传感器与检测技术PPT演示
合集下载
传感器与检测技术第一章(共41张PPT)
1.2 检测系统的组成
信号调理模块实物图
单通道信号调理电路
1.2 检测系统的组成
3. 数据采集 基于ARM9核的嵌入式控制器
转换速度 单位次/秒; 检测是指在生产、科研、试验及服务等各个领域,为及时获得被测、被控对象的有关信息而实时或非实时地对一些参量进行定性检查和定量测
量信。噪比高,抗干扰性数能要据好。 采集是对信号调理后的连续模拟信号离散 化并转换成与模拟信号电压幅度相对应的数值信息, 状态量 颜色、透明度、磨损量、裂纹、缺陷、泄漏、表面质量等。
检测仪表和检测系统的输出信号通常有4~20 mA的电流模拟信号和脉宽调制PWM信号及串行数字通信信号等多种形式,需根据系统的具体要
求确定。
基于ARM9核的嵌入式控制器
1 传感器与检测技术的地位与作用
检测是指在生产、科研、试验及服务等各个领域,为及时获得被测、被控对象的有关信息而实时或非实时地对一些参量进行定性检查和定量测
应用领域主要有: ➢石化行业的自动 化控制。 如右图,有液位、 温度、压力等检测。
1.1 传感器与检测技术的地位与作用
➢城市生活污水处理
主要有流量 检测、液位检 测和成分量检 测。
1.1 传感器与检测技术的地位与作用
➢新型武器和装备的研制与测试
定位与导航,图为中国研制的DF-21和雷达。
1.1 传感器与检测技术的地位与作用
7.输入设备 输入设备用于输入设置参数,下达有关命
令等。最常用的输入设备是各种键盘、拨码盘、 条码阅读器等。通过网络或各种通信总线利用 其他计算机或数字化智能终端,实现远程信息 和数据输入的方式将会得到更多的应用。
1.2 检测系统的组成
键盘
触摸屏
1.2 检测系统的组成
《传感器与测控技术》课件
06
CATALOGUE
传感器与测控技术的应用实例
在工业自动化中的应用实例
要点一
总结词
要点二
详细描述
传感器在工业自动化中发挥着关键作用,能够提高生产效 率和产品质量。
传感器在工业自动化中的应用包括温度、压力、流量、物 位等参数的测量和控制,以及机器视觉和运动控制等方面 。通过使用传感器,可以实现精确的测量和自动控制,提 高生产效率和产品质量,降低能耗和减少人工干预。
信号调理电路
对传感器输出的信号进行放大 、滤波等处理,以适应后续电 路的需求。
微控制器或计算机
作为测控系统的核心,实现对 数据的处理和控制。
传感器
用于采集被测对象的物理量, 如温度、压力、位移等。
A/D转换器
将模拟信号转换为数字信号, 便于微控制器或计算机进行处 理。
执行机构
根据控制信号执行相应的动作 ,如驱动电机、控制阀门等。
《传感器与测控技术》 ppt课件
CATALOGUE
目 录
• 传感器概述 • 传感器的工作原理 • 常用传感器介绍 • 测控技术基础 • 测控系统的设计与实现 • 传感器与测控技术的应用实例
01
CATALOGUE
传感器概述
传感器的定义与分类
总结词
了解传感器的定义和分类是掌握传感器技术的基础。
详细描述
在环境监测中的应用实例
总结词
传感器在环境监测中具有广泛的应用,能够实时监测环境质 量和预测污染趋势。
详细描述
传感器在环境监测中的应用包括空气质量、水质、噪声、土 壤等参数的监测。通过使用传感器,可以实时监测环境质量 和预测污染趋势,为环境保护和治理提供科学依据。
在医疗领域中的应用实例
传感器及检测技术培训pptx
工业自动化领域应用案例
1 2 3
温度传感器
在工业生产线上,温度传感器被广泛应用于监测 环境温度、设备温度等,以确保生产过程的稳定 性和安全性。
压力传感器
压力传感器在工业自动化领域具有重要地位,用 于监测管道压力、气缸压力等,以实现精确的流 程控制和设备保护。
流量传感器
流量传感器被用于测量液体或气体的流量,对于 化工、石油等行业的生产流程至关重要。
热电式传感器
利用热电效应,将 温度变化转换为电 信号。
传感器应用领域
智能家居
用于实现家庭环境的智能化控 制,如温度调节、照明控制等 。
医疗电子
用于监测人体生理参数,如体 温、血压、心率等。
工业自动化
用于监测和控制生产过程中的 各种参数,如温度、压力、流 量等。
汽车电子
用于监测和控制汽车的各种状 态,如车速、油量、胎压等。
智能家居领域应用案例
红外传感器
01
红外传感器在智能家居中用于人体感应,如自动开关灯、自动
门等,提高家居便利性和节能性。
烟雾传感器
02
烟雾传感器是智能家居安全系统的重要组成部分,用于监测室
内烟雾浓度,及时发出警报,保障家庭安全。
温湿度传感器
03
温湿度传感器被用于智能家居环境中,监测室内温湿度变化,
为用户提供舒适的居住环境。
电感式检测
利用电感线圈在被测物体上产生的电磁感应现象,通过测量电感量 的变化来检测被测物体的位移、振动等参数。
压电式检测
利用压电元件在被测物体上产生的压电效应,通过测量电荷量的变 化来检测被测物体的压力、加速度等参数。
复合式检测技术
光电复合检测
将光学检测和电学检测相结合,利用光电转换器件将光信 号转换为电信号进行测量,具有高精度、高灵敏度等优点 。
传感器与测试技术PPT课件
电感式传感器是基于电磁感应原理,它是把被 测量转化为电感量的一种装置。常用来测量位移、 压力、流量、振动等物理参数。
分类:
电感式传感器
自感型
可变磁阻型
互感型
涡流式
第1页/共59页
6.1 自感式电感传感器
1、工作原理——可变磁阻式
原理:电磁感应
L W 20A 2
第2页/共59页
自感L与气隙δ
成反比,而与 气隙导磁截面 积A成正比。
在将被测信号调制,并将它和噪声分离,放大等 处理后,还要从已经调制的信号中提取反映被测 量值的测量信号,这一过程称为解调。
第18页/共59页
1)目的:解决微弱缓变信号的放大以及信号的传输问题, 提高被测信号抗干扰能力。
常用的调制方法 ——载波信号为高频正弦信号(幅值、频率、相位), 即调幅、调频和调相; ——载波信号为脉冲信号(宽度等),即脉冲调宽。
uo
u 2
L L0
输出电压的大小和极性反 映了被测量的性质(如位 移的大小及方向)。
