图形的变换平移旋转翻折含复习资料

合集下载

中考数学《图形的变换》复习资料总结

中考数学《图形的变换》复习资料总结

中考数学《图形的变换》复习资料总结
中考数学《图形的变换》复习资料总结
考点一、平移 (3~5分)
1、定义
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的.形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

2、性质
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动
(2)连接各组对应点的线段平行(或在同一直线上)且相等。

考点二、轴对称 (3~5分)
1、定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2、性质
(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3、判定
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、轴对称图形
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

考点三、旋转 (3~8分)
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质
(1)对应点到旋转中心的距离相等。

部编版五年级下册《图形的变换》整理与复习学生资料

部编版五年级下册《图形的变换》整理与复习学生资料

《图形的变换》整理与复习
一、轴对称图形的画法。

如果要画出下面图形的轴对称图形,怎样画,才画得又快又好?
二、画出并写出下列图形的对称轴及数量。

长方形正方形平行四边形等腰三角形等边三角形
( ) ( ) ( ) ( ) ( )
等腰梯形正六边形五角星正五边形圆形
()()()()()三、时钟的旋转。

指针从“12”绕点O顺时针旋转30°到“ ”
指针从“1”绕点O顺时针旋转60°到“ ”
指针从“3”绕点O顺时针旋转°到“6”
指针从“6”绕点O顺时针旋转°到“ 12”
四、图形旋转90
将三角形AOB 绕O 点 按顺时针方向旋转90
五、将下面的图形向右平移5格。

六、作业
要求:利用我们学过的轴对称、旋转或者平移在方格纸上设计一个你喜欢的图形。

中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案

中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案

中考复习专题:图形变换(精选17题)(平移、轴对称、旋转)练习及答案一、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化.翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴.解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素.翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意.1.(2012•丽水)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥2.(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米3.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.B.(C.(2012泰安)D.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A 与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯6.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是( )A.+1B.+1 C.2.5 D.7、(2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.8、.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交与点F、G(如图1),23AF ,求DE的长;(2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.9、.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC 于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.专题二.、旋转1. (2011四川成都,14,4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________.2.(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 33.(2012•烟台)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .4.(2012•中考)如图,Rt △ABC 的边BC 位于直线l 上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC 由现在的位置向右滑动地旋转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为(结果用含有π的式子表示)B①② ③123… l5.(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.6.(2012成都)(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=9 2 a时,P、Q两点间的距离 (用含a的代数式表示).7、(2011安徽,22,12分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图(2),连接A ′A 、B ′B ,设△ACA ′ 和△BCB ′ 的面积分别为S △ACA ′ 和S △BC B′.求证:S △ACA ′ :S △BC B′ =1:3;(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC =a ,连接EP ,当 = °时,EP 长度最大,最大值为 .Aθ A ′B ′BCA ′B ′BCAθ8、 (2011四川凉山州,21,8分)在平面直角坐标系中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴画出ABC △,并求出AC 所在直线的解析式。

图形的变换⑵平移、旋转、翻折(含答案)-推荐下载

图形的变换⑵平移、旋转、翻折(含答案)-推荐下载

A
E
B
例 3 图②
F
第 2 页(共 11 页)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

图形的平移和旋转复习

图形的平移和旋转复习

相信自己能行
图形的平移和旋转
3、小兵把如图所示的4张扑克牌面摆放在桌上,请
一位同学避开他任意将其中一张旋转倒过来,然后
小兵很快辨认出哪张牌被倒过来了,那么图中被倒
过来的扑克牌是(
)。
颠 倒 前
ABCD 颠 倒 后
图形的平移和旋转
图形的平移和旋转
5、小兵把如图所示的4张扑克牌面摆放在桌上,请 一位同学避开他任意将其中一张旋转倒过来,然后 小兵很快辨认出哪张牌被倒过来了,那么图中被倒 过来的扑克牌是( A )。
间 的 三
平移 对应角___相__等_____. 主要是由_平__移__方__向___和__平__移__距__离___决定的.



Hale Waihona Puke 旋转对应点到旋转中心的距离_相__等___;对应点与旋转中心 所连线段的夹角_相__等_____;对应线段___相__等______; 对应角__相__等___.
主要是由__旋__转__中__心_ 和___旋__转__角___决定的,还与 __旋__转__方__向___有关.
变换方向
直线 顺时针或逆时针
变换方式
移动一定的距离 转动一定的角度
知识梳理
轴对称


连结对应点的线段___平__行__(__或__在__同__一__条__直__线__上__)__且__相__等__;

对应线段_平__行__(__或__在__同__一___条__直__线__上__)__且__相__等_____;
A. 顺时针旋转225° B. 逆时针旋转45° C. 顺时针旋转315° D. 逆时针旋转90°
A
E
B
D
C

初三数学几何三大变换(旋转、平移、翻折)知识点汇总

初三数学几何三大变换(旋转、平移、翻折)知识点汇总

初三数学几何三大变换(旋转、平移、翻折)知识点汇总初三数学——几何变换平移、旋转和翻折是几何变换中的三种基本变换。

所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。

旋转一、旋转的定义二、常见的几种模型三、旋转类型题目1、正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转60°,使得AB与AC重合。

