy transmission points, one-way transmission and two-way transmission of two DC / DC converter. DC / DC converter with bi-directional transmission function, either side of the transmission power from the power of lateral load power from the load-lateral side of the transmission power.DC / DC converter can be divided into self-excited and separately controlled. With the positive feedback signal converter to switch to self-sustaining periodic switching converter, called self-excited converter, such as the the Luo Yeer (Royer,) converter is a typical push-pull self-oscillating converter. Controlled DC / DC converter switching device control signal is generated by specialized external control circuit.the switching power supply.People in the field of switching power supply technology side of the development of power electronic devices, while the development of the switching inverter technology, the two promote each other to promote the switching power supply annual growth rate of more than two digits toward the light, small, thin, low-noise, high reliability, the direction of development of anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, AC / AC DC / AC, such as inverters, DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardization, and has been recognized by the user, but AC / DC modular, its own characteristics make the modular process, encounter more complex technology and manufacturing process. Hereinafter to illustrate the structure and characteristics of the two types of switching power supply.Self-excited: no external signal source can be self-oscillation, completely self-excited to see it as feedback oscillation circuit of a transformer.Separate excitation: entirely dependent on external sustain oscillations, excited used widely in practical applications. According to the excitation signal structure classification; can be divided into pulse-width-modulated and pulse amplitude modulated two pulse width modulated control the width of the signal is frequency, pulse amplitude modulation control signal amplitude between the same effect are the oscillation frequency to maintain within a certain range to achieve the effect of voltage stability. The winding of the transformer can generally be divided into three types, one group is involved in the oscillation of the primary winding, a group of sustained oscillations in the feedback winding, there is a group of load winding. Such as Shanghai is used in household appliances art technological production of switching power supply, 220V AC bridge rectifier, changing to about 300V DC filter added tothe collector of the switch into the transformer for high frequency oscillation, the feedback winding feedback to the base to maintain the circuit oscillating load winding induction signal, the DC voltage by the rectifier, filter, regulator to provide power to the load. Load winding to provide power at the same time, take up the ability to voltage stability, the principle is the voltage output circuit connected to a voltage sampling device to monitor the output voltage changes, and timely feedback to the oscillator circuit to adjust the oscillation frequency, so as to achieve stable voltage purposes, in order to avoid the interference of the circuit, the feedback voltage back to the oscillator circuit with optocoupler isolation.technology developmentsThe high-frequency switching power supply is the direction of its development, high-frequency switching power supply miniaturization, and switching power supply into the broader field of application, especially in high-tech fields, and promote the development and advancement of the switching power supply, an annual more than two-digit growth rate toward the light, small, thin, low noise, high reliability, the direction of the anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, the DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardized, and has been recognized by the user, but modular AC / DC, because of its own characteristics makes the modular process, encounter more complex technology and manufacturing process. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.The switching power supply applications in power electronic devices as diodes, IGBT and MOSFET.SCR switching power supply input rectifier circuit and soft start circuit, a small amount of applications, the GTR drive difficult, low switching frequency, gradually replace the IGBT and MOSFET.Direction of development of the switching power supply is a high-frequency, high reliability, low power, low noise, jamming and modular. Small, thin, and the key technology is the high frequency switching power supply light, so foreign major switching power supply manufacturers have committed to synchronize the development of new intelligent components, in particular, is to improve the secondary rectifier loss, and the power of iron Oxygen materials to increase scientific and technological innovation in order to improve the magnetic properties of high frequency and large magnetic flux density (Bs), and capacitor miniaturization is a key technology. SMT technology allows the switching power supply has made considerable progress, the arrangement of the components in the circuit board on bothsides, to ensure that the light of the switching power supply, a small, thin. High-frequency switching power supply is bound to the traditional PWM switching technology innovation, realization of ZVS, ZCS soft-switching technology has become the mainstream technology of the switching power supply, and a substantial increase in the efficiency of the switching power supply. Indicators for high reliability, switching power supply manufacturers in the United States by reducing the operating