第17页/共59页
交流电桥的调制与解调 被测量经传感器变换输出的电信号多为低频缓变
的微弱信号,还往往有各种噪声信号。 为了将测量信号从含有噪声的信号中分离出来,
往往给被测信号赋予一定特征——调制的主要功用。
调制就是用被测信号(称为调制信号)去控制载 波信号,让后者的某一特征参数按前者变化。
第25页/共59页
幅值调制装置实质上是一个乘法器,在实际应用中经 常采用交流电桥作调制装置,以高频振荡电源供给电 桥作为载波信号,则电桥的输出为调幅波。
被测信号的频率为 0~10Hz
载波的频率为f0 >100 Hz; f0 =3000 Hz
放大器的通频带应 为2990~3010 Hz
分类:
电感式传感器
自感型
可变磁阻型
互感型
涡流式
第1页/共59页
6.1 自感式电感传感器
1、工作原理——可变磁阻式
原理:电磁感应
L W 20A 2
第2页/共59页
自感L与气隙δ
成反比,而与 气隙导磁截面 积A成正比。
在将被测信号调制,并将它和噪声分离,放大等 处理后,还要从已经调制的信号中提取反映被测 量值的测量信号,这一过程称为解调。
第18页/共59页
1)目的:解决微弱缓变信号的放大以及信号的传输问题, 提高被测信号抗干扰能力。
常用的调制方法 ——载波信号为高频正弦信号(幅值、频率、相位), 即调幅、调频和调相; ——载波信号为脉冲信号(宽度等),即脉冲调宽。
uo
u 2
L L0
输出电压的大小和极性反 映了被测量的性质(如位 移的大小及方向)。
第17页/共59页
交流电桥的调制与解调 被测量经传感器变换输出的电信号多为低频缓变
的微弱信号,还往往有各种噪声信号。 为了将测量信号从含有噪声的信号中分离出来,
往往给被测信号赋予一定特征——调制的主要功用。
调制就是用被测信号(称为调制信号)去控制载 波信号,让后者的某一特征参数按前者变化。
第25页/共59页
幅值调制装置实质上是一个乘法器,在实际应用中经 常采用交流电桥作调制装置,以高频振荡电源供给电 桥作为载波信号,则电桥的输出为调幅波。
被测信号的频率为 0~10Hz
载波的频率为f0 >100 Hz; f0 =3000 Hz
放大器的通频带应 为2990~3010 Hz
传感器与检测技术课件ppt课件
传感器与检测技术
第一篇 基础知识引论
1 绪论
1.1 检测仪表控制系统 1.2 基本概念 1.3 检测仪表技术发展趋势
检测技术
检测≠测量 检测技术是实验科学的一部分,主要研究各
种物理量的测量原理和测量信号分析处理方法。
智能楼宇控制
图示为某公司楼宇自动化 系统。该系统分为:安全 监测、照明控制、空调控 制、水/废水管理等。
滞环效应分析
同一输入,对应多个输出值,出现误差。
1.2.6 滞环、死区和回差
死区: – 死区效应,例如传动机构 的摩擦和间隙。 – 实际上升曲线和实际 下降曲线不重合。 – 仪表输入小到一定范围后不 足以引起输出的任何变化。
死区效应分析
1.2.6 滞环、死区和回差
综合效应: – 既有储能效应,也具有 死区效应。 – 各种情况下,实际上升曲 线和实际下降曲线间的差 值称为回差或变差。
误差函数的有关符号:
– 1)y f x
:误差x发生的概率密度
– 2)p x f x dx :误差为x的概率,称为概率元
– 3)p a x b b f x dx :误差在a与b之间的概率 a
– 4)p x f x dx 1 : 检测值存在或检测误差存在的概率为1
(a) 线性传感器
(b) 非线性传感器
作图法求灵敏度过程
y
Δy
切点
传感器 特性曲线
x1
0
K y
Δx
x
xmax x
两者关系
灵敏度高的仪表一定分辨率高(充分条件) 分辨率高的仪表不一定灵敏度高(非必要条件)
原因:分辨率高的仪表,如量程也很小,则灵 敏度也不高。
灵敏度具有可传递性,首尾串联的多仪表系统 总灵敏度是各仪表灵敏度的乘积。
第一篇 基础知识引论
1 绪论
1.1 检测仪表控制系统 1.2 基本概念 1.3 检测仪表技术发展趋势
检测技术
检测≠测量 检测技术是实验科学的一部分,主要研究各
种物理量的测量原理和测量信号分析处理方法。
智能楼宇控制
图示为某公司楼宇自动化 系统。该系统分为:安全 监测、照明控制、空调控 制、水/废水管理等。
滞环效应分析
同一输入,对应多个输出值,出现误差。
1.2.6 滞环、死区和回差
死区: – 死区效应,例如传动机构 的摩擦和间隙。 – 实际上升曲线和实际 下降曲线不重合。 – 仪表输入小到一定范围后不 足以引起输出的任何变化。
死区效应分析
1.2.6 滞环、死区和回差
综合效应: – 既有储能效应,也具有 死区效应。 – 各种情况下,实际上升曲 线和实际下降曲线间的差 值称为回差或变差。
误差函数的有关符号:
– 1)y f x
:误差x发生的概率密度
– 2)p x f x dx :误差为x的概率,称为概率元
– 3)p a x b b f x dx :误差在a与b之间的概率 a
– 4)p x f x dx 1 : 检测值存在或检测误差存在的概率为1
(a) 线性传感器
(b) 非线性传感器
作图法求灵敏度过程
y
Δy
切点
传感器 特性曲线
x1
0
K y
Δx
x
xmax x
两者关系
灵敏度高的仪表一定分辨率高(充分条件) 分辨率高的仪表不一定灵敏度高(非必要条件)
原因:分辨率高的仪表,如量程也很小,则灵 敏度也不高。
灵敏度具有可传递性,首尾串联的多仪表系统 总灵敏度是各仪表灵敏度的乘积。
《传感器及检测技术》PPT课件
11
第二节 差动变压器式传感器
电源中用到的“单相变压器”有一个一次线圈(又称为初 级线圈),有若干个二次线圈(又称次级线圈)。当一次线圈 加全上波交整流流激电磁路电中压,两Ui后个,二将次在线二圈次串线联圈,中总产电生压感等应于电两压个U二O。次在线 圈的电压之和。
+
请将单相变压 器二次线圈N21、 N22的有关端点按 全波整流电路的要 求正确地连接起来。
(参考中原量仪股份有限公司资料)
滑道
轴承滚子外形
分选仓位
2020/11/29
