用树状图和列表法求概率

合集下载

九年级数学上册 4.2 等可能条件下的概率(一)用列表法或树状图求事件的概率素材

九年级数学上册 4.2 等可能条件下的概率(一)用列表法或树状图求事件的概率素材

用列表法或树状图求事件的概率列表法或树状图是查找事件所有可能结果的非常有效的方法,要根据“求某事件的概率"的题目的具体特点,选用列表法或画树状图法,找出事件所有等可能结果,才能正确解决这类问题。

利用列举法求概率的关键在于正确列举出实验结果的各种可能性,当事件只有一步或涉及一个因素时,通常用直接列举法。

例1(天门市)2006年6月5日是中国第一个“文化遗产日",某中学承办了“责任与使命——亲近文化遗产,传承文明火炬”的活动,其中有一项“抖空竹”的表演,已知有塑料、木质两种空竹,甲、乙、丙三名同学各自随机选用其中的一种空竹。

求甲、乙、丙三名学生恰好选择同一种空竹的概率。

解析:三名同学的选择可以选择塑料和木质两种,我们可以将选择情况用列举法及树状图解决。

解:设塑料—A,木质-B 。

P(M )=4182例2(济南市)在一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同。

(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.解:(1)在7张卡片中共有两张卡片写有数字1∴ 从中任意抽取一张卡片,卡片上写有数字1的概率是。

(2)组成的所有两位数列表为:1 2 3 4 1 11 21 31 41 2 12 22 32 42 313233343或列树状图为:∴这个两位数大于22的概率为712 练一练:1、(大连市)为丰富学生的校园文化生活,振兴中学举办了一次学生才艺比赛,三个年级都有男、女各一名选手进入决赛。

初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号。

比赛规则是男、女各一名选手组成搭档展示才艺.(1)用列举法说明所有可能出现搭挡的结果;十位个位(2)求同一年级男、女选手组成搭档的概率; (3)求高年级男选手与低年级女选手组成搭档的概率。

用树状图或表格求概率第3课时

用树状图或表格求概率第3课时

小亮则先把左边转盘的红色区域等分成2份, 分别记作“红色1”,“红色2”,然后制作了下表,
据此求出游戏者获胜的概率也是1/2.
红色
蓝色
红色1
(红1,红) (红1,蓝)
红色2
(红2,红) (红2,蓝)
蓝色
(蓝,红) (蓝,蓝)
你认为谁做的对?说说你的理由.
第6页/共15页
议一议
用树状图和列表的方法求概率时应注意些什么?
总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1, 蓝)(红2,蓝)(蓝,红1)(蓝,红2),
所以P(能配成紫色)=4/25
第10页/共15页
分层提高
1.用如图所示的两个转盘做“配紫色”游戏,每 个转盘都被分成三个面积相等的三个扇形.请求 出配成紫色的概率是多少?
第11页/共15页
2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为 1/3 第12页/共15页
课堂小结
1.利用树状图和列表法求概率时应注意什么? 2.你还有哪些收获和疑惑?
第13页/共15页
作业布置
• 习题3.3第1、2、3题
第14页/共15页
感谢您的观看!
第15页/共15页
各种情况出现的可能性相同
第7页/共15页
典型例题
一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸 出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概 率.
第8页/共15页
把两个红球记为红1、红2;两个白球记为白1、白 2.则列表格如下:
第9页/共15页
(白,黄)

(红,蓝) (白,蓝)
2.配紫色游戏

用列表法或画树状图法求概率

用列表法或画树状图法求概率

用列表法或画树状图法求概率(放回、不放回)
【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出
n
m A P )(即得所求事件的概率。

【出错点】求m 或n 的值。

【分类】放回、不放回
(一)明确写出放回、不放回类型
例1:(2018·威海中考)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?
例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?
(二)隐含放回、不放回类型
例3:选人(不放回)(2019济南)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率。

例4:选课(放回)(2016济南中考)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小容两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是?。

用列表法和树状图法求概率课件

用列表法和树状图法求概率课件

你的理由.不公平.其概率分别为13/25和12/25.
本题中元音字母: A E I
辅音字母: B C D H
A
B
C
D
E
C
D
E
H
IH
IH
IH
IH
IH
I
A
AA
AA
A
BBB
BBB
C
CD
DE
E
CCD
DEE
H
IH
IH
I
HI
H
I
HI
解:由树形图得,所有可能出现的结果有 12个,它们出现的可能性 相等。
(1)满足只有一个元音字母的结果有5个,
则P(1个元音)=
5 12
(2)两辆车右转,一辆车左转的结果有 3个,则
P(两辆车右转,一辆车左转) =
3
=
1
27
9
7 (3)至少有两辆车左转的结果有 7个,则 P(至少有两辆车左转) = 27
.依据闯关游戏规则,请你探究“闯关游戏” 的奥秘:(1)用列表的方法表示有可能的 闯关情况; (2)求出闯关成功的概率
1、掷一枚骰子,落地后4或2朝上的概率为( 1 )
9、两人一组,每人在纸上随机1 写出一个1----5之间的整数,两人所写的两 个整数恰好是相同的概率是(5 )
10、(2009江西中考题)某市今年中考理化实验操作考试,采用学生抽签 方式决定自己的考试内容。规定:每位考生必须在三个物理实验(用纸签 A,B.C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考试, 小刚在看不到纸签的情况下,分别从中各随机抽取一个 (1):用“列表法”或“树状图法'表示可能出现的结果; (2):小刚抽到物理实验B和化学实验F(记事件M)的概率是多少?