经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。

2、正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转90°,使得BA与BC重合。

经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。

3、等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转90°,使得AC与BC重合。

经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。

平移1、平移的定义把一个图形沿着一定的方向平行移动而达到另一个位置,这种图形的平行移动简称为平移。

2、平移的两个要素:(1)平移方向;(2)平移距离。

3、对应点、对应线段、对应角一个图形经过平移后得到一个新的图形,这个新图形与原图形是能够互相重合的全等形,我们把互相重合的点称为对应点,互相重合的线段称为对应线段,互相重合的角称为对应角。

4、平移方向和距离的确定(1)要对一个图形进行平移,在平移前必须弄清它的平移方向和平移距离,否则将无法实现平移,那么怎样确定这两点呢?A. 若给出带箭头的线段:从箭尾到箭头的方向表示平移方向,而带箭头的线段的长度,表示平移距离,也有时另给平移距离的长度。

小学数学知识归纳认识平移旋转和翻折的变换

小学数学知识归纳认识平移旋转和翻折的变换

小学数学知识归纳认识平移旋转和翻折的变换一、平移变换平移是指将一个图形在平面上沿着某个方向进行移动,新的图形与原来的图形相等,只是位置改变了。

平移变换可用向量来表示。

例如,我们有一个三角形ABC,要将它向右平移3个单位长度,我们可以使用向量加法的方式来进行表示。

假设向右为正方向,则平移向量为3i(i表示单位向量,指向x轴正方向),则新的三角形A'B'C'可表示为A'B'C'=ABC+3i。

平移变换有以下几个特点:1. 平移后的图形与原图形形状相同。

2. 平移后图形的顶点与原图形的对应顶点连线平行且长度相等。

3. 平移后的图形与原图形之间的距离保持不变。

4. 平移变换是可逆的,即可以通过相反方向移动同样的距离回到原来的位置。

二、旋转变换旋转是指将一个图形绕某一点进行旋转,旋转变换也是以向量为基础的。

例如,我们有一个矩形ABCD,要将它绕点O逆时针旋转90°,我们可以使用向量旋转公式进行计算。

设原矩形的四个顶点坐标分别为A(x1, y1), B(x2, y2), C(x3, y3), D(x4, y4),绕点O逆时针旋转90°后的新坐标分别为A'(x1', y1'), B'(x2', y2'), C'(x3', y3'), D'(x4', y4'),则有以下关系式:x1' = y1-y1' + x1y1' = x1'-x1 + y1x2' = y2-y1' + x1y2' = x2'-x1 + y1x3' = y3-y1' + x1y3' = x3'-x1 + y1x4' = y4-y1' + x1y4' = x4'-x1 + y1旋转变换有以下几个特点:1. 旋转后的图形与原图形形状相同。

最新人教版数学中考总复习考点梳理第七章图形的变换 第27讲图形的对称、平移、旋转、折叠

最新人教版数学中考总复习考点梳理第七章图形的变换 第27讲图形的对称、平移、旋转、折叠
返回目录
13.(2019·滨州)在平面直角坐标系中,将点A(1,-2)向上
平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的
坐标是( A )
A.(-1,1)
B.(3,1)
C.(4,-4)
D.(4,0)
返回目录
14.(2016·广州)如图1-27-10,在△ABC中,AB=AC,BC=12 cm ,点D在AC上,DC=4 cm.将线段DC沿着CB的方向平移7 cm得到线 段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13 ________cm.
解得x= ∴CE的长为
返回目录
谢谢
返回目录
返回目录
3. (2020·大连)如图1-27-2,在△ABC中,∠ACB=90°, ∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C 的对应点C′恰好落在边AB上,则∠CAA′的度数是( D ) A.50° B.70° C.110° D.120°
返回目录
4.(2020·淄博)如图1-27-3,将△ABC沿BC方向平移至△DEF 处.若EC=2BE=2,则CF的长为___1_____.
返回目录
10.(2019·阜新)如图1-27-8, △ABC在平面直角坐标系中,顶点的 坐标分别为A(-4,4),B(-1,1 ),C(-1,4). (1)画出与△ABC关于y轴对称的 △A1B1C1. (2)将△ABC绕点B逆时针旋转90° ,得到△A2BC2,画出△A2BC2. (3)求线段AB在旋转过程中扫过的 图形面积.(结果保留π)
返回目录Biblioteka 续表 7. 平移: (1)定义:把一个图形整体沿某一方向移动,会得到一个新的图 形,新图形与原图形的形状和大小完全相同,图形的这种移动 叫做平移变换,简称平移. (2)性质:①平移不改变图形的大小和形状,但图形上的每个点 都沿同一方向进行了移动. ②连接各组对应点的线段平行(或 在同一直线上)且相等. 8.表格作图:平移作图、旋转作图、对称作图.

(完整版)图形的平移与旋转知识点

(完整版)图形的平移与旋转知识点

第三章图形的平移与旋转复习要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移是由移动的方向和距离决定的。

2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。

(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。

(3)平移后两图形的对应点所连的线段平行且相等。

专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。

(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。

(3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。

(4)任意一对对应点与旋转中心的距离相等。

考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n边形n 个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。