current, reducing the junction temperature and other measures to reduce the stress of the device, greatly improve the reliability of products.Modularity is the overall trend of switching power supply, distributed power systems can be composed of modular power supply, can be designed to N +1 redundant power system, and the parallel capacity expansion. For this shortcoming of the switching power supply running noise, separate the pursuit of high frequency noise will also increase, while the use of part of the resonant converter circuit technology to achieve high frequency, in theory, but also reduce noise, but some The practical application of the resonant converter technology, there are still technical problems, it is still a lot of work in this field, so that the technology to be practical.Power electronics technology innovation, switching power supply industry has broad prospects for development. To accelerate the pace of development of the switching power supply industry in China, it must take the road of technological innovation, out of joint production and research development path with Chinese characteristics and contribute to the rapid development of China's national economy.Developments and trends of the switching power supply1955 U.S. Royer (Roger) invented the self-oscillating push-pull transistor single-transformer DC-DC converter is the beginning of the high-frequency conversion control circuit 1957 check race Jen, Sen, invented a self-oscillating push-pull dual transformers, 1964, U.S. scientists canceled frequency transformer in series the idea of switching power supply, the power supply to the size and weight of the decline in a fundamental way. 1969 increased due to the pressure of the high-power silicon transistor, diode reverse recovery time shortened and other components to improve, and finally made a 25-kHz switching power supply.At present, the switching power supply to the small, lightweight and high efficiency characteristics are widely used in a variety of computer-oriented terminal equipment, communications equipment, etc. Almost all electronic equipment is indispensable for a rapid development of today's electronic information industry power mode. Bipolar transistor made of 100kHz, 500kHz power MOS-FET made, though already the practical switching power supply is currently available on the market, but its frequency to be further improved. Toimprove the switching frequency, it is necessary to reduce the switching losses, and to reduce the switching losses, the need for high-speed switch components. However, the switching speed will be affected by the distribution of the charge stored in the inductance and capacitance, or diode circuit to produce a surge or noise. This will not only affect the surrounding electronic equipment, but also greatly reduce the reliability of the power supply itself. Which, in order to prevent the switching Kai - closed the voltage surge, RC or LC buffers can be used, and the current surge can be caused by the diode stored charge of amorphous and other core made of magnetic buffer . However, the high frequency more than 1MHz, the resonant circuit to make the switch on the voltage or current through the switch was a sine wave, which can reduce switching losses, but also to control the occurrence of surges. This switch is called the resonant switch. Of this switching power supply is active, you can, in theory, because in this way do not need to greatly improve the switching speed of the switching losses reduced to zero, and the noise is expected to become one of the high-frequency switching power supply The main ways. At present, many countries in the world are committed to several trillion Hz converter utility.the principle of IntroductionThe switching power supply of the process is quite easy to understand, linear power supplies, power transistors operating in the linear mode and linear power, the PWM switching power supply to the power transistor turns on and off state, in both states, on the power transistor V - security product is very small (conduction, low voltage, large current; shutdown, voltage, current) V oltammetric product / power device is power semiconductor devices on the loss.Compared with the linear power supply, the PWM switching power supply more efficient process is achieved by "chopping", that is cut into the amplitude of the input DC voltage equal to the input voltage amplitude of the pulse voltage. The pulse duty cycle is adjusted by the switching power supply controller. Once the input voltage is cut into the AC square wave, its amplitude through the transformer to raise or lower. Number of groups of output voltage can be increased by increasing the number of primary and secondary windings of the transformer. After the last AC waveform after the rectifier filter the DC output voltage.The main purpose of the controller is to maintain the stability of the output voltage, the course of their work is very similar to the linear form of the controller. That is the function blocks of the controller, the voltage reference and error amplifier can be designed the same as the linear regulator. Their difference lies in the error amplifier output (error voltage) in the drive before the power tube to go through a voltage / pulse-width conversion unit.Switching power supply There are two main ways of working: Forward transformand boost transformation. Although they are all part of the layout difference is small, but the course of their work vary greatly, have advantages in specific applications.the circuit schematicThe so-called switching power supply, as the name implies, is a door, a door power through a closed power to stop by, then what is the door, the