列表法和树状图求概率

列表法和树状图求概率

例题讲解---树形图
甲口袋中装有2个相同的小球,它们分别写有字母A和B; 乙 口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙 口袋中装有2个相同的小球,它们分别写有字母H和I。 从3个口袋中各随机地取出1个小球。 (1)取出的3个小球上恰好有1个、2个和3个元音字母的概率 分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少?
(1)指向红色; (2)指向红色或黄色; (3)不指向红色。
解:把7个扇形分别记为红1,红2,红3,绿1,绿2, 黄1,黄2,一共有7个等可能的结果,且这7个结果发生 的可能性相等,
绿(2,3)P(不指指向向红指色向或红黄色色有)= 个47结果,即黄1,黄2,绿1,
练习
二、耐心填一填
3.从一幅充分均匀混合的扑克牌中,随机抽取一张,抽到大王的概率是
( (
15314))。,抽到牌面数字是6的概率是(
2 27
),抽到黑桃的概率是
54
4.四张形状、大小、质地相同的卡片上分别画上圆、平行四边形、等边
三角形、正方形,然后反扣在桌面上,洗匀后随机抽取一张,抽到轴对称图
形的概率是(0.75
),抽到中心对称图形的概率是(0.75
)。
5. 某班文艺委员小芳收集了班上同学喜爱传唱的七首歌曲,作为课前三
1 第第二一张张 2 3 4 5 6 1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

利用画树状图和列表计算概率课件

利用画树状图和列表计算概率课件

解:
大刚
小亮
抽到A组
抽到B 组
抽到C 组
BC
抽到C组
CA CB CC
P(
同组)=
3 9
=1
3
答:他们恰好分到一组的概率是
1 3·
利用树状图或表格可以清楚地表示出某个事件 产生的所有可能出现的结果,从而较方便地求出某 些事件产生的概率.
除上述方法外,还可以用什么方法解决这个问题?
列表
大刚 小亮
走A
走B
走A
AA
AB
走B
BA
BB
所有等可能的4种结果,即AA、AB、BA、BB,其中二人 相
遇的结果有2种.
想一想: 用树状图和列表法来计算概率,有什么优点?
用树状图和列表法来能帮助我们将所有可能的 结果,直观的列出来做到既不重复也不遗漏.
例1. A,B两个盒子里各装入分别写有数字0,1的两 张卡片,分别从每个盒子中随机取出1张卡片,两张 卡片上的数字之积为0的概率是多少?
解:画树状图
从树状图可以看出,两张卡片 上的数字之积共有4个等可能 结果,从中可找出“两数之积 为0”这一事件的结果有3个.
方法二:列表
B
A
0
1
0
0
0
1
0
1
由上表可知,两张卡片上的数字之积共有4种等可能的结 果,积为0的结果有3种.
次数
54
100
46
(1)根据表格提供的信息分别求出事件A、B、C产生的频率;
(2)你能求出事件A、B、C产生的理论概率吗? (3)比较同一事件的频率与概率是否一致?
通过这节课的学习,你将知道答案.
如图,甲、乙两村之间有两条A,而两条道路,小亮从甲村 去往乙村,大刚从乙村去往甲村,二人同时出发.如果每人 从A,B两条道路中随机选择一条,而且他们都不知道对方 的选择,那么二人途中相遇的概率是多少?

例析用列表法或树状图求事件的概率

例析用列表法或树状图求事件的概率

例析用列表法或树状图求事件的概率列表法或树状图是查找事件所有可能结果的非常有效的方法,要根据“求某事件的概率”的题目的具体特点,选用列表法或画树状图法,找出事件所有等可能结果,才能正确解决这类问题。

利用列举法求概率的关键在于正确列举出实验结果的各种可能性,当事件只有一步或涉及一个因素时,通常用直接列举法。

例1(2022•南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况∴两次摸出的小球标号之和等于5的概率是:=.故选:C.【点评】此题考查了列表法或树状图法求概率.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.例2(2022•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.练一练:1、(2022•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A. B.C.D.2、(2022•盐城)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.3、(2022•贵阳)2022年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.参考答案:1、解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.2、解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.3、解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:1234561(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P(4号展厅被选中)==.。

用列表法或画树状图法求概率 (3)

用列表法或画树状图法求概率 (3)

用列表法或画树状图法求概率(放回、不放回)【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出nmA P =)(即得所求事件的概率。