24
电感式滚柱直径分选装置(机械结构放大)
汽缸
直径测微装置
控制键盘
长度测微装置
滑道
2020/11/29
25
三、电感式不圆度计原理
该圆度计采用旁向式电感测微头
2020/11/29
26
电感式不圆度测试系统
旁向式电感测微头
2020/11/29
如果在输出电压送到指示仪前,经过一 个能判别相位的检波电路,则不但可以反映 位移的大小(的幅值),还可以反映位移的 方向(的相位)。这种检波电路称为相敏检 波电路。
2020/11/29
10
图3-7 相敏检波输出特性曲线
a)非相敏检波 b)相敏检波
2020/11/29 1—理想特性曲线 2—实际特性曲线
上节回顾:
1.电容传感器
本节主要内容:
1.电感传感器
2020/11/29
1
第4章 电感式传感器
本章学习自感式传感器和差 动变压器的结构、工作原理、测 量电路以及他们的应用,掌握一 次仪表的相关知识。
2020/11/29
2
第一节 自感式传感器
先看一个实验:
传感器与检测技术ppt课件第一章
2024/2/29
16
1.2检测技术理论基础
1.2.2 测量方法
1) 直接测量、间接测量和组合测量 (又称联立 测量)。经过求解联立方程组,才能得到被测物理量的最后
结果,则称这样的测量为组合测量。
2) 偏差式测量、零位式测量与微差式测量
3) 等精度测量与非等精度测量
4) 静态测量与动态测量
2024/2/29
2024/2/29
23
2024/2/29
3
1.1.3 传感器基本特性
当传感器的输入信号是常量,不随时间变化时,其 输入输出关系特性称为静态特性。
传感器的基本特性是指系统的输入与输出关系特性 ,即传感器系统的输出信号y(t)和输入信号(被测 量)x(t)之间的关系,传感器系统示意图如下图所 示。
2024/2/29
4
1.1.3 传感器基本特性
2.传感器的分类
(1)按照其工作原理,传感器可分为电参数式(如电阻式、 电感式和电容式)传感器、压电式传感器、光电式传感器及 热电式传感器等。
(2)按照其被测量对象,传感器可分为力、位移、速度、 加速度传感器等。常见的被测物理量有机械量、声、磁、温 度和光等。
(3)按照其结构,传感器可分为结构型、物性型和复合型 传感器。物性型传感器是依靠敏感元件材料本身物理性质的 变化来实现信号变换,如:水银温度计。结构型传感器是依 靠传感器结构参数的变化实现信号变换,如:电容式传感器。
敏感元件输出的物理量转换成适于传输或测量电信号 的元件。
测量电路(measuring circuit): 将转换
元件输出的电信号进行进一步转换和处理的部分,如 放大、滤波、线性化、补偿等,以获得更好的品质特 性,便于后续电路实现显示、记录、处理及控制等功 能。
传感器与检测技术-ppt
2024/9/29
22
霍尔转速传感器在汽车防抱死装置(ABS) 中旳应用
带有微
型磁铁
霍尔
旳霍尔
传感器
钢质
若汽车在刹车时车轮被抱死,将产生 危险。用霍尔转速传感器来检测车轮旳转 动状态有利于控制刹车力旳大小。
2024/9/29
23
ABS旳工作原理
1—车速齿轮传感器 2—压力调整器 3—控制器
2024/9/29
24
霍尔转速表
在被测转速旳转轴上安装一种齿盘,也可 选用机械系统中旳一种齿轮,将线性型霍尔器 件及磁路系统接近齿盘。齿盘旳转动使磁路旳 磁阻随气隙旳变化而周期性地变化,霍尔器件 输出旳微小脉冲信号经隔直、放大、整形后能 够拟定被测物旳转速。
线性霍尔
NS
磁铁
2024/9/29
25
霍尔式接近开关
当磁铁旳有效磁 极接近、并到达动作 距离时,霍尔式接近 开关动作。霍尔接近 开关一般还配一块钕 铁硼磁铁。
SL3501T
N
mA
DC
DC
VCC 12V
10mA
1
3
V
2
+
_
·
2024/9/29
17
8.2.2 线性集成霍尔传感器
2.线性集成霍尔传感器旳主要技术特征
输出电压UOUT(V)
2.5
2.0
R=0
1.5
R=15Ω
1.0
R=100Ω
0.5
0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 磁感应强度B(T)
14
8.2.1 开关型集成霍尔传感器
3. 开关型集成霍尔传感器旳工作特征
传感器与检测技术完整ppt课件
xmin 100% YFS
.
6.稳定性。稳定性有短期稳定性和长期稳定性之分。对于传感器常用长期 稳定性描述其稳定性。所谓传感器的稳定性是指在室温条件下,经过相当长 的时间间隔,传感器的输出与起始标定时的输出之间的差异。因此,通常又 用其不稳定度来表征传感器输出的稳定程度。
7.漂移。传感器的漂移是指在输入量不变的情况下,传感器输出量随着时 间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结 构参数;二是周围环境(如温度、湿度等)。
.
1.3.1测量误差及其分类
误差的定义
测量误差(error of measurement)是指测得值与被
测量真值之差,可用下式表示: 测量误差=测得值-真值
若定义中的测得值是用测量方式获得的被测量的测
量结果,则得到测量误差的定义为:测量误差=测量结果-真
值
若定义中的测得值是指计量仪器的示值,则得到计
1.1.3传感器的分类 1.按输入量(被测量)分类 2.按工作原理(机理)分类 3、按能量的关系分类 4.按输出信号的形式分类
.
1.2 传感器的特性
静态特性和动态特性
输入量X和输输出Y的关系通常可用多项式表示
静态特性可以用一组性能指标来描述,如线性度、灵敏度、精确度(精 度)、重复性、迟滞、漂移、阈值和分辨率、稳定性、量程等。
2替代法其实质是在测量装置上测量被测量后不改变测量条件立即用相应标准量代替被测量放到测量装置上再次进行测量从而得到此标准量测量结果与已知标准量的差值即系统误差取其负值即可作为被测量测量结果的修正先将被测量x放于天平一侧标准砝码p放于另一侧调至天平平衡则有xpl此时移去被测量x用标准砝码q代替使天平重新平衡则有qpl2l1所以有xq
.