switching power supply using SCR, some switch, these two component performance is similar, are relying on the base switch control pole (SCR), coupled with the pulse signal to complete the on and off, the pulse signal is half attentive to control the pole voltage increases, the switch or transistor conduction, the filter output voltage of 300V, 220V rectifier conduction, transmitted through the switching transformer secondary through the transformer to the voltage increase or decrease for each circuit work. Oscillation pulse of negative semi-attentive to the power regulator, base, or SCR control voltage lower than the original set voltage power regulator cut-off, 300V power is off, switch the transformer secondary no voltage, then each circuit The required operating voltage, depends on this secondary road rectifier filter capacitor discharge to maintain. Repeat the process until the next pulse cycle is a half weeks when the signal arrival. This switch transformer is called the high-frequency transformer, because the operating frequency is higher than the 50HZ low frequency. Then promote the pulse of the switch or SCR, which requires the oscillator circuit, we know, the transistor has a characteristic, is the base-emitter voltage is 0.65-0.7V is the zoom state, 0.7V These are the saturated hydraulic conductivity state-0.1V-0.3V in the oscillatory state, then the operating point after a good tune, to rely on the deep negative feedback to generate a negative pressure, so that the oscillating tube onset, the frequency of the oscillating tube capacitor charging and discharging of the length of time from the base to determine the oscillation frequency of the output pulse amplitude, and vice versa on the small, which determines the size of the output voltage of the power regulator. Transformer secondary output voltage regulator, usually switching transformer, single around a set of coils, the voltage at its upper end, as the reference voltage after the rectifier filter, then through the optocoupler, this benchmark voltage return to the base of the oscillating tube pole to adjust the level of the oscillation frequency, if the transformer secondary voltage is increased, the sampling coil output voltage increases, the positive feedback voltage obtained through the optocoupler is also increased, this voltage is applied oscillating tube base, so that oscillation frequency is reduced, played a stable secondary output voltage stability, too small do not have to go into detail, nor it is necessary to understand the fine, such a high-power voltage transformer by switching transmission, separated and after the class returned by sampling the voltage from the opto-coupler pass separated after class, so before the mains voltage, and after the classseparation, which is called cold plate, it is safe, transformers before power is independent, which is called switching power supply.the DC / DC conversionDC / DC converter is a fixed DC voltage transformation into a variable DC voltage, also known as the DC chopper. There are two ways of working chopper, one Ts constant pulse width modulation mode, change the ton (General), the second is the frequency modulation, the same ton to change the Ts, (easy to produce interference). Circuit by the following categories:Buck circuit - the step-down chopper, the average output voltage U0 is less than the input voltage Ui, the same polarity.Boost Circuit - step-up chopper, the average output voltage switching power supply schematic U0 is greater than the input voltage Ui, the same polarity.Buck-Boost circuit - buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, the inductance transmission.Cuk circuit - a buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, capacitance transmission.The above-mentioned non-isolated circuit, the isolation circuit forward circuits, feedback circuit, the half-bridge circuit, the full bridge circuit, push-pull circuit. Today's soft-switching technology makes a qualitative leap in the DC / DC the U.S. VICOR company design and manufacture a variety of ECI soft-switching DC / DC converter, the maximum output power 300W, 600W, 800W, etc., the corresponding power density (6.2 , 10,17) W/cm3 efficiency (80-90)%. A the Japanese Nemic Lambda latest using soft-switching technology, high frequency switching power supply module RM Series, its switching frequency (200 to 300) kHz, power density has reached 27W/cm3 with synchronous rectifier (MOSFETs instead of Schottky diodes ), so that the whole circuit efficiency by up to 90%.AC / DC conversionAC / DC conversion will transform AC to DC, the power flow can be bi-directional power flow by the power flow to load known as the "rectification", referred to as "active inverter power flow returned by the load power. AC / DC converter input 50/60Hz AC due must be rectified, filtered, so the volume is relatively large filter capacitor is essential, while experiencing safety standards (such as UL, CCEE, etc.) and EMC Directive restrictions (such as IEC, FCC, CSA) in the AC input side must be added to the EMC filter and use meets the safety standards of the components, thus limiting the miniaturization of the volume of AC / DC power, In addition, due to internal frequency, high voltage, current switching, making the problem difficult to solve EMC also high demands on the internal high-density mountingcircuit design, for the same reason, the high voltage, high current switch makes power supply loss increases, limiting the AC / DC converter modular process, and therefore must be used to power system optimal design method to make it work efficiency to reach a certain level of satisfaction.AC / DC conversion circuit wiring can be divided into half-wave circuit, full-wave circuit. Press the power phase can be divided into single-phase three-phase, multiphase. Can be divided into a quadrant, two quadrant, three quadrants, four-quadrant circuit work quadrant.he selection of the switching power supplySwitching power supply input on the anti-jamming performance, compared to its circuit structure characteristics (multi-level series), the input disturbances, such as surge voltage is difficult to pass on the stability of the output voltage of the technical indicators and linear power have greater advantages, the output voltage stability up to (0.5)%. Switching power supply module as an integrated power electronic devices should be selected。