【分类】放回、不放回类型一:明确写出放回、不放回类型例1:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?类型二:隐含放回、不放回类型例3:(指定特殊条件)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23答:根据题意,列表如下: 共有 6 种可能的结果,每种结果出现的可能性都相同。

其中恰好选中“A 入口进入、从C ,D 出口”的结果有2种,所以3162)出口D ,C 入口A (==P例4:选人(不放回)(2019济南)该年级学生会宣传部有 2 名男生和 2 名女生,现从中随机挑选 2 名同学参加“防控近视,爱眼护眼”宣 传活动,请用树状图法或列表法求出恰好选中“1 男 1 女”的概率.有 8 种,所以32128)(==选择一男一女P 出口出口【同类题】1.(2019历下一模)调查结果中,该校九年级(2)班有四名同学相当优秀,了解程度为“很了解”,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去市里参加“舜文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.2.(2019年市中一模)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.3.(2019长清一模)已知受访的教师中,E 组只有2名女教师,F 组只有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.例5:选课(放回)(2018济南中考)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.A (A,A ) (B,A ) (C,A )B (A,B ) (B,B ) (C,B ) C(A,C )(B,C )(C,C )共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:39=13.【同类题】1. (2015年中考)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.2. (2014年中考)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .32 B .21 C .31 D .41。

3.1用树状图或列表法求概率

3.1用树状图或列表法求概率
2 1
(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出
一个球,求两次摸出的球都是白球的概率.
第一次 第二次 白1 白2 红 白1 (白1,白1) (白1,白2) (白1,红) 白2 (白2,白1) (白2,白2) (白2,红) 红 (红,白1) (红,白2) (红,红)
2 1
(1)当小球取出后不放入箱子时, 共有6种结果,每个结果的可能 性相同,摸出两个白球概率为: (2)小球取出后放入是,共有9种结果,每种结果的可能性相同, 摸出两个相等. 列表法求概率的基本步骤
第一步:列表格;
第二步:在所有可能情况n中,再找到满足条件的事件的 个数m;
m 第三步:代入概率公式 P( A)= 计算事件的概率. n
3.如果有两组牌,它们的牌面数字分别是1,2,3,那么
从每组牌中各摸出一张牌.
(1)摸出两张牌的数字之和为4的概念为多少? (2)摸出为两张牌的数字相等的概率为多少?
拓展延伸
一只箱子里共有3个球,其中有2个白球,1个红球,它们除 了颜色外均相同. (1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸
出一个球,求两次摸出的球都是白球的概率;
解:(1)列表如下:
第一次 第二次 白1 白2 红 白1 —— (白1,白2) (白1,红) 白2 (白2,白1) —— (白2,红) 红 (红,白1) (红,白2) ——
3.1 用树状图或列表法求概率
由于硬币质地是均匀的,因此抛掷第一枚硬币出现“正面朝 上”和“反面朝上”的概率相同.无论抛掷第一枚硬币出现怎样 的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的 概率也是相同的. 我们可以用树状图或表格表示所有可能出现的结果.
第一枚硬币 树状图 第二枚硬币 所有可能出现的结果

利用画树状图和列表计算概率

利用画树状图和列表计算概率
由规则可知,一次能淘汰一人的结果应是:“石石剪” “剪剪布” “布布石”三类. 由树形图可以看出,游戏的结果有27种,它们出现的可能性相等. 而满足条件(记为事件A)的结果有9种
解:
利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率. 当试验包含两步时,列表法比较方便,当然,此时也可以用树状图法,当试验在三步或三步以上时,用画树状图法方便.
解析:
如果画树状图,需要42个箭头,太麻烦,故用列表法较简单
6
7
8
9
10
11
12
5
6
7
8
9
10
11
4
5
6
7
8
9
10
3
4
5
6
7
8
9
2
3
4
5
6
7
8
1
2
3
4
5
6
7
+
1
2
3
4
5
6
解:
点数之和
2
3
4
5
6
7
8
9
10
11
12
小方格数
1
2
3
4
5
6
5
4
3
2
1
由图表看出,点数之和为7的情况最多,有6种,概率最大.点数之和为2和12的情况最少,各1种,概率最小.
利用画树状图和列表计算概率
1.会用画树状图的方法求简单事件的概率;2.会用列表的方法求简单事件的概率.
Байду номын сангаас1.三种事件发生的概率及表示:

