高中立体几何证明方法及例题
高中数学必修2立体几何专题-线面垂直方法总结
系;已知线面垂直时会有哪些结论,是选择线
线垂直还是选择面面垂直;要证明结论或要得
2021到/10/1哪0 个结论,就必须满足什么条件等.
4
【变式练习1】 如图,E,F分别为直角三角形ABC的直角 边 AC 和 斜 边 AB 的 中 点 , 沿 EF 将 △ AEF 折 起 到 △ A1EF 的 位 置 , 连 结 A1B , A1C. 求 证 : (1)EF⊥平面A1EC; (2)AA1⊥平面A1BC.
所 以 A B C 是 等 边 三 角 形 , B O= D O= 3,
在
矩
形
D1D
B
B
中
1
,
有
D1D DO
6 3
2,O B = BP
3 = 2, 6
2 所 以 D 1D O ∽ O B P, 所 以 D 1O D + P O B= 9 0 , 所 以 2021/10/10 P O D 1O , 又 D 1O A C = O , 所 以 P O 平 面 D 1 A C1.2
31
【解析】①中n可能在α内;②n与m可以垂 直;由线面垂直与面面垂直知③④是正确 的. 答案:③④ 选题感悟:本题呈现的是空间中的线线、 线面、面面之间的位置关系,能有效的考 查考生的空间想象能力和推理能力.
2021/10/10
32
3.如图所示,在四棱锥P-ABCD中,∠ABC= ∠ ACD = 90° , ∠ BAC = ∠ CAD = 60° , PA⊥ 平面ABCD,E为PD的中点,PA=2AB=2. (1)求四棱锥P-ABCD的体积V; (2)若F为PC的中点, 求证:PC⊥平面AEF; (3)求证:CE∥平面PAB.
2021/10/10
25
高考数学-立体几何证明方法总结及经典3例
高考数学-立体几何证明方法总结及经典3例例1:平行类证明【平行类证明方法总结】线线平行的证明方法:三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。
线面平行的证明方法:面外线与面内线平行,两面平行则面内一线与另面平行等等面面平行的证明方法:面内相交线与另面平行则面面平行,三面间平行的传递性等等。
【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥面BCE.证法一:如图(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN,因为面ABCD∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =.又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴PEAPQK AQ =.则PQ ∥EK.∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,. 求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥. ∵AB BC ⊥, ∴BC ⊥平面SAB . 又∵AE ⊂平面SAB , ∴BC AE ⊥. ∵SC ⊥平面AEFG , ∴SC AE ⊥. ∴AE ⊥平面SBC . ∴AE SB ⊥.同理证AG SD ⊥. 例3:向量法解立体几何类 【量法解立体几何类公式总结】 基本公式若),,(),,,(222111z y x b z y x a ==,则①212121z z y y x x b a ++=⋅ ;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<夹角公式:||||cos 2121n n n n ⋅=θ距离公式:||||n n AB CD d == 【例】已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos 3.(3)由(2)知,点(022(22220)(004)D AD PQ -=--=-,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y +=+=⎪⎩,,取x =1,得(112)-,n =.点P 到平面QAD 的距离22PQ d ==n n.立体几何证明经典习题平行题目1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.2、如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点.求证:AF//平面PEC;垂直题目3、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.4、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD向量法解立体几何题目5、在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1.已知2AB=,BB1=2,BC=1,∠BCC1=3π.求二面角A-EB1-A1的平面角的正切值.立体几何证明经典习题答案1、证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.2、证明:如图,设PC中点为G,连结FG,1CD=AE,则FG//CD//AE,且FG=2∴四边形AEGF是平行四边形∴AF//EG,又∵AF⊄平面PEC,EG⊂平面PEC,∴AF//平面PEC3、证明:在平面PAC内作AD⊥PC交PC于D.∵平面PAC⊥平面PBC,且两平面交于PC,AD⊂平面PAC,且AD⊥PC,∴AD⊥平面PBC.又∵BC⊂平面PBC,∴AD⊥BC.∵PA⊥平面ABC,BC⊂平面ABC,∴PA ⊥BC . ∵AD ∩PA =A , ∴BC ⊥平面PAC .4、证明:取AB 的中点F,连结CF ,DF . ∵AC BC =,∴CF AB ⊥.∵AD BD =,(等腰三角形三线合一) ∴DF AB ⊥. 