初三数学总复习——图形的变换

初三数学总复习——图形的变换

第十单元《图形的变换》第一课时:《图形的平移、轴对称、旋转》一、图形的平移1、平移的要素:方向和距离;2、平移的特征:平移前后的图形全等,对应点的连线平行且相等.二、图形的旋转1、旋转指将一个图形围绕一个定点<旋转中心)转动一个角度<旋转角)的图形运动;旋转的决定因素包括旋转中心、旋转角、旋转方向;b5E2RGbCAP2、图形的旋转的基本性质:旋转前后的图形全等;对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;p1EanqFDPw3、中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.DXDiTa9E3d4、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.中心对称图形是对一个图形而言,它反映某个图形自身围绕某一点<对称中心)旋转180°后能重合的特性.RTCrpUDGiT常见的平行四边形、矩形、菱形、正多边形<边数是偶数)、圆是中心对称图形.三、图形的轴对称1、轴对称指关于某条直线<对称轴)对折后能互相重合的两个图形,它反映两个图形之间的对称关系;2、轴对称的基本性质:关于某条直线轴对称的两个图形全等;对应点所连的线段被对称轴平分.3、轴对称图形:把一个图形沿着某条直线对折,直线两边的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.轴对称图形是对一个图形而言,它反映某个图形沿某条直线<对称轴)对折后能重合的特性5PCzVD7HxA常见的等腰三角形、矩形、菱形、等腰梯形、正多边形、圆是轴对称图形.例题讲解1、下列图形中,只有两条对称轴的是( >A .正六边形B .矩形C .等腰梯形D .圆2、下列图案中既是中心对称图形,又是轴对称图形的是( >.A B C D3、如图,等腰梯形ABCD 中,AD ∥BC ,若将腰AB 沿A →D 的方向平移到DE 的位置,则图中与∠C 相等的角<不包括∠C )有< )jLBHrnAILg A .1个B .2个C .3个D .4个4、若点<2,-a )与点<b ,4)关于y 轴对称,则2a +b =5、在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于D 和点E<如图2),折痕DE 的长为xHAQX74J0X 6、数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是LDAYtRyKfE 7、如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为练习:一、填空与选择题5、下列图形中既是轴对称图形又是中心对称图形的是< )ABCD2、将一正方形纸片按图中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( >Zzz6ZB2LtkA B CD( >N 正确的平移方法是<).A 、先向下移动1格,再向左移动1格B 、先向下移动1格,再向左移动2格C 、先向下移动2格,再向左移动1格D 、先向下移动2格,再向左移动2格5、点<2、-3)关于x 轴对称的点的坐标是,关于原点对称的点的坐标是6、在平行四边形、矩形、菱形、正方形、等腰梯形中既是轴对称又是中心对称的图形是7、如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C 点与A 点重合,则折痕EF的长是8、如下所示的4组图形中,左边图形与右边图形成中心对称的有< )A .1组B .2组C .3组D .4组二、如图,菱形<图1)与菱形<图2)的形状、大小完全相同.<1)请从下列序号中选择正确选项的序号填写; ①点;②点;③点;④点 如果图1经过一次平移后得到图2,那么点对应点分别是;如果图1经过一次轴对称后得到图2,那么点对应点分别是;图1 图2 图1 B 图2 F如果图1经过一次旋转后得到图2,那么点对应点分别是;<2)①图1,图2关于点成中心对称,请画出对称中心<保留画图痕迹,不写画法);②写出两个图形成中心对称的一条性质:.<可以结合所画图形叙述)三、如图,在中,,且点的坐标为<4,2).①画出向下平移3个单位后的;②画出绕点逆时针旋转后的,并求点旋转到点所经过的路线长<结果保留).四、如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船;若该小船先从点A航行到达岸边L的点P处补给后,再航行到点B,但要求航程最短,试在图中画出点P的位置.dvzfvkwMI1第二课时:《投影与视图》一、投影及基本概念1、投影包括平行投影<由平行光线如太阳光所形成的投影)与中心投影<由点光源若探照灯所形成的投影)两种;rqyn14ZNXI2、在平行投影中,如果平行光线垂直于投影面,这样形成的投影叫正投影;3、视点、视线、盲区.二、基本几何体的三视图1、三视图包括正视图、左视图和俯视图;2、主要需掌握基本几何体<圆柱、圆锥、直棱柱、球)与三视图、展开图之间的关系.例1、<1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体后面是 ( >EmxvxOtOcoADA.O B. 6 C.快 D.乐<2)下列图形中,不能经过折叠围成正方形的是< )<A) <B))<D)<3)某同学把下图所示几何体的三种视图画出如下,在这三种是图中,其正确的是< )A、①②B、①③C、②③D、②练习:1、如图所示的正四棱锥的俯视图是( >2、图1所示的几何体的右视图是< )3、如图,一个碗摆放在桌面上,则它的俯视图是< )4、右图是由四个相同的小立方体组成的立体图形,它的左视图是< )②③5、桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如右上图所示,这个几何体最多可以由个这样的正方体组成SixE2yXPq56、如图是一辆汽车车牌在水中的倒影,则该车的牌照号码< )A.W17639 B.W17936 C.M17639 D.M179367、下列图形中,表示两棵树在同一时刻阳光下的影子的图形可能是 ( >7、下列图形中,不是正方体平面展开图的是< )8、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有桶9、某同学身高为 1.6M,一时刻他在阳光下的影长为1.2M,与他相邻的一棵树影长为3.6M,则这棵树高度为M6ewMyirQFL10、如图是某个几何体的展开图,这个几何体是.11、下面四个图形中,是三棱柱的平面展开图的是< )*12、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V>、面数(F>、棱数(E>之间存在的一个有趣的关系式,被称为欧拉公式. 请你观察下列几种简单多面体模型,解答下列问题:kavU42VRUs y6v3ALoS89(1) 根据上面多面体模型,完成表格中的空格: 你发现顶点数(V>、面数(F>、棱数(E>之间存在的关系式是; (2>一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是;(3>某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱. 设该多面体外表面三角形的个数为x 个,八边形的个数为y 个,求x+y 的值.M2ub6vSTnP 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

