材料物理性能(总结)
材料物理性能检验工年终总结范文
材料物理性能检验工年终总结范文材料物理性能检验工年终总结一、工作概述作为一名材料物理性能检验工,我负责本单位材料的物理性能检验工作。
我从事这个工作已有一年时间了,通过这一年的努力,我逐渐熟悉并掌握了材料物理性能检验的各项操作技能和方法。
在这一年的工作中,我按照规范和标准,准确地进行了一系列的物理性能测试和测量,如硬度测试、拉伸测试、冲击试验、抗压测试等。
同时,我还负责编写检验报告,并将测试结果及时反馈给相关负责人。
二、工作亮点1. 注重标准化操作在进行材料物理性能检验时,我始终坚持按照标准化操作,保证每一项测试都能够得到准确、可靠的结果。
我仔细研读了相关标准并根据实际情况进行了合理的调整和改进,以确保测试结果的准确性和可重复性。
2. 提高测试效率为了提高工作效率,我学习并熟练掌握了各项测试方法和操作技巧。
我通过不断学习和实践,积累了丰富的实验经验,并灵活运用这些技能来完成工作任务。
在一些重复性较高的测试中,我还制定了规范的操作流程和优化方案,进一步提高了工作效率。
3. 主动学习新知识为了跟上行业的发展和进步,我每周都会花时间学习相关新知识。
我关注材料物理性能检验领域的最新研究和技术,通过阅读论文、参加学术讲座等方式,不断提升自己的专业水平和知识储备。
4. 优化仪器设备管理我在工作中注重仪器设备的合理使用和管理,积极参与设备的维护和保养工作。
我及时处理和报修设备故障,并且在测试结束后对设备进行彻底的清洁和整理,确保设备的正常运行。
三、存在问题及改进措施在这一年的工作中,我也发现了一些存在的问题,主要包括:1. 测试数据记录不规范:在测试过程中,我有时会因为疏忽或时间紧迫而未能及时记录测试数据,这给日后的数据分析和报告编写带来了一定的困扰。
为了改进这个问题,我计划在接下来的工作中加强对测试数据的记录,及时整理和归档。
2. 对新测试方法的掌握不足:随着材料科学的发展,新的测试方法和技术层出不穷。
然而,我在这方面的学习和掌握还不够充分,没有跟上时代的步伐。
材料物理性能复习总结
第一章电学性能1。
1 材料的导电性,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。
ρ的倒数σ称为电导率。
一、金属导电理论1、经典自由电子理论在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。
它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。
当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。
在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。
2、量子自由电子理论金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。
但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。
0K时电子所具有最高能态称为费密能E F.不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。
另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻.马基申定则:,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻。
3、能带理论能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。
图1—1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。
图1—1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体.图1—1(e),半导体的能带结构与绝缘体相同,所不同的是它的禁带比较窄,电子跳过禁带不像绝缘体那么困难,满带中的电子受热振动等因素的影响,能被激发跳过禁带而进入上面的空带,在外电场作用下空带中的自由电子产生电流。
2024年材料力学性能总结范文(二篇)
2024年材料力学性能总结范文____年材料力学性能总结摘要:本文对____年新材料的力学性能进行了总结。
通过对新材料的力学性能研究,可以更好地应用于工程实践中,提高产品的性能和可靠性。
本文主要对新材料的强度、硬度、韧性、耐热性等性能进行了介绍,并对其应用前景进行了展望。
关键词:新材料;力学性能;强度;硬度;韧性;耐热性一、强度强度是材料抵抗外力的能力,是一个材料最基本的力学性能之一。
____年新材料的强度有了显著的提高,主要得益于新材料结构和组成的优化。
新材料采用了多种复合材料技术,在不同材料的复合过程中,不同材料之间形成了一种互补的关系,使得新材料的强度得到了有效提升。
此外,新材料还采用了新的加工工艺,如纳米技术和超塑性成型技术,通过精确控制材料微观结构和缺陷,使新材料的强度得到了进一步提升。
二、硬度硬度是材料抵抗外界划痕和压痕的能力,表征了材料的抗磨性能。
____年新材料的硬度也得到了大幅提升。
在新材料的研发中,科学家们发现了一些新的硬化机制,如晶体缺陷的控制、固溶体弥散硬化和位错强化等。
通过合理地控制这些硬化机制,新材料的硬度可以得到有效提升。
此外,新材料还采用了一些表面处理技术,如化学镀、电沉积和离子注入等,通过改变材料表面的化学组成和相结构,来提高材料的硬度。
三、韧性韧性是材料抵抗破坏的能力,是反映材料抗拉伸、抗压和抗弯曲能力的重要指标。
____年新材料的韧性也得到了显著改善。
新材料采用了一些新的加工工艺,如冷变形和等离子注入等,通过调整材料的晶界和位错密度,使新材料的韧性得到了提高。
此外,新材料还采用了一些新的复合技术,如纳米复合和纤维复合等,通过增加材料内部的弥散相和增强相,来提高材料的韧性。
四、耐热性耐热性是材料在高温条件下能保持稳定性和性能的能力。
____年新材料的耐热性也得到了显著提升。
新材料采用了一些新的材料组成和结构设计,如金属间化合物、金属陶瓷复合材料和增强材料等,来提高材料的热稳定性。
材料物理性能
材料物理性能材料的物理性能是指材料在受力、受热、受光、受电、受磁等外界作用下所表现出的性质和特点。
它是材料的内在本质,直接影响着材料的使用性能和应用范围。
材料的物理性能包括了热学性能、光学性能、电学性能、磁学性能等多个方面。
首先,热学性能是材料的一个重要物理性能指标。
热学性能包括导热性、热膨胀性和热稳定性等。
导热性是指材料传导热量的能力,通常用热导率来表示。
热膨胀性是指材料在温度变化下的体积变化情况,通常用线膨胀系数来表示。
热稳定性是指材料在高温环境下的性能表现,包括了热变形温度、热老化等指标。
这些性能对于材料在高温环境下的应用具有重要意义。
其次,光学性能是材料的另一个重要物理性能。
光学性能包括透光性、反射率、折射率等指标。
透光性是指材料对光的透过程度,通常用透光率来表示。
反射率是指材料对光的反射程度,通常用反射率来表示。
折射率是指材料对光的折射程度,通常用折射率来表示。
这些性能对于材料在光学器件、光学仪器等领域的应用具有重要意义。
此外,电学性能是材料的另一个重要物理性能。
电学性能包括导电性、介电常数、电阻率等指标。
导电性是指材料导电的能力,通常用电导率来表示。
介电常数是指材料在电场中的极化能力,通常用介电常数来表示。
电阻率是指材料对电流的阻碍程度,通常用电阻率来表示。
这些性能对于材料在电子器件、电气设备等领域的应用具有重要意义。
最后,磁学性能是材料的另一个重要物理性能。
磁学性能包括磁导率、磁饱和磁化强度、矫顽力等指标。
磁导率是指材料对磁场的导磁能力,通常用磁导率来表示。
磁饱和磁化强度是指材料在外磁场作用下的最大磁化强度,通常用磁饱和磁化强度来表示。
矫顽力是指材料在外磁场作用下的抗磁化能力,通常用矫顽力来表示。
这些性能对于材料在磁性材料、电机、传感器等领域的应用具有重要意义。
综上所述,材料的物理性能是材料的重要特性,直接影响着材料的使用性能和应用范围。
不同类型的材料具有不同的物理性能,因此在材料选择和应用过程中,需要充分考虑材料的物理性能指标,以确保材料能够满足特定的使用要求。
无机材料物理性能知识归纳总结(超详细)(精华版)