6.稳定性。稳定性有短期稳定性和长期稳定性之分。对于传感器常用长期 稳定性描述其稳定性。所谓传感器的稳定性是指在室温条件下,经过相当长 的时间间隔,传感器的输出与起始标定时的输出之间的差异。因此,通常又 用其不稳定度来表征传感器输出的稳定程度。
7.漂移。传感器的漂移是指在输入量不变的情况下,传感器输出量随着时 间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结 构参数;二是周围环境(如温度、湿度等)。
.
1.3.1测量误差及其分类
误差的定义
测量误差(error of measurement)是指测得值与被
测量真值之差,可用下式表示: 测量误差=测得值-真值
若定义中的测得值是用测量方式获得的被测量的测
量结果,则得到测量误差的定义为:测量误差=测量结果-真
值
若定义中的测得值是指计量仪器的示值,则得到计
1.1.3传感器的分类 1.按输入量(被测量)分类 2.按工作原理(机理)分类 3、按能量的关系分类 4.按输出信号的形式分类
.
1.2 传感器的特性
静态特性和动态特性
输入量X和输输出Y的关系通常可用多项式表示
静态特性可以用一组性能指标来描述,如线性度、灵敏度、精确度(精 度)、重复性、迟滞、漂移、阈值和分辨率、稳定性、量程等。
2替代法其实质是在测量装置上测量被测量后不改变测量条件立即用相应标准量代替被测量放到测量装置上再次进行测量从而得到此标准量测量结果与已知标准量的差值即系统误差取其负值即可作为被测量测量结果的修正先将被测量x放于天平一侧标准砝码p放于另一侧调至天平平衡则有xpl此时移去被测量x用标准砝码q代替使天平重新平衡则有qpl2l1所以有xq
传感器与检测技术ppt课件
控制系统的自动化水平高低。
传感器的选用主要取决于建模参数和被测 量、测量精度和灵敏度要求以及测量系统的 成本等因素。
(4) 传感器的品质参数 灵敏度 分辨率 准确度 精密度
重复性
线性度
灵敏度
灵敏度反映传感器对被测量变化的 响应能力。
O S I
输出变化量
输入变化量
分辨率
如果已知总体精度上限,要计算各部件的 误差,则假定各部件误差对总精度的影响 是均等的。
f N xi xi n
N xi f n xi
[实例]已知角速度与作用力的关系式 试求转速的不确定性。 [解]
F 5 0 0 3 1 6 . 2 3 m r 0 . 20 . 0 2 5
霍尔传感器的应用—— 测量焊接电流
在标准的园环铁芯开一 小缺口,将霍尔元件放在 缺口处,被测电流的导线 穿过铁心时就产生磁场B, 则霍尔传感器有输出。当 测出的小于 规定的焊接电流时,可 控硅的导通角增大,焊接 电流变大,测出的电压大 于规定的焊接电流时,可 控硅的导通角减,焊接电 流变小,控制焊接回路的 电流。
性;
没有机械电位器特有的滑片,彻底解决了滑 片接触不良的问题;体积小,节省空间,易于装 配;寿命长,可靠性高。
数字电位器与机械式电位器的区别
类 特 型 性 机 无 械 源 式 数 有 字 源 式 电阻变 调节 位置 自动 化规律 方法 记忆 复位 连续 变化 阶梯 变化 手动 有 没有 使用 体 寿命 积 短 大
为减小零点残余电压的影响,一般要用电路进行补偿, 电路补偿的方法较多,可采用以下方法。
• 串联电阻:消除两次级绕组基波分量幅值上的差异;
• 并联电阻电容:消除基波分量相差,减小谐波分量;
传感器与检测技术PPT
作 用:现代工程装备中, 检测环节的成本约占 50~70%
12
一、检测技术的作用和地位
检测技术在汽车中的应用日新月异
汽车传感器:汽车电子控制系统的信息源,关键部件,核心技术内容 普通轿车:约安装几十到近百只传感器, 豪华轿车:传感器数量可多达二百余只。
发动机:向发动机的电子控制单元(ECU)提供发动机的工作状况信息, 对发动机工作状况进行精确控制 温度、压力、位置、转速、流量、气体浓度和爆震传感器等
1、直接测量与间接测量 (3)研制海洋探测用传感器
五、现代检测技术发展趋势
通常把这个误差称为单次测量的极限误差δlimx,即
• 直接测量:直接将被测量与标准量进行比较 5—油杯 6—被标传感器
从加热炉出来的钢坯最后到卷取机之前的整个轧制线上,如加热炉出口、粗轧机的入口和出口、精轧机的入口和出口以及在卷取机之
8
一、检测的地位和作用
工业生产倍增器
检测技术是带动国民经济增长的一个 关键领域 在美国:检测技术占4%,拉动经济增长66%
9
一、检测的地位和作用
检测技术在工业生产领域的应用
在线检测:零件尺寸、产品缺陷、装配定位….
10
11
一、检测技术的作用和地位
检测技术在工业生产领域的应用
离线检测:零件参数、 尺寸与形位公差、 品质参数
神州飞船:
185台(套)仪器装置 检测参数---加速度、温度、压力、 振动、流量、应变、 声学、
21
一、检测技术的作用和地位
直接测量 (绝对测量、相对测量)
利用测量仪表的指针相对于刻度的偏差位移直接表示测量的数值
“物化法官” 制成力敏、热敏、光敏、磁敏气敏等敏感元件。
标定仪器设备精度等级的确定
12
一、检测技术的作用和地位
检测技术在汽车中的应用日新月异
汽车传感器:汽车电子控制系统的信息源,关键部件,核心技术内容 普通轿车:约安装几十到近百只传感器, 豪华轿车:传感器数量可多达二百余只。
发动机:向发动机的电子控制单元(ECU)提供发动机的工作状况信息, 对发动机工作状况进行精确控制 温度、压力、位置、转速、流量、气体浓度和爆震传感器等
1、直接测量与间接测量 (3)研制海洋探测用传感器
五、现代检测技术发展趋势
通常把这个误差称为单次测量的极限误差δlimx,即
• 直接测量:直接将被测量与标准量进行比较 5—油杯 6—被标传感器
从加热炉出来的钢坯最后到卷取机之前的整个轧制线上,如加热炉出口、粗轧机的入口和出口、精轧机的入口和出口以及在卷取机之
8
一、检测的地位和作用
工业生产倍增器
检测技术是带动国民经济增长的一个 关键领域 在美国:检测技术占4%,拉动经济增长66%
9
一、检测的地位和作用
检测技术在工业生产领域的应用
在线检测:零件尺寸、产品缺陷、装配定位….