又CFDF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BEAB B =,∴CD ⊥平面ABE ,CD AH ⊥. ∵AH CD ⊥,AH BE ⊥, CD BE E =,∴ AH ⊥平面BCD .5、以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.由于BC =1,BB 1=2,AB BCC 1=3π,∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、AB 1(0,2,0)、102c ⎫-⎪⎪⎝⎭,、1302C ⎫⎪⎪⎝⎭,,.设0E a ⎫⎪⎪⎝⎭,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,即3202a a ⎛⎛⎫--- ⎪ ⎪⎝⎝⎭,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭, 即12a =或32a =(舍去).故1022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(00B A BA ==,122EA ⎛=-- ⎝ 故11112cos 3EA B A EA B A θ==,即tan θ=。
必修2立体几何证明题详解(五篇)
必修2立体几何证明题详解(五篇)第一篇:必修2 立体几何证明题详解迎接新的挑战!必修2 证明题一.解答题(共3小题)1.(2006•北京)如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.(1)求证:PB∥平面AEC;(2)求二面角E﹣AC﹣B的大小.考点:三垂线定理;直线与平面平行的判定。
分析:(1)欲证PB∥平面AEC,根据直线与平面平行的判定定理可知只需证PB与平面AEC内一直线平行即可,连BD交AC于点O,连EO,则EO是△PDB的中位线则EO∥PB,满足条件;(2)取AD的中点F,连EF,FO,根据定义可知∠EOF是二面角E﹣AC﹣D的平面角,在△EOF中求出此角,而二面角E﹣AC﹣B与二面角E﹣AC﹣D互补.解答:解:(1)由PA⊥平面ABCD可得PAAC又AB⊥AC,所以AC⊥平面PAB,所以AC⊥PB连BD交AC于点O,连EO,则EO是△PDB的中位线,∴EO∥PB ∴PB∥平面AEC(2)取AD的中点F,连EF,FO,则EF是△PAD的中位线,∴EF∥PA又PA⊥平面ABCD,∴EF⊥平面ABCD同理FO是△ADC的中位线,∴FO∥AB,FO⊥AC由三垂线定理可知∠EOF是二面角E﹣AC﹣D的平面角.又FO=AB=PA=EF∴∠EOF=45°而二面角E﹣AC﹣B与二面角E﹣AC﹣D互补,故所求二面角E﹣AC﹣B的大小为135°.点评:本题主要考查了直线与平面平行的判定,以及二面角等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.2.如图,已知∠BAC在平面α内,P∉α,∠PAB=∠PAC,求证:点P在平面α上的射影在∠BAC的平分线上.考点:三垂线定理。
专题:作图题;证明题。
分析:作PO⊥α,PE⊥AB,PF⊥AC,垂足分别为O,E,F,连接OE,OF,OA,证明Rt△AOE≌Rt△AOF,然后得到点P在平面α上的射影在∠BAC的平分线上.解答:证明:作PO⊥α,PE⊥AB,PF⊥AC,垂足分别为O,E,F,连接OE,OF,OA,∵⇒Rt△PAE≌Rt△PAF⇒AE=AF,∵,又∵AB⊥PE,∴AB⊥平面PEO,∴AB⊥OE,同理AC⊥OF.欢迎加入高一数学组联系电话:***迎接新的挑战!必修2 证明题在Rt△AOE和Rt△AOF,AE=AF,OA=OA,∴Rt△AOE≌Rt△AOF,∴∠EAO=∠FAO,即点P在平面α上的射影在∠BAC的平分线上.点评:本题考查三垂线定理,考查学生逻辑思维能力,是基础题.3.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=3.(I)求证:A1C⊥BD;(II)求直线A1C与侧面BB1C1C所成的角的正切值;(III)求二面角B1﹣CD﹣B的正切值.考点:三垂线定理;直线与平面所成的角;与二面角有关的立体几何综合题。
高一数学常考立体几何证明的题目及答案
证明:( 1)连结 A1C1 ,设 A1C 1 B1D1 O1,连结 AO1
∵ ABCD A1B1C 1D1 是正方体
A1 ACC1 是平行四边形
∴ A1C1∥ AC 且 A1C 1 AC
又 O1,O 分别是 A1C1, AC 的中点,∴ O1C1∥ AO 且 O1C1 AO
AOC1O1 是平行四边形 C1O∥ AO1, AO1 面 AB1D1 , C1O
.
1、如图,已知空间四边形 ABCD 中, BC AC , AD BD , E 是 AB 的中点。
求证:( 1) AB 平面 CDE; ( 2)平面 CDE 平面 ABC 。
BC AC
证明:( 1)
AE BE
CE AB
AD BD
同理,
AE BE
DE AB
A E
B
C
又∵ CE DE E
∴ AB 平面 CDE
9、如图,在正方体 ABCD A1B1C1D1 中, E 是 AA1 的中点 . ( 1)求证: A1C // 平面 BDE ; ( 2)求证:平面 A1AC 平面 BDE .
10、已知 ABCD 是矩形, PA 平面 ABCD , AB 2 , PA AD 4 , E 为 BC 的中点. ( 1)求证: DE 平面 PAE ; ( 2)求直线 DP 与平面 PAE 所成的角.
13 、 如 图 2 , 在 三 棱 锥 A - BCD 中 , BC= AC, AD= BD, 作 BE⊥ CD, E 为 垂 足 , 作 AH⊥ BE 于 H . 求 证 : AH⊥ 平 面 BCD.
精彩文档
实用标准文案
14. (12 分 )求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形. 已知:如图,三棱锥 S—ABC, SC∥截面 EFGH ,AB∥截面 EFGH . 求证:截面 EFGH 是平行四边形.