第一章物理基础学问与理论物理性能本质:外界因素(作用物理量)作用于某一物体,如:外力,温度梯度,外加电场磁场,光照等,引起原子,分子或离子及电子的微观运动,在宏观上表现为感应物理量,感应物理量与作用物理量呈肯定的关系,其中有一与材料本质有关的常数——材料的性能;晶体结构:原子规章排列,主要表达是原子排列具有周期性,或者称长程有序;非晶体结构:不具有长程有序;点阵:晶体内部结构概括为是由一些相同点子在空间有规章作周期性无限分布,这些点子的总体称为点阵;晶体由(基元)沿空间三个不同方向,各按肯定的距离(周期性)地平移而构成,(基元)每一平移距离称为周期;晶格的共同特点是具有周期性,可以用(原胞)和(基失)来描述;分别求立方晶胞,面心晶胞和体心晶胞的原胞基失和原胞体积?(1)立方晶胞:(2)面心晶胞(3)体心晶胞晶体格子(简称晶格):晶体中原子排列的详细形式;晶列的特点:(1)一族平行晶列把全部点包括无遗;(2)在一平面中,同族的相邻晶列之间的距离相等;多个晶列,其中每一晶列都有一族平行的晶列与(3)通过一格点可以有无限之对应;(4 )有无限多族平行晶列;晶面的特点:(1)通过任一格点,可以作全同的晶面与一晶面平行,构成一族平行晶面. (2)全部的格点都在一族平行的晶面上而无遗漏;(3)一族晶面平行且等距,各晶面上格点分布情形相同;(4)晶格中有无限多族的平行晶面;格波:晶体中的原子在平稳位置邻近的微振动具有波的形式;色散关系:晶格振动谱,即频率和波矢的关系;声子:晶格振动的能量是量子化的,晶格振动的量子单元称作声子,声子具有能量. ,与光子的区分是不具有真正的动量,这是由格波的特性打算的;声学波与光学波的区分:前者是相邻原子的振动方向相同,波长很长时,格波为晶胞中心在振动,可以看作连续介质的弹性波;后者是相邻原子的振动方向相反,波长很长时,晶胞中心不动,晶胞中的原子作相对振动;德布罗意假设:一切微观粒子都具有波粒二象性;其次章无机材料的受力形变简述正应力与剪切应力的定义.正应力是作用于单位面积上的力;剪切应力是作用于平面内的力;正应力引起材料的伸长或缩短,剪应力引起材料的畸变,并使材料发生转动;塑性:使固体产生变形的力,在超过该固体的屈服应力后,显现能使该固体长期保持其变形后的外形或尺寸,即非可逆性能;晶体塑性形变的机理是什么?原子尺度变化说明塑性形变:当构成晶体的一部分原子相对于另一部分原子转移到新平稳位置时,晶体显现永久形变,晶体体积没有变化,仅是外形发生变化;影响塑性形变的因素有哪些?并对其进行说明;影响塑性形变的因素主要有晶体结构和键型;(1)本征因素:晶粒内部的滑移系统相互交截,晶界处的应力集中,晶粒大小和分布;(2)外来因素:杂质在晶界的弥散,晶界处的其次相,晶界处 的气孔;屈服应力: 当外力超过物体弹性极限, 达到某一点后, 在外力几乎不增加的情形 下,变形突然加快,此点为屈服点,达到屈服点的应力;滑移: 晶体的一部分相对另一部分平移滑动;产生滑移的条件:(1)面间距大;(2)每个面上是同一种电荷的原子,相对滑动 面上的电荷相反;(3)滑移矢量(柏格斯矢量)小;滑移系统包括( 滑移方向 )和( 滑移面 ),即滑移按肯定的晶面和方向进行; 滑移方向与原子最密积累的方向一样,滑移面是( 原子最密积累面); 蠕变机理分为两大类 :(1)(晶界机理 )---多晶体的蠕变;(2)( 晶格机理 )--- 单晶蠕变,但也可能掌握着多晶的蠕变过程;影响蠕变的因素:外界环境中的 温度和应力, 晶体的组成 ,显微结构中的 气孔 , 晶粒 和玻璃相;键结合的材料中, 哪一种材料的弹性模量大?为什么? 共价键,离子键结合的材 料中,结合力很强,故弹性模量就较大;而分子键结合力弱,由此键和的材料弹 性模量就很低;2-1. 一圆杆的直径为 2.5 mm ,长度为 25cm 并受到 4500N 的轴向拉力,如直径 拉细至 ,且拉伸变形后圆杆的体积不变 ,求在此拉力下的真应力, 真应变, 名义应力和名义应变,并比较争论这些运算结果;解:依据题意可得下表 拉伸前后圆杆相关参数表体积 V/mm 直径 d/mm 圆面积S/mm 3 2拉伸前 拉伸后 F Al 1 ln l 0 F A 0 l l 0 4500 4.524 10 真应力 995(MPa )T 6 2A 0 A ln 真应变 lnT 24500名义应力 917( MPa)610 A 0A 名义应变 1由运算结果可知:真应力大于名义应力,真应变小于名义应变;2-2. 一试样长 40cm,宽 10cm,厚 1cm ,受到应力为 1000N 拉力,其杨氏模量为 9 2 ,能伸长多少厘米 .×10 N/m 解: 40cm1cmLoad10cm Load FA 0 l 0E 1000 40l l l 0.0114(cm)0 0 4 9 E 1 10 10 10 第三章 无机材料的脆性断裂强度 :材料的强度是抗击外加负荷的才能;屈服极限 :在外力作用下,材料发生弹性形变;当应力足够大,材料便开头发生 塑性形变,产生塑性形变的最小应力称为屈服应力(屈服极限) ;脆性断裂 :材料受力后, 将在低于其本身结合强度的情形下作应力再安排; 当外 加应力的速度超过应力再安排的速率时,发生断裂;解决材料强度的理论: 1. 位错理论:微观上抓住位错缺陷,阐明塑性形变的微 观机理; 2. 断裂力学:宏观上抓住微裂纹缺陷(脆性断裂的主要根源) ;位错运动对材料有哪两方面的作用? 引起塑性形变,导致应力放松和抑制裂纹扩 展;位错运动受阻,导致应力集中和裂纹成核;理论断裂强度的推导过程?格里菲斯微裂纹理论: 格里菲斯认为实际材料中总存在很多细小的裂纹或缺陷, 在外力作用下, 这些裂纹和缺陷邻近就产生应力集中现象, 当应力达到肯定程度 时,裂纹就开头扩展而导致断裂;影响强度的因素有哪些?内在因素:材料的物性,如:弹性模量,热膨胀系数,导热性,断裂能;显微结构:相组成,气孔,晶界(晶相,玻璃相,微晶相) ,微裂纹(长度,尖 端的曲率大小);外界因素:温度,应力,气氛环境,式样的外形大小,表面;工艺因素:原料的纯度,降温速率;晶体微观结构中存在缺陷: ( a ) 位错组合 ;( b ) 晶界障碍 ;(c )位错交截 ; 蠕变断裂: 多晶材料在高温顺恒定应力作用下,由于形变不断增加而导致断裂; 蠕变断裂的理论: 1. 黏性流淌理论:高温下晶界发生粘性流淌,在晶界交界处 产生应力集中,并且使晶界交界处产生裂纹,导致断裂; 2. 空位聚积理论:在 应力及热波动作用下,晶界上空位浓度增加,空位大量聚积,形成裂纹,导致断 裂;裂纹有三种扩展方式: (I) 张开型 ,(II) 错开型 ,(III) 撕开型 ;什么是亚临界裂纹扩展? 在使用应力的作用下, 不是发生快速失稳扩展, 而是随 着时间的推移缓慢扩展;材料的脆性有哪些特点? 脆性是无机材料的特点; 它间接地反映材料较低的抗机 械冲击强度和较差的抗温度聚变性; 脆性直接表现在 :一旦受到临界的外加负荷, 材料的断裂就具有爆发性的特点和灾难性的后果; 脆性的本质是缺少五个独立的 滑移系统, 在受力状态下难于发生滑移使应力放松; 显微结构的脆性根源是材料 内部存在裂纹,易于导致高度的应力集中;维氏硬度:(公式及各个物理量的含义)?(自己总结)2 1,求融熔石英的理论结合强度,设估量的表面才能为 ; Si-O 的平稳原 -8 子间距为 1.6*10 cm; 弹性模量从 60 到 75Gpa ?9 E a (60 ~ 75) * 10 *= 25.62 ~th 10 * 10 2 2,融熔石英玻璃的性能参数为: E=73 Gpa ;γ J/m ;理论强度 σth=28 Gp a ; 如材料中存在最大长度为 2μm 的内裂,且此内裂垂直于作用力方向,运算由此 导致的临界断裂强度;2c=2μm c=1*10 m-6 9 2 * 73*10 *2 E c =c 6 3.14* 1* 10 3,有一构件,实际使用应力为 ,有两种钢待选:甲钢 σys a , K IC =45MP a · m1/2σys a ,K IC =75MP a · m1/2乙钢待选钢的几何外形因子,最大裂纹尺寸为1mm;试依据经典强度理论(安n=σys/σ与)断裂强度理论K IC =Yσc C-1/2 进行挑选,并对结果进行说明;(书全系数上例题自己总结)4,一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为:(1)2mm;(2)0.049mm;(3)2 μm,分别求上述三种情况下的临界应力;设此材料的断裂韧性为2;争论讲结果;已知此情形下零件的几何外形因子为;解:KIK I Y c1 / 2=c3(1) c=2mm, 2 * 10c3(2) c=0.049mm, 0.049* 10c6(3) c=2μm, / 2* 10c第四章无机材料的热性能如原子在高能级和低能级间满意辐射跃迁挑选定就,就对于大量的这种原子来说,将同时存在光的自发辐射,受激吸取和受激辐射;热振动:实际上晶体点阵中的质点(离子,原子)总是环围着各自的平稳位置附近作微小振动;热容:物体在温度上升1K 时所吸取的热量称作该物体的热容;杜隆-珀替定律:恒压下元素的原子热容等于25J/(K ·mol);杜隆-珀替定律在高温时与试验结果符合得很好,但在低温时,热容的试验值并不是一个恒量,随温度降低而减小,在接近肯定零度时,热容值按T3 的规律趋于零;徳拜定律:说明当温度T 趋于0K 时,热容C V 与T3 成比例地趋于零;在低温下,德拜模型与试验结果符合很好;热膨胀:物体的体积或长度随着温度的上升而增大的现象;6,线膨胀系数α与体膨胀系数β有何关系?