高中数学必修一元二次不等式及其解法

合集下载

人教版高中数学必修课件一元二次不等式及其解法

人教版高中数学必修课件一元二次不等式及其解法

人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
总结出: 解一元二次不等式
ax2+bx+c>0、ax2+bx+c<0 的步骤是:
(1)化成标准形式 ax2+bx+c>0 (a>0)
ax2+bx+c<0 (a>0)
(2) 写出ax2+bx+c=0判定△的符号,
当x取 0 < x <5 时,y<0?
(3).由图象写出:
不等式x2 -5x>0 的 解集为 ﹛x|x<0或x>5﹜ 。
不等式x2 -5x<0 的 解集为 ﹛x| 0 <x <5﹜ 。
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
一元二次不等式及其解法
=(2x-1)2≥0
(2)解不等式 - x2 + 2x – 3 >0
解:整理,得 x2 - 2x + 3 < 0
因为△= 4 - 12 = - 8 < 0
方程 2 x2 - 3x – 2 = 0无实数根
所以原不等式的解集为ф
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
(3)求出方程 的实根;画出函数图像
(4)(结合函数图象)写出不等式的解集.
简记为:一化—二判—三求—四写
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)

人教版高中数学必修第一册第二章2.3.6一元二次不等式及其解法【课件】

人教版高中数学必修第一册第二章2.3.6一元二次不等式及其解法【课件】

a>0的解集.
【解】
(备选例题)(1) 设关于x的不等式ax2-6x+a2<0的解集为
{x|1<x<m},其中m>1,求m的值.
(2) 设关于x的不等式ax2-2x+1<0的解集为{x|m<x<n},其中m<n,
求3m+2n的最小值.
思路点拨 利用一元二次不等式的解与相应一元二次方程的根及相应一
第二章
一元二次函数、方程和不等式
2.3二次函数与一元二次方程、不等式
课时6
一元二次不等式及其解法
教学目标
1 . 通过日常生活中的实例,抽象出一元二次不等式的模型,提升数
学抽象素养 .
2 . 通过画二次函数图象、看二次函数图象、分析二次函数图象,探
究二次函数、一元二次方程和一元二次不等式三者之间的关系,明
【问题10】通过列表写出一元二次不等式ax2+bx+c>0(a>0)和
ax2+bx+c<0(a>0)的解集.
【问题11】怎样求出一元二次不等式ax2+bx+c>0(a<0)和ax2+
bx+c<0(a<0)的解集?
典例精析
【例1】[教材改编题](1) 求不等式x2-x-6>0的解集;(2) 求不等式
结论.
【变式训练2】设a∈R,解关于x的不等式ax2+(1-2a)x-2>0.
【解】
【例3】
1
1
x x
3
2
思路点拨
1
1
x x
3
2
【解】
【方法规律】
1. 一元二次不等式ax2+bx+c>0(a≠0)的解集的端点值是一元二次方程

高三数学一元二次不等式及其解法

高三数学一元二次不等式及其解法
-2 -1 O
3 2 1 x 1 -1 -2 -3 2 3
1 25 ( ,) 2 4
观察这个图象,可以看出,抛物线位于 观察这个图象,可以看出,抛物线位于x 轴上方的点的纵坐标大于零 纵坐标大于零, 轴上方的点的纵坐标大于零,因此这些点 的横坐标的集合
y
A={x| x<-2或x>3}是一元二 - 或 是一元二 次不等式x2-x-6>0的解集. 次不等式 - 的解集. 抛物线位于x轴下方的点 抛物线位于 轴下方的点 的纵坐标小于零, 的纵坐标小于零,因此这些 点的横坐标的集合 集合B={x| - 点的横坐标的集合 2<x<3}是一元二次不等式 2 是一元二次不等式x 是一元二次不等式 -x-6<0的解集. - 的解集.
y 3 2 1 x O -1 1 2 3
解:对于任意实数x, 对于任意实数 , x2-2x+3=(x-1)2+2>0, - , 因此不等式(1)的解集为 因此不等式( ) 实数集R, 实数集 , 不等式(2)无解,或说它 不等式( )无解, 的解集为空集. 的解集为空集
-1 O -1 y 3 2 1 x 1 2 3
解得
3 x ≤ 或x ≥ 1 2 1 < x < 3
因此1≤x<3,所求函数的定义域是[1,3). ,所求函数的定义域是 , 因此

通过以上两例, 通过以上两例,我们不难对一元二次 不等式ax 不等式 2+bx+c>0 (a>0)和ax2+bx+c<0 和 (a>0)解集的形式作一般性的分析. 解集的形式作一般性的分析. 解集的形式作一般性的分析 的判别式为△ 设方程ax 设方程 2+bx+c=0 (a>0)的判别式为△. 的判别式为 (1)当△>0时,二次方程 2+bx+c=0有两 ) 时 二次方程ax 有两 个不等的实数根x ,(设 个不等的实数根 1,x2,(设x1<x2). 考察这类二次函数f(x)=ax2+bx+c的图象, 的图象, 考察这类二次函数 的图象 这时,函数的零点把x轴分成三个区间 这时,函数的零点把 轴分成三个区间

学年新教材高中数学第一章预备知识4.2一元二次不等式及其解法课件北师大版必修第一册

学年新教材高中数学第一章预备知识4.2一元二次不等式及其解法课件北师大版必修第一册

解:(1)因为方程 2x2-3x-2=0 的 Δ=(-3)2-4×2×(-2)>0,
所以该方程x2=2.
画出函数 y=2x2-3x-2 的图象,
可知该函数的图象是开口向上的抛物线,
且与 x 轴有两个交点