用列表法树状图法求概率

用列表法树状图法求概率

用列表法、树状图法求概率有招刘琛概率问题是中考中的热点问题,与概率有关的题目形式多样,但其中最主要的是考查利用列表法或树状图法求随即事件的概率.而利用列表法或树状图法求随即事件的概率,关键要注意以下三点:(1)注意各种情况出现的可能性务必相同;(2)其中某一事件发生的概率=各种情况出现的次数某一事件发生的次数;(3)在考察各种情况出现的次数和某一事件发生的次数时不能重复也不能遗漏.(4)用列表法或树状图法求得概率是理论概率,而实验估计值是频率,它通常受到实验次数的影响而产生波动,因此两者不一定一致,实验次数较多时,频率稳定于概率,但并不完全等于概率.例1田忌赛马是一个为人熟知的故事,传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛一次,赢得两局者为胜,看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强.(1).如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2). 如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)分析:正确理解题意,将齐王和田忌的马正确排列,而后恰当列表.解:(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2).当田忌的马随机出阵时,双方马的对阵情况如下表:齐王的马上中下上中下上中下上中下上中下上中下田忌的马上中下上下中中上下中下上下上中下中上1.双方马的对阵中,只有一种对阵情况田忌能赢,所以田忌获胜的概率P=6例 2 “石头、剪刀、布”是广为流传的游戏,游戏时甲、乙双方每次出“石头”、“剪刀”、“布”三种手势中一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头”,同样手势不分胜负,假定甲、乙两人每次都是等可能地出这三种手势,用画树状图或列表的方法分别求出一次游戏中两人同种手势的概率和甲获胜的概率.(提示:为书写方便,解答时可以用S表示“石头”,用J表示“剪刀”,用B表示“布”)解析:解法一:一次游戏、甲、乙两人随机出手势的所有可能的结果如下图:所有可能出的结果:(S,S)(S,J)(S,B)(J,S)(J,J)(J,B)(B,S)(B,J)(B,B)从上面的树状图可以看出,一次游戏可能出现的结果共有9种,而且每种结果出现的可能性相同.所以,P (出同种手势)=93=31P (甲获胜)=93=31解法二:一次游戏,甲、乙两人随机出手势的所有可能的结果如下表:S J BS (S ,S )(S ,J )(S ,B )J (J ,S )(J ,J )(J ,B )B (B ,S )(B ,J )(B ,B )以下同解法一评注:(1)利用列表法、树状图法求概率必须是等可能事件.(2)对各种可能出现的情况不能遗漏或重复某种可能.例3.有两个可以自由转动的均匀转盘A 、B ,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下:①分别转动转盘A、B;②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等分线上,那么重转一次,直到指针指向某一份为止).(1).用列表法(或树状图)分别求出数字之积为3的倍数和数字之积为5的倍数的概率;(2).小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分,这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平.解析:(1)每次游戏可能出现的所有结果列表如下:456 14562810123121518表格中共有9种等可能的结果,其中数字之积为3的倍数的有五种,数字之积为5的倍数的有三种,所以P (3的倍数)=95;P (5的倍数)93.(2)这个游戏对双方不公平∵小亮平均每次得分为2×95=910(分),小芸平均每次得分为3×93=99=1(分).∵910≠1,∴游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小亮得3分;若数字之积为5的倍数时,小芸得5分即可.。

人教版九年级数学上册《用画树状图法和列表法求概率》课件

人教版九年级数学上册《用画树状图法和列表法求概率》课件
谢谢观赏
You made my day!
我们,还在路上……
画出来的图像倒立的树而得名.它是通过画树状图的手段将所有 等可能
的结果一一列出,给人以一目了然的感觉.
温馨提示(1)画树状图法适用于一次试验中涉及三个或更
多个因素的情况,用列表法无能为力的时候就用画树状图法. (2)画树状图法的优点是:①防止遗漏;②揭示顺序,条理清楚,层次分明,
便于分析判断. (3)画树状图时,每个“分支”的意义不同,但它们具有相同的等可能性,
故从 C
1,3,4,5
中任选两数,能与
2
组成“V
数”的概率是162
=
12.
解析
关闭
答案
1
2
3
2.如图,有两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上 1,2,3 和 6,7,8 这 6 个数字.如果同时转动两个转盘各一次(指针落在等分线 上重转),转盘停止后,则指针指向的数字和为偶数的概率是( )

.
列表如下:
(4,6) (5,6) (6,6) (7,6) (8,6) (9,6) (4,5) (5,5) (6,5) (7,5) (8,5) (9,5) (4,4) (5,4) (6,4) (7,4) (8,4) (9,4) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3) (4,2) (5,2) (6,2) (7,2) (8,2) (9,2) (4,1) (5,1) (6,1) (7,1) (8,1) (9,1)
第2课时 用画树状图法和列表法求概率
课标要求 知识梳理
1.会用画树状图法、列表法计算两步或三步试验的随机事件发生的概 率.
2.能根据概率的大小对生活中与概率有关的事件作出正确的评判.