运算:⑴假如是立方体;⑵各项异性的晶体;略去线膨胀系数α与体膨胀系数β的高次项;(自己总结)固体材料热膨胀机理:晶格振动中质点间的作用力,是非线性的;即作用力并不简洁的与位移成正比;温度越高,平稳位置向右移动越多,晶体膨胀;热传导 :当固体材料一端的温度比另一端高时, 热量就会从热端自动地传向冷端 的现象;固体的传热机理: 固体中质点只在平稳位置邻近做微振动, 固体的导热主要是晶 格振动的格波和自由电子的运动实现的; ⑴金属主要靠自由电子来传热; ⑵非金 属材料,自由电子很少, 主要靠晶格振动来传递热量; 将声频波的量子称为声子; 把格波的传播看成是质点 -声子的运动;格波与物质的相互作用,就懂得为声子 和物质的碰撞; 格波在晶体中传播时遇到的散射, 就懂得为声子同晶体质点的碰 撞;抱负晶体中的热阻,就懂得为声子与声子的碰撞;影响热导率的因素: 温度 ,晶体机构 , 气孔;热稳固性(抗热震性) :是指材料承担温度的急剧变化而抗击破坏的才能;包括 抗热震断裂性 和抗热震损耗性 两种类型: 材料在热冲击下发生瞬时断裂, 抗击这 类破坏的性能为抗热震断裂性;在热冲击循环作用下,材料表面开裂,剥落,并 不断进展,以致最终碎裂或变质而损坏, 抗击这类破坏的性能称为抗热震损耗性; 试比较石英玻璃, 石英多晶体和石英单晶热导率的大小, 说明产生差异的缘由? ① 单 晶 多 晶 玻 璃②与单晶相比,多晶体中晶粒尺寸小,晶界多,晶界处杂质多,声子简洁受到散 射,其平均自由程小得多,故其热导率比单晶的小;与晶体相比,玻璃中声子平 均自由程由于玻璃远程无序使之较小,因而,玻璃的热导率比晶体的小;4-1,康宁 1723 玻璃(硅酸铝玻璃)具有以下性能参数: λ =0.021J/(cm .℃s . ); 第一及其次热冲击断 -6 2 2 α =4.6*10 /℃ ; 裂抗击因子;;E=6700Kg/mm ; μ 5求. σp (1 E)f 第一冲击断裂抗击因子: R 6 7 * * 10 *= 6 64.6 * 10 * 6700 * 9.8 * 10 =170℃(1 E)f 其次冲击断裂抗击因子: R J/(cm.s)o o 4-2,一根 1m 长的 Al2O3 炉管从室温 (25 C)加热到 1000 C 时,假使在此过程 10-6 o 中,材料的热膨胀系数为 mm/(mm. C) ,运算管的膨胀量是多少? 解:依据公式,有:l l 0 T6 o o 10 mm/(mm C)) (1m) (1000 25) C第五章 无机材料的光性能可见光是电磁辐射波谱的波长在 400nm 到 700nm 范畴的一个波段; 光从材料 1 传入材料 2 时的折射定律?折射率的色散: 材料的折射率 n 随入射光频率 v 的减小(或波长的增加) 而减小 的性质;玻璃,陶瓷,非均相高聚物等电介质材料,对可见光具有良好的 透过性 ;其原 因是它们的 价电子 所处的价带是 填满 的,除非电子吸取 光子跃迁到导带,否 就不能自由运动;5,设有一块厚度为 x 的平板材料 ( 如图 ) ,入射光的强度为 I 0 ,通过此材 料后光强度为 I ’; 试分析其光的吸取规律?6,例:已知 NaCl 的 Eg = 9.6eV ,试求其吸取峰波长?10-34J h 为普朗克常数 s,=3 108 m / sc 为光速 10-19 J8一个电子伏特为 1.602 34 hc E g 10 3 10 71.29 10 m19 9.6 10 m7,光通过一个透亮陶瓷片时,其发生在左侧和右侧界面时间强的变化?设反射 系数为 m ,吸取系数为 α与散射系数为 S ;入射光为 I 0 ,2n 21 n 21 11 陶瓷左侧表面的反射光缺失为 L mI I 1 0 0透进材料中的光强度为 I 0 1-m光穿过厚度为 x 的陶瓷后, x Sx消耗了吸取缺失 和散射缺失 I 0e I 0 e +S x 光到达材料右侧表面时,光强度剩下 再经表面,一部分反射进材料中: ;I 0 1-m e + S xI 0m 1-m e2 I I 0 1-m e +S x另一部分传至右侧空间,光强为: Al 2O 3 板后强度降低了 15% ,试运算其吸取 8,光通过一块厚度为 和散射系数的总和;1mm 的透亮 解:( s) xI I 0 eI( s) x ( s)e e I 01s 10 ln 9,一入射光以较小的入射角 i 和折射角 r 通过一透亮明玻璃板 ,如玻璃对光的衰 减可忽视不计 ,试证明明透过后的光强为 (1-m)2;sin isin r解: n 21 2W ' W = W ’ + W ’’W W"W n 21 n 21 1 1W 'W m1 1 m其折射光又从玻璃与空气的另一界面射入空气就 W" ' W" W" 'W 21 m 1 m 影响材料透光性的因素主要有: 反射系数,吸取系数,散射系数;无机材料的颜色着色剂有: 分子着色剂,胶态着色剂,着色化合物;配制陶瓷乳浊釉时,需要挑选乳浊剂,有 PbO ,TiO 2 和 ZrSiO 4 三种氧化物可供 挑选,它们的折射率 n 依次分别为 ,2.50 和 ,你将挑选哪一种?为什么?挑选硅酸锆作乳浊剂;由于氧化铅会熔解,氧化钛因膨胀系数太大与陶瓷釉不适应,故只能选硅酸锆;第六章无机材料的电导载流子:具有电荷的自由粒子,在电场作用下可产生电流;金属导体中的载流子是无机材料载流子可以是自由电子;电子( 负电子,空穴) ,称为电子电导;也可以是离子( 正,负离子,空位) ,称为离子电导;离子电导分类和玻璃导电机理?离子电导可分为两类:本征电导和杂质电导;玻璃的离子电导是由于某些离子在结构中的可动性所至;霍尔效应:电子电导的特点是具有霍尔效应;沿试样x 轴方向通入电流,Z 轴方向加一磁场,那么在y 轴方向将产生一电场,这一现象称为霍尔效应;利用霍尔效应可检查材料是否存在电子电导;为什么利用霍尔效应可以检验材料是否是存在电子电导?霍尔效应的产生是由于电子在磁场作用下,产生横向移动的结果,离子的质量比电子大的多,磁场作用力不足以使离子产生横向位移,因而纯离子电导不呈霍尔效应;利用霍尔效应可检验材料是否存在电子电导;试述随温度的上升,玻璃电导率快速增加的缘由;答:(1)玻璃体的结构比晶体疏松,碱金属离子能够穿过大于其原子大小的距离而迁移,同时克服一些势垒;(2)玻璃与晶体不同,玻璃中碱金属离子的能阱不是单一的数值,通常有一些相邻的低能位置,其间只有小的能垒,而大的势垒就发生在偶然显现的相邻位置之间,这与玻璃的结构的随机性质是一样的,故有高有低:这些位垒的体积平均值就是载流子的活化能;电解效应:离子电导的特点是存在电解效应;离子的迁移相伴着肯定的质量变化,离子在电极邻近发生电子得失,产生新的物质,这就是电解现象;可以检验陶瓷材料是否存在离子电导,并且可以判定载流子是正离子仍是负离子;影响电导率的因素:(1)温度;(2)晶体结构;(3)晶体缺陷;固体电解质:具有离子电导的固体物质称为固体电解质;电子电导的导电机制是:电子和空穴;本征电导:导带中的电子导电和价带中的空穴导电同时存在,载流子电子和空穴的浓度是相等的;它们是由半导体晶格本身供应,是由热激发产生的,其浓度与温度呈指数关系;本征半导体是具有本征电导特性的半导体;在Na2O-SiO 2 玻璃中,实行什么方法降低其电导率?答:(1)通过添加另外碱金属,并调剂外加碱金属和氧化钠的比例(2)通过添加二价金属氧化物,特殊是重金属氧化物;掺入施主杂质的半导体称为n 型半导体;掺入受主杂质的半导体称为p 型半导体;说明pn 结中的空间电荷区的形成过程?当p 型半导体与n 型半导体形成p-n 结时,由于n 型半导体的多数载流子是电子,少数载流子为空穴,相反p 型半导体的多数载流子是空穴,少数载流子为电子,因此在p-n 结处存在载流子空穴或电子的浓度梯度,导致了空穴从p 区到n 区,电子从n 区到p 区的扩散运动;对于p 区:没有电离的中性原子,空穴离开后,留下了不行动的带负电的电离受主,没有正电荷与之保持电中性,因此在p-n 结邻近p 区一侧显现了一个负电荷区(负离子阻挡n 区电子靠近);同理,由于n 区电子走后,留下带正电的电离施主,电离的正离子阻挡p 区空穴靠近,所以集合p-n 结近n 区一侧,在p-n 结邻近n 区的一侧显现了一个正电荷区,把在p-n 结邻近的这些电离施主和电离受主所带电荷称为空间电荷;它们所在的区域称为空间电荷区;半导体中杂质能级和能带中的能级的区分?