- ,
和(2,0).
观察图象可得原不等式的解集为{x <

- ,或
x>2}.
第十四页,编辑于星期五:二十三点 四十五分

(2)原不等式可化为3x2-6x+2<0,因为方程3x2-6x+2=0的Δ=
(-6)2-4×3×2>0,所以该方程有两个不相等的实数根,




解得 x1=1- ,x2=1+ .
画出函数 y=3x2-6x+2 的图象可知
该函数的图象是开口向上的抛物
所以该方程有两个不相等的实数根,
解得x1=1,x2=6.
画出函数y=x2-7x+6的图象,
可知该函数的图象是开口向上的抛物线,
且与x轴有两个交点(1,0)和(6,0).
观察图象可得原不等式的解集为{x|1<x<6}.
第十九页,编辑于星期五:二十三点 四十五分

探究二 含参一元二次不等式的解法
【例2】 解关于x的不等式ax2+(a-2)x-2≥0(a≥0).
根.
第九页,编辑于星期五:二十三点 四十五分。
2.一元二次不等式ax2+bx+c>0(a≠0)的解集是全体实数的条件是
什么?
提示:令y=ax2+bx+c,由题意知y>0恒成立,则一元二次函
数y=ax2+bx+c的图象应开口向上,与x轴无交点,即应满足

高中数学 一元二次不等式及解法 PPT课件 图文

高中数学 一元二次不等式及解法 PPT课件 图文

y<0
O x1
x
有两相异实根 x1, x2 (x1<x2)
有两相等实根 b
x1=x2= 2 a
{x|x<x1,或 x>x2}
b {x|x≠ 2 a }
{x|x1< x <x2 }
Φ
△<0 y
y>0
x O 没有实根
R Φ
函数 、方程、不等式的关系
a<0时如何求解呢?
自主练习
1.下列是关于x的一元二次不等式化为(x+2a)(x-a)<0 对应的一元二次方程的根为x1=a,x2=-2a, (1)当a>-2a,即a>0时,-2a<x<a, (2)当a=-2a,即a = 0时,原不等式化为x^2<0,无解, (3)当a<-2a, 即a<0时, a<x<-2a. 综上所述,原不等式的解集为: 当a>0时,{x|-2a<x<a} 当a=0时, ∅ 当a<0时,{x|a<x<-2a}
A.(-3,2) B.(2,+∞) C.(-∞,-3)∪(2,+∞) D.(-∞,-2)∪(3,+∞) 解析:不等式的解集是(-∞,-3)∪(2,+∞),故
选C. 答案: C
课堂 讲 义
求解一元二次不等式
例一 求下列一元二次不等式的解集:
(1)-x2+5x<-6
解:原不等式可化为 x2-5x-6>0
集。
变式训练
求下列不等式的解集:
(1)-2x2+3x+2 ≤ 0;
{ x|x2或 x 2 }
y x1 O x2 x
变式训练
(2)4x2+4x+1>0
{x
|x