高中数学立体几何证明题汇总
高中数学立体几何证明题汇总立体几何常考证明题1.已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点。
1)证明EFGH是平行四边形。
2)已知BD=23,AC=2,EG=2,求异面直线AC、BD所成的角和EG、BD所成的角。
2.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E 是AB的中点。
1)证明AB垂直于平面CDE。
2)证明平面CDE垂直于平面ABC。
3.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
证明A1C平行于平面BDE。
4.已知三角形ABC中∠ACB=90,SA垂直于面ABC,AD垂直于SC。
证明AD垂直于面SBC。
5.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。
1)证明C1O平行于面AB1D1.2)证明AC1垂直于面AB1D1.6.正方体ABCD-A1B1C1D1中。
1)证明AC垂直于平面B1D1D。
2)证明BD1垂直于平面ACB1.7.正方体ABCD-A1B1C1D1中。
1)证明平面A1BD平行于平面B1DC。
2)已知E、F分别是AA1、CC1的中点,证明平面EB1D1平行于平面FBD。
8.四面体ABCD中,AC=BD,E、F分别为AD、BC的中点,且EF=AC/2,∠XXX。
证明BD垂直于平面ACD。
9.如图P是△ABC所在平面外一点,PA=PB,CB垂直于平面PAB,M是PC的中点,N是AB上的点,AN=3NB。
1)证明XXX垂直于AB。
2)当∠APB=90,AB=2BC=4时,求MN的长度。
10.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点。
证明平面D1EF平行于平面BDG。
11.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
1)证明A1C平行于平面BDE。
2)证明平面A1AC垂直于平面BDE。
12、已知矩形ABCD,PA垂直于平面ABCD,AB=2,PA=AD=4,E为BC的中点。
高中立体几何证明线面平行的常见方法
高中立体几何证明线面平行的常见方法1.通过“平移”再利用平行四边形的性质题目1:四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。
证明AF∥平面PCE。
证明:将四棱锥P-ABCD平移,使其底面平移到平面PCE上,得到四棱锥P'-A'B'C'D',其中A'B'C'D'与ABCD平行,且P'、E'、F'分别为A'B'、C'D'、A'D'的中点。
因为AF∥PD,所以AF'=PD'=C'F',又因为AD'=C'D'/2=AB'/2=AF'/2,所以AD'∥B'C'。
因此,根据平行四边形的性质,AF'∥B'C',即AF∥CE。
题目3:四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明EB∥平面PAD。
证明:连接PE,因为E为PC的中点,所以PE∥AD。
又因为CD⊥AD,所以CD∥PE。
又因为CD=2AB,所以AB∥PE。
因此,根据平行四边形的性质,EB∥PA,即EB∥平面PAD。
2.利用三角形中位线的性质题目4:四面体ABCD中,E、F、G、M分别是棱AD、CD、BD、BC的中点,证明AM∥平面EFG。
证明:连接EF、EG、FG,因为E、F、G分别为三角形BCD、ACD、ABD的中点,所以EF、EG、FG分别是这三个三角形的中位线。
因此,EF∥AD,EG∥BD,FG∥AC。
又因为M为BC的中点,所以AM∥FG。
因此,AM∥平面EFG。
3.利用平行四边形的性质题目7:正方体ABCD-A' B' C' D'中O为正方形ABCD的中心,M为B'B的中点,求证D'O∥平面A'BC'。
高中立体几何证明题
高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。
解析1. 连接AC。
- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。
2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。
- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。
- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。
- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。
题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。
解析1. 连接BC_{1},交B_{1}C于点E。
- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。
2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。
- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。
- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。
二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。
解析1. 连接AC,BD交于点O,连接PO。
- 因为底面ABCD是正方形,所以O为AC,BD中点。
- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。
- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。
- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。
- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
高中立体几何最佳解题方法及考题详细解答
高中立体几何最正确解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、假如一条直线和一个平面平行,经过这条直线的平面与这个订交,那么这条直线和交线平行。
(线面平行的性质定理)4、假如两个平行平面同时和第三个平面订交,那么它们的交线平行。
(面面平行的性质定理)5、假如两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法1、定义法:直线和平面没有公共点。
2、假如平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判断定理)3、两个平面平行,此中一个平面内的随意一条直线必平行于另一个平面。
4、反证法。
三、面面平行的证明方法1、定义法:两个平面没有公共点。