《用树状图或列表法求概率》优秀教案

《用树状图或列表法求概率》优秀教案

课题1 用树状图或表格求概率教学目标教学知识点:学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重点用树状图和列表法计算涉及两步实验的随机事件发生的概率.难点正确地用列表法计算涉及两步实验的随机事件发生的概率.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏.二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 2 3 4 5 6相应的概率 5151515151]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1231 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用列表的方法求出将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?看一个常见的用两个转盘“配紫色”的游戏. 游戏者同时转动如下图中的两个转盘进行“配紫色”游戏,求游戏者获胜的概率.六、教学反思注意:在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性.以免学生忽略这个条件错误使用树状图或表格求事件发生的概率。

北师大版 初三数学 九年级上册 3.1 用树状图或表格求概率

北师大版 初三数学 九年级上册 3.1 用树状图或表格求概率

用树状图或表格求概率学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.重点:用树状图和列表法计算涉及两步实验的随机事件发生的概率. 难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.⎧⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎨⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎩必然事件事件确定事件不可能事件概率随机事件列表法概率计算树状图法用频率估计概率一、用树状图求概率当一次试验要涉及3个或更多的因素时,为了不重复不漏掉地列出所有可能的结果,通常采用树状图.重点注意:画树状图时,每个“分支”的意义不同,但它们具有相同的等可能性,因此不能忽略任何一种情况,更不能遗漏任何一种情况(不重不漏). 二、用表格求概率在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率,当一次试验要涉及两个因素(例如摇两个骰子)并且可能出现的结果数目较多时,为了不重复不漏掉地列出所有可能的结果,通常采用表格求概率.重点注意:用表格求概率的适用范围是: (1)某次试验仅涉及两个因素; (2)可能出现的结果数目较多. 用树状图与表格求概率的联系与区别 联系:用树状图或表格求概率的共同前提是: (1)各种情况出现的可能性是相等的; (2)某事件发生的概率公式均为P(A)=各种种情况出现的次某事件发事件发生;(3)在列出并计算各种情况出现的总次数和某事件发生的次数时不能重复也不能遗漏. 区别:当随机事件包含两步时,尤其是转盘游戏问题,当其中一个盘被等分成2份以上时,选用表格比较方便,当然此时也可用树状图;当随机事件包含三步或三步以上时,用树状图方便,此时难以列表.注意:在用表格求随机事件发生的概率时,要注意列表时数据或事件的顺序不能相互混淆,如(1,2)与(2,1)不是相同的事件,尽管在有些情况下它们的意义或结果是相同的.如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.(2,3)考点1 用树状图求概率【例1】 甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?【变式1】经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率: (1)三辆车全部继续直行 (2)两辆车右转,一辆车左转 (3)至少有两辆车左转在用树形图树形图与具【变式2】 某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛组合,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?练1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1,2,3,4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上的数字之积为偶数的概率是( )A.14B.12C.34D.56练2.某中学为迎接建党九十八周年,举行了以“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是( )A.12B.13C.14D.16练3.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A.38B.58C.23D.12练4.有两部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择一部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果).考点2 用表格求概率【例2】同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2.【变式1】某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上是4,5,7(两个转盘除表面数字不同外,其他完全相同).选择2名同学分别转动A 、B 两个转盘,停止后指针所指数字较大的一方为获胜者,另一方需表演节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.【变式2】在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?4 游戏转盘B游戏转盘A A练1.某校决定从两名男生和一名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的同学恰为一男一女的概率是( )A.13B.23C.49D.59练2.小亮、小莹、大刚三名同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.12B.13C.23D.16练3.今年某市为创评“全国文明城市”,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部的姓名分别写在四张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的三张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是________事件,“小悦被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为________.(2)请用列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.考点3. 频率估计概率类型【例3】在一个不透明的袋子里装有3个黑球和若干个白球,它们除颜色不同外其余都相同.在不允许将球倒出来数的前提下,小明为估计袋中白球个数,采用如下办法:从中随机摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色……不断重复上述过程,小明共摸球1000次,其中200次摸到黑球.根据上述数据,小明估计袋子中白球有________个.【变式1】为了估计湖里有多少条鱼,先从湖里捕捞100条鱼做上标记,然后放回湖里去,经过一段时间,带有标记的鱼完全混合于鱼群后,第二次再捕捞125条,发现其中2条有标记,那么由此可估计湖里大约有___________条鱼【变式2】在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( ) A 、15个B 、20个C 、30个D 、35个练1.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 .练2.一只不透明的袋中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和.记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表:0.34 0.330.33 解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.练3.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 ( )个黄球.考点4. 几何频率【例4】小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是________.练1.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.练2.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于2的概率是( )A .21B.32 C .43 D .54练3.为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域内的频率稳定在常数0.25附近,请你估计不规则区域的面积.【当堂检测】1.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球.用列表法写出所有可能的结果.2.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从甲、乙、丙三个口袋中各随机地取出1个小球.你能写出所有可能的结果吗?第4题图3.两道单项选择题都含有A、B、C、D四个选项,若某学生不知道正确答案就瞎猜,则这两道题恰好全部被猜对的概率是__________.4.小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种.5.在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?1)从盒子中取出一个小球,小球是红球;2)从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;3)从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同.6. 在一个不透明的布袋里装有4个标号分别为1,2,3,4的小球,它们的材质、形状、大小等完全相同,小凯从布袋里随机取出1个小球,记下数字为x,小敏从剩下的3个小球中随机取出1个小球,记下数字为y,这样就确定了点P的坐标(x,y).(1)请你用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.【演练方阵】一、填空题:1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 . 二、选择题:1、同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4) 2、 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转)正数的概率为( )A .18B .16C .14D .123.从长为3,5,7,10是( )A .14B .12C .34D .1三、解答题:1、有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.2、有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?3. 在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.4. 在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.甲乙。