1} 2
y
O x1
x
变式训练

高三数学考点-一元二次不等式及其解法

高三数学考点-一元二次不等式及其解法

7.2一元二次不等式及其解法1.解不等式的有关理论(1)若两个不等式的解集相同,则称它们是;(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的;(3)解不等式变形时应进行同解变形;解不等式的结果,一般用集合表示.2.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.若关于x的不等式ax>b的解集是R,则实数a,b满足的条件是.3.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)若一元二次不等式经过同解变形后,化为一元二次不等式ax2+bx+c>0(或ax2+bx+c<0)(其中a>0)的形式,其对应的方程ax2+bx+c=0有两个不相等的实根x1,x2,且x1<x2(此时Δ=b2-4ac>0),则可根据“大于号取__________,小于号取__________”求解集.函数、方程与不等式Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a无实根ax2+bx+c>0(a>0)的解集①②R ax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅③4.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0. 自查自纠1.(1)同解不等式 (2)同解变形2.⎩⎨⎧⎭⎬⎫x |x >b a ⎩⎨⎧⎭⎬⎫x |x <b a a =0,b <0 3.(1)一元二次 (2)解集 (3)两边 中间(4)①{}x |x <x 1或x >x 2 ②⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2a ③∅(2016·宜昌模拟)设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]解:A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.故选D . (2016·梧州模拟)不等式2x +1<1的解集是( )A .(-∞,-1)∪(1,+∞)B .(1,+∞)C .(-∞,-1)D .(-1,1)解:因为2x +1<1,所以2x +1-1<0,即1-x x +1<0,该不等式可化为(x +1)(x -1)>0,所以x <-1或x >1.故选A .(2016·青海模拟)不等式(a -2)x 2+2(a -2)x -4<0,对一切x ∈R 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .(-2,2]C .(-2,2)D .(-∞,2)解:当a ≠2时,有⎩⎪⎨⎪⎧a -2<0,Δ<0, 所以-2<a <2.当a =2时,原式化为-4<0,恒成立.所以-2<a ≤2.故选B .(2015·广东)不等式-x 2-3x +4>0的解集为________.(用区间表示) 解:由-x 2-3x +4>0得x 2+3x -4<0,解得-4<x <1.故填(-4,1).(北京市2017届普通高中会考)如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a 等于________. 解:不等式x 2<ax +b 的解集是{x |1<x <3},则1,3是方程x 2-ax -b =0的两根,由根与系数的关系,得a =1+3=4,-b =1×3=3,b =-3,所以b a =81.故填81.类型一 一元二次不等式的解法(1)解下列不等式: (Ⅰ)x 2-7x +12>0; (Ⅱ)x 2-2x +1<0.解:(Ⅰ)方程x 2-7x +12=0的解为x 1=3,x 2=4.而y =x 2-7x +12的图象开口向上,可得原不等式x 2-7x +12>0的解集是{x |x <3或x >4}. (Ⅱ)方程x 2-2x +1=0有两个相同的解x 1=x 2=1.而y =x 2-2x +1的图象开口向上,可得原不等式x 2-2x +1<0的解集为∅.(2)解关于 x 的不等式 kx 2-2x +k <0(k ∈R ). 解:①当 k =0 时,不等式的解为 x >0. ②当 k >0 时,若Δ=4-4k 2>0,即0<k <1 时,不等式的解为1-1-k 2k <x <1+1-k 2k;若Δ≤0,即 k ≥1 时,不等式无解. ③当 k <0 时, 若Δ=4-4k 2>0,即-1<k <0时,x <1+1-k 2k 或x >1-1-k 2k;若Δ<0,即 k <-1 时,不等式的解集为 R ; 若Δ=0,即 k =-1 时,不等式的解为 x ≠-1. 综上所述,当k ≥1 时,不等式的解集为∅;当0<k <1 时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1-1-k 2k <x <1+1-k 2k ; 当k =0 时,不等式的解集为{x |x >0}; 当-1<k <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1+1-k 2k 或x >1-1-k 2k ; 当k =-1时,不等式的解集为{x |x ≠-1}; 当k <-1时,不等式的解集为R .【点拨】解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.解含参数的有理不等式时分以下几种情况讨论:①根据二次项系数讨论(大于 0,小于 0,等于 0);②根据根的判别式讨论(Δ>0,Δ=0,Δ<0);③根据根的大小讨论(x 1>x 2,x 1=x 2,x 1<x 2).(1)解下列不等式: (Ⅰ)-x 2-2x +3≥0; (Ⅱ)x 2-2x +2>0.解:(Ⅰ)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(Ⅱ)因为Δ<0,所以方程x 2-2x +2=0无实数解,而y =x 2-2x +2的图象开口向上,可得原不等式x 2-2x +2>0的解集为R .(2)(2015·贵州模拟)关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是________. 解:原不等式可化为(x -1)(x -a )<0,当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5;当a <1时,得a <x <1,此时解集中的整数为-2,-1,0.则-3≤a <-2,故a ∈[-3,-2)∪(4,5].故填[-3,-2)∪(4,5].类型二 二次不等式、二次函数及二次方程的关系(1)(2015·贵州模拟)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x |x <-1或x >12 B.⎩⎨⎧⎭⎬⎫x |-1<x <12C.{x |-2<x <1} D .{x |x <-2或x >1}解:由题意知x =-1,x =2是方程ax 2+bx +2=0的两根,且a <0.由韦达定理得⎩⎨⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.所以不等式2x 2+bx +a <0,即2x 2+x -1<0.解得-1<x <12.故选B .【点拨】已知一元二次不等式的解集,就能够得到相应的一元二次方程的两根,由根与系数的关系,可以求出相应的系数.注意结合不等式解集的形式判断二次项系数的正负.(2)若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A .(-∞,-1) B .(1,+∞) C .(-1,1) D .[0,1)解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B .【点拨】本题考查一元二次方程的根的分布与系数的关系,画出相应函数的图象后“看图说话”,主要从以下四个方面分析:①开口方向;②判别式;③区间端点函数值的正负;④对称轴x =-b2a 与区间端点的关系.本书2.4节有较详细的讨论,可参看.(1)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (Ⅰ)求a ,b ;(Ⅱ)解不等式ax 2-(ac +b )x +bc <0.解:(Ⅰ)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎨⎧1+b =3a ,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2. (Ⅱ)不等式ax 2-(ac +b )x +bc <0, 即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0. ①当c >2时,不等式的解集为{x |2<x <c }; ②当c <2时,不等式的解集为{x |c <x <2}; ③当c =2时,不等式的解集为∅.