平移与旋转+第五章 图形的变换与作图+课件+2025年中考数学一轮总复习第五章

平移与旋转+第五章 图形的变换与作图+课件+2025年中考数学一轮总复习第五章
1
1
点在AC下方时,若B,P,M三点共
线,则BP有最大值,最大值为BM+MP=2
故答案为2
1
2+ .
2
1
2+ .
2
12.(2024·泰安)如图1,在等腰Rt△ABC中,∠ABC
=90°,AB=CB,点D,E分别在AB,CB上,DB=
EB,连接AE,CD,取AE的中点F,连接BF.
AP=BP'=2,
∴△PCP'是等边三角形,
∴PP'=1,∠CP'P=∠CPP'=60°.
∵PP'=1,P'B=2,PB= 3,
∴P'B2=PP'2+PB2,
∴∠P'PB=90°,∴∠CPB=150°.
′ 1
∵cos∠PP'B= = ,
′ 2
∴∠PP'B=60°,
∴∠CP'B=∠APC=120°,
第30课时
平移与旋转
1.(2024·巴蜀)如图,△ABC沿射线BC方向平移到
△DEF.若BC=7,CE=3,则平移的距离为( C
A.2
B.8
C.4
D.5

2.如图,在Rt△ABC中,∠ACB=90°,∠A=20°,
将△ABC绕点C逆时针旋转得到△EDC,其中点E与点A
是对应点,点D与点B是对应点.若点D恰好落在AB边
请根据数学老师的提示帮小明求出图1中线段PB
的长为 6

(2)【方法迁移】如图2,已知△ABC为正三角形,P
为△ABC内部一点.若PC=1,PA=2,PB= 3,求
∠APB的大小;
解:(2)如答案图1,将△PAC绕点C

五年级下册数学复习必备资料

五年级下册数学复习必备资料

五年级下册数学复习必备资料五年级数学下册期末复习知识点总结一、图形的变换图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

对称图形包括轴对称图形和中心对称图形。

平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。

等边三角形绕中点旋转120度与原来重合。

旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

(完整版)图形变换知识点练习题汇总

(完整版)图形变换知识点练习题汇总

图形的平移旋转与对称变换一、知识点总结(一)平移关键:平移不改变图形的形状和大小,也不会改变图形的方向.1、平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).2、简单作图平移的作图主要关注要点:1.方向 2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的.(二)、旋转1、定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.关键:旋转不改变图形的大小和形状,但改变图形的方向.2、旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.3、简单的旋转作图:旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.(三)、轴对称1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2、性质(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

(四)、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

中考总复习:图形的变换--知识讲解(基础)

中考总复习:图形的变换--知识讲解(基础)