在能带中的能级可以容纳自旋方向相反的两个电子;而对于施主杂质能级只能是被一个有任一自旋方向的电子所占据,或者不接受电子;载流子的散射:电子与晶体中的声子,杂质离子,缺陷等发生碰撞的过程;载流子发生散射的缘由是周期性势场被破坏;在低掺杂半导体中,载流子迁移率随温度上升而大幅度下降的缘由?由于晶格振动引起的散射叫晶格散射,温度越高,晶格振动越强,对载流子的晶格散射也将增强;双碱效应: 当玻璃中碱金属离子总浓度较大时(占玻璃组成25—30%),总浓度 当比例适当时, 电 不变,含两种碱金属离子比一种碱金属离子的玻璃电导率小, 导率可降低很低;位错增殖 是在剪应力作用下,晶体中位错数量大量增加的现象;1.运算铜的电子迁移率,假定全部价电子都对电流有奉献;提示:铜的点阵 常数为 ×10-8 cm ,铜属于面心立方晶体;解:铜的价数为 1,因此价电子数等于材料中的铜原子数;铜的点阵常数为 -8 ×10 cm ;由于铜属于面心立方晶体,单位晶胞中有四个电子(切开后单元 体所包含的原子数);金 属 载 流 子 浓 度 : n=(4 个 电 子 / 晶 胞 ) ( 1 个 电 子 / 原 子 ) -8 3 22 3电子 /cm /(3.615 1×0 cm) ×10 ×10 cm-19 -6 22 -19 μ=σ/nq=1/ ρ7)(8×.41607 1×0 / Ω· c = c /m V ·S 1×0 )2 22,本征半导体中,从价带激发至导带的电子和价带产生的空穴参加电导;激发 的电子数 n 可近似表示为:n N exp( E g / 2kT )式中 N 为状态密度, k 为波尔兹曼常数, T 为肯定温度; 试回答以下问题:(1)设 N=1023 -3 -5 -1 k=8.6*10 eV.K 时 , Si (Eg=1.1eV), TiO 2 cm , (Eg=3.0eV) -3 在室温( 25℃)和 500℃时所激发的电子数( cm )各是多少?-1 -1 (2)半导体的电导率 neσ( Ω )可表示为.cm 式中 n 为载流子浓度( cm -3),e 为载流子电荷(电荷 1.6*10-19 C ) , μ为迁移率( cm 2 -1 -1 )当电子( e )和空穴( h )同时为载流子时, .V .s n e e n h e e h2 -1 -1 2 -1 -1 假定 Si 的迁移率 μe =1450(cm .V .s ),μh =500( cm .V .s ),且不随温 度变化;求 Si 在室温( 25℃)和 500℃时的电导率?解:(1) Si23 10 5 20℃ n exp( /( 2 * * 10 * 298)23 13 -3=10 *e =3.32*10 cm 1023 5 500℃ n exp( /(2 * * 10 * 773)23 -8 19 -3=10 *e =2.55*10 cm TiO 220℃ n 1023 5exp( /( 2 * * 10 * 298)-3 -3=1.4*10 cm 23 10 5 500℃ n exp( /(2 * * 10 * 773)13 -3=1.6*10 cm (2) 20℃ n e e n h e e h13 -19 =3.32*10 *1.6*10 (1450+500)-2 -1 -1 (Ω )=1.03*10 .cm 500℃ n e e n h e e h19 -19 =2.55*10 *1.6*10 (1450+500)=7956 (Ω-1.cm -1)3,300K 时,锗的本征电阻率为 47Ω .cm ,如电子和空穴的载流子迁移率分别为 3900cm 2 / V .s 和 解:1i i1900cm 2 / V .s .求本征锗的载流子浓度?n i q( p )n 1 113 3n i10 / cm 19 i q( ) 4710 (3900 1900) n p 4,当每 1000000 个硅原子中有一个原子为锑原子所置换时,试运算 n-型半导体 中每立方厘米所含的非本证电荷载流子数?金刚石立方晶型硅的点阵常数是 ×10 -3-8 -8 3 解: n d =(1 电子 /S b 原子)(10 S b 原子 /Si 原子)( Si 原子 /晶胞 )/( 1×0 )6 3电子 /cm =5×10 σ=nq μe=(5 ×1016 -19 )(1.6 1×0 )(1900)-1 -1Ω .cm 试述光生伏特效应产生电流的过程?答:用能量等于或大于禁带宽度的光子照耀 p -n 结;p ,n 区都产生电子空穴对,产生非平稳载流子,非平稳载流于破坏原先的热平稳;非平稳载流子在内建电场作用下,n 区空穴向p 区扩散(同号相斥,异号相吸的缘由),p 区电子向n 区扩散;如p-n 结开路,在p-n 结的两边积存电子-空穴对,产生开路电压;第七章无机材料的介电性能何谓电介质:凡是能在电场作用下产生极化的物质称为电介质,俗称绝缘材料;极化强度:单位体积内的电偶极矩总和称为极化强度;极化类型包括:(1)电子位移极化,(2)离子式极化,(3)放松极化,(4)转向极化,(5)空间电荷极化,(6)自发极化;电子位移极化:没有受电场作用时,组成电介质的分子或原子所带正负电荷中心重合,对外呈中性;受电场作用时,正,负电荷中心产生相对位移(电子云发生了变化而使正,负电荷中心分别的物理过程),中性分子就转化为偶极子,从而产生了电子位移极化;离子式极化:离子晶体中,无电场作用时,离子处在正常结点位置并对外保持电中性,但在电场作用下,正,负离子产生相对位移,破坏了原先呈电中性分布的状态,电荷重新分布,相当于从中性分子转变为偶极子产生离子位移极化;离子位移极化与电子位移极化有何异同?共同点:它们都属于弹性位移极化(无损耗);不同点:(a)离子位移极化是整个离子的相对位移,极化结果——使正负离子间平稳距离缩短;(b)电子位移极化是电子云变形,电子云偏离原子核,而原子核不动;(c)离子位移极化中包含有电子位移极化,离子位移极化只产生在离子晶体中;而电子位移极化就存在于一切介质中;介质损耗:在电场的作用下,单位时间内电介质因发热而损耗的电能称为介质损耗功率,简称介质损耗;介质损耗产生的缘由:主要来自二个方面——电导和极化(慢极化);击穿:电介质在强电场中工作时,当所承担的电压超过某一临界值时而丢失绝缘性能(由介电状态变为导电状态)的现象;电击穿理论(雪崩理论):在强电场的作用下,少数电子被加速从负极向正极运动;在运动中电子不断撞击介质中的离子或原子,同时将其部分能量传给离子或原子,使之激发打出电子(次级电子);这些次级电子也会从电场中猎取能量,而加速运动,撞击其他原子或离子从而又激发第三级电子,如此下去产生连锁反应;造成介质中存在有大量自由电子,形成“电子潮”或“电子崩”,使介质中瞬时通过的电流增大,使绝缘体成为导体;这种现象也叫“雪崩”;热击穿及其产生的缘由:因介质发热而导致烧裂,熔融的现象;缘由:由于电导和极化损耗,使部分电能转换成热能而使介质本身的温度上升;当外电场很高而且在单位时间内的发热量大于散热量时,介质中有热量的积蓄,使元器件的温度不断上升,最终使局部显现烧裂显现熔洞,导致破坏;铁电体的概念:指在肯定的温度范畴内具有自发极化,而且极化强度可因外电场反向而可逆转向的晶体,或者说存在电滞回线的晶体称之为铁电体;自发极化:晶体在无外电场作用下,当T<Tc 即在某一临界温度以下,晶胞中自发产生正,负电荷中心不重合而存在偶极矩的现象;电滞回线:它是铁电体的自发极化强度P 随外电场强度 E 的变化轨迹(说明极化强度滞后于电场强度的变化);电滞回线是铁电性的宏观反映,是铁电体的一个特点(它反映了铁电体中的电畴随外电场而转向的特点);电畴:晶体中自发极化方向相同的小区域;之所以有不同方向电畴的存在,是由于晶体中有不同的自发极化轴(极化方向),因而存在不同的电畴;畴壁:不同极化方向的相邻电畴的交界处称之畴壁;压电效应:当在某些各向异性的晶体材料上施加机械应力时,在晶体的两端表面上会显现数量相等,符号相反的束缚电荷;作用力反向时,表面荷电性质亦反号,而且在肯定范畴内电荷密度与作用力成正比;陶瓷材料的损耗主要来源于哪些方面?如何降低陶瓷材料的介质损耗?陶瓷材料的损耗主要来源于电导损耗,放松质点的极化损耗及结构损耗;降低材料的损耗应从降低材料的电导损耗和极化损耗着手:挑选结构紧密的晶体作为主晶相;在改善主晶相性能时,最好形成连续固熔体;尽量削减玻璃相;防止产生多晶转变;掌握好最终烧成温度,防止过烧与生烧;第八章无机材料的磁性能磁化现象:在磁场中,由于受到磁场作用而出现肯定磁性的现象;。
材料物理性能定义总结
材料物理性能定义总结第一章材料的电性能A按压力对金属导电性的影响:金属分为正常金属和反常金属。