10
11
一、检测技术的作用和地位
检测技术在工业生产领域的应用
离线检测:零件参数、 尺寸与形位公差、 品质参数
神州飞船:
185台(套)仪器装置 检测参数---加速度、温度、压力、 振动、流量、应变、 声学、
21
一、检测技术的作用和地位
直接测量 (绝对测量、相对测量)
利用测量仪表的指针相对于刻度的偏差位移直接表示测量的数值
“物化法官” 制成力敏、热敏、光敏、磁敏气敏等敏感元件。
标定仪器设备精度等级的确定
《检测与传感技术》课件
域。
压阻式传感技术
总结词
利用压力作用来检测和感知物质的技术。
详细描述
压阻式传感技术通过测量压力作用下材料的 电阻变化,来检测和感知物质的存在、性质 和浓度。该技术具有高灵敏度、高精度和高 可靠性等优点,广泛应用于压力、重量、位 移等物理量的测量。
磁电阻式传感技术
总结词
利用磁场作用来检测和感知物质的技术。
催化性能等,使其在检测与传感领域具有广泛的应用前景。
02 03
纳米材料在检测方面的应用
利用纳米材料的特性,可以实现对气体、液体和生物分子等物质的快速 、灵敏和准确地检测。例如,纳米孔传感器可以用于DNA测序和蛋白 质检测。
纳米材料在传感方面的应用
纳米材料可以用于制造高灵敏度的传感器,用于监测各种物理、化学和 生物量。例如,纳米压阻传感器可以用于监测压力、应变和温度等参数 的变化。
应用领域与发展趋势
应用领域
检测与传感技术在工业自动化、环境监测、医疗诊断、安全防范等领域有着广泛的应用。
发展趋势
随着科技的不断发展,检测与传感技术正朝着智能化、微型化、集成化、网络化的方向发展。同时, 随着新材料的不断涌现,新型的检测与传感技术也不断涌现,为未来的科技发展提供了更多的可能性 。
02
生物技术在检测与传感中的应用
生物技术的特点
生物技术利用生物分子的特性和反应,可以实现高度特异 性和灵敏的检测与传感。
生物技术在检测方面的应用
利用生物技术的特性,可以实现对生物分子、细胞和组织的快速 、准确地检测。例如,生物芯片和生物传感器可以用于检测基因
、蛋白质和细胞等物质。
生物技术在传感方面的应用
微纳加工技术在传感方面的应用
微纳加工技术还可以用于制造各种类型的传感器,如压力传感器、温度传感器和加速度传 感器等。这些传感器具有高灵敏度、快速响应和低成本等特点,广泛应用于汽车、医疗和 航空等领域。
压阻式传感技术
总结词
利用压力作用来检测和感知物质的技术。
详细描述
压阻式传感技术通过测量压力作用下材料的 电阻变化,来检测和感知物质的存在、性质 和浓度。该技术具有高灵敏度、高精度和高 可靠性等优点,广泛应用于压力、重量、位 移等物理量的测量。
磁电阻式传感技术
总结词
利用磁场作用来检测和感知物质的技术。
催化性能等,使其在检测与传感领域具有广泛的应用前景。
02 03
纳米材料在检测方面的应用
利用纳米材料的特性,可以实现对气体、液体和生物分子等物质的快速 、灵敏和准确地检测。例如,纳米孔传感器可以用于DNA测序和蛋白 质检测。
纳米材料在传感方面的应用
纳米材料可以用于制造高灵敏度的传感器,用于监测各种物理、化学和 生物量。例如,纳米压阻传感器可以用于监测压力、应变和温度等参数 的变化。
应用领域与发展趋势
应用领域
检测与传感技术在工业自动化、环境监测、医疗诊断、安全防范等领域有着广泛的应用。
发展趋势
随着科技的不断发展,检测与传感技术正朝着智能化、微型化、集成化、网络化的方向发展。同时, 随着新材料的不断涌现,新型的检测与传感技术也不断涌现,为未来的科技发展提供了更多的可能性 。
02
生物技术在检测与传感中的应用
生物技术的特点
生物技术利用生物分子的特性和反应,可以实现高度特异 性和灵敏的检测与传感。
生物技术在检测方面的应用
利用生物技术的特性,可以实现对生物分子、细胞和组织的快速 、准确地检测。例如,生物芯片和生物传感器可以用于检测基因
、蛋白质和细胞等物质。
生物技术在传感方面的应用
微纳加工技术在传感方面的应用
微纳加工技术还可以用于制造各种类型的传感器,如压力传感器、温度传感器和加速度传 感器等。这些传感器具有高灵敏度、快速响应和低成本等特点,广泛应用于汽车、医疗和 航空等领域。
传感器与检测技术幻灯片PPT
〔3〕集成化
〔4〕采用“驱动电缆〞(双层屏蔽等位传输)技 术
〔5〕采用运算放大器法;
S&M Ch4
4.4 电容传感器的设计要点
4.防止和减小外界干扰
屏蔽和接地。
增加原始电容值以降低容抗。
导线和导线要离得远,以减小导线间分布电 容的静电感应。导线要尽可能短,最好成 直角排列,必须平行排列时可采用同轴屏 蔽线。
C 2 l
ln(r2 / r1)
l—外圆筒与内圆柱覆盖部分的长度; r2、r1 —圆筒内半径和内圆柱外半径。
当两圆筒相对移动Δl时,电容变化量ΔC为
2 l2 (l l) 2 l l
C ln r 2/r 1 ()ln r 2/r 1 () ln r 2/r 1 () C 0l
S&M Ch4
尽可能一点接地,防止多点按地。地线要用 粗的良导体或宽印刷线。
尽量采用差动式电容传感电路,可减小非线
性误差,提高传感器灵敏度,减小寄生电
容的影响和干扰。
S&M Ch4
4.5 电容式传感器的转换电路
1. 电桥电路
图4-13 电容式传感器构成交流电桥的一些形式
S&M Ch4
4.5 电容式传感器的转换电路
u0 11(jjC Cx)uC Cx u
C
Cx
∑ -A
~u
uo
代入 Cx (S)/
u0
uC S
运算放大器式 电路原理图
S&M Ch4
4.6 电容式传感器的应用举例
❖压力测量:差压传感器、变面积传感器、 荷重传感器
❖水分检测:粮食、油 ❖液位测量 ❖加速度测量
S&M Ch4
4.6 电容式传感器的应用举例
传感器与检测技术 ppt课件第一章
1.传感器的组成 . 传感器是由敏感元件, 传感器是由敏感元件,转换元件和测量 电路组成,如图1-1所示. 所示. 电路组成,如图 所示
2010-7-18
2
1.1.2 传感器的组成与分类
敏感元件(sensing element): 直接感受 敏感元件 :
被测量的变化, 被测量的变化,并输出与被测量成确定关系的某一物 理量的元件,它是传感器的核心. 理量的元件,它是传感器的核心.