2、假如一个平面内的两条订交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判断定理)3、平行于同一个平面的两个平面平行。
4、经过平面外一点,有且只有一个平面与已知平面平行。
5、垂直于同一条直线的两个平面平行。
四、线线垂直的证明方法1、勾股定理; 2 、等腰三角形; 3 、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、假如一条直线和这个平面垂直,那么这条直线和这个平面内的随意直线都垂直。
7、在平面内的一条直线,假如和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)8、在平面内的一条直线,假如和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
9、假如两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内的随意直线都垂直;2、点在面内的射影;3、假如一条直线和一个平面内的两条订交直线垂直,那么这条直线就和这个平面垂直。
(线面垂直的判断定理)4、假如两个平面相互垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
高中立体几何证明平行的专题
FGG A B CD ECA BDE F DE B 1A 1C 1CM 立体几何——平行的证明【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形'【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。
(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; &分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形;【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F GM AD CD BD BC AM EFG 求证:E F BACDP (第1题图)AE;PEDCBAAB 1ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//=12AD BE //=12AF,G H ,FA FD BCHG ,,,C D F E ) 利用平行四边形的性质【例9】正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O21中点为PD E 求证:AE ∥平面PBC ; ~分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形【例11】在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF。
高中数学中的立体几何证明案例详细步骤与演绎
高中数学中的立体几何证明案例详细步骤与演绎立体几何是数学中的一个重要分支,它研究的是三维空间中的图形和变换关系。
在高中数学中,立体几何的证明是一个重要的部分,它既考察了学生对几何图形性质的理解,同时也培养了学生的逻辑推理和分析问题的能力。
本文将以几个典型的立体几何证明案例为例,详细介绍其步骤与演绎。
一、案例1:平行四边形的性质证明平行四边形是一种特殊的四边形,它的对边是平行的。
我们来证明平行四边形的一个性质:对角线互相平分。
证明过程如下:1. 过平行四边形ABCD的顶点A和C分别作BD和AC的垂线,设分别交于点E和F;2. 由平行线性质,得到AE // CF和DE // AF;3. 观察△ADE和△CFE,可以发现它们是全等三角形;4. 因此,AE = CF,DE = AF,即对角线互相平分。
二、案例2:立体图形的相似性质证明相似是几何中一个重要的概念,它描述了两个图形在形状上的相似程度。
我们来证明两个立体图形相似的性质:对应边成比例。
证明过程如下:1. 设立体图形A和B,它们的形状相似,记作A ~ B;2. 假设A的一个边长为a,B对应的边长为b;3. 观察A和B的对应边,可以发现它们的长度比为a : b;4. 因此,对应边成比例,即A ~ B。
三、案例3:球的体积公式证明球是一种典型的立体图形,它表现了三维空间中的旋转对称性。
我们来证明球的体积公式:V = (4/3)πr³。
证明过程如下:1. 设球的半径为r;2. 将球划分为无数个小圆柱,每个小圆柱的截面都是圆;3. 假设一个小圆柱的高为h,半径为r;4. 计算小圆柱的体积,即V₁ = πr²h;5. 通过对所有小圆柱体积求和,得到球的体积,即V = ∑V₁;6. 由于球的位置对称性,每个小圆柱的高都是2r,即h = 2r;7. 求和化简得到V = ∑(πr²h) = ∑(πr²·2r) = 2πr³;8. 由于无数个小圆柱填满整个球,因此球的体积为V = 2πr³;9. 化简得到V = (4/3)πr³,即球的体积公式成立。
高中数学必修二第八章立体几何初步典型例题(带答案)
高中数学必修二第八章立体几何初步典型例题单选题1、如图,△A′B′C′是水平放置的△ABC的直观图,其中B′C′=C′A′=2,A′B′,A′C′分别与x′轴,y′轴平行,则BC=()A.2B.2√2C.4D.2√6答案:D分析:先确定△A′B′C′是等腰直角三角形,求出A′B′,再确定原图△ABC的形状,进而求出BC.由题意可知△A′B′C′是等腰直角三角形,A′B′=2√2,其原图形是Rt△ABC,AB=A′B′=2√2,AC=2A′C′=4,∠BAC=90°,则BC=√8+16=2√6,故选:D.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则O′A′=2√2,所以原图形中,OB=4,OA=4√2,×4×4√2=8√2.故原平面图形的面积为12故选:A3、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C4、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D5、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.6、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√23πB .2√23πC .πD .√2π 答案:B分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r ,故可得2πr =2π3×3,解得r =1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V =13×πr 2×ℎ=13×π×2√2=2√23π. 故选:B.7、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D8、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1, 由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.