人教版九年级数学上册25.2.2用列表法和树状图法求概率教案

人教版九年级数学上册25.2.2用列表法和树状图法求概率教案
举例:掷三个骰子,求至少有两个骰子点数相同的概率。
(2)树状图的绘制:难点在于如何引导学生正确绘制树状图,并从中找出所有可能的结果。
举例:一个盒子里有3个红球和2个蓝球,先随机取一个球,放回后再取一个球,求第二次取出的球是红色的概率。
(3)组合数的计算:难点在于如何让学生理解组合数在列表法和树状图法中的应用,并掌握计算方法。
3.重点难点解析:在讲授过程中,我会特别强调列表法的列出所有结果和树状图法的正确绘制这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与列表法和树状图法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示列表法和树状图法的基本原理。
3.培养直观想象素养:通过绘制树状图,使学生能够形象地把握事件之间的关系,培养直观想象和空间思维能力。
4.强化数学运算素养:在求解概率过程中,加强学生的数学运算能力,提高准确性,培养严谨的数学态度。
5.增进数据分析素养:引导学生对实际问题进行数据分析,培养从数据中提取信息、发现规律的能力,为解决更复杂问题奠定基础。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解列表法和树状图法的基本概念。列表法是通过列出所有可能的结果来计算概率的方法,而树状图法则通过图形化的方式展示事件之间的关系,帮助我们求解概率。这两种方法在解决实际问题时具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何运用列表法和树状图法求解实际问题的概率。
在实践活动方面,我发现学生们在解决实际问题时,对于如何将问题转化为数学模型还存在一定的困扰。针对这个问题,我将在后续的教学中,多提供一些案例,让学生们通过观察和模仿,逐步学会将实际问题抽象为数学模型。

沪科版数学九年级下册26 第2课时 用“树状图”或“列表法”求概率教案与反思

沪科版数学九年级下册26 第2课时 用“树状图”或“列表法”求概率教案与反思

26.2等可能情形下的概率计算知人者智,自知者明。

《老子》原创不容易,【关注】,不迷路!第2课时用“树状图”或“列表法”求概率1.进一步学习概率的计算方法,能够进行简单的概率计算;2.理解并掌握用树状图法求概率的方法,能够运用其解决实际问题(重点,难点).3.理解并掌握用列表法求概率的方法,能够运用其解决实际问题(重点,难点).一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点一:用树状图法求概率【类型一】转盘问题有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?[来源:Z+xx+]解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果.其中A大于B的有5种情况,A小于B的有4种情况,再利用概率公式即可求得答案.解:选择A转盘.画树状图得:∵共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,∴P(A大于B)=59,P(A小于B)=49,∴选择A转盘.方法总结:树状图法适合两步或两步以上完成的事件.用到的知识点为概率等于所求情况数与总情况数之比.【类型二】游戏问题甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两人手势相同都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是________.解析:分别用A,B表示手心,手背.画树状图得:∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况,∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是48=12,故答案为12.方法总结:列表法或画树状图法可不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件. 【类型三】数字问题 将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?解析:(1)将分别标有数字1,2,3的三张卡片匀后,背面朝上放在桌上,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数恰好是4的倍数的情况,再利用概率公式即可求得答案.解:(1)∵将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上,∴(抽到奇数)=;(2)画树状图得:∴能组成的两位数是12,13,21,23,31,32.∵共有6种等可能的结果,这个两位数恰好是4的倍数的有2种情况,∴这个两位数恰好是4的倍数的概率为26=13. 方法总结:用树状图法求概率时,要做到不复不遗漏.本题的解题关键是准确理解题意,求出符合题设的数的个数.探究点二:用列表法求概率[【类型一】摸球问题一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:第一次第二次1 21(1,1)(1,2)2(2,1)(2,2)由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(2,1),(2,2),∴P=34,故选D.【类型二】学科内综合题从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:第一次第二次01 20——(0,1)(0,2)1(1,0)——(1,2)2(2,0)(2,1)——共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.三、板书设计转盘问题↓用树状图法求概率↙↘游戏问题数字问题[教学过程中,强调在面对多步完成的事件时,通常选择树状图求概率.【素材积累】辛弃疾忧国忧民辛弃疾曾写《美芹十论》献给宋孝宗。

概率讲义(树状图和列表法)

概率讲义(树状图和列表法)