中考总复习:图形的变换--知识讲解(基础)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.4.中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点.中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.5.中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.【要点诠释】图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.【典型例题】类型一、平移变换1.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为____________.【思路点拨】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【答案与解析】∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;【总结升华】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.举一反三:【变式】(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.【答案】解:(1)△AGB为△DEC平移后的三角形,如下图所示;(2)∵△AGB为△DEC平移后的三角形,∴BG=CE=3,BG∥CE,∵CE⊥BD,∴BG⊥BD.在Rt△BDG中,∵∠GBD=90°,BG=3,BD=6,∴DG==3,∵四边形ABCD是平行四边形,∴AD=BC=2,∴AG=DG﹣AD=3﹣2=.2.如图(1),已知ABC ∆的面积为3,且,AC AB =现将ABC ∆沿CA 方向平移CA 长度得到EFA ∆. (1)求ABC ∆所扫过的图形面积;(2)试判断,AF 与BE 的位置关系,并说明理由; (3)若,15︒=∠BEC 求AC 的长.【思路点拨】(1)根据平移的性质及平行四边形的性质可得到S △EFA =S △BAF =S △ABC ,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA 为菱形,根据菱形的对角线互相垂直平分可得到AF 与BE 的位置关系为垂直;(3)作BD ⊥AC 于D ,结合三角形的面积求解. 【答案与解析】(1)由平移的性质得AF ∥BC ,且AF=BC ,△EFA ≌△ABC ∴四边形AFBC 为平行四边形 S △EFA =S △BAF =S △ABC =3∴四边形EFBC 的面积为9;(2)BE ⊥AF证明:由(1)知四边形AFBC 为平行四边形 ∴BF ∥AC ,且BF=AC 又∵AE=CA∴BF ∥AE 且BF=AE∴四边形EFBA 为平行四边形又已知AB=AC ∴AB=AE∴平行四边形EFBA 为菱形 ∴BE ⊥AF ;(3)如上图,作BD ⊥AC 于D ∵∠BEC=15°,AE=AB ∴∠EBA=∠BEC=15° ∴∠BAC=2∠BEC=30° ∴在Rt △BAD 中,AB=2BDBCA ('C )FE设BD=x,则AC=AB=2x∵S△ABC=3,且S△ABC=12AC•BD=12•2x•x=x2∴x2=3∵x为正数∴x=3∴AC=23.【总结升华】此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.类型二、轴对称变换3.(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.【思路点拨】(1)Rt△ABC中,根据sinB═=,即可证明∠B=30°;(2)求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.(3)先判断出AD=AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.【答案与解析】(1)证明:Rt△ABC中,∠C=90°,,∵sinB==,∴∠B=30°;(2)解:∵正方形边长为2,E、F为AB、CD的中点,∴EA=FD=×边长=1,∵沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,∴A′D=AD=2,∴=,∴∠FA′D=30°,可得∠FDA′=90°﹣30°=60°,∵A沿GD折叠落在A′处,∴∠ADG=∠A′DG,AG=A′G,∴∠ADG===15°,∵A′D=2,FD=1,∴A′F==,∴EA′=EF﹣A′F=2﹣,∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,则A′G=AG=2EA′=2(2﹣);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,=tan30°,则AD=DC•tan30°=6×=2,∵∠DAF=∠FAO=∠DAO==30°,∴=tan30°=,∴DF=AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.【总结升华】本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考察的知识点较多,注意将所学知识融会贯通.举一反三:【变式】如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50°.若将其右下角向内这出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.【答案】∵∠CPR=12∠B=12×120°=60°,∠CRP=12∠D=12×50°=25°,∴∠C=180°-60°-25°=95°.4. 如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P 在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,使A落在直线PM上一点A′,且A′M所在直线与PM•所在直线重合(如图3),折痕为MN.(1)猜想两折痕PQ,MN之间的位置关系,并加以证明.(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,•MN间的距离有何变化?请说明理由.(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?(1)(2)(3)(4)【思路点拨】(1)猜想两直线平行,由矩形的对边平行,得到一组内错角相等,翻折前后对应角相等,那么可得到PQ与MN被MP所截得的内错角相等,得到平行.(2)作出两直线间的距离.∵PM长相等,∠NPM是不变的,所以利用相应的三角函数可得到两直线间的距离不变.(3)由特殊角得到所求四边形的形状,把与周长相关的边转移到同一线段求解.【答案与解析】(1)PQ∥MN.∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.∴∠AMP=∠MPC.由翻折可得:∠MPQ=∠CPQ=12∠MPC,∠NMP=∠AMN=12∠AMP,∴∠MPQ=∠NMP,故PQ∥MN.