多选题9、(多选)下列说法中正确的是()A.若直线l与平面α不平行,则l与α相交B.直线l在平面外是指直线和平面平行C.如果直线l经过平面α内一点P,又经过平面α外一点Q,那么直线l与平面α相交D.如果直线a∥b,且a与平面α相交于点P,那么直线b必与平面α相交答案:CD分析:由线面直线的位置关系逐一判断即可求解.若直线l与平面α不平行,则l与α相交或l⊂α,所以A不正确.若l⊄α,则l//α或l与α相交,所以B不正确.由线面直线的位置关系可知,C、D正确.故选:CD10、如图,长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,M为AA1的中点,过B1M作长方体的截面α交棱CC1于N,则()A.截面α可能为六边形B .存在点N ,使得BN ⊥截面αC .若截面α为平行四边形,则1≤CN ≤2D .当N 与C 重合时,截面面积为3√64答案:CD分析:利用点N 的位置不同得到的截面α的形状判断选项A ,C ,利用线面垂直的判定定理分析选项B ,利用平面几何知识求相应的量结合梯形的面积公式求得截面的面积,从而可判断选项D .长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N , 设N 0为CC 1的中点,根据点N 的位置的变化分析可得:当1≤CN ≤2时,截面α为平行四边形,当0<CN <1时,截面α为五边形,当CN =0时,即点N 与点C 重合时,截面α为梯形,故A 不正确,C 正确;设BN ⊥截面α,因为B 1M ⊂面α,所以BN ⊥B 1M ,所以N 只能与C 重合才能使BN ⊥B 1M ,因为BN 不垂直平面B 1CQM ,故此时不成立,故B 不正确;因为当点N 与点C 重合时,截面α为梯形,如下图所示:过M 作MH 垂直于B 1C 于H ,设梯形的高为ℎ,MH =x ,则由平面几何知识得:ℎ2=(√2)2−x 2=(√52)2−(√52−x)2,解得x =2√55,ℎ=√305,所以截面α的面积为:12×(√5+√52)×ℎ=12×3√52×√305=3√64,故D 正确;故选:CD .小提示:关键点睛:本题考查长方体的截面的形状,关键在于分析动点在不同的位置时,截面的形状,运用线面平行的判定定理和平面几何知识求得截面的面积.11、在棱长为2的正方体ABCD−A1B1C1D1中,点P是正方体的棱上一点,|PB|+|PC1|=λ,则()A.λ=2时,满足条件的点P的个数为1B.λ=4时,满足条件的点P的个数为4C.λ=4√2时,满足条件的点P的个数为2D.若满足|PB|+|PC1|=λ的点P的个数为6,则λ的取值范围为(2√2,4)答案:BC分析:根据各棱上的点P到B,C1两点距离之和对选项进行逐一分析,由此确定正确选项.设E,F分别是C1D1,AB的中点,|BD1|=√22+(2√2)2=2√3,|BE|=|C1F|=√12+(2√2)2=3,|A1C1|=|A1B|=2√2.由于|BC1|=2√2,所以|PB|+|PC1|=λ≥2√2,所以A选项错误.λ=4,满足|PB|+|PC1|=4的点为B1,C,E,F共4个,所以B选项正确.λ=4√2,满足|PB|+|PC1|=4√2的点为A1,D共2个,所以C选项正确.当P在正方形ADD1A1(不包括A,D,D1,A1)上运动时,λ∈(2+2√3,4√2),此时棱A1B1与棱CD上,也存在点使λ∈(2+2√3,4√2).所以当λ∈(2+2√3,4√2)时,满足|PB|+|PC1|=λ的点P的个数为6,所以D选项错误.故选:BC填空题12、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行13、如图已知A是△BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,若异面直线AD与BC所成角的大小为π3,则AD与EF所成角的大小为___________.答案:π3或π6分析:取AC的中点G,连接EG,GF,则∠EGF=π3或∠EGF=2π3,分别分析这两种情况下∠GFE的大小即为AD与EF所成角.解:如图所示:取AC的中点G,连接EG,GF,则EG//BC,GF//AD,所以∠EGF为异面直线AD与BC所成角或其补角.因为AD=BC,所以EG=GF,当∠EGF=π3时,△EGF为等边三角形,∠GFE=π3,即AD与EF所成角的大小为π3;当∠EGF=2π3时,EG=GF,△EGF为等腰三角形,∠GFE=π6,即AD与EF所成角的大小为π6.所以答案是:π3或π6.14、已知三棱柱ABC −A 1B 1C 1中,棱长均为2,顶点A 1在底面ABC 上的射影恰为AB 的中点D ,E 为AC 的中点,则直线BE 与直线AB 1所成角的余弦值为________.答案:34分析:根据三棱柱性质与题中的中点条件,可将所求直线BE 与直线AB 1所成角的余弦值转化为求直线GB 1与直线AB 1所成角的余弦值,那么就要通过多次转化最终求得△AGB 1中三边长,然后直接在△AGB 1中运用余弦定理即可.如图,取A 1C 1中点G ,连接B 1G,AG,AE,DE,GE ,由三棱柱的性质易证得GE //BB 1,GE =BB 1,所以四边形GEBB 1为平行四边形,所以GB 1//BE ,所以下面即求直线GB 1与直线AB 1所成角的余弦值.由题意知,A 1D ⊥平面ABC ,因为AB,DE ⊂平面ABC ,所以A 1D ⊥AB,A 1D ⊥DE ,在Rt △AA 1D 中,AA 1=2,AD =12AB =1,∠A 1DA =90°,求得A 1D =√3,∠A 1AD =60°. 所以在菱形AA 1B 1B 中,AB 1=2ABcos30°=2√3.在Rt △A 1DE 中,∠A 1DE =90°,A 1D =√3,DE =12BC =1,求得A 1E =2. 所以在△A 1AE 中,根据余弦定理得cos∠A 1AE =AA 12+AE 2−A1E 22AE⋅AA 1=14,所以cos∠AA 1G =cos(π−∠A 1AE)=−14.在△A 1AG 中根据余弦定理得AG 2=AA 12+A 1G 2−2AA 1⋅A 1Gcos∠AA 1G,AG =√6.在△AGB 1中,AG =√6,AB 1=2√3,GB 1=√3,根据余弦定理得cos∠GB 1A =GB 12+AB12−AG 22GB 1⋅AB 1=34,所以直线GB 1与直线AB 1所成角的余弦值为34,即直线BE 与直线AB 1所成角的余弦值为34. 故答案为:34解答题15、在空间四边形ABCD中,AB=CD,点M、N分别为BD、AC的中点.(1)若直线AB与MN所成角为60°,求直线AB与CD所成角的大小;(2)若直线AB与CD所成角为θ,求直线AB与MN所成角的大小.答案:(1)60°(2)θ2或π−θ2分析:根据异面直线所成角的定义,借助平行关系作出平行直线,从而找到异面直线所成角(或补角)即可求解.(1)如图,取AD的中点为P,连接PM、PN.因为点M、N分别为BD、AC的中点,所以PM//AB,PN//CD,且PM=12AB,PN=12CD,所以,∠MPN为直线AB与CD所成的角(或补角),∠PMN为直线AB与MN所成的角(或补角). 又AB=CD,所以PM=PN,即△PMN为等腰三角形.直线AB与MN所成角为60°,即∠PMN=60°,则∠MPN=180°−2×60°=60°.所以,直线AB与CD所成的角为60°.(2)(2)若直线AB与CD所成的角为θ,则∠MPN=θ或∠MPN=π−θ.若∠MPN=θ,则∠PMN=π−∠MPN2=π−θ2,即直线AB与MN所成角为π−θ2;若∠MPN=π−θ,则∠PMN=π−∠MPN2=θ2,即直线AB与MN所成角为θ2.综上所述,直线AB与MN所成的角为θ2或π−θ2.。