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛大学毕业论文(设计)科技文献翻译院系:自动化工程学院控制工程系专业:自动化班级:2009级4班姓名:史发涛指导教师:于金鹏2013年4月10日Providing Integrated Condition Monitoring Solutions for World Class PerformanceRockwell Automation is a premier provider of Integrated Condition Monitoring Solutions (ICMS) to all major industry segments. Offering the latest state-of-the art technology in vibration analysis, oil analysis, on-line surveillance and protection systems,remote monitoring, as well as outstanding training and customer support services. Through strategic alliances with major Computerized Maintenance Management Systems (CMMS) providers Rockwell Automation can now provide integrated systems that provide critical machinery information throughout the enterprise.Portable SystemsEnpacThe Enpac™ is a Windows CE based 2-channel high performance data collector and signal analyzer. The Enpac™ collects field data, includi ng vibration information and process variables. Enpac™ allows easy condition monitoring of equipment found in many process industries such as power generation, petrochemical, pulp and paper, and primary metals.The Enpac™ features a built in optical (laser) tachometer, a choice of either a 1/8 or 1/4 VGA resolution screen, ability to store data on standard Type I or Type II PCMCIA cards and on-line contextsensitive HELP, built in to all applications.Online SystemsRockwell Automation offers a complete range of online hardware and software systems designed to meet your machinery protection and condition monitoring needs. When you need to protect your critical machinery assets the 6600 Series machinery protection system provides continuous monitoring. The Enw atch™ Online Surveillance System is a cost-effective solution for monitoring the condition of the important machines in your plant.The 6600 Series and Enwatch™ systems can be integrated seamlessly with Emonitor Odyssey®or Enshare™ machinery information software. This integrated solution will provide you with a complete picture of the condition of your plant.EntrxWhen you need to understand how your rotating machinery is performing then Entrx is the professional’s tool. Entrx provides the means for reliable and consistent data acquisition for your entire steady state and transient machine operating modes.Entrx data acquisition hardware is fully configurable by the user and is capable of collecting data in both multiplexed and simultaneous / continuous modes. Graphical presentations of your machinery help to provide a visual display of what is happening toyour machinery.SoftwareEMONITOR Odyssey®EMONITOR Odyssey® is the next generation of Rockwell Automation's complete Machinery Information Systems. This system features integration of the widest range of condition monitoring technologies and full 32-bit Microsoft ® Windows® software architecture. EMONITOR Odyssey® bridges the gap between portable monitoring systems and on-line Condition Monitoring. Integration of machinery monitoring technologies provides you with a complete picture of the health of your plant machinery. Vibration data from portable instruments, on-line surveillance monitoring devices and continuous protection monitors (API 670) are all integrated in a common database. Oil analysis data, motor current analysis, infrared thermographic images and process data can also be integrated into this same database. Results from other applications can be displayed using the unique Active-X display pane (latest object linking and embedding technologies from Microsoft®).EnshareEnshare is Rockwell Automation’s premier software solution providing a platform for integrating all your plant asset condition information to help you manage your machinery assets more effectively. The Enshare solution utilizes condition information from vibration, oil analysis and other technologies to help diagnose potential machinery problems. This information can be effectively communicated through Enshare’s Asset Health Module with other departments within your organization, helping you integrate maintenance and operational activities for increased productivity. The information can also be sent directly to a Computerized Maintenance Management System (CMMS) in the form of work orders.Oil AnalysisRockwell Automation’s comprehensive experience in Oil Analysis means we can provide a total solution - including software, hardware and full technical support to ensure that your oil analysis program always runs smoothly. Enlube PM software is the new Machinery Oil Analysis Information System. This system features integration of the widest range of lubricant condition and health monitoring technologies in a full 32-bit Microsoft® Windows® software architecture. Enlab - a complete independent Oil Analysis Lab Service from Rockwell Automation providing fast,reliable and consistent results time after time.BalancingAccurate balancing is essential to the operation,maintenance and repair of rotating equipment. Whether you are dealing with a turbine in a power