概率知识点1 树状图(或列表法)的使用对于简单的概率类题型我们可以通过列举法,计算事件发生的频率的分析来估计事件发生的概率,但是对于可能情况较多的事件,我们可以通过用树状图或列表法来解决树状图法:①分层.分清事件发生的层次,哪些情况是第一层(第一次)发生的,哪些是第二层(第二次)发生的;②根据分层用树状图把每一层(每一次)表示出来,然后计算事件发生的概率;列表法:将前后两次发生的事件在表格中全部表达出来,在其中计算事件发生的次数,进而计算频率.例1.一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率为例2.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.21=63【解析】(1)树状图如图所示,选手一共有8种等可能的结果,分别为(√,√,√)、(√,√,×)、(√,×,√)、(√,×,×)、(×,√,√)、(×,√,×)、(×,×,√)、(×,×,×). 开始(2)由(1)得选手A 的结果共有8种等可能情况,其中晋级的情况有4种,故其概率为41=82例 3.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是无理数的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图的方法列出所有等可能的结果,并求出两次好抽取的卡片上的实数之差为有理数的概率.【解析】(1)∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,∴从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是:23(2)画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况, ∴两次好抽取的卡片上的实数之差为有理数的概率为: 例4.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是( )A .15B .25C .35D .45例5.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.例6.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 .例7.在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x ;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x 、y 确定的点(x ,y )在函数6y x =-+图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x 、y 满足xy>6,则小明胜;若x 、y 满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?例8.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x 2-3x+2=0的解的概率.。

用列表法和树状图分析概率

用列表法和树状图分析概率

▪ (1)该顾客至少可得到
元购物券,至
多可得到
元购物券;
▪ (2)请你用画树状图或列表的方法,求出该顾 客所获得购物券的金额不低于30元的概率.
课后练习
1.设有12只型号相同的杯子,其中一等品7只, 二等品3只,三等品2只.则从中任意取1只,是 二等品的概率等于( ).
1
1
1
A. 3 B.12 C. 4 D.1.
4.一张圆桌旁有四个座位,A先坐在如图所示 的座位上,B.C.D三人随机坐到其他三个座位 上.则A与B不相邻而坐的概率为___;
A
圆桌
5.随机掷一枚均匀的硬币两次,两次正面都朝 上的概率是( ).
131
A. 4 B.4 C.2 D.1.
6.一个口袋内装有大小相等的1个白球和已编有 不同号码的3个黑球,从中摸出2个球. (1)共有多少种可能性相同的结果? (2)摸出2个黑球有多少种的结果? (3)摸出两个黑球的概率是多少?
第二课时 用树状图和列表法 (复杂事件的概率)
1 . 概率的计算公式:
关注结果的个数
P(关注的结果)=
所有等可能结果的个数
(1)要清楚所有等可能(机会均等)的结果;
(2)要清楚我们所关注发生哪个或哪些结果.
例1. 随机掷一枚均匀的硬币两次,至少 有一次正面朝上的概率是多少?
正 开始


(正,正)
▪ 2.将分别标有数字1、2、3的三 张卡片洗匀后,随机抽取一张作 为十位数字(不再放回),再抽 取一张作为个位上的数字组成的 两位数.
求:(1)是奇数的概率; (2)等于32的概率;
▪3、小红、小名、小芳在一 起做游戏时,需要确定做游 戏的先后顺序,他们约定用 “剪子、包袱、锤”的方式 确定,问在一个回合中三人 都出包袱的概率是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
1
2
2
3
3
第一组
第二组
第一张牌的 牌面的数字
第二张牌的 牌面的数字
所有可能 出现的结果
开始

1
2
3
状 图
1 23123123
(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
第二张牌的牌面数字
1
2
3
第一张牌的牌面数字

1
(1,1) (1,2) (1,3)
学以致用
小明是个小马虎,晚上睡觉时将 两双不同的袜子放在 床头,早上起床没看清随便穿了两只就去上学,问小 明正好穿的是相同的一双袜子 的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2
B1
B2
A2 B1 B2 A1 B1 B2 A1 A1 B2 A1 A2 B1
所以穿相同一双袜子的概率为 4 ? 1


(红,红)

(红,蓝)

(蓝,红)

(蓝,蓝)

1200

蓝 红
对此你有什么评论?
“配紫色”游戏的变异
解:所有可能出现的结果如下:
红色1 红色2 蓝色
红色
(红1,红)
(红2,红) (蓝,红)
蓝色
(红1,蓝)
(红2,蓝) (蓝,蓝)
蓝 红2 1200 红1
蓝红
总共有 6种结果,每种结果出现的可能性相同,而 可以配成紫色的结果有 3种:(红1,蓝)(红 2, 蓝),(蓝,红) 因此游戏者获胜的概率为 1/2。

2
(2,1) (2,2) (2,3)

3
(3,1) (3,2) (3,3)
学以致用
(2010 ·无锡中考题)假如你仅有一天的时间参 加上海世搏会,上午从A-中国馆,B-日本馆, C-美国馆中任意选择一处参观,下午从D-韩 国馆,E-英国馆,F-德国馆中任意选择一处 参观.
(1)请用树状图或列表的方法,分析并写出你所 有可能的参观方式(用字母表示即可).
概率都是 1/4.
解:
第二张牌的牌面数字 1
2
第一张牌的牌面数字

1
(1,1) (1,2)