(2)两折痕PQ,MN间的距离不变.过P作PH⊥MN,则PH=PM•sin∠PMH,∵∠QPC的角度不变,∴∠C′PC的角度也不变,则所有的PM都是平行的.又∵AD∥BC,∴所有的PM都是相等的.又∵∠PMH=∠QPC,故PH的长不变.(3)当∠QPC=45°时,四边形PCQC′是正方形,四边形C′QDM是矩形.∵C′Q=CQ,C′Q+QD=a,∴矩形C′QDM的周长为2a.同理可得矩形BPA′N的周长为2a,∴两个四边形的周长都为2a,与b无关.【总结升华】翻折前后对应角相等,对应边相等,应注意使用相应的三角函数,平行线的判断,特殊四边形的判定.类型三、旋转变换5.已知O是等边三角形ABC内一点,∠AOB=110°,∠BOC=135°,试问:(1)以OA,OB,OC为边能否构成一个三角形?若能,求出该三角形各角的度数;若不能,请说明理由;(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时,以OA,OB,OC为边的三角形是一个直角三角形?【思路点拨】因为△ABC是等边三角形,所以可以运用旋转将△BCO转至△ACD.【答案与解析】(1)以OC为边作等边△OCD,连AD.∵△ABC是等边三角形∴∠BCO=∠ACD (∠BCO+∠ACO=60°,∠ACD+∠ACO=60°)∵ BC=AC,OC=CD∴△BCO≌△ACD (SAS)∴ OB=AD,∠ADC=∠BOC又∵OC=OD∴△OAD是以线段OA,OB,OC为边构成的三角形∵∠AOB=110°, ∠BOC=135°∴∠AOC=115°∴∠AOD=115°-60°=55°∵∠ADC=135°∴∠ADO=135°-60°=75°∴∠OAD=180°-55°-75°=50°∴以线段OA,OB,OC为边构成的三角形的各角是50°、55°、75°.(2)∠AOB+∠AOC+∠BOC=∠AOB+∠AOC+∠ADC=∠AOB+(∠AOD+∠DOC)+(∠ADO+∠CDO)=∠110°+(∠AOD+60°)+(∠ADO+60°) =360°∴∠AOD+∠ADO=130°∴∠OAD=50°当∠AOD是直角时,∠AOD=90°,∠AOC=90°+60°=150°,∠BOC=100°;当∠ADO是直角时,∠ADC=90°+60°=150°,∠BOC=150°.【总结升华】此题主要运用旋转的性质、等边三角形的判定、勾股定理的逆定理等知识,渗透分类讨论思想.6 . 如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.【思路点拨】(1)要证AE1=BF1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE1为直角三角形,就要考虑证∠E1AO=90°.【答案与解析】(1)AE1=BF1,证明如下:∵O为正方形ABCD的中心,∴OA=OB=OD.∴OE=OF .∵△E1OF1是△EOF绕点O逆时针旋转α角得到,∴OE1=OF1.∵ ∠AOB=∠EOF=900,∴ ∠E1OA=900-∠F1OA=∠F1OB.在△E1OA和△F1OB中,1111OE OFE OA FOBO A OB⎧⎪∠∠⎨⎪⎩===,∴△E1OA≌△F1OB(SAS).∴AE1=BF1.(2)取OE1中点G,连接AG.∵∠AOD=900,α=30°,∴ ∠E1OA=900-α=60°.∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.【答案】(1)将△ABP绕点B顺时针方向旋转90°得△CBQ.则△ABP≌△CBQ且PB⊥QB.于是PB=QB=2a,.在△PQC中,∵,.∴.∴.∵△PBQ是等腰直角三角形,∴∠BPQ=∠BQP=45°.故∠APB=∠CQB=90°+45°=135°.(2)∵∠APQ=∠APB+∠BPQ=135°+45°=180°,∴三点A、P、Q在同一直线上.在Rt△AQC中,.∴正方形ABCD的面积.中考总复习:图形的变换--巩固练习(基础)【巩固练习】一、选择题1. 以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有().A.4个 B.5个 C.6个 D.3个2.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是().A.①③ B.①② C.②③ D.②④3.在图形的平移中,下列说法中错误的是().A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等4.如图,O是正六边形ABCDEF的中心,下列图形可由△OBC平移得到的是().A.△OCDB.△OABC.△OAFD.△OEF5.如图,△ABC的面积为2,将△ABC沿AC方向平移到△D FE,且AC=CD,则四边形AEFB的面积为()A.6 B.8 C.10 D.126.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是().A.l<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19二、填空题7. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△A GE,那么△A GE与四边形AECD重叠部分的面积是.第7题第8题8.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为_______.9. 如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.第9题第10题10. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC= cm.11.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B′F 的长为 .12.如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角板使两直角边始终与AB BC ,相交,交点分别为N M ,.如果y ON x OM AD AB ====,,6,4,则y 与x 的关系式为 .三、解答题13.如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM ),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由) (2)如果AM=1,sin∠DMF=,求AB 的长.14.把两个全等的等腰直角三角板ABC 和EFG (其直角边长均为4)叠放在一起(如图①),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②). (1)在上述旋转过程中,BH 与CK 有怎样的数量关系?四边形CHGK 的面积有何变化?证明你发现的结论;(2)连接HK ,在上述旋转过程中,设BH=x ,△GKH 的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH 的面积恰好等于△ABC 面积的516?若存在,求出此时x 的值;若不存在,说明理由.15.