B本征电导:源于晶体点阵中基本离子的运动。
玻璃的导电机理:玻璃在通常情况下是绝缘体,但在高温下,玻璃的电阻率却可能大大降低,因此在高温下有些玻璃将成为导体。
玻璃的导电是由于某些离子的可动性导致的,故玻璃是一种电解质的导体。
在钠玻璃中,钠离子在二氧化硅网络中从一个间隙跳到另一个间隙,形成电流。
这与离子晶体中的间隙离子导电类似。
本征半导体:纯净的无结构缺陷的半导体单晶。
本征电导在高温下为导电的主要表现。
半导体导电机理:在绝对零度和无外界影响的条件下,半导体的空带中无运动的电子。
但当温度升高或受光照射时,也就是半导体受到热激发时,共价键中的价电子由于从外界获得了能量,其中部分获得了足够大能量的价电子就可以挣脱束缚,离开原子而成为自由电子。
本征半导体的电学特性:1)本征激发成对产生自由电子和空穴,自由电子浓度与空穴浓度相等;2)禁带宽度Eg 越大,载流子浓度n i 越小;3)温度升高时载流子浓度n i 增大。
4)载流子浓度n i与原子密度相比是极小的,所以本征半导体的导电能力很微弱。
不均匀固溶体(k状态):在合金元素中含有过渡族金属的,这些固溶体中有特殊相变及特殊结构存在,这种组织状态称为k状态。
这些固溶体中原子间距的大小显著地波动,其波动正式组元原子在晶体中不均匀分布的结果,所以也把k状态称之为“不均匀固溶体)。
C畴壁:两铁电畴之间的界壁称为畴壁。
超导电性:在一定低温条件下,金属突然失去电阻的现象叫超导电性。
超导态:金属失去电阻的状态称为超导态,金属具有电阻的状态称为正常态。
超导体三个基本特性:完全导电性,完全抗磁性,通量(flux)量子化。
完全导电性:在室温下把超导体放入磁场中,冷却到低温进入超导态,把原磁场移开,则在超导体中的感生电流,由于没有电阻而将长久存在,成为不衰减电流。
超导现象产生的原因:由于超导材料中的电子双双结成库柏电子对,电子对和晶格间相互作用,而无能量损失,使超导体不产生电阻超导体存在T c 的原因:当温度或外磁场强度增加时,电子对获得能量,当温度或外磁场强度增加到临界值时,电子对全部被拆开成正常态电子,于是材料即由超导态转变为正常态。
材料物理性能考试总结
第一章固体中电子能量和状态1.1电子的粒子性和波动性1.霍尔效应取一金属导体,放在与它通过电流相垂直的磁场内,则在横跨样品的两面产生一个与电流和磁场都垂直的电场,此现象称为霍尔效应。
2.德布罗意假设一个能量为E,动量为P的粒子,同时也具有波性,其波长λ由动量P决定,频率ν由能量E确定:λ=h/P=h/(mv); ν=E/h;式中:m为粒子质量;v为自由粒子的运动速度,由上式求得的波长,称为德布罗意波长。
3.其中,d=2.15*10-10m,θ=50°E=54eV;由λ=dsinθ得,λ=2.15*10-10m*sin50°=1.65*10-10m电子质量m=9.1*10-31kg,电子能量E=54eV,则由λ=h/p得λ=h/(2mE)1/2=[6.6*10-34/(3.97*10-24)]m=1.66*10-10m比较两个结果基本一致,说明德布罗意波假设的正确性。
1.2金属的费米——索末菲电子理论金属的费米索末菲电子理论同意经典的电子学说,认为价电子是完全自由的,但量子自由电子学说认为自由电子状态不服从麦克斯韦——玻尔兹曼统计规律,而是服从费米——狄拉克的量子统计规律。
故该理论利用薛定谔方程求解自由电子的运动波函数,计算自由电子的能量。
1.导体,绝缘体,半导体的能带结构(P25-26)二价元素如周期表中的ⅡA族碱土族Be、Mg、Ca、Sr、Ba,ⅡB族为Zn、Cd、Hg,按上边的讨论,每个原子给出两个价电子,则得到填满的能带结构,应该是绝缘体,对一维情况的确是这样,但在三维情况下,由于能带之间发生重叠,造成费米能级以上不存在禁带,因此二价元素也是金属。
1.3习题1.一电子通过5400V电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni晶体(111)面(面间距d=2.04×10-10m)的布拉格衍射角。
2.有两种原子,基态电子壳层是这样填充的(1)12、2226、3233;(2)12、2226、3236310、4246410;,请分别写出n=3的所有电子的四个量子数的可能组态。
材料物理性能(总结)
第一章(小括号内为页码)1.原子间的键合类型有几种?(1)原子间的键合类型有:金属键、离子键、共价键、分子键和氢键。
2.什么是微观粒子的波粒二象性?(2)光子这种微观粒子表现出双重性质——波动性和粒子性,这种现象叫做波粒二象性。
“二象性”并不只限于光而具有普遍意义。
3.什么是色散关系?什么是声子?声子的性质?(20、25)(1)频率和波矢的关系叫色散关系。
色散关系形成晶格的振动谱。
【定义波数|K |=λπ2,K即为波矢量,简称波矢。
(4)】(2)声子就是晶格振动中的独立简谐振子的能量量子。
(3)声子具有粒子性和准粒子性。
粒子性:弹性声波可以认为是声子流,声子携带声波的能量和动量。
准粒子性:○1声子的动量不确定,波矢改变一个周期(倒格矢量)或倍数,代表同一振动状态,所以不是真正的动量;○2系统中声子的数目不守恒,一般用统计方法进行计算。
4.声子概念的意义(25)可以将格波与物质的相互作用过程理解为,声子和物质(如,电子、光子、声子等)的碰撞过程,使问题大大简化,得出的结论也正确。
5.高聚物分子运动的特点(28)高聚物的结构是多层次的,这导致其分子运动的多重性和复杂性。
与小分子相比,高分子的运动具有一些不同的特点。
(1)运动单元的多重性 按照运动单元的大小,可以把高分子的运动单元大致分为大尺寸和小尺寸两类运动单元,前者指整链,后者指链段、链节和侧基等。
(2)分子运动的时间依赖性 在一定的温度和外场(力场、电场、磁场)作用下,聚合物从一种平衡状态通过分子运动转变为与外场相适应的另一种平衡状态的过程,称为松弛过程。
分子运动完成这个过程总是需要时间的,不可能瞬间完成,所需要的时间即称为松弛时间。
运动单元越大,运动中所受到的阻力越大,松弛时间越长。
(3)分子运动的温度依赖性 高分子的运动强烈依赖于温度,升高温度能加速高分子的运动。
这一方面是由于增加了分子热运动的能量,另一方面是使高聚物体积膨胀,增加了分子间的自由体积。
材料物理性能复习总结
1、⏹拉伸曲线:⏹拉伸力F-绝对伸长△L的关系曲线。
⏹在拉伸力的作用下,退火低碳钢的变形过程四个阶段:⏹1)弹性变形:O~e⏹2)不均匀屈服塑性变形:A~C⏹3)均匀塑性变形:C~B⏹4)不均匀集中塑性变形:B~k⏹5)最后发生断裂。
k~2、弹性变形定义:⏹当外力去除后,能恢复到原形状或尺寸的变形-弹性变形。
⏹弹性变形的可逆性特点:⏹金属、陶瓷或结晶态的高分子聚合物:在弹性变形内,应力-应变间具有单值线性关系,且弹性变形量都较小。
⏹橡胶态高分子聚合物:在弹性变形内,应力-应变间不呈线性关系,且变形量较大。
⏹无论变形量大小和应力-应变是否呈线性关系,凡弹性形变都是可逆变形。
3、弹性比功:(弹性比能、应变比能),用a e 表示,⏹表示材料在弹性变形过程中吸收弹性变形功的能力。
⏹一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。
⏹物理意义:吸收弹性变形功的能力。
⏹几何意义:应力σ-应变ε曲线上弹性阶段下的面积。
4、理想弹性材料:在外载荷作用下,应力-应变服从虎克定律,即σ=Eε,并同时满足3个条件,即:⏹①应变对于应力的响应是线性的;⏹②应力和应变同相位;⏹③应变是应力的单值函数。
⏹材料的非理想弹性行为:⏹可分为滞弹性、伪弹性及包申格效应等几种类型5、滞弹性(弹性后效)⏹滞弹性:是指材料在弹性范围内快速加载或卸载后,随时间的延长而产生的附加弹性应变的现象。
6、实际金属材料具有滞弹性。
⏹1)单向加载弹性滞后环⏹在弹性区内单向快速加载、卸载时,加载线与卸载线会不重合(应力和应变不同步),形成一封闭回线,称为弹性滞后环。
⏹2)交变加载弹性滞后环⏹交变载荷时,若最大应力<宏观弹性极限,加载速率比较大,则也得到弹性滞后环(图b)。
⏹3)交变加载塑性滞后环⏹交变载荷时,若最大应力>宏观弹性极限,则得到塑性滞后环(图c)。
7、材料存在弹性滞后环的现象说明:材料加载时吸收的变形功> 卸载时释放的变形功,有一部分加载变形功被材料所吸收。
材料物理性能整理
一、 材料的导电性能1.霍尔效应电子电导的特征是具有霍尔效应。
置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势差,这种现象称霍尔效应。
形成的电场E H ,称为霍尔场。