(2)(2015·贵州模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为________. 解:根据题意有f (-2)f (-1)<0,所以(6a +5)(2a +3)<0.所以-32<a <-56.又a ∈Z ,所以a =-1.检验知合要求. 不等式f (x )>1即为-x 2-x +1>1,解得-1<x <0. 故填{x|-1<x <0}.类型三 分式不等式的解法(1)不等式1x<1的解集为________.解:1x <1⇔1x -1<0⇔1-x x <0⇔x -1x >0,解得x <0,或x >1.故填(-∞,0)∪(1,+∞).(2)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B={x |0<x ≤1}.故选B .【点拨】首先通过“移项、通分”,将不等式右边化为0,左边化为f (x )g (x )的形式,将原分式不等式化为标准型,然后将化为标准型的分式不等式等价转化为整式不等式(组)来求解,注意分母不为0.(1)不等式x -12x +1≤1的解集为________.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.解法一:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得⎩⎨⎧⎭⎬⎫x |x >-12或x ≤-2. 解法二:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧x +2≥0,2x +1>0 或 ⎩⎪⎨⎪⎧x +2≤0,2x +1<0.得⎩⎨⎧⎭⎬⎫x |x >-12或x ≤-2.故填⎩⎨⎧⎭⎬⎫x|x >-12或x ≤-2.(2)(2016·丽水模拟)已知两个集合A ={x |y =ln(-x 2+x +2)},B =⎩⎨⎧⎭⎬⎫x |2x +1e -x ≤0,则A ∩B =( ) A.⎣⎡⎭⎫-12,2 B.⎝⎛⎦⎤-1,-12 C .(-1,e) D .(2,e)解:由题意得A ={x |-x 2+x +2>0}={x |-1<x <2},B =⎩⎨⎧⎭⎬⎫x |x >e 或x ≤-12,故A ∩B =⎝⎛⎦⎤-1,-12.故选B . 类型四 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则实数a 的最小值为( ) A .0 B .-2 C .-52 D .-3解法一:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12, 所以a ≥-⎝⎛⎭⎫x +1x .因为f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, 所以⎝⎛⎭⎫-x -1x max=-52.所以a ≥-52.解法二:令f (x )=x 2+ax +1,对称轴为x =-a2.①⎩⎪⎨⎪⎧-a 2≤0,f (0)≥0⇒a ≥0.(如图1) ②⎩⎨⎧0<-a 2<12,f ⎝⎛⎭⎫-a 2≥0⇒-1<a <0.(如图2)③⎩⎨⎧-a 2≥12,f ⎝⎛⎭⎫12≥0⇒-52≤a ≤-1.(如图3)图1图2图3综上 ①②③,a ≥-52.故选C .(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( ) A .{x |1<x <3} B .{x |x <1或x >3} C .{x |1<x <2} D .{x |x <1或x >2}解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B .【点拨】(1)一元二次不等式恒成立问题,对于x 变化的情形,解法一利用参变量分离法,化成a >f (x )(a <f (x ))型恒成立问题,再利用a >f (x )max (a <f (x )min ),求出参数范围.解法二化归为二次函数,由于是轴动区间定,结合二次函数对称轴与定义域的位置关系、单调性等相关知识,求出参数范围.(2)对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.(3)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(1)(2016·南昌模拟)对于任意实数x ,不等式mx 2+mx -1<0恒成立,则实数m 的取值范围是( ) A .(-∞,-4) B .(-∞,-4] C .(-4,0) D .(-4,0] 解:当m =0时,不等式显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0 得-4<m <0.综上所述,所求实数m 的取值范围是(-4,0].故选D .(2)对于满足|a |≤2的所有实数a ,使不等式x 2+ax +1>2x +a 成立的x 的取值范围为________.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1. 所以x <-1或x >3.故填(-∞,-1)∪(3,+∞).1.一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的解集的确定,受二次项系数a 的符号及判别式Δ=b 2-4ac 的符号制约,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集;二次函数y =ax 2+bx +c 的值恒大于0的条件是a >0且Δ<0;若恒大于或等于0,则a >0且Δ≤0.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形.2.解分式不等式要使一边为零;求解非严格分式不等式时,要注意分母不等于0,转化为不等式组.()注:形如f (x )g (x )≥0或f (x )g (x )≤0的不等式称为非严格分式不等式3.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.4.解不等式的过程,实质上是不等式等价转化的过程.因此保持同解变形是解不等式应遵循的基本原则. 5.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.6.对给定的一元二次不等式,求解的程序框图是:1.不等式x 2-x -2≤0的解集是( ) A .(-∞,-1)∪(-1,2] B .[-1,2] C .(-∞,-1)∪[2,+∞) D .(-1,2]解:原不等式⇔(x +1)(x -2)≤0,即x ∈[-1,2],故选B .2.设集合A =⎩⎨⎧⎭⎬⎫x |x -1x +1≤0,B ={x ||x |≤1},则“x ∈A ”是“x ∈B ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件解:A ={x |-1<x ≤1},B ={x |-1≤x ≤1},则A 是B 的真子集.故选C .3.(四川省广元市2017届适应性统考(三诊))已知集合A ={x |x 2-4x <0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是( )A .(0,4]B .(-∞,4)C .[4,+∞)D .(4,+∞)解:集合A ={x |x 2-4x <0}=(0,4),B ={x |x <a }=(-∞,a ),若A ⊆B ,则实数a 满足a ≥4.故选C . 4.(2015·湖北模拟)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解:由题意得⎩⎨⎧-2+1=1a ,-2×1=-c a ,解得⎩⎪⎨⎪⎧a =-1,c =-2.则f (x )=-x 2-x +2,所以f (-x )=-x 2+x +2.故选C .5.(北京朝阳区2017届高三上学期期中)已知函数f (x )=ax 2-x ,若对任意x 1,x 2∈[2,+∞),且x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是( )A.⎝⎛⎭⎫12,+∞B.⎣⎡⎭⎫12,+∞ C.⎝⎛⎭⎫14,+∞ D.⎣⎡⎭⎫14,+∞ 解:任意x 1,x 2∈[2,+∞),当x 1<x 2,f (x 1)-f (x 2)x 1-x 2>0有f (x 1)<f (x 2),函数f (x )=ax 2-x 在区间[2,+∞)上是增函数,所以a >0,且函数f (x )=ax 2-x 对称轴12a ≤2⇒a ≥14.故选D .6.(2016·黄冈模拟)若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则a 的取值范围是( ) A .