如图,将矩形纸片ABCD 按如下顺序进行折叠: 对折、展平, 得折痕EF(如图①); 沿GC 折叠, 使点B 落在EF 上的点B ′ 处(如图②); 展平, 得折痕GC(如图③); 沿GH 折叠, 使点C 落在DH 上的点C ′ 处(如图④); 沿GC ′ 折叠(如图⑤); 展平, 得折痕GC ′、GH(如图⑥). (1)求图②中∠BCB′ 的大小;(2)图⑥中的△GCC′ 是正三角形吗?请说明理由.图⑤A BC D GH A'C'图⑥A BCD G H C'图④A BC D GH C'图③A BC DEF G 图②A BCD E F GB'ABCDEF 图①16.已知矩形纸片ABCD ,1,2==AD AB .将纸片折叠,使顶点A 与边CD 上的点E 重合. (1)如果折痕FG 分别与AD ,AB 交于点F ,G (如图(1)),,32=AF 求DE 的长. (2)如果折痕FG 分别与CD ,AB 交于点F ,G (如图(2)),AED ∆的外接圆与直线BC 相切,求折痕FG 的长.【答案与解析】一.选择题1.【答案】A.2.【答案】D.【解析】①温度计中液柱的上升或下降改变图形的大小,不属于平移;②打气筒打气时,活塞的运动属于平移;③钟摆的摆动是旋转,不属于平移;④传送带上瓶装饮料的移动符合平移的性质,属于平移.3.【答案】C.4.【答案】C.5.【答案】C.【解析】由题意可得平移的距离是2AC,AC=CD,连接FC,S△BFC=2S△ABC,S△ABC= S△FDC=S△FDE=2,∴四边形AEFB的面积为10. 6.【答案】D.【解析】∵△ADB绕点D旋转180°,得到△EDC,∴AB=EC,AD=DE,而AD=7,∴AE=14,在△ACE中,AC=5,∴AE-AC<EC<AC+AE,即14 -5<EC<14+5,∴9<AD<19.二.填空题7.【答案】22-2.【解析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,故AE=2,由折叠易得△ABG为等腰直角三角形,∴S△ABG=12BA•AG=2,S△ABE=1,∴CG=2BE-BC=22-2,∴CO=OG=2-2,∴S △COG =3-22,∴重叠部分的面积为2-1-(3-22)=22-2. 8.【答案】54π. 【解析】S 阴影=S 扇形ABB1=2505=3604AB ππ. 9.【答案】对角线平分内角的矩形是正方形.10.【答案】4cm.【解析】∵AB=2cm ,AB=AB 1∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE ,∴∠ABE=∠AB 1E=90° ∵AE=CE ,∴AB 1=B 1C ,∴AC=4cm . 11.【答案】 .【解析】根据折叠的性质可知CD=AC=3,B ′C=BC=4,∠ACE=∠DCE ,∠BCF=∠B ′CF ,CE ⊥AB , ∴B ′D=4﹣3=1,∠DCE+∠B ′CF=∠ACE+∠BCF , ∵∠ACB=90°, ∴∠ECF=45°,∴△ECF 是等腰直角三角形, ∴EF=CE ,∠EFC=45°, ∴∠BFC=∠B ′FC=135°, ∴∠B ′FD=90°,∵S △ABC =AC •BC=AB •CE , ∴AC •BC=AB •CE ,∵根据勾股定理求得AB=5, ∴CE=, ∴EF=,ED=AE=,∴DF=EF ﹣ED=, ∴B ′F=.故答案为:. 12.【答案】32y x =. 三.综合题 13.【解析】 解:(1)△AMP ∽△BPQ ∽△CQD , ∵四边形ABCD 是矩形, ∴∠A=∠B=∠C=90°,根据折叠的性质可知:∠APM=∠EPM,∠EPQ=∠BPQ,∴∠APM+∠BPQ=∠EPM+∠EPQ=90°,∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP,∴△AMP∽△BPQ,同理:△BPQ∽△CQD,根据相似的传递性,△AMP∽△CQD;(2)∵AD∥BC,∴∠DQC=∠MDQ,根据折叠的性质可知:∠DQC=∠DQM,∴∠MDQ=∠DQM,∴MD=MQ,∵AM=ME,BQ=EQ,∴BQ=MQ﹣ME=MD﹣AM,∵sin∠DMF==,∴设DF=3x,MD=5x,∴BP=PA=PE=,BQ=5x﹣1,∵△AMP∽△BPQ,∴,∴,解得:x=(舍)或x=2,∴AB=6.14.【解析】(1).在上述旋转过程中,BH=CK,四边形CHGK的面积不变.证明:连接CG,KH,∵△ABC为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,在△BGH与△CGK中,B KCG CG BGBGH CGK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGH≌△CGK(ASA),∴BH=CK,S△BGH=S△CGK.∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=12S△ABC=12×12×4×4=4,即:S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化;(2)∵AC=BC=4,BH=x,∴CH=4-x,CK=x.由S△GHK=S四边形CHGK-S△CHK,得y=4 -12x(4-x),∴y=12x2-2x+4.由0°<α<90°,得到BH最大=BC=4,∴0<x<4;(3)存在.根据题意,得12x2-2x+4=516×8,解这个方程,得x1=1,x2=3,即:当x=1或x=3时,△GHK的面积均等于△ABC的面积的5 16.15.【解析】(1)由折叠的性质知:B′C=BC,在Rt△B′FC中,∵cos∠B′CF=FCB C'=FCBC=12,∴∠B′CF=60°,即∠BCB′=60°;(2)根据题意得:GC平分∠BCC′,∴∠GCB=∠GCC′=12∠BCB′=30°,∴∠GCC ′=∠BCD-∠BCG=60°,由折叠的性质知:GH 是线段CC ′的对称轴, ∴GC ′=GC ,∴△GCC ′是正三角形.16.【解析】在矩形ABCD 中,AB=2,AD=1,,32=AF ,∠D=90°. 根据轴对称的性质,得EF=AF=23. ∴DF=AD-AF=13.在Rt △DEF 中,DE=22213-=333⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.(2)设AE 与FG 的交点为O .根据轴对称的性质,得AO=EO . 取AD 的中点M ,连接MO .则MO=12DE ,MO ∥DC . 设DE=x ,则MO=12x ,在矩形ABCD 中,∠C=∠D=90°, ∴AE 为△AED 的外接圆的直径,O 为圆心. 延长MO 交BC 于点N ,则ON ∥CD, ∴∠CNM=180°-∠C=90°,∴ON ⊥BC ,四边形MNCD 是矩形. ∴MN=CD=AB=2.∴ON=MN-MO=2-12x. ∵△AED 的外接圆与BC 相切, ∴ON 是△AED 的外接圆的半径, ∴OE=ON=2-12x ,AE=2ON=4-x . 在Rt △AED 中,AD 2+DE 2=AE 2,∴12+x 2=(4-x )2. 解这个方程,得x=158. ∴DE=158,OE=2-12x=1716. 根据轴对称的性质,得AE ⊥FG .∴∠FOE=∠D=90° 可得FO EO DA DE =,即FO=1730. 又AB ∥CD ,∴∠EFO=∠AGO ,∠FEO=∠GAO .。