表征霍尔场的物理参数称为霍尔系数,定义为:R H =E H /J x B 0霍尔系数R H 有如下表达式: 表示霍尔效应的强弱霍尔系数只与金属中自由电子密度有关。
2.金属的导电机制1.利用量子自由电子理论导出电导率表达式:ζ=n ef e 2l F /m *v F (n ef :单位体积内实际参加传导过程的电子数;e :电子电量;l F :费米面附近电子平均自由程;m *:电子的有效质量,它是考虑晶体点阵对电场作用的结果;v F :费米面附近电子平均运动速度)此式不仅适用于金属,也适用于非金属。
能完整地反映晶体导电的物理本质。
2.量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时电阻为零。
只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。
由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。
这样,电子波在这些地方发生散射而产生电阻,降低导电性。
3.马西森定律金属和合金中不但含有杂质和合金元素,而且还有晶体缺陷, 散射系数应该由两部分组成μ=μT +Δμ(散射系数μT 与温度成正比,Δμ与杂质浓度成正比,与温度无关)注:理想金属的电阻对应着两种散射机制:声子散射和电子散射,可以看成为基本电阻,这个电阻在绝对零度时为零,在有缺陷的晶体中可以发生电子在杂质和缺陷上的散射,这是绝对零度下金属残余电阻。
把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρʹ组成,这就是马西森定律( Matthissen Rule ),用下式表示:ρ=ρ’+ρ(T )(ρʹ是与杂质浓度、点缺陷和位错有关的电阻率。
材料物理性能总结
电阻的影响因素由于晶体点阵的不完整性是引起电子散射的根本原因,因此温度、形变与合金化均能影响金属的导电性能。
一、外界条件:温度、应力(环境因素)1、温度(1)一般规律:金属电阻率随温度的升高而增大,温度对有效电子数(nef)和电子平均速度几乎没有影响,因为在熔点以下其费米能和费米分布受温度的影响很小,但温度升高,会使离子振动加剧,热振动幅度加大,原子无序度增加,周期性势场的涨落加大,从而使电子运动的自由程减小,散射几率增大而导致电阻率增大(2)过渡族金属与多晶型转变S层电子排满、d层电子未满,传导电子可能由S层电子向d层电子过渡,其电阻可以认为是由一系列具有不同温度关系的成分叠加而成(ρ∝Tn, n为2~5.3(3)铁磁金属与磁性转变在居里点附近时,铁磁金属的电阻率随温度的变化偏离线性关系:反常降低量Δρ=αMs2原因:铁磁性金属内d层与外层s壳层电子云交互作用引起(4)熔化大多数金属熔化成液态时,电阻会突然增大约1~2倍,这是由于原子长程有序排列遭到破坏,从而加强了对电子的散射所引起,但Bi、Sb、Ga等在熔化时电阻率反而下降,这是由于该类元素在固态时为层状结构,具有小的配位数,主要为共价键型晶体结构,在熔化时共价键被破坏,转以金属键为主,故电阻率下降(可见书p39:图2.4)2、应力在弹性范围内的单向拉应力,使原子间距离增大,点阵动畸变增大,由此导致金属电阻率增大αT—应力系数,αT >0,ζ为拉应力在压应力作用下,使原子间距变小,点阵动畸变减小,传导电子和声子之间相互作用的变化,电子结构以及电子间相互作用发生改变,金属的费米面和能带结构发生变化,由此导致金属电阻率下降二、组织结构的影响:组织结构与塑性变形、热处理工艺有关1、塑性形变形变使金属电阻率增大,这是由于晶体点阵畸变和晶体缺陷的增加,造成点阵电场的不均匀性增强而加剧对电子波散射的结果;此外冷塑性变形使原子间距有所改变,也对电阻率有一定影响。
材料物理性能(总结)
一章1、原子间的键合类型有几种?(P1)金属键、离子键、共价键、分子键和氢键2、什么是微观粒子的波粒二象性?(P1)光子这种微观粒子表现出双重性质——波动性和粒子性,这种现象叫做波粒二象性。
3、什么是色散关系?什么是声子?声子的性质?(P20、P25)将频率和波矢的关系叫做色散关系。
声子就是晶格振动中的独立简谐振子的能量量子。
性质:(1)声子的粒子性:声子和光子相似,光子是电磁波的能量量子,电磁波可以认为是光子流,光子携带电磁波的能量和动量。
(2)声子的准粒子性:准粒子性的具体表现:声子的动量不确定,波矢改变一个周期或倍数,代表同一振动状态,所以不是真正的动量。
4、声子概念的意义?(P25)(1)可以将格波雨物质的相互作用过程理解为,声子和物质的碰撞过程,使问题大大简化,得出的结论也正确。
(2)利用声子的性质可以确定晶格振动谱。
5、简述高聚物分子运动的特点。
(P29)(1)运动单元的多重性(2)分子运动时间的依赖性(3)分子运动的温度依赖性6、影响高聚物玻璃化温度的因素(P33)(1)分子链结构的影响(2)分子量的影响(3)增塑剂的影响(4)外界条件的影响7、影响高聚物流动温度的因素(P39)(1) 分子量(2)分子间作用力(3)外力8、线性非晶高聚物的力学状态?(P29)二章1、材料的热学性能的内容。
(P41)材料的热学性能包括热容、热膨胀、热传导、热稳定性、熔化和升华等。
2、什么是热容?(P42)什么是杜隆-柏替定律和奈曼-柯普定律(P43)热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
杜隆-珀替定律:恒压下元素的原子热容为25J/(k·mol);奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
3、试述线膨胀系数与体膨胀系数的关系。
(P50)4、请分析热膨胀与其他性能的关系。
(P49)5、影响材料热膨胀系数的因素。
(P50)(1)化学组成、相和结构的影响(2)化学键的影响(3)相变的影响6、简述影响热导率的因素。
材料物理性能心得
学材料物理性能心得本学期我们学了材料物理性能,对材料的微观结构有了更充分的了解,全书一共有六章.第一章为材料的热学性能,包括热容、热膨胀、热传导、热稳定性等;第二章为材料的电学性能,包括材料的导电性、超导电性、介电性、磁电性、热电性、接触电性、热释电性和压电性、光学性等;第三章为材料的磁学性能,介绍有关的磁学理论、磁性的测量和磁性分析法在材料研究中的主要应用;第四章为材料的光学性质,介绍光传播电磁理论、光的折射与反射、光的吸收与色散、晶体的双折射和二向色性、介质的光散射、发光材料等;第五章为材料的弹性及内耗、内耗产生的物理本质、影响弹性模量的因素、弹性模量的测量及应用、滞弹性与内耗、内耗产生的机制、内耗的测量方法和度量、内耗分析的应用等;第六章为核物理检测方法及应用,主要介绍穆斯堡尔、核磁共振、正电子湮没和中子散射等现代物理方法。
在学习过程中对材料的磁学性能印象最深刻,物质的磁学性能在研究中非常重要,这是因为磁性是一切物质的基本属性之一,它存在的范围很广,小至微观粒子大到宇宙天体几乎丢存在着磁现象。
磁性不只是一个宏观的物理量,而且与物质的微观结构密切相关;它不仅取决于物质的原子结构,还取决于原子间的相互作用,即键合情况和晶体结构等。
因此,研究磁性是研究物质内部微观结构的重要方法之一。
随着现代科学技术和工业的发展,磁性材料的应用越来越广泛,特别是电子技术的发展,对磁性材料又提出了心得要求。
因此,研究有关磁性的理论、发现新型的磁性材料是材料科学的一个重要方向。
下面主要介绍磁性材料的内容。
磁性材料是一种新兴的基础功能材料。
虽然我们人类早在几千年前就发现了磁石相吸和磁石吸铁的现象,但我们对于磁性材料的开发研究还不足100年。
经过不断的发现研究,磁性材料已经成为一个庞大的家族。
早在公元前四世纪、人们就发现了天然的磁石,我国古代人民最早用磁石和钢针制成了指南针、并将它用于军事和航海。
对物质磁性的研究具有悠久的历史、是在十七世纪末期和十九世纪开始发展起来的。
材料物理性能知识点总结汇编
材料性能的影响因素材料化学组成和显微结构不同,决定其有不同的特性;材料的内部分子层次上,原子、离子之间的相互作用和化学键合对材料性能产生决定性的影响;多晶多相材料的显微结构的不同,影响材料的大部分性能。
晶体结合类型、特征:(1)离子晶体:离子键合、高硬度、高升华热,可溶于极性溶剂、低温不导电,高温离子导电。
(2)共价晶体:共价键合、高硬度、高熔点,几乎不溶于所有溶剂,高折射率,强反射本领。
(3)金属晶体:金属键合、高密度、导电率高,延展性好,只溶于液体金属。
(4)分子晶体:范德华力结合,高热膨胀,易溶于非极性有机溶剂中,低熔点、沸点,压缩系数大,保留分子的性质。
(5)氢键:低熔点、沸点,结合力高于无氢键的类似分子。
单晶体是由一个微小的晶核各向均匀生长而成,其内部的粒子基本上按其特有的规律整齐排列。