2
(2,1) (2,2)
2
列 从上面的列表可以看出 ,一次试验
表 可能出现的结果共有 4种:
用列出表格的方法
法 (1,1),(1,2),(2,1),(2,2),
而且每种结果出现的可能性
来分析和求解某些 事件的概率的方法
(2)求出你上午和下午恰好都参观亚洲国家馆的 概率.
谈 收获
用树状图和列表法,可以方便地求出 随机事件发生的概率 .
在借助于树状图或表格求某些事件发生 的概率时 ,应注意到各种情况出现的可能性是 相同的.
“石头剪刀布”游戏
解:
开始
A同学 B同学
石头
剪刀

石 剪布石 剪布 石 剪布
头刀
头刀
头刀
总共有9种结果,每种结果出现的可能性相同,而 A同学获胜 结果有3种:(石头,剪刀)(剪刀,布)(布,石头) ,因 此A同学获胜的概率为1/3.
佑,正面定然会全部朝上;只要有一个背面朝上, 那我们就难以制敌,只好回朝了。”
狄青胸有成竹,叫心腹拿来一袋铜钱,在千万 人的注视下,把铜钱全部抛向空中, 100个铜钱居 然鬼使神差地全部朝上。顿时,全军欢呼,声音 响彻山野。由于士兵个个认定神灵护佑,战斗中 奋勇争先,大功告成。
用树状图和列表法 求概率
准备两组相同的牌,每组两张,两张牌面的 数字分别是1和2.从两组牌中各摸出一张为 一次试验.
1
1
2
2
第一组
第二组
对于前面的摸牌游戏,一次试验中会出现哪些 可能的结果?每种结果出现的可能性相同吗?
会出现四种可能: 牌面数字为(1,1), 牌面数字为(1,2), 牌面数字为(2,1), 牌面数字为(2,2).
12 3
挑战自己
随机掷一枚均匀的硬币 3次, 求3次正 面都朝上的概率是多少 ?
公元1052年4月,侬智高起兵反宋。当朝皇帝
宋仁宗决定派遣大将狄青去平定叛乱。当时路途 艰险,军心不稳,狄青取胜的把握不大。为了鼓 舞士气,狄青便设坛拜神,说:“这次出兵讨伐 叛军,胜败没有把握,是吉是凶,只好由神明决 定了。是吉的话,那我随便掷 100个铜钱,神明保
解:
开始

第一张牌的 牌面的数字
1
2
法 1
第二张牌的 1
牌面的数字
21 2
树 状
所有可能出 (1,1) (1,2) (2,1) (2,2)
现的结果

法 从上面的树状图可以看出 ,一次试验可能出现的结
果有4种:(1,1),(1,2),(2,1),(2,Fra bibliotek), 而且每种结
果出现的可能性相同 .也就是说 ,每种结果出现的
学以致用
小红的衣柜里有 2件上衣,1件是长袖, 1件是短袖; 3 条裙子,分别是黄、红、蓝色。她任意拿出 1件上衣和 1 条裙子,正好是短袖上衣和红色裙子的概率是多大?
解:所有可能出现的结果如下:
裙子
上衣 长袖
黄 (长,黄)
红 (长,红)
蓝 (长,蓝)
短袖
(短,黄) (短,红) (短,蓝)
?拿出短袖上衣和红色裙子的概率是 1/6.
探究二
“配紫色”游戏
?游戏规则是 :游戏者同时转动两个转盘 ,如果转盘 A转出 了红色,转盘B转出了蓝色 ,那么他就赢了 ,因为红色和蓝 色在一起配成了 紫色.


A盘
蓝 黄
绿
B盘
第一步 第二步
“配紫色”游戏
解:所有可能出现的结果 如下:
第二个 转盘
第一个 转盘

黄 (红,黄)
红白
A盘
黄蓝 绿
相同.也就是说 ,每种结果
叫列表法。
出现的概率都是 1/4.
探究一
随机掷一枚均匀的硬币两次 ,至少有一次正面朝上 的概率是多少 ?
解:所有可能出现的结果如下:
正 开始


(正,正)

(正,反)

(反,正)

(反,反)
总共有4种结果,每种结果出现的可能性相同 ,而至少 有一次正面朝上的结果有 3种:(正,正),(正,反),(反, 正),因此至少有一次正面朝上的概率是 3/4.
议一议
用树状图和列表的方 法求概率时应注意些 什么?

1200 红
蓝红
蓝 红2 1200
红1
蓝红
用树状图和列表的方法求概率时应 注意各种结果出现的可能性务必相 同.
探究三
准备两组相同的牌,每组三张,三张牌面的数字 分别是1、2、3.从两组牌中各摸出一张为一次 试验,你能列出所有可能出现的结果吗?
B盘

绿
(红,蓝)
(红,绿)

(白,黄)
(白,蓝)
(白,绿)
总共有6种结果,每种结果出现的可能性相同,而可以配成 紫色的结果有1种:(红,蓝),因此游戏者获胜的概率为 1/6。
“配紫色”游戏的变异
用如图所示的转盘进行“配紫色”游戏 .
小颖制作了下图 ,并据此求出游戏者获胜的 概率是 1/2.
红 开始
相关文档
最新文档