plant, a fan in a chemical facility, an armature from an electric motor, or a roll in a paper mill, your rotors need to be balanced as precisely as possible.As IRD we have been in the balancing business for nearly 50 years. We offer a complete range of balancing machines and instruments and with a global network of service, support, application expertise and training programs we are able to meet your balancing needs.ServicesComprehensive ServicesImplementing an effective condition-monitoring program is critical to your success in meeting the equipment reliability, productivity, and business goals of your plant and company.Rockwell Automation’s comprehensive services offering can help you meet your objectives. We can offer a wide range of professional services including program audits, project management, installation, start-up, reliability consulting, and advanced machinery analysis.We will work with you to understand your goals and requirements and make sure that all your needs are addressed to ensure your success.Customer SupportWe are committed to providing the highest level of customer support. Our knowledgeable, caring support professionals will provide assistance to ensure your successful program implementation, or day-to-day support.Reliability OnlineReliability Online (ROL) is a unique service designed to provide results to your Condition Based Maintenance (CBM) program with minimum investment in equipment, training and personnel. Leveraging the Internet and a team of highly skilled condition monitoring engineers, we will guarantee you the best possible results from your CBM program irrespective of your location or industry.To obtain the best results from your Condition Based Maintenance program let Rockwell Automation help you manage your CBM program remotely.Educational ServicesThe best tools, when used by unskilled craftsmen, will still result in unsatisfactory results. This is true in many aspects of life, but especially in the application of Condition Monitoring techniques and technologies in today's demanding plant environments. Yes, you need to be equipped with the best tools, but you must also receive the proper training to get the maximum benefit from your investment in a successful Condition Monitoring or Reliability program.Experience, knowledge and quality are the foundation of Rockwell Automation’s training seminars. Technology training is available as well as product training courses; all presented by the most qualified instructors to meet your needs. Choose from on-site seminars and classroom training conducted all over the world to help you gain the maximum benefit from your machinery reliability investment.Condition Monitoring ServicesPredictive Maintenance Services for Maximizing the Reliability of Your PlantCondition monitoring increases the overall knowledge of asset condition. It allows decision makers to perform Condition-based Maintenance (CbM) by scheduling downtime, labor, and materials based on machinery health. However, many companies cannot reap the benefits of an effective CbM program because they don’t have the knowledge or resources to do so.With Rockwell Automation Condition Monitoring Services, you will receive tailored solutions to help you implement your CbM program and use our field specialists to help you succeed.The goal of a world-class CbM program is to increase the reliability and availability of your machinery, while minimizing downtime and labor and repair costs. The results are dramatic and the documented cost savings are significant.There are many benefits of a CbM program that impact a variety of plant Key Performance Indicators (KPI) such as:•Return on Net Assets (RONA)•Lower inventory costs•Reduce spare parts•Defer scheduled maintenance•Overall Equipment Effectiveness (OEE)•Improve system availability, production rates, quality, and safety•Reduce unplanned downtime and planned downtime duration•Reduce Mean-Time-To-Repair (MTTR)•Improves safety and qualityRockwell Automation is a singlesource provider of managed CbM programs across the country and around the world. Rockwell Automation helps multi-location, multi-national clients keep their facilities operating reliably, safely, and efficiently.CbM programs are most effective when multi-technology strategies are considered.•Vibration Analysis measures the change in vibration intensity on mechanical equipment when machine condition begins to degrade•Oil Analysis detects contamination or degradation of oil which indicates machine wear •Infrared Themography detects variations of apparent temperatures in electrical, mechanical, infrastructure and process equipmentRockwell Automation provides a complete predictive maintenance program solution customized to fit your facility and its specific needs.Vibration AnalysisAs a CbM tool, vibration analysis detects vibration levels affected by:•Misalignments•Unbalance•Looseness•Eccentricity•Defective bearings•Resonance•Electrical problems•Aerodynamic/hydraulicforcesThe goal is to identify changes in the condition of a machine that will indicate a potential failure before it occurs. By detecting these issues, you can:•Minimize machine damage•Proactively schedule downtime, labor, and materials•Eliminate costly trial and error approaches to solving problems•Allow machines in good operating condition to continue to run•Eliminate unnecessary overhauls•Improve safety and quality performanceWhen you need to turn vibration data into actionable CbM data, Rockwell Automation puts this capability at your finger tips. With the help of your vibration analyst, Rockwell Automation can design a program to provide:•Program m anagement•Onsite equipment survey•Prioritized programEquipment