高中立体几何证明线垂直的方法(学生)
高中立体几何证明线垂直的方法(学生)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.MarchPEDC BA高中立体几何证明线线垂直方法(1)通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,//1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ⊥平面PDC.2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ;3.如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。
(1)证明:PH ABCD ⊥平面;(2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面.E FACDP(第2题4.如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD 。
证明: BE PDC ⊥平面;5.在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小;6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º 证明:AB ⊥PC(3)利用勾股定理7.如图,四棱锥P ABCD -的底面是边长为1的正方形,,1, 2.PA CD PA PD ⊥==求证:PA ⊥平面ABCD ;_ P ACBPCADO8.如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2.(1)求证:AM ∥平面BEC ;(2)求证:⊥BC 平面BDE ;图1图29.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ====== (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的大小;10.如图,四棱锥S-ABCD 中,BC AB ⊥,CD ⊥BC ,侧面SAB 为等边三角形,2,1AB BC CD SD ====.M AFBCDE M E D C(Ⅰ)证明:SAB 面 SD ;(Ⅱ)求AB 与平面SBC 所成角的大小.(4)利用三角形全等或三角行相似11.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点. 求证:D1O⊥平面MAC.12.如图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1中点.求证:AB1⊥平面A1BD;13.如图,已知正四棱柱ABCD—A1B1C1D1中,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,求证:A1C⊥平面BDE;(5)利用直径所对的圆周角是直角14.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC . (1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.O AC BP.15.如图5,在圆锥PO 中,已知PO =2,⊙O 的直径2AB =,C 是狐AB 的中点,D 为AC 的中点.证明:平面POD ⊥平面PAC ;16.如图,在四棱锥P ABCD-中,底面ABCD是矩形,Array PA⊥平面ABCD.以BD的中点O为球心、BD为直径的球面交PD于点M.B求证:平面ABM⊥平面PCD;。
高一数学常考立体几何证明题及答案
11、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。
2、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,求证: 1//AC 平面BDE 。
3、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .4、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .5、正方体''''ABCD A B C D -中,求证: (1)''AC B D DB ⊥平面; (2)''BD ACB ⊥平面.6、正方体ABCD —A 1B 1C 1D 1中. (1)求证:平面A 1BD ∥平面B 1D 1C ;(2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=,求证:BD ⊥平面ACD8、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面B D G.9、如图,在正方体AEDBCA 1ED 1C 1B 1DC BA SDCBAD 1C 1B 1A 1A 1A E21111ABCD A B C D -中,E 是1AA 的中点.(1)求证:1//AC 平面BDE ; (2)求证:平面1A AC ⊥平面BDE .10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥.12、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD于点O ,求证:1AO ⊥平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S —ABC ,SC ∥截面EFGH ,AB ∥截面EFGH .求证:截面EFGH 是平行四边形.315.(12分)已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,如图.(1)求证:MN ∥面BB 1C 1C ; (2)求MN 的长.16.(12分)(2009·浙江高考)如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB=2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.17.(12分)如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD . (2)平面EFC ⊥平面BCD4.1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