【教育资料】五年级下数学知识点复习-图形的变换_人教新课标版(无答案)学习专用

【教育资料】五年级下数学知识点复习-图形的变换_人教新课标版(无答案)学习专用

第一单元 图形的变换
平移:物体或图形平移后本身的形状、大小和方向都不会改变。

轴对称: 如果一个图形沿着 对折后两部分完全 ,这样的图形叫做 , 这条直线叫做 。

旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化叫做 ,定点O 叫做 。

1、请在轴对称图形下的括号内打√,并画出对称轴。

2、画出图形的另一半,使它成为一个轴对称图形。

3、想一想,画一画。

(1)画出三角形AOB 绕点O
顺时针旋转90°后的图形。

4、看图填一填。

(1)指针从“1”绕点O 顺时针旋转30°后指向。

(2)指针从“1”绕点O 顺时针旋转 °后指向3。

(3)指针从“1”绕点O 顺时针旋转90°后指向 。

(4)指针从“1”绕点O 顺时针旋转 °后指向7。

(1)你知道方格纸上图形的位置关系吗?
(1)图形B 可以看作图形A 绕点 顺时针旋转90°得到的。

(2)图形C 可以看作图形A 绕点O 顺时针旋转 °得到的。

(3)图形B 绕点O 逆时针旋转180°到图形 所在位置。

(4)图形A 可以看作图形D 绕点O 逆时针旋转 °得到的。

(2)绕点O 逆时针旋转90°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25课时 图形的变换⑵平移、旋转、翻折【基础知识梳理】 1.平移在平面内,将一个图形沿着某个 移动一定的 ,这样的图形运动称作平移;平移不改变图形的和 . 2.平移的特征平移前后的两个图形对应点连线 且 ,对应线段 且 ,对应角 . 3.旋转在平面内,将一个图形绕一个定点沿某个方向 一定的角度,这样的图形运动称为图形的旋转.这个定点称为 ,转动的角称为 .4.旋转的基本性质⑴旋转不改变图形的 和 .⑵图形上的每一点都绕 沿 转动了相同的角度. (3)任意一对对应点与 的连线所成的角度都是旋转角. (4)对应点到旋转中心的距离 . 【基础诊断】1、如图,△DEF 经过怎样的平移得到△ABC( ) A .把△DEF 向左平移4个单位,再向下平移2个单位 B .把△DEF 向右平移4个单位,再向下平移2个单位 C .把△DEF 向右平移4个单位,再向上平移2个单位 D .把△DEF 向左平移4个单位,再向上平移2个单位2、如图,△AOB 是正三角形,OC⊥OB,OC =OB ,将△AOB 绕点O 按逆时针方向 旋转,使得OA 与OC 重合,得到△OCD,则旋转角度是( ) A .150º B.120º C.90º D.60º3、如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,则△ABD 的周长是( ) A. 22cm B.20cm C. 18cm D.15cm【精典例题】例1、如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1= .第1题图第2题图 第3题图例1图【点拨】∵△ABC 与△A 1B 1C 1重叠部分面积为2,则由三角形面积公式可知,重叠部分小三角形的直角边长为2,从而由勾股定理得B 1C =22,则BB 1=BC -B 1C =2。

例2、如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为( ) A 、23B 、332C 、3D 、6例3、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG . 问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由。

(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)。

点拨:在平面几何证明题.计算题中,多出现旋转地条件,让图形动起来。

ADCE G例3图①DFADCEG例3图②FACE例3图③第1题图【自测训练】A —基础训练1、如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C ′.若∠A=40°.∠B ′=110°,则∠BCA ′的度数是( ) A . 110°B . 80°C . 40°D . 30°2、如图:矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( ) A 、14 B 、16 C 、20 D 、283、如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan∠AFE 的值为( ) A .43 B .35 C .34 D .454、如图所示,已知在三角形纸片ABC 中,BC=3,AB=6,∠BCA=90°.在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A 、6B 、3C 、23D 、35、如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A. 把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B. 把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C. 把△ABC 向下平移4格 ,再绕点C 逆时针方向旋转180° D. 把△ABC 向下平移5格 ,再绕点C 顺时针方向旋转180° 二、填空题6、如图,在平面直角坐标系中,将△ABC 绕A 点逆时针旋转90°后,B 点对应点的坐标为 .7、点D 、E 分别在等边△ABC 的边AB 、BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交 边AC 于点F 、G .若∠ADF=80º,则∠CGE= .第2题图第4题图第5题图Cy 5 4 F EA第3题图8、如图,EF是△ABC的中位线,将△AEF沿AB方向平移到△EBD的位置,点D在BC上,已知△AEF的面积为5,则图中阴影部分的面积为.9、将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为.10、两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了度.三、解答题11、方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(-4,1),点B的坐标为(-1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1.,并写出A1的坐标(2)将Rt△A1B1C1.,绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中C1.所经过的路程.12、如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.(1)线段A1C1的长度是,∠CBA1的度数是.(2)连接CC1,求证:四边形CBA1C1是平行四边形.13、如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.B提升训练一、选择题1、如图,有一块矩形纸片ABCD,AB=8,AD=6.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED 沿DE向右翻折,AE与BC的交点为F,则CF的长为()A、6B、4C、2D、12、如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A. M或O或NB. E或O或CC. E或O或ND. M或O或C3、如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为A、412()55-, B、213()55-, C、113()25-, D、312()55-,4、如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A、1个B、2个C、3个D、4个5、如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A.2 B.12C.1 D.146、两个全等的梯形纸片如图(1)摆放,将梯形纸片ABCD沿上底AD方向向右平移得到图(2).已知AD=4,BC=8,若阴影部分的面积是四边形A′B′CD的面积的13,则图(2)中平移距离A′A= .7、如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为.8、如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B 交AC于点E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③D F=FC,④A1D =CE,⑤A1F=CE.其中正确的是 (写出正确结论的序号).9、图,△ABC中,∠ACB=90°,∠A=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°)得到△DEC,设CD交AB于F,连接AD,当旋转角α度数为,△ADF是等腰三角形。

10、如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=22,则△ABC的周长等于 .第2题图(第10题)PNFE DCABM第4题图图第5题图第6题图第7题图第3题图BDEF11、如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.12、如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求证:∠ADP=∠EPB;(2)求∠CBE的度数;(3)当APAB的值等于多少时,△PFD∽△BFP?并说明理由.13、在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图(1)与(2)是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长),若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图(1)或(2)加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图(3)),当AP:AC=1:4时,PE和PF有怎样的数量关系?证明你发现的结论.第25课时 图形的变换⑵平移、旋转、翻折答案【自测训练】A —基础训练 一、选择题1、B2、D3、C4、 C5、B二、填空题6、(0,2)7、8008、10 9、(-3,3) 10、30 三、解答题11、 解:(1)画出Rt △A 1B 1C 1.的图形;A 1的坐标为(1,0) (2)画出Rt △A 2B 2C 2.的图形; A 1C 1=222313=+= C 1.所经过的路经为:9013180π⨯=132π. 12、 (1)10;135°。

相关文档
最新文档