[1,19] B .(1,19) C .[1,19) D .(1,19]解:函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对于一切x ∈R 恒成立.当a 2+4a -5=0时,有a =-5或a =1.若a =-5,不等式化为24x +3>0,不满足题意;若a =1,不等式化为3>0,满足题意.当a 2+4a -5≠0时,应有⎩⎪⎨⎪⎧a 2+4a -5>0,16(a -1)2-12(a 2+4a -5)<0, 解得1<a <19.综上1≤a <19.故选C .7.(2015·浙江模拟)不等式log 2⎝⎛⎭⎫x +1x +6≤3的解集为________. 解:log 2⎝⎛⎭⎫x +1x +6≤3⇔log 2⎝⎛⎭⎫x +1x +6≤log 28⇔0<x +1x +6≤8⇔-6<x +1x ≤2.当x >0时,x +1x≥2,此时x =1;当x <0时,x +1x ≤-2,此时x +1x >-6,解得-3-22<x <-3+2 2.故填(-3-22,-3+22)∪{1}.8.(广州市2017届高三第一次模拟)已知a <0,关于x 的不等式ax 2-2(a +1)x +4>0的解集是________.解:原不等式等价为(x -2)(ax -2)>0,即a (x -2)(x -2a)>0,因为a <0,所以不等式等价为(x -2)⎝⎛⎭⎫x -2a <0,所以2a<x <2,即原不等式的解集为⎝⎛⎭⎫2a ,2.故填⎝⎛⎭⎫2a ,2. 9.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解法一:设f (x )=x 2-ax -a .则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )min ≤-3,即f ⎝⎛⎭⎫a 2=-4a +a 24≤-3,解得a ≤-6或a ≥2. 解法二:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.10.若关于x 的方程3x 2-5x +a =0的一个根大于-2且小于0,另一个根大于1且小于3,求实数a 的取值范围.解:设f (x )=3x 2-5x +a ,则由题意有 ⎩⎪⎨⎪⎧f (-2)>0,f (0)<0,f (1)<0,f (3)>0.即⎩⎪⎨⎪⎧22+a >0,a <0,-2+a <0,12+a >0.解得-12<a <0.故实数a 的取值范围为(-12,0).(2016·湖北模拟)已知不等式ax 2+bx +c >0的解集为(1,t ),记函数f (x )=ax 2+(a -b )x -c . (1)求证:函数y =f (x )必有两个不同的零点;(2)若函数y =f (x )的两个零点分别为m ,n ,求|m -n |的取值范围.解:(1)证明:由题意知a <0,a +b +c =0,且-b2a >1,所以c <a <0,所以ac >0,所以对于函数f (x )=ax 2+(a -b )x -c 有Δ=(a -b )2+4ac >0,所以函数y =f (x )必有两个不同零点.(2)|m -n |2=(m +n )2-4mn =(b -a )2+4ac a 2=(-2a -c )2+4ac a 2=⎝⎛⎭⎫c a 2+8·c a+4, 由不等式ax 2+bx +c >0的解集为(1,t )可知,方程ax 2+bx +c =0的两个解分别为1和t (t >1),由根与系数的关系知ca =t ,所以|m -n |2=t 2+8t +4,t ∈(1,+∞).所以|m -n |>13,所以|m -n |的取值范围为(13,+∞).1.不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A .2.已知-12<1x<2,则x 的取值范围是( )A .(-2,0)∪⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫-12,2 C.⎝⎛⎭⎫-∞,-12∪(2,+∞) D .(-∞,-2)∪⎝⎛⎭⎫12,+∞ 解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D .3.(2016·山东枣庄一模)关于x 的不等式x 2-ax +a >0(a ∈R )在R 上恒成立的充分不必要条件是( ) A .a <0或a >4 B .0<a <2 C .0<a <4 D .0<a <8解:因为不等式x 2-ax +a >0(a ∈R )在R 上恒成立的充要条件是Δ=a 2-4a <0,即0<a <4,所以不等式x 2-ax +a >0(a ∈R )在R 上恒成立的充分不必要条件是0<a <2.故选B .4.一元二次不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则不等式bx 2+2x -a <0的解集是( ) A .{x |x <-2或x >3} B .{x |x <-3或x >2}C .{x |-2<x <3}D .{x |-3<x <2}解:由条件得-12,13是方程ax 2+bx +2=0的两根,由韦达定理,a =-12, b =-2,所以bx 2+2x -a <0即为-2x 2+2x +12<0,解得x <-2或x >3.故选A .5.已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x|x <-1或x >12,则f (10x )>0的解集为( ) A .{x |x <-1或x >lg2} B .{x |-1<x <lg2}C .{x |x >-lg2}D .{x |x <-lg2}解:可设f (x )=a (x +1)⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎫10x -12<0,从而10x <12,解得x <-lg2,故选D . 6.(2016·云南模拟)若关于x 的不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]解:原不等式等价于(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.故选B .7.(2016·广东惠州模拟)不等式9x -7<-1的解集为________. 解:由9x -7<-1得x +2x -7<0,可化为(x +2)(x -7)<0,解得-2<x <7.故填(-2,7). 8.(2016·西安模拟)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.解:由题意得a 2-4b =0,所以b =a 24. 所以f (x )<c 可化为x 2+ax +a 24-c <0, 由题意知m 和m +6为关于x 的一元二次方程x 2+ax +a 24-c =0的两根,所以⎩⎪⎨⎪⎧m +m +6=-a ,m (m +6)=a 24-c ,所以c =a 24-m (m +6)=(2m +6)24-m (m +6)=9.故填9. 9.(2016·西安模拟)某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备提高售价来增加利润.已知这种商品每件售价提高1元,销量就要减少10件.那么要保证该商品每天的利润在320元以上,求其每件售价的取值范围.解:设售价定为每件x 元,利润为y 元,则:y =(x -8)[100-10(x -10)],依题意,有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件售价的取值范围为(12,16)(单位:元).10.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0,当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a, 所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1;当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎡⎦⎤-1,2a . (2016·郑州模拟)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解:(1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.那么当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =a (x -m )(x -n )+x -m=(x -m )(ax -an +1).因为a >0,且0<x <m <n <1a, 所以x -m <0,1-an +ax >0.所以f (x )-m <0,即f (x )<m .。