立体几何证明题目
立体几何证明题目一、直线与平面平行的证明题目1:在正方体ABCD - A_1B_1C_1D_1中,E为DD_1的中点,求证:BD_1∥平面AEC。
解析:1. 连接BD交AC于O点。
- 在正方体中,底面ABCD是正方形,根据正方形对角线的性质,对角线互相平分,所以O为BD的中点。
2. 连接OE。
- 因为E为DD_1的中点,在三角形BD_1D中,O是BD中点,E是DD_1中点,根据三角形中位线定理,中位线平行于第三边且等于第三边的一半,所以OE∥ BD_1。
3. 又因为OE⊂平面AEC,BD_1not⊂平面AEC。
- 根据直线与平面平行的判定定理,如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行,所以BD_1∥平面AEC。
二、平面与平面平行的证明题目2:已知四棱锥P - ABCD中,底面ABCD是平行四边形,点M,N分别在PA,BD上,且PM:MA = BN:ND。
求证:平面MNQ∥平面PBC(设AC∩ BD = Q,连接MQ、NQ)。
解析:1. 因为四边形ABCD是平行四边形,AC∩ BD = Q,所以AQ = QC,BQ=QD。
- 由于PM:MA = BN:ND,在三角形PAQ中,(PM)/(MA)=(BN)/(ND),可得MQ∥ PC。
- 理由是:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
2. 在三角形ABD中,(BN)/(ND)=(PM)/(MA),可得NQ∥ AD。
- 又因为底面ABCD是平行四边形,AD∥ BC,所以NQ∥ BC。
3. 因为MQ∥ PC,MQnot⊂平面PBC,PC⊂平面PBC,根据直线与平面平行的判定定理,可得MQ∥平面PBC。
- 同理,NQ∥ BC,NQnot⊂平面PBC,BC⊂平面PBC,可得NQ∥平面PBC。
4. 又因为MQ∩ NQ = Q,MQ⊂平面MNQ,NQ⊂平面MNQ。
- 根据平面与平面平行的判定定理,如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,所以平面MNQ∥平面PBC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系; 高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1.线线、线面、面面平行关系的转化:面面平行性质 IIa,a ,ba II ba b A a // bII(a//b,b//c a I Ic )V线线// 线面平行判定 线面// 面面平行判定1面面// < --------------------------- < --------------------------- a II面面平行性质 公理4 II a II , b //a ,b a II a II a IIII II II 成直二面角ababaaa//baa be oX!AO 8O/ /3.平行与垂直关系的转化:a / /b 线面垂直判定2 面面平行判定22.三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(3)指出所求作的角;(2)证明其符合定义; (4)计算大小。
线面垂直性质2面面平行性质34.应用以上“转化”的基本思路一一“由求证想判定,由已知想性质。
5•唯一性结论:① 过直线外一点.有且只有一条直线与己知直线平行 ② 过空间一点.有且只有一条直线与已知平面垂直 ③ 过空间一点,有且只有一个平画与已知直线垂直应用中常用于反 证袪”或"同一法”(2)直线与平面所成的角: 0°<0< 90°(3)二面角:二面角的平面角0°<0< 180 °(走义法)(三垂蛭定理法)(垂面法・江棱门1.三类角的定义:(1)异面直线所成的角B:0°<0< 90 °a / /b面面线面丄线线A.60 °B.45 °C.30 °D.120 °解:取AC 中点G ,连结EG 、FG ,贝U1 1EG // — PC , FG // — AB2 2•••/ EGF 为AB 与PC 所成的角 在厶EGF 中,由余弦定理,/EG 2 FG 2 EF 2 52 32 7 1 cos Z EGF2 • EG • FG2 5 32• AB 与PC 所成的角为180° - 120°= 60° •••选 A3B. -6由题意:丄4 12【典型例题】(一)与角有关的问题 例1.(1)如图,E 、F 分别为三棱锥 P — ABC 的棱AP 、BC 的中点,PC = 10, AB = 6, EF = 7,则异面直线AB 与PC 所成的角为()设正四棱锥的高为解:斜高为h'(2 )已知正四棱锥以棱长为 1的正方体的某个面为底面,且与该正方体有相同的全面积,则这一正 四棱锥的侧棱与底面所成的角的余弦值为()① 点P 到平面QEF 的距离为定值;② 直线PQ 与平面PEF 所成的角为定值; ③ 二面角P — EF — Q 的大小为定值; ④ 三棱锥P — QEF 的体积为定值 其中正确命题的序号是二A 1D 1上定点P 到面A 1B 1CD 的距离为定值•••①对,②错二面角P — EF — Q ,即面PDF 与面A 1B 1CD 所成的角,且平面角/ PDA 1为定 值,.••③对因为A 1B 1 // DC ,且EF 为定值,• S QEF 为定值又P 点到平面QEF 的距离为定值,• V P QEF 为定值,•④对综上,①③④正确。
例2.图①是一个正方体的表面展开图, MN 和PQ 是两条面对角线,请在图(2)的正方体中将PQ 画出来,并就这个正方体解答下列各题:(1 )求MN 和PQ 所成角的大小;(2)求四面体 M — NPQ 的体积与正方体的体积之比;1侧棱长PB . h 2OB 26 2<26 1■ 222• cos Z PBO OB2 .13PB.26132选A(3)如图,在正方体ABCD A 1B 1C 1 D 1中,P 为A 1D 1上的一个定点, Q 为2E 、F 为CD 上任意两点,且EF 的长为定值,有下列命题:A 1B 1上的任意一点,解:平面QEF 即是平面A 1B 1CDMN ,O5 6AB23(3)求二面角M — NQ — P 的大小。
Nz zC图①•••/ MEO = 60°即二面角M — NQ — P 的大小为60°。
解:(1)如图②,作出MN 、PQ•/ PQ // “6又厶MNC 为正三角形 •••/ MNC = 60°••• PQ 与MN 成角为60(2)V MNPQV Q PMN13S PMN • MQ 316 2S PMN MQ16S pMDN • MQ正方体即四面体M — NPQ 的体积与正方体的体积之比为 1: 6(3)连结MA 交PQ 于0点,贝U MO 丄PQ又NP 丄面PAQM ,• NP 丄MO ,贝U MO 丄面PNQ 过O 作OE 丄NQ ,连结 ME ,贝U ME 丄NQ •••/ MEO 为二面角 M — NQ — P 的平面角 在 Rt △ NMQ 中,ME • NQ = MN • MQ设正方体的棱长为 aME2a • a ..3a在Rt MEO 中,sin / MEOMO ME例3.如图,已知四棱锥 P —ABCD , PB 丄AD ,侧面PAD 为边长等于2的正三角形,底面 ABCD 为菱 形,侧面PAD 与底面ABCD 所成的二面角为120°。