list•Measurement p oints•Complete database set-up•Baseline d ata acquisition•Data interpretation•Comprehensive issues report•Maintenance or repair recommendations•Daily, weekly, monthly or quarterly analysis•Daily, weekly, monthly or quarterly data collection•Data collection trainingWhen determining the type of program you want, you should consider the resources you need to run the program, the rate in which your machines fail, or the loss of production due to a machine failure.Once you decide if you are in sourcing or outsourcing, Rockwell Automation can deliver vibration services specified to fit your needs.Need to outsource?A Rockwell Automation vibration analyst will come to your facility and provide both data collection and analysis of your equipment.Need to outsource but have some inhouse capabilities?A Rockwell Automation vibration analyst will teach you how to collect data so you can perform routine data collection and send the data to a level 3 vibration analyst.Need to completely in source?A Rockwell Automation level 3 vibration analyst will mentor you in collecting and analyzing data. This transition occurs over the course of a recommended three years:- 1st Year – Rockwell Automation takes lead on analysis; Customer is trained to collect data - 2nd Year – Customer is trained to perform analysis; Customer takes the lead on analysis- 3rd Year – Customer does analysis with quarterly reviews with rockwell automation analyst;Analyst On Call for exceptions- This option includes ESAFE Support, classroom training, data collection hardware and Emonitor softwareInfrared ThermographyServicesAs a CbM tool, Infrared Thermography (IR) helps identify which items require maintenance or replacement by detecting heat variances. IR is effective in properly maintaining electrical and mechanical equipment. This powerful, non-invasive predictive maintenance tool contributes to the safety process of both employees and physical structure.Rockwell Automation offers IRThermography inspection, performed on electrical, mechanical, process and structural systems. This allows you to identify when a piece of equipment is operating outside of normal parameters based on manufacturer’s or UL specifications and identify reliability issues before component failure.Rockwell Automation certifiedThermographers use a FLIR ThermaCAM to capture both visual and IR images along with other pertinent information from the component being inspected.An IR camera is used to measure thermal energy coming from the piece of equipment. However,not only the image, but temperature and load measurements are also used to determine the component’s actual condition.By utilizing Rockwell Automation Infrared Thermography services, you receive:•Visual inspection and date and time stamped pictures listing any visual issues •Electronic transfer o f collected data which drastically reduces errors• A report on all equipment is available•Immediate alerts to make sure critical repair issues are handled quickly•The means to prioritize your repairs based on industry standard component criticality - ETO – Essential to Operations- CTO – Critical t o Operations- NTO – Non essential to Operations•Year over year comparison of surveyed assets•Ability to add post c orrectiveaction images and establish new baseline data•Bar c oding or equivalent system of equipment identification and monitoring on all assets surveyed for year over year equipment benchmarkingOil AnalysisAs a CbM tool, oil analysis is used to uncover, isolate and offer solutions for abnormal lubricant and machine conditions. If left unchecked, these abnormalities usually result in extensive, sometimes catastrophic damage causing lost production, expensive repair costs, and even operator accidents.Rockwell Automation offers a lengthy list of oil tests to assess the following:Lubricant ConditionThe assessment of the lubricant condition reveals whether the system fluid is healthy and fit for further service, or is ready for a change.ContaminationContaminants from the surrounding environment in the form of dirt, water, and process contamination are the leading cause of machine degradation and failure. Increased contamination alerts you to take action in order to save the oil and avoid unnecessary machine wear.Machine WearAn unhealthy machine generates wear particles at an exponential rate. The detection and analysis of these particles by the correct oil tests assist in making critical maintenance decisions. Machine failure due to worn out components can be avoided. Remember, healthy and clean oil leads to the minimization of machine wear.Our oil analysis results are designed to quickly and easily identify potential problems with your industrial equipment. Your oil analysis results are easy to access, understand, download and incorporate into your reliability maintenance program.Oil analysis measures the physical and chemical properties of the oil, contamination, and mechanical wear. In order to measure these attributes, oil is put through the following tests: •Acid Number (AN)– Measures the amount of acid contamination•Analytical Ferrography– Measures type and severity of wear particles•Fourier Transform Infrared (FT-IR)– Measures degradation by-products (oxidation, nitration, sulfate) and external contaminants (water, glycol, fuel, soot)•ICP Spectroscopy – Measures the concentration of wear metals, contaminant metals and additive metals in a lubricant.•Karl Fischer Water– Measures water contamination•Particle Counting– Measures both contamination and wear debris•Viscosity – Measures the physical property of the oil•Wear Particle Concentration– Measures ferrous wear particles集成状态监测解决方案罗克韦尔自动化作为向各主要工业领域提供集成的状态监测解决方案(ICMS)的重要供应商。