人教版高中数学必修一一元二次不等式的解法-课件

人教版高中数学必修一一元二次不等式的解法-课件
解析:(4) x2 2x 3 0 x2 2x 3 0 x
例 2.解下列不等式.
(1)x 3 0;(2)1 2x 0 ;(3)2x 1 1;(4)x4 2x2 8 0 .
பைடு நூலகம்
x7
x4
x2
例 2.解下列不等式.
(1)x 3 0;(2)1 2x 0 ;(3)2x 1 1;(4)x4 2x2 8 0 .
例 1.解一元二次不等式. (1) 2x2 3x 2 0 ;(2) 3x2 6x 2 ; (3) 4x2 4x 1 0 ;(4) x2 2x 3 0 .
解析:(3) 4x2 4x 1 0 (2x 1)2 0 {x | x 1} 2
例 1.解一元二次不等式. (1) 2x2 3x 2 0 ;(2) 3x2 6x 2 ; (3) 4x2 4x 1 0 ;(4) x2 2x 3 0 .
1 2
,
例 2.解下列不等式.
(1) x 3 0 ;(2)1 2x 0 ;(3) 2x 1 1;(4) x4 2x2 8 0 .
x7
x4
x2
解析:(3)
2x 1 x2
1
(2x (x
1)(x 2)2
2)
1
x (2x
2
1)(x
2)
(x
2)2
x 2 (x 2)(
x
3)
0
, 3
此时 ax2 bx c 0 为 a x x1 x x2 0 ,

x x
x1 x2
0 0

x x
x1 x2
0, 0

x x
x1 x2

x
x
x1 x2

所以, x1 x2,

高中数学必修5一元二次不等式及其解法精选题目(附答案)

高中数学必修5一元二次不等式及其解法精选题目(附答案)

高中数学必修5一元二次不等式及其解法精选题目(附答案)1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系表题型一:一元二次不等式解法1.解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)4x2+4x+1>0;(4)-x2+6x-10>0.题型二:三个“二次”关系的应用2.若不等式ax 2+bx +2>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-143.已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.题型三:解含参数的一元二次不等式4.解关于x 的不等式x 2+(1-a )x -a <0.巩固练习:1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a B .{x |x >a } C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >a 或x <1aD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)4.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >14 B .R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <32 D .∅5.函数y =17-6x -x 2的定义域为( )A .[-7,1]B .(-7,1)C .(-∞,-7]∪[1,+∞)D .(-∞,-7)∪(1,+∞)6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.7.若二次函数y =ax 2+bx +c (a <0)的图象与x 轴的两个交点为(-1,0)和(3,0),则不等式ax 2+bx +c <0的解集是________.8.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0.若f (a )≤3,则a 的取值范围是________.9.解关于x 的不等式x 2-3ax -18a 2>0. 10.若函数f (x )=2 018ax 2+2ax +2的定义域是R ,求实数a 的取值范围.参考答案:1.[解] (1)Δ=49>0,方程2x 2+5x -3=0的两根为x 1=-3,x 2=12, 作出函数y =2x 2+5x -3的图象,如图①所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <12.(2)原不等式等价于3x 2-6x +2≥0.Δ=12>0,解方程3x 2-6x +2=0,得x 1=3-33,x 2=3+33,作出函数y =3x 2-6x +2的图象,如图②所示,由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤3-33或x ≥3+33. (3)∵Δ=0,∴方程4x 2+4x +1=0有两个相等的实根x 1=x 2=-12.作出函数y =4x 2+4x +1的图象如图所示.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-12,x ∈R.(4)原不等式可化为x 2-6x +10<0,∵Δ=-4<0, ∴方程x 2-6x +10=0无实根,∴原不等式的解集为∅. 2.解:由已知得,ax 2+bx +2=0的解为-12,13,且a <0. ∴⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.3.解:因为x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16 .所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}.4.[解] 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式解集为{x |a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x |-1<x <a }. 5.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.5.解:(1)当a =0时, 不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 练习:1.解析:选A 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 2.解析:选A ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a >a ,∴x >1a 或x <a .3.解析:选B 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1.4.解析:选A 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D ,故选A.5.解析:选B 由7-6x -x 2>0,得x 2+6x -7<0,即(x +7)(x -1)<0,所以-7<x <1,故选B.6.解析:∁U A ={x |x 2-1<0}={x |-1<x <1}. 答案:{x |-1<x <1}7.解析:根据二次函数的图象知所求不等式的解集为(-∞,-1)∪(3,+∞). 答案:(-∞,-1)∪(3,+∞)8.解析:当a ≥0时,a 2+2a ≤3,∴0≤a ≤1;当a <0时,-a 2+2a ≤3,∴a <0.综上所述,a 的取值范围是(-∞,1].9.解:将x 2-3ax -18a 2>0变形得(x -6a )(x +3a )>0, 方程(x -6a )(x +3a )=0的两根为6a ,-3a .所以当a >0时,6a >-3a ,原不等式的解集为{x |x <-3a 或x >6a };当a =0时,6a =-3a =0,原不等式的解集为{x |x ≠0}; 当a <0时,6a <-3a ,原不等式的解集为{x |x <6a 或x >-3a }. 10.解:因为f (x )的定义域为R ,所以不等式ax 2+2ax +2>0恒成立. (1)当a =0时,不等式为2>0,显然恒成立;(2)当a ≠0时,有⎩⎨⎧ a >0,Δ=4a 2-8a <0,即⎩⎨⎧a >0,0<a <2,所以0<a <2.综上可知,实数a 的取值范围是[0,2).。

高中数学《一元二次不等式及其解法习题课》课件

高中数学《一元二次不等式及其解法习题课》课件

(1)求矩形 ABCD 的面积 S 关于 x 的函数解析式;
(2)要使仓库占地 ABCD 的面积不少于 144 平方米,则
AB 的长度应在什么范围内?
30
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5