2010-7-18
5
1.1.3 传感器基本特性
传感器的静态特性: 传感器的静态特性: 1. 测量范围:传感器所能测量到的最小输入量 与最大输入量 之间 测量范围:
的范围称为传感器的测量范围. 的范围称为传感器的测量范围.
2. 量程:传感器测量范围的上限值 与下限值 的代数差 - 称为量程. 量程: 称为量程. 3. 精度:传感器的精度是指测量结果的可靠程度,是测量中各类误差 精度:传感器的精度是指测量结果的可靠程度,
1.1.4 传感器的命名,代号和图形符号 传感器的命名,
1.传感器的命名 传感器的命名
传感器的全称应由"主题词+四级修饰语"组成,即 主题词 —— 传感器 一级修饰语 —— 被测量,包括修饰被测量的定语. 二级修饰语 —— 转换原理,一般可后缀以"式"字 . 三级修饰语 —— 特征描述,指必须强调的传感器结构,性能,材
2010-7-18 4
1.1.3 传感器基本特性
当传感器的输入信号是常量,不随时间变化时, 当传感器的输入信号是常量,不随时间变化时,其 输入输出关系特性称为静态特性. 输入输出关系特性称为静态特性. 传感器的基本特性是指系统的输入与输出关系特性 即传感器系统的输出信号y(t)和输入信号 和输入信号( ,即传感器系统的输出信号y(t)和输入信号(被测 之间的关系, 量)x(t)之间的关系,传感器系统示意图如下图所 之间的关系 示.
2010-7-18
2
1.1.2 传感器的组成与分类
敏感元件(sensing element): 直接感受 敏感元件 :
被测量的变化, 被测量的变化,并输出与被测量成确定关系的某一物 理量的元件,它是传感器的核心. 理量的元件,它是传感器的核心.
2010-7-18
5
1.1.3 传感器基本特性
传感器的静态特性: 传感器的静态特性: 1. 测量范围:传感器所能测量到的最小输入量 与最大输入量 之间 测量范围:
的范围称为传感器的测量范围. 的范围称为传感器的测量范围.
2. 量程:传感器测量范围的上限值 与下限值 的代数差 - 称为量程. 量程: 称为量程. 3. 精度:传感器的精度是指测量结果的可靠程度,是测量中各类误差 精度:传感器的精度是指测量结果的可靠程度,
1.1.4 传感器的命名,代号和图形符号 传感器的命名,
1.传感器的命名 传感器的命名
传感器的全称应由"主题词+四级修饰语"组成,即 主题词 —— 传感器 一级修饰语 —— 被测量,包括修饰被测量的定语. 二级修饰语 —— 转换原理,一般可后缀以"式"字 . 三级修饰语 —— 特征描述,指必须强调的传感器结构,性能,材
2010-7-18 4
1.1.3 传感器基本特性
当传感器的输入信号是常量,不随时间变化时, 当传感器的输入信号是常量,不随时间变化时,其 输入输出关系特性称为静态特性. 输入输出关系特性称为静态特性. 传感器的基本特性是指系统的输入与输出关系特性 即传感器系统的输出信号y(t)和输入信号 和输入信号( ,即传感器系统的输出信号y(t)和输入信号(被测 之间的关系, 量)x(t)之间的关系,传感器系统示意图如下图所 之间的关系 示.
传感与检测技术ppt课件
(2)数据融合的空间性
数据融合的空间性表示对同一时刻不同空间位置的多传感器观测值进行数据融合。
利用多传感器在同一时刻的观测结果进行数据融合时,要考虑数据融合的空间性。
15
实际应用中,为获得观测目标的准确状态,往往需要同时考虑 数据融合的时间性与空间性。具体情况有: 1)先对每个传感器在不同时间的观测值进行融合,得出每个传感器 对目标状态的估计,然后将各个传感器的估计进行空间融合,从而 得到目标状态的最终估计。 2)先对同一时间不同空间位置的各传感器的观测值进行融合,得出 各个不同时间的观测目标估计,然后对不同时间的观测目标估计按 时间顺序进行融合,得出最终状态。 3)同时考虑数据融合的时间性与空间性,即上述(a)、(b)同时进行, 这样可以减少信息损失,提高数据融合系统的实时性。但同时进行 的难度大,只适合于大型多计算机的数据融合系统。
数据融合可分为三个层次:像素级融合17、特征级融合和决策级融合: (1)像素级融合
直接在采集到的原始数据层上进行的融合为像素级融合。这种融合在各种传感 器的原始观测信息未经预处理之前就进行数据综合分析,是最低层次的融合。 (2)特征级融合
6
看门狗电路 (NE555)
+5V稳压电源 (7805)
电磁干扰 滤波器
图11.2 由智能温度传感器构成温度测控系 统的电路框图
220V 50Hz电源
2. 分布式光纤温度传感器系统9
分布式光纤温度传感器系统是一种能实时测量空间温度场的高新 科技产品。它能连续测量光纤沿线所在处的温度,信号传输距离 可达几千米,空间定位精度为1m。它具有精度高、数据传输速度 快、自适应能力强等优点,可取代传统的电缆式温感火灾探测系 统。最近,我国自行开发的分布式光纤温度传感器系统采用先进 的半导体激光技术、光纤光学滤波技术、高速光电转换和信号采 集技术。其测量原理是在给光纤注入一定能量和宽度的激光脉冲 时,它就在传输的同时不断产生后向散射光波。这些后向散射光 波的状态与所在光纤散射点的温度有关,将散射回来的光波经过 波分复用、检测、解调后,再进行信号处理便可获得温度信号, 最终显示出实时温度值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上节回顾:
1.检测技术的基本概念及方法 2.传感器的发展 3.传感器的分类和基本特性
10.08.2020
1
1.4.2 误差的表示方法
(1)绝对误差
Δ=Ax-A0 当Ax>A0时,为正误差;反之为负误差。
修正值C C=-Δ
A0 =Ax+C
绝对误差和修正值的量纲必须与示值量纲相同。 绝对误差可表示测量值偏离实际值的程度,但不 能表示测量的准确程度。
,导致R变大。
实验证Hale Waihona Puke ,电阻丝及应变片的电阻相对变化量R