(1) 求点P 到平面ABCD 的距离;(2) 求面APB 与面CPB 所成二面角的大小。
•/ AD 丄 PB , • AD 丄 OB (根据•/ PA = PD ,. OA = OD于是OB 平分AD ,点E 为AD 中点• PE 丄 AD•Z PEB 为面PAD 与面ABCD 所成二面角的平面角• Z PEB = 120 °,Z PEO = 60°:3 3又PE ,3, • PO PEsin60°-.3 • 二 -2 2即为P 点到面ABCD 的距离。
(2)由已知ABCD 为菱形,及△ PAD 为边长为2的正三角形 PA = AB = 2,又易证 PB 丄 BC 故取PB 中点G , PC 中点F 则 AG 丄 PB , GF // BC 又 BC 丄 PB ,. GF 丄 PB•••/ AGF 为面APB 与面CPB 所成的平面角 •/ GF // BC // AD ,•/ AGF = n-Z GAE连结GE ,易证 AE 丄平面POB解:(1)作PO 丄平面 E ,连结PE23又PE BE 、、3, G 为PB 中点 1••Z PEG Z PEB 60o2 • GE PEcos60°.3 丄止2 21 7在 Rt AGE 中,AE AD 12•/ tan Z GAE £1AE、:3 2/•Z GAEarctan —32 /•Z AGFarcta n —32所以所求二面角的大小为arcta^l2(2)解法2:如图建立直角坐标系,其中 O 为坐标原点,x 轴平行于 DAP ( 0,0,3),B ( 0,PB 的中点G 的坐标为(0 ,3丁3 35,连结AG又 A ( 1, 0),C (3-3 2由此得到 GA(1, PB(0,i ),BC (于是GA -PB0, BC -PB•/ GA 丄 PB , BC 丄 PB•/ GA 、 BC 的夹角为所求二面角的平面角于是cosGA • BC |GA| • |BC|/所求二面角大小为2历arccos —(二)与距离有关的问题 例4.(1)已知在△ ABC顶点的距离都是14,那么点中,AB = 9,AC = 15,Z P 到平面ABC 的距离是(BAC = 120°, )它所在平面外一点 P 到厶ABC 三个A. 13B. 11C. 9D. 7解:设点P 在厶ABC 所在平面上的射影为 OPA = PB = PC ,「. O ABC 的外心△ ABC 中,AB = 9, AC = 15,/ BAC = 120°••• BC . 92 152 2 9 15 cos120o21a 由2R ,二 Rsi nA••• PO 142 7.3 2 7(2)在直三棱柱 ABC A 1B 1C 1 中,AB BC . 2 , BB 1 2, / ABC90O ,E 、F 分别为AA 1> C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的 长度为 ______________ 。
解:(采用展开图的方法)将平面B 1BCC 1沿B 1B 旋转使两矩形A 1ABB 1与B 1BCC 1在同一平面内 连接EF ,则EF 为所求的最短路径7:3C21 252CBBi F Cj图①如图①,EF如图②展开, EF 如图③展开, EF Bi图②123 2 2(2)21 ;比较这三种方式展开,可见沿表面从 Ci2 图③22E 到F 的最短路径长度为点评:此类试题,求沿表面运动最短路径, 应比较其各种不同展开形式中的不同的路径,取其最小的一个。
应展开表面为同一平面内, 32。
2则线段最短。
但必须注意的是,(3)在北纬45°圈上有甲、 则甲、乙两地的球面距离是( 与西经130 °,设地球半径为 R ,A- R B.丄R 4o乙两地,它们的经度分别是东经 140° 由题意ZAO 1B 解: 1(O 1为小圆圆心)360 14013090又由题意0小 O 1B-2R2则 1AB 中,AB R•••△ AOB 为正三角形(O 为球心)3/.z AOB/A 、 B 两点球面距离为 —R3•••选 D例5.如图,四棱锥 P — ABCD ,底面 ABCD 是矩形,PA 丄平面ABCD , E 、F 分别是AB 、PD 中点。
(1) 求证:AF //平面PEC ;(2)若 AD = 2 , CD 2.. 2,二面角 P — CD — B 为 45°,求点 F 到平面 PEC距离。
1 1• FG / - CD ,又 AE / - CD2 2 • FG // AE•四边形AEGF 为平行四边形• AF // EG ,又EG 面PEC ,AF 面PEC• AF //平面 PEC(2) T CD 丄 AD ,又 PA 丄面 ABCD• AD 为PD 在面 ABCD 上射影• CD 丄 PD• Z PDA 为二面角 P — CD — B 的平面角,且Z PDA = 45 则厶PAD 为等腰直角三角形 • AF 丄PD ,又 CD 丄平面 PAD • CD 丄 AF • AF 丄面PCD作FH 丄PC 于H ,贝U AF 丄FH 又 EG // AF ,• EG 丄 FH• FH 丄面PEC ,「. FH 为F 到面PEC 的距离在 Rt △ PEG 中,FH • PG = PF • FG•FH恵<21「22 22 1方法2:(体积法)解:G 为PC 中点,连结 又••• F 为PD 中点FG 、EG•/AF //面PEC ,故只要求点 A到面PEC 的距离d1 1由 VV 即 S • d S • PAA PECP AECPECAEC33易证AF 丄面PCD ,••• EG 丄面PCD ••• EG 丄 PCSPEC1 PC • EG 1 ■ 22 2 2 2 22 、2 2 2 22SAEC1 AE BC 1 .2 2 2 22S AEC• PA2 2 1 d S PEC2、2 1(三)对命题条件的探索解: •/ PA 丄面 ABCD , PE 丄 DE由三垂线定理的逆定理知 PE 的射影AE 丄BE所以满足条件的点 E 是以AD 为直径的圆与BC 的交点,要有两个交点,则 AD > 2AB = 6 •••选 A(2)如图,在三棱柱 ABC — A'B'C'中,点E 、F 、H 、K 分别为 AC'、CB'、A'B 、B'C'的中点, ABC 的重心,从K 、H 、G 、B'中取一点作为P ,使得该棱柱恰有 2条棱与平面PEF 平行,则P 为分析:从题目中的“中点”条件,联想到“中位线”例6. ( 1)如图已知矩形ABCD 中,AB = 3, BC = a ,若PA 丄平面 ABCD ,在 BC 边上取点 E 使PE丄DE ,则满足条件 E 点有两个时, A. a 6C. 0 a 6B.a 6 D. 0 a 6A. KB. HC. GD. B a 的取值范围是( )C 1而平面PEF 中,EF 为定直线,连 BC'则F 为BC'中点故 AC'B 中,EF // AB AB //平面 PEF , A'B' //平面 PEF考虑到若P 为K 点,则还有AA'、BB'、CC'都平行于FK 即它们也都平行于平面 PEF ,不合题意。