(1)根据题意,得△NDC
与△NAM
相似,所以DC= AM
ND,即 x =20-AD,解得 NA 30 20
∵x∈[-2,2],x-212+34max=7,
∴x2-6x+1min=67,∴m<67.
25
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升
有关不等式恒成立问题的等价转化方式
(1)不等式 ax2+bx+c>0 的解集是全体实数(或恒成立)
的条件是当 a=0 时,b=0,c>0;
23
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(2)将 f(x)<-m+5 变换成关于 m 的不等式:m(x2-x+ 1)-6<0.则命题等价于:m∈[-2,2]时,g(m)=m(x2-x+1) -6<0 恒成立.
∵x2-x+1>0,∴g(m)在[-2,2]上单调递增. ∴只要 g(2)=2(x2-x+1)-6<0,即 x2-x-2<0, ∴-1<x<2.∴x 的取值范围为-1<x<2.
①式的解集为 x≤-2 或 0≤x≤3.由②式知 x≠3, ∴原不等式的解集为{x|x≤-2 或 0≤x<3}.
18
课前自主预习
课堂互动探究

高中数学必修5《一元二次不等式及其解法》PPT

高中数学必修5《一元二次不等式及其解法》PPT
§3.2 一元二次不等式 及其解法
创设情景 引入新课
学校要在长为8,宽为6 的 一块长方形地面上进行绿化, 计划四周种花卉,花卉带的宽
x x
x x
度相同,中间种植草坪(图中
阴影部分)为了美观,现要求
草坪的种植面积超过总面积 的一半,此时花卉带的宽度的
x x
x x
取值范围是什么?
设:花卉带的宽为x(0 x 3) ,则依题意有
(8
2x)(6
整2理x)得
1 2
86
整理得
x2 7x60
一元二次不等式的定义:
只含有一个未知数,并且未知数最高次 数是2 的不等式叫做一元二次不等式.
一元二次不等式的一般形式: ax2 bx c 0 或 ax2 bx c (0 a 0)
互动探究 发现规律
探究一元二次不等式 x2 7x6 0的解集
y>0
oo
01 y<0
y>0 x
o

当x取 x<1 或 x>6 时,y>0? 当x取 1 < x <6 时,y<0?
(3)由图象得:
不等式x2 -7x+6>0 的解集﹛为x|x<1或x>6﹜

不等式x2 -7x+6<0 的解集为﹛x| 1 <x <6﹜

大于0取两边,小于0取中间.
启发引导 形成结论
典例剖析 规范步骤
例3 解不等式 4x2 4x 1 0 .
解: 0,方程 4x2 4x 1 0
的解是
x1
x2
1 2
.
原不等式的解集是 x
x
1 2
.

高中数学第三章不等式第2节一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修54

高中数学第三章不等式第2节一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修54
若(x-m)(x-n)<0,则可得 m<x<n. 有口诀如下:大于取两边,小于取中间. (2)含参数的一元二次型的不等式 在解含参数的一元二次型的不等式时,往往要 对参数进行分类讨论,为了做到分类“不重不漏”, 讨论需从以下三个方面进行考虑:
①关于不等式类型的讨论:二次项系 数 a>0,a<0,a=0.
(2)原不等式可化为(x-5)(x+1)≤0, 所以原不等式的解集为{x|-1≤x≤5}.
(3)原不等式可化为2x-922≤0,所以原不等式 的解集为xx=94.
(4)原不等式可化为 x2-6x+10<0,Δ=(-6)2
-40=-4<0,所以方程 x2-6x+10=0 无实根,又 二次函数 y=x2-6x+10 的图象开口向上,所以原 不等式的解集为∅.
(5)原不等式可化为 2x2-3x+2>0, 因为 Δ=9-4×2×2=-7<0,所以方程 2x2-3x+2=0 无实根,又二次函数 y= 2x2-3x+2 的图象开口向上,所以原不等 式的解集为 R.
解一元二次不等式的一般步骤 (1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式; (3)求出相应的一元二次方程的根,或根据判别式说明方 程没有实根; (4)根据函数图象与 x 轴的相关位置写出不等式的解集.
Δ=b2-4ac Δ>0 Δ=0
Δ<0
y=ax2+
bx+c
(a>0)
的图象
ax2+bx+c=0
(a>0)的根 ax2+bx+c>0 (a>0)的解集
或 x<x1} ax2+bx+c<0 (a>0)的解集
x<x2}
x1,x2

人教版高中数学必修一《2.3 第一课时 一元二次不等式及其解法》课件

人教版高中数学必修一《2.3 第一课时 一元二次不等式及其解法》课件
2.3 二次函数与一元二次方程、不等式
明确目标
发展素养
1.掌握一元二次不等式的解法. 2.能根据“三个二次”之间的
关系解决简单问题. 3.掌握一元二次不等式的实际
应用. 4.会解一元二次不等式中的恒
成立问题.
1.通过解一元二次不等式,培养数学运算 素养.
2.通过“三个二次”关系的应用,提高数 学运算和逻辑推理素养.
3.通过分式不等式的解法及不等式的恒成 立问题的学习,培养数学运算素养.
4.借助一元二次不等式的应用,培养数学 建模素养.
第一课时 一元二次不等式及其解法
(一)教材梳理填空 1.一元二次不等式:
只含有 一个 未知数,并且未知数的最高次数是__2_ 定义
的不等式,称为一元二次不等式 一般 ax2+bx+c>0或ax2+bx+c<0,其中a,b,c均为常 形式 数,a≠0
[典例3] 已知关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},求关于x的 不等式cx2+bx+a<0的解集.
[解] 法一:由不等式 ax2+bx+c>0 的解集为{x|2<x<3}可知 a<0,且 2 和 3 是方程 ax2+bx+c=0 的两根,由根与系数的关系可知ba=-5,ac=6.
故不等式的解集为x12≤x≤2 .
(2)x2-a+1ax+1≤0⇔x-1a(x-a)≤0,
①当 0<a<1 时,a<1a,不等式的解集为xa≤x≤1a