晶体微粒(包括离子、原子团)在空间排列有一定的规律晶体性质:1.均与性;2.各向异性;3.规则的多面体外形;4.确定的熔点;5.对称性晶体可分为单晶、多晶、微晶等微晶:粒度很小的晶体组成的物质(显晶质、隐晶质、单晶、多晶)晶体和非晶体的区别如下:晶体有规则的几何外形非晶体没有一定的外形晶体有固定的熔点非晶体没有固定的熔点晶体显各向异性非晶体显各向同性按热力学观点看:晶体一般都具有最低的能量,因而较稳定非晶体一般能量较高,都处于介稳或亚稳态晶格确定步骤:1.确定基本结构单元;2.将结构基元看做一点;3.这些几何点聚焦形成点阵(面角守恒:同组晶体和对应面之间夹角恒定不变)材料应用考虑因素:使用寿命、性能、可靠性、环境适应性、性价比。
材料性能是一种用于表征材料在给定外界条件下的行为参量。
同一材料不同性能,只是相同的内部结构,在不同的外界条件下所表现出的不同行为。
材料性能的研究:材料性能的研究,既是材料开发的出发点,也是其重要归属。
材料强度、表面光洁度、绝缘性能、热导性、热膨胀系数等是衡量基板材料好坏的重要指标。
材料物理性能
材料物理性能材料的物理性能是指材料在物理层面上所表现出来的各种性质和特性,包括力学性能、热学性能、电学性能、磁学性能等。
首先,力学性能是材料最基本的物理性能之一。
它包括抗拉强度、屈服强度、硬度、韧性、弹性模量等指标。
抗拉强度是材料在拉伸破坏时所能承受的最大拉力,屈服强度是材料在拉伸过程中开始产生塑性变形的拉力。
硬度是材料抵抗划痕或压痕的能力,描述了材料的抗刮擦性能。
韧性是材料在受外力作用下发生塑性变形而不破裂的能力,反映了材料的延展性。
弹性模量是材料在受力后产生弹性变形的能力,反映了材料的变形程度与受力大小的关系。
其次,热学性能是材料在热力学层面上的表现,包括热导率、热膨胀系数、比热容等。
热导率是材料导热性能的指标,反映了材料传导热量的能力。
热膨胀系数是材料在受热后的膨胀程度与温度变化之间的关系,描述了材料在温度变化时的尺寸变化。
比热容则是材料所需吸收或释放的热量与温度变化之间的关系,反映了材料的热量储存能力。
此外,电学性能是材料在电学层面上的表现,包括电导率、介电常数、磁导率等。
电导率是材料导电性能的指标,反映了材料导电的能力。
介电常数是材料对电场的响应能力,描述了材料在电场中的电极化程度。
磁导率则是材料对磁场的响应能力,反映了材料对磁场的传导性能。
最后,磁学性能是材料在磁化和磁导方面的表现,包括磁化强度、剩余磁感应强度、矫顽力等。
磁化强度是材料在外加磁场下磁化的能力,剩余磁感应强度是材料在去除外加磁场后保留的磁感应强度。
矫顽力是材料从磁化过程中恢复原始状态所需的去磁场强度,反映了材料抵抗磁通方向变化的能力。
总之,材料的物理性能涵盖了力学、热学、电学及磁学等多个方面,对于不同的应用需求,选择合适的材料具备合适的物理性能是十分重要的。
45 压电性(材料物理性能)总结
11
C.石英单晶的压电机理
压电晶体的压电效应的产生是由于晶格结构在机械力的作用下发生变形 所引起的。 石英晶体的压电效应与其内部分子结构有关。
石英晶体的化学分子式为SiO2,在一个晶体结
构单元 ( 晶胞 ) 中,有三个硅离子 Si4+ 和六个氧 离子 O2 ,后者是成对的,所以一个硅离子和 二个氧离子交替排列。为了讨论方便,我们 将石英晶体的内部结构等效为硅、氧离子的 正六边形排列,如图( a )所示,图中“ ” 代表Si4+、“⊙”表示O2。形成三个互成120º
4.5 压电性
内容简介 一、压电效应及压电体 二、压电机理 三、压电振子 要求: 理解压电效应的概念与机理 理解压电性与晶体结构的关系
理解压电振子的作用
1
一、压电效应与压电体
压电性:电介质材料按所施加的机械应力成比例地产生电荷的能力。
1、压电效应
某些单晶体或多晶体陶瓷电介质,当沿着一定方向对其施力而使它 变形时,内部就产生极化现象,同时在它的两个对应晶面上便产生 符号相反的等量电荷,当外力取消后,电荷也消失,又重新恢复不 带电状态,这种现象称为压电效应。 当作用力的方向改变时,电荷的极性也随着改变。
+
+
固 有 偶 极 子
-
+
+
正 电 荷 层 与 负 电 荷 层 交 替 排 列
+ -
-
+ + -
+ -
2)常见的压电材料
种类 压电 单晶 材料 特点 缺点 培养单晶比较困 难,成本较高
石英、磷酸二氢 重现性好、稳定性高, 铵、锗酸铋等
压电 陶瓷
钛酸钡、钛酸铅、压电陶瓷是现有压电材料中 锆钛酸铅(PZT) 机电耦合系数最大的。它制 造工艺简单,价格低廉,容 易制成任意形状,尺寸不受 限制,而且可以通过成分和 工艺的适当调整和选择来改 变其各项性能,
无机材料物理性能总结
关于氧化锆的总结一氧化锆(ZrO2)自然界的氧化锆矿物原料,主要有斜锆石和锆英石。
锆英石系火成岩深层矿物,颜色有淡黄、棕黄、黄绿等,比重4.6—4.7,硬度7.5,具有强烈的金属光泽,可为陶瓷釉用原料。
相对分子质量123.22二氧化锆的物理性质白色重质无定形粉末或单斜结晶。
无臭。
无味。
在1100℃以上形成四方晶体,在1900℃以上形成立方晶体。
一般常含有少量二氧化铪,与碳酸钠共熔生成锆酸钠,锆酸钠遇水能水解成氢氧化钠和几乎不溶于水的氢氧化锆。
溶于2份硫酸和1份水的混合液中,微溶于盐酸和硝酸,慢溶于氢氟酸,几乎不溶于水。
相对密度5.85。
熔点2680℃,耐火度为2200℃。
沸点4300℃。
折光率2.2。
有刺激性。
储存桶装密封保存。
二氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。
二氧化锆有3种晶型,属于多晶相转化物。
稳定的低温相为单斜相;高于1000°时,四方相逐渐形成;高于2370°时,转变为立方晶相。
氧化锆熔点2700℃,莫氏硬度7,有两种变体,1000℃以下为单斜晶系(密度5.68g/cm3),1000℃时生成四方晶系(密度6.10g/cm3),此晶型转变为可逆转变,冷却过程中晶型转化时伴有7%的体积膨胀,可导致制品开裂。
加入稳定剂与Zr02生成立方晶系固溶体,可消除由上述晶型转化带来的体积膨胀。
氧化锆热导率低(1000℃,2.09W/(m·K)),线膨胀系数大(25~1500℃9.4×10-6/℃),高温结构强度高,1000℃时耐压强度可达1200~1400MPa。
导电性好,具有负的电阻温度系数,电阻率1000℃时104Ω·cm,1700℃时6~7Ω·cm。
三氧化锆的化学性质氧化锆的化学性质十分稳定。
不溶于水、盐酸和稀硫酸,溶于热浓氢氟酸、硝酸和硫酸。
与碱共熔可生成相应的锆酸盐。
具有良好的热化学稳定性,高温导电性和较高的高温强度和韧性,也具有良好的机械、热学、电学、光学性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一章1、原子间的键合类型有几种?(P1)金属键、离子键、共价键、分子键和氢键2、什么是微观粒子的波粒二象性?(P1)光子这种微观粒子表现出双重性质——波动性和粒子性,这种现象叫做波粒二象性。
3、什么是色散关系?什么是声子?声子的性质?(P20、P25)将频率和波矢的关系叫做色散关系。
声子就是晶格振动中的独立简谐振子的能量量子。
性质:(1)声子的粒子性:声子和光子相似,光子是电磁波的能量量子,电磁波可以认为是光子流,光子携带电磁波的能量和动量。
(2)声子的准粒子性:准粒子性的具体表现:声子的动量不确定,波矢改变一个周期或倍数,代表同一振动状态,所以不是真正的动量。
4、声子概念的意义?(P25)(1)可以将格波雨物质的相互作用过程理解为,声子和物质的碰撞过程,使问题大大简化,得出的结论也正确。
(2)利用声子的性质可以确定晶格振动谱。
5、简述高聚物分子运动的特点。
(P29)(1)运动单元的多重性(2)分子运动时间的依赖性(3)分子运动的温度依赖性6、影响高聚物玻璃化温度的因素(P33)(1)分子链结构的影响(2)分子量的影响(3)增塑剂的影响(4)外界条件的影响7、影响高聚物流动温度的因素(P39)(1) 分子量(2)分子间作用力(3)外力8、线性非晶高聚物的力学状态?(P29)二章1、材料的热学性能的内容。
(P41)材料的热学性能包括热容、热膨胀、热传导、热稳定性、熔化和升华等。
2、什么是热容?(P42)什么是杜隆-柏替定律和奈曼-柯普定律(P43)热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
杜隆-珀替定律:恒压下元素的原子热容为25J/(k·mol);奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
3、试述线膨胀系数与体膨胀系数的关系。