KR线—与性电材的阻料,应力即变学片中的的灵轴敏向度应变x的RR关系K在很x 大范围2-内1是
10.08.2020
8
二、应变片的种类与结构
应变片可分为金属应变片及半导体应变片两大类。前者 可分成金属丝式、箔式、薄膜式三种。目前箔式应变片应用 较多。金属丝式应变片使用最早,有纸基、胶基之分。由于 金属丝式应变片蠕变较大,金属丝易脱胶,有逐渐被箔式所 取代的趋势。但其价格便宜,多用于应变、应力的大批量、 一次性试验。
箔式应变片中的箔栅是金属箔通过光刻、腐蚀等工艺制 成的。箔的材料多为电阻率高、热稳定性好的铜镍合金。箔 式应变片与片基的接触面积大得多,散热条件较好,在长时 间测量时的蠕变较小,一致性较好,适合于大批量生产。还 可以对金属箔式应变片进行适当的热处理,使其线胀系数、 电阻温度系数以及被粘贴的试件的线胀系数三者相互抵消, 从而将温度影响减小到最小的程度,目前广泛用于各种应变 式传感器中。
10.08.2020
18
三、测量转换电路——不平衡电桥
U oU 4 i( R R 1 1 R R 2 2 R R 3 3 R R 4 4) 2 -3
10.08.2020
19
电桥平衡的条件 :R1/R2=R4/R3
调节RP,最终可以
使R1/R2=R4/R3( R1、 R2是R1、R2并联RP后的
10.08.2020
7
二、应变片的工作原理
设有一长度为l 、截面积为A、半径为r、电阻率
为的金属单丝,它的电阻值R可表示为
R l l A r2
当沿金属丝的长度方向作用均匀拉力(或压力)
时,上式中、r、l都将发生变化,从而导致电阻值
R发生变化。例如金属丝受拉时,l将变长、r变小,
均导致R变大;又如,某些半导体受拉时,将变大
某0.1级压力传感器的量程为100MPa,测量50MPa压力时,
传感器引起的最大相对误差为
10.08.2020
±0.2%。
4
本节主要内容:
10.08.2020
5
第一节 电阻应变式传感器
10.08.2020
6
一、工作原理应变片的工作原理
金属丝受拉时,l变长、r变小,导致R变大 。
R l l A r2
10.08.2020
9
箔式应变片的外形
10.08.2020
10
半导体应变片及金属 丝式应变片的结构
金属丝式应变片的 内部结构
半导体应变片 外形
10.08.2020
11
应变片主要性能指标举例
上表中,哪几个型号是半导体应变片? 依据是什么?
10.08.2020
12
应变片的粘贴:
1. 去污:采用 手持砂轮工具除去 构件表面的油污、 漆、锈斑等,并用 细纱布交叉打磨出 细纹以增加粘贴 力 ,用浸有酒精 或丙酮的纱布片或 脱脂棉球擦洗。
1~2以及产生的电
阻增量正负号相间,
可以使输出电压Uo 成倍地增大。
10.08.2020
22
四臂全桥
全桥的四个桥臂都为应变片, 如果设法使试件受力后,应变 片R1 ~ R4产生的电阻增量(或
感受到的应变1~4)正负号相
间,就可以使输出电压Uo成倍 地增大。上述三种工作方式中, 全桥四臂工作方式的灵敏度最 高,双臂半桥次之,单臂半桥 灵敏度最低。采用全桥(或双 臂半桥)还能实现温度自补偿。
10.08.2020
23
全桥的温度补偿原理
当环境温度升高 时,桥臂上的应变片 温度同时升高,温度 引起的电阻值漂移数 值一致,可以相互抵 消,所以全桥的温漂 较小;半桥也同样能 克服温漂。
10.08.2020
24
10.08.2020
25
四、应变效应的应用
10.08.2020
2
(2)相对误差 ①实际相对误差
②示值(标称)相对误差
③满度(引用)相对误差
10.08.2020
3
1.4.3 准确度
传感器和测量仪表的误差是以准确度表示的。准确 度常用最大引用误差来定义
它表示传感器的最大相对误差为±S%。
仪表引起的最大测量相对误差为
如压力传感器的准确度等级分别为0.05、0.1、0.2、0.3、 0.5、1.0、1.5、2.0等;我国电工仪表的准确度等级分 别为0.1、0.2、0.5、1.0、1.5、2.5、5.0。
等效电阻),电桥趋于
平衡,Uo被预调到零位,
这一过程称为调零。图
中的R5是用于减小调节
范围的限流电阻。
10.08.2020
20
单臂电桥
全桥四臂工 作方式的灵敏 度最高,双臂 半桥次之,单 臂半桥灵敏度 最低。
10.08.2020
21
双臂电桥
R1、 R2为应变 片, R3、R4为固定 电阻 。应变片R1 、 R2 感受到的应变
10.08.2020
13
2.贴片:在应变 片的表面和处理过的 粘贴表面上,各涂一 层均匀的粘贴胶 , 用镊子将应变片放上 去,并调好位置,然 后盖上塑料薄膜,用 手指揉和滚压,排出 下面的气泡 。
10.08.2020
14
3.测量 :从 分开的端子处, 预先用万用表测 量应变片的电阻, 发现端子折断和 坏的应变片。
10.08.2020
15
4.焊接: 将引线和端子用 烙铁焊接起来, 注意不要把端子 扯断。
10.08.2020
16
5.固定: 焊接后用胶 布将引线和 被测对象固 定在一起, 防止损坏引 线和应变片。
10.08.2020
17
三、测量转换电路——不平衡电桥
金属应变片的电阻变化范围很小,如果直 接用欧姆表测量其电阻值的变化将十分困难, 且误差很大。
例如,有一金属箔式应变片,标称阻值R0为 100,灵敏度K=2,粘贴在横截面积为9.8mm2 的钢质圆柱体上,钢的弹性模量E=21011N/m2, 所受拉力F=0.2t,受拉后应变片的阻值R 的变
化量仅为0.2,所以必须使用不平衡电桥来测 量这一微小的变化量。下面分析该桥式测量转 换电路是如何将R /R转换为输出电压Uo的。
1.检测技术的基本概念及方法 2.传感器的发展 3.传感器的分类和基本特性
10.08.2020
1
1.4.2 误差的表示方法
(1)绝对误差
Δ=Ax-A0 当Ax>A0时,为正误差;反之为负误差。
修正值C C=-Δ