②当 a=1 时,a=1a=1,不等式的解集为{1}; ③当 a>1 时,a>1a,不等式的解集为x1a≤x≤a . 综上,当 0<a<1 时,不等式的解集为xa≤x≤1a ; 当 a=1 时,不等式的解集为{1}; 当 a>1 时,不等式的解集为x1a≤x≤a .

高中数学必修5第三章3.2一元二次不等式式及其解法

高中数学必修5第三章3.2一元二次不等式式及其解法



3 2
或x
≥1
1 x 3
因此1≤x<3,所求函数的定义域是[1,3).
思考题1
已知ax2 +2x
+c
>
0的解集为 禳镲睚x
-
1
<
x
<
1
,
镲铪 3 2
试求a, c的值,并解不等式 - cx2 +2x - a > 0。
解:对于任意实数x,
x2-2x+3=(x-1)2+2>0,
因此不等式(1)的解集为
实数集R,
y
3
不等式(2)无解,或说它 2
的解集为空集.
1
x
-1 O 1 2 3 -1
练习2.解不等式1-x-4x2>0.
解:原不等式可化为4x2+x-1<0,
因为△=12-4×4×(-1)>0,
方程4x2+x-1=0的根是
一元二次不等式及其解法
定义:只含有一个未知数,并且未知数的最高次 数是2的不等式,叫一元二次不等式。
一元二次不等式的一般表达式为 ax2+bx+c>0 (a≠0),或ax2+bx+c<0 (a≠0)
其中a,b,c均为常数。
一元二次不等式一般表达式的左边,恰 是关于自变量x的二次函数f(x)的解析式,
2a
韦达定理
x1

x2


b a
,
x1x2

c a
(2)二次函数
y ax2 bx c(a 0)
开口方向;
b 对称轴 x
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x b 2a
△≥0
x< x1或x> x2
例题讲解
例2.求函数 f(x )2 x 2 x 3 lo 3 (3 g 2 x x 2 )的定义 域.
解:要使得函数有意义,则
2x2 x 3 0
32x
x2
0

即:x
1或x
3 2
1 x 3
, 也即 1x3
故函数 f (x) 的定义域是[1,3) 。
△=0 y
x1 O x2 x
有两相异实根 x1, x2 (x1<x2)
O x1
x
有两相等实根
x1=x2=
b 2a
{x|x<x1,或 x>x2}
{x|x≠
b 2a
}
△<0 y
x O 没有实根
R
{x|x1< x <x2 }
Φ
Φ
例题讲解
例 1.解下列关于x一元二次不等式
( 1) x 2 x 6 0 (2)4 x2 4 x 1 0 (3) x 2 2 x 3 0
问:一次上网在多长时间以内能够保证选择 电信比选择网通所需费用少?
新课导入
分析:假设一次上网x小时,
则电信公司的收取费用为1.5x 根据题意知,网通公司收费1.7 ,1.6,1.5 ,1.4,…… ∵ 1.7,1.6,1.5,1.4,…… 是以1.7为首项,以-0.1为公差的等差数列
∴网通公司的收取费用为 1.7xx(x1)(0.1)x(35 x)
高中数学必修5
一元二次不等式及其解法
共两课时 (第一课时)
2020/7/5
新课导入
两个网络服务公司(Internet Serice Provider)的资费标准:
电信:每小时收费1.5元 网通:用户上网的第一小时内收费1.7元,第二
小时内收费1.6元,以后每小时减少0.1元.(若用 户一次上网时间超过17小时,按17 <不妨设该同学一次上网不超过17小时>
(1)当 x0 或 x 5 时,y 0
O
(2)当 x 0 或 x 5 时,y 0
(3)当0x5时,y 0
x
5
下结论:
结合图像知不等式 x25x0的解集 是 {x|0x5}
推广:
那么对于一般的不等式 a2xbxc0 或 a2xb xc0(a0)又怎样去寻求解集呢?
一元二次不等式的解法
△>0 y
2
20
如果能够保证选择电信公司比选择网通公司所需费用少,则1.5x x(35x)
20
整理得 x25x0
这是什么?
新知讲解
一元二次不等式
像 x2 5x0这样只含一个 未知数,并且未知数最高次数 为2的不等式。
探究新知
思考:
那么一元二次不等式 x25x0怎样
去求解呢?
探究新知
y
我们来考察与其所对的二次 函数 yx2 5x 的关系:
解一元二次不等式的步骤:
• 1.化标准:将不等式化成标准形式(右边为 0、最高次的系数为正);
• 2.计算判别式的值: • 3.求根:若判别式的值为正或零,则求出相
应方程的两根; • 4.写解集:注意结果要写成集合或者区间的
形式
课堂练习:P80练习题1题(1)(3)(5)
求解一 元二次不等 式 ax2+bx+c>0 (a>0)的程 一元二次不等式的解法,同学们下去 可以多注意以下两点
• 1、三个二次的关系,注意结合图像; • 2、将一元二次不等式化为标准形式;
作业:
课本80页习题3.2 A组第1、2题
相关文档
最新文档