(P50)4、请分析热膨胀与其他性能的关系。
(P49)5、影响材料热膨胀系数的因素。
(P50)(1)化学组成、相和结构的影响(2)化学键的影响(3)相变的影响6、简述影响热导率的因素。
(P55)(1)温度的影响(2)显微结构的影响(3)化学组成的影响(4)复相材料的热导率(5)气孔的影响7、什么是热稳定性?无机材料受热损坏类型有几种?(P60)热稳定性是指材料承受温度的急剧变化而不致破坏的能力。
从无机材料受热损坏的形式来看,可分为两种类型:一种是材料发生瞬时断裂,抵抗这种破坏的性能称为抗热冲击断裂性;另一种是在热冲击循环作用下,材料表面开裂、剥落,并不断发展,最终破裂或变质,抵抗这类破坏的性能称为抗热冲击损伤性。
8、高分子材料在受热过程中将发生的变化。
(P61)高分子材料在受热过程中将发生两类变化:一是物理变化,包括软化、熔融等;二是化学变化,包括交联、降解、环化、氧化、水解等。
9、简述高聚物的结构与耐热性的关系。
(P61)高分子的结构对高分子材料的热稳定性有着重要影响,欲提高高聚物的耐热性,从高分子结构方面考虑,主要是加强分子链之间的相互作用或强化高分子链本身,归结起来,主要有三个结构因素:增加高分子链的刚性、使高聚物结晶以及进行交联。
10、高聚物的热分解与耐热性的关系。
(P62)高分子中化学键的键能越大,材料就越稳定,耐热分解能力也就越强。
及提高聚合物热稳定性的措施。
(1)在高分子链中避免弱键(2)在高分子主链中尽量避免一长串链接的亚甲基—CH2—,并尽量引入较大比例的环状结构。
(3)合成“梯形”或“片状”高分子。
11、什么是热应力?其计算公式怎样?(P63)由于材料热膨胀或收缩引起的内应力称为热应力。
12、非平面薄板状陶瓷限制骤冷时的最大温热表达式?(P64)13、材料所能经受的最大降温速率的计算公式(P67)14、提高抗热冲击断裂性能的措施。
(P69)(1)提高材料的强度σ,减小弹性模量E,使σ/E提高。
(2)提高材料的热导率λ,使R' 提高。
(3)减少材料的热膨胀系数α,α小的材料,在同样的温差下,产生的热应力小。
(4)减小表面热传递系数h。
(5)减小产品的有效厚度。
15、热分析方法有几种?它们的定义?(P70)(1)普通热分析方法:是测量材料在加热或冷却过程中热效应所产生的温度和时间的关系的一种分析方法。
(2)差热分析:是在程序控制温度下,将被测材料与参比物在相同调件下加热或冷却,测量试样与参比物之间温差随温度(T)时间(t)的变化关系。
(3)差示扫描量热法:是在程序温度控制下用差动方法测量加热或冷却过程中,在试样和标样的温度差保持为零时,所要补充的热量与温度和时间的关系的分析技术。
(4)热重法:是在程序控制温度下测量材料的质量与温度关系的一种分析技术。
16、简述热分析应用。
(P71 )(1)物质的鉴定(2)进行热力学研究(3)动力学研究(4)结构域物理性能关系的研究三章1、什么是折射率?(P76)光在真空中的传播速度与在致密材料中传播速度的比值就称为材料的绝对折射率。
2、试述影响折射率的因素。
(P77)(1)离子半径(2)材料的结构(3)材料所受的应力3、什么是透射系数?反射系数?色散全反射?(P79)4、什么是散射定律与吸收定律?色散系数?(P81)5、提高无机材料透光性的措施。
(P87)(1)提高原材料的纯度(2)掺加外加剂(3)工艺措施:一般,采取热压法要比普通烧结法更便于排除气孔,因而是获得透明陶瓷较为有效的工艺,热等静压法更好。
6、请列出三种常用的乳浊剂。
(P89)7、着色剂有几种?试述着色机理?(P92)(1)分子着色剂(2)胶态着色剂机理:显色的原因是由于着色剂对光的选择性吸收而引起选择性反射或选择性透射,从而显现颜色。
8、怎样提高着色剂的稳定度。
(P92)通常为了使高温色料的颜色稳定,一般都先将显色离子合成到人造矿物中去。
最常见的是形成尖晶石形式AO·B2O3,这里A是二价离子,B是三价离子。
因此只要离子的尺寸合适,则二价、三价离子均可固溶进去。
由于堆积紧密,结构稳定,所制成的色料稳定度高。
9、改善釉的乳浊性能的工艺措施。
(P92)用高的反射率、厚的釉层和高的散射系数或它们的某些结合,可以得到良好的乳浊效果。
10、电光效应和磁光效应?声光效应?它们的作用?(P101)材料在电场作用下其光学特性发生变化的现象称为电光效应。
电光晶体可以应用在光学振荡器、频率倍增器、激光频振腔中的电压控制开关以及用在光学通信系统中的调制器。
材料在磁场作用下其光学特性发生变化的现象称为磁光效应。
磁光材料是在可见光和红外光波段具有磁光效应的光信息功能材料,利用磁光效应可制成许多磁光器件,如:调制器、隔音器、旋转器、相移器、Q开关等快速控制激光参数的器件,也可用于激光雷达测距光通信激光放大等系统中的光路中。
材料在声波作用下其光学特性发生变化的现象称为声光效应。
声光介质材料被广泛用于声光偏转器声光调制器和声光可谐滤波器等各类声光器件。
四章1、怎样判断离子电导和电子电导?什么是霍尔效应?电解现象?(P106)载流子为离子或离子空穴的电导称为离子电导,载流子为电子或电子空穴的电导称为电子电导。
通过不同的物理效应可以确定材料的导电性质,产生霍尔效应的是电子电导,产生电解效应的是离子电导。
沿试样x轴方向通入电流I(电流密度j x), z轴方向加一磁场H z,那么在y轴方向将产生一电场E y,这一现象称为霍尔效应。
离子的迁移伴随着一定的质量变化,离子在电极附近发生电子得失,产生新的物质,这就是电解现象。
2、载流子的迁移率的物理意义?电导率的一般表达式。
(P107)物理意义:为载流子在单位电场中的迁移速度。
3、简述影响离子电导率的因素?对图4-5进行解释。
(P112)(1)温度:随着温度的升高,电导按指数规律增加。
(2)晶体结构:电导率随活化能按指数规律变化,而活化能反应离子的固定程度,它与晶体结构有关。
(3)晶格缺陷:离子性晶格缺陷的生成及其浓度大小是决定离子电导的关键。
4、导电高聚物有哪两类?(P113)本征型高聚物导体和复合型高聚物导体。
5、超导体的三个重要性能指数及其定义。
(P116)(1)临界转变温度Tc:超导体温度低于临界转变温度时,便出现完全导电和迈斯纳效应等基本特征。
超导材料的临界转变温度越高越好,越有利于应用。
(2)临界磁场强度Hc:能破坏超导态的最小磁场强度就称为临界磁场强度。
(3)临界电流密度Jc:如果输入电流所产生的磁场与外磁场之和超过临界磁场强度Hc,则超导态被破坏,这时输入的电流为临界电流Ic,相应的电流密度称为临界电流密度Jc。
6、简述影响金属导电性的因素。
(P121)(1)温度的影响:金属电阻率随着温度升高而增大。
(2)应力的影响:(3)冷加工变形的影响(4)合金元素及其相结构的影响7、简述材料导电性的测量法(P126)(1)双臂电桥法(2)直流电位差计测量法(3)直流四探针法(4)绝缘电阻可采用冲击检流计法测量8、试述玻璃态电导的特点及降低电导的方法?(P130)特点:(1)在含有碱金属离子的玻璃中,基本上表现为离子电导。
(2)纯净玻璃的电导一般比较小,但如含有少量的碱金属就会使电导大大增加。
(3)在碱金属氧化物含量不大的情况下,电导率与碱金属离子浓度有直线关系。
到一定程度时,电导率成指数增长。
利用双碱效应和压碱效应可以降低玻璃的电导率。
9、试述无机材料的次级现象(空间电荷效应,电化学现象)(P132)(1)电化学老化现象:不仅离子电导,而且电子电导为主的瓷介材料都有可能发生电化学老化现象。
电化学老化是指在电场作用下,由于化学变化引起材料电性能不可逆的恶化。
一般电化学老化的主要原因是离子在电极附近发生氧化还原过程。
有下面几种情况:a、电子-阳离子电导b、阴离子-阳离子电导c、电子-阴离子电导d、阳离子-阳离子电导(2)空间电荷效应:在测量陶瓷电阻时,经常可以发现,加上直流电压后,电阻需要经过一定的时间才能稳定。
切断电源后,将电极短路,发现类似的反向放电电流,并随时间减少到零。
随时间变化的这部分电流称为吸收电流,最后恒定的电流称为漏导电流,这种现象称为吸收现象。
吸收现象主要是因为在外电场作用下,瓷体内自由电荷重新分布的结果。
空间电荷形成的主要原因是因为陶瓷内部具有微观不均匀性。
10、试述半导体陶瓷的物理效应及应用。
(P137)(1)晶界效应:a、PTC效应:PTC陶瓷的应用:PTC陶瓷可应用于温度敏感元件、限电流元件以及恒温发热体等方面。
b、压敏效应:压敏效应是指对电压变化敏感的非线性电阻效应,即在某一临界电压以下,电阻值非常高,几乎无电流通过:超过该临界电压(敏感电压),电阻迅速降低,让电流通过。
压敏电阻器已广泛应用于半导体和电子仪器的稳压和过压保护以及设备的避雷器等。
(2)表面效应11、无机材料电导的对数混合法则。