A0 =Ax+C
绝对误差和修正值的量纲必须与示值量纲相同。 绝对误差可表示测量值偏离实际值的程度,但不 能表示测量的准确程度。
,导致R变大。
实验证Hale Waihona Puke ,电阻丝及应变片的电阻相对变化量R
KR线—与性电材的阻料,应力即变学片中的的灵轴敏向度应变x的RR关系K在很x 大范围2-内1是
10.08.2020
8
二、应变片的种类与结构
应变片可分为金属应变片及半导体应变片两大类。前者 可分成金属丝式、箔式、薄膜式三种。目前箔式应变片应用 较多。金属丝式应变片使用最早,有纸基、胶基之分。由于 金属丝式应变片蠕变较大,金属丝易脱胶,有逐渐被箔式所 取代的趋势。但其价格便宜,多用于应变、应力的大批量、 一次性试验。
箔式应变片中的箔栅是金属箔通过光刻、腐蚀等工艺制 成的。箔的材料多为电阻率高、热稳定性好的铜镍合金。箔 式应变片与片基的接触面积大得多,散热条件较好,在长时 间测量时的蠕变较小,一致性较好,适合于大批量生产。还 可以对金属箔式应变片进行适当的热处理,使其线胀系数、 电阻温度系数以及被粘贴的试件的线胀系数三者相互抵消, 从而将温度影响减小到最小的程度,目前广泛用于各种应变 式传感器中。
10.08.2020
18
三、测量转换电路——不平衡电桥
U oU 4 i( R R 1 1 R R 2 2 R R 3 3 R R 4 4) 2 -3
10.08.2020
19
电桥平衡的条件 :R1/R2=R4/R3
调节RP,最终可以
使R1/R2=R4/R3( R1、 R2是R1、R2并联RP后的
10.08.2020
7
二、应变片的工作原理
设有一长度为l 、截面积为A、半径为r、电阻率
为的金属单丝,它的电阻值R可表示为
R l l A r2
当沿金属丝的长度方向作用均匀拉力(或压力)
时,上式中、r、l都将发生变化,从而导致电阻值
R发生变化。例如金属丝受拉时,l将变长、r变小,
均导致R变大;又如,某些半导体受拉时,将变大
某0.1级压力传感器的量程为100MPa,测量50MPa压力时,
传感器引起的最大相对误差为
10.08.2020
±0.2%。
4
本节主要内容:
10.08.2020
5
第一节 电阻应变式传感器
10.08.2020
6
一、工作原理应变片的工作原理
金属丝受拉时,l变长、r变小,导致R变大 。
R l l A r2
10.08.2020
9
箔式应变片的外形
10.08.2020
10
半导体应变片及金属 丝式应变片的结构
金属丝式应变片的 内部结构
半导体应变片 外形
10.08.2020
11
应变片主要性能指标举例
上表中,哪几个型号是半导体应变片? 依据是什么?
10.08.2020
12
应变片的粘贴:
1. 去污:采用 手持砂轮工具除去 构件表面的油污、 漆、锈斑等,并用 细纱布交叉打磨出 细纹以增加粘贴 力 ,用浸有酒精 或丙酮的纱布片或 脱脂棉球擦洗。
1~2以及产生的电
阻增量正负号相间,
可以使输出电压Uo 成倍地增大。
10.08.2020
22
四臂全桥
全桥的四个桥臂都为应变片, 如果设法使试件受力后,应变 片R1 ~ R4产生的电阻增量(或
感受到的应变1~4)正负号相
间,就可以使输出电压Uo成倍 地增大。上述三种工作方式中, 全桥四臂工作方式的灵敏度最 高,双臂半桥次之,单臂半桥 灵敏度最低。采用全桥(或双 臂半桥)还能实现温度自补偿。
10.08.2020
23
全桥的温度补偿原理
当环境温度升高 时,桥臂上的应变片 温度同时升高,温度 引起的电阻值漂移数 值一致,可以相互抵 消,所以全桥的温漂 较小;半桥也同样能 克服温漂。
10.08.2020
24
10.08.2020
25
四、应变效应的应用
10.08.2020
2
(2)相对误差 ①实际相对误差
②示值(标称)相对误差
③满度(引用)相对误差
10.08.2020
3
1.4.3 准确度
传感器和测量仪表的误差是以准确度表示的。准确 度常用最大引用误差来定义
它表示传感器的最大相对误差为±S%。
仪表引起的最大测量相对误差为
如压力传感器的准确度等级分别为0.05、0.1、0.2、0.3、 0.5、1.0、1.5、2.0等;我国电工仪表的准确度等级分 别为0.1、0.2、0.5、1.0、1.5、2.5、5.0。
等效电阻),电桥趋于
平衡,Uo被预调到零位,
这一过程称为调零。图
中的R5是用于减小调节
范围的限流电阻。
10.08.2020
20
单臂电桥
全桥四臂工 作方式的灵敏 度最高,双臂 半桥次之,单 臂半桥灵敏度 最低。
10.08.2020
21
双臂电桥
R1、 R2为应变 片, R3、R4为固定 电阻 。应变片R1 、 R2 感受到的应变
10.08.2020
13
2.贴片:在应变 片的表面和处理过的 粘贴表面上,各涂一 层均匀的粘贴胶 , 用镊子将应变片放上 去,并调好位置,然 后盖上塑料薄膜,用 手指揉和滚压,排出 下面的气泡 。
10.08.2020
14
3.测量 :从 分开的端子处, 预先用万用表测 量应变片的电阻, 发现端子折断和 坏的应变片。
10.08.2020
15
4.焊接: 将引线和端子用 烙铁焊接起来, 注意不要把端子 扯断。
10.08.2020
16
5.固定: 焊接后用胶 布将引线和 被测对象固 定在一起, 防止损坏引 线和应变片。
10.08.2020
17
三、测量转换电路——不平衡电桥
金属应变片的电阻变化范围很小,如果直 接用欧姆表测量其电阻值的变化将十分困难, 且误差很大。
例如,有一金属箔式应变片,标称阻值R0为 100,灵敏度K=2,粘贴在横截面积为9.8mm2 的钢质圆柱体上,钢的弹性模量E=21011N/m2, 所受拉力F=0.2t,受拉后应变片的阻值R 的变
化量仅为0.2,所以必须使用不平衡电桥来测 量这一微小的变化量。下面分析该桥式测量转 换电路是如何将R /R转换为输出电压Uo的。