一元二次方程说课稿(1)

合集下载

2.2一元二次方程的解法(1)说课稿 2022-2023学年浙教版数学八年级下册

2.2一元二次方程的解法(1)说课稿 2022-2023学年浙教版数学八年级下册

一元二次方程的解法一、教材分析本节课是八年级下册数学中的第二章第二节,主要围绕一元二次方程的解法展开讲解。

通过本节课的学习,学生将掌握解一元二次方程的一般方法,强化对解方程的理解和应用能力。

二、教学目标本节课的教学目标主要包括以下几个方面:1.理解一元二次方程的定义,掌握一元二次方程的一般形式;2.掌握求解一元二次方程的常见方法,如因式分解法和配方法;3.能够运用所学方法解决实际问题。

三、教学重点1.掌握一元二次方程的定义和一般形式;2.掌握因式分解法和配方法求解一元二次方程。

四、教学难点1.运用所学方法解决实际问题。

五、教学过程1. 导入与承前启后(5分钟)首先,我将通过提问导入本节课的内容,引发学生对一元二次方程求解的思考,进而与上节课所学内容进行联系。

2. 理解一元二次方程的定义与一般形式(10分钟)接下来,我将通过课件展示一元二次方程的定义和一般形式,与学生进行互动讨论,确保学生对一元二次方程的基本概念有清晰的理解。

3. 学习因式分解法(15分钟)在本节课中,因式分解法是求解一元二次方程常用的方法之一。

我将结合具体的例子,讲解因式分解法的步骤和应用技巧,并通过小组合作的方式进行练习和巩固。

4. 学习配方法(15分钟)除了因式分解法外,配方法也是求解一元二次方程的重要方法之一。

我将通过课件展示配方法的步骤和实例,帮助学生理解并掌握配方法的运用。

5. 拓展与应用(15分钟)在本节课的最后部分,我将提供一些拓展题目和实际问题,引导学生运用所学方法解决更加复杂和实用的问题,提高他们的综合应用能力。

六、板书设计根据本节课的内容,我设计了以下板书:一元二次方程的解法一、定义与一般形式二、因式分解法三、配方法四、拓展与应用七、教学反思本节课通过活动导入、互动讨论和小组合作练习等多种教学方式,使学生主动参与到学习中,提高了教学的趣味性和互动性。

同时,在教学过程中注重理论与实践的结合,引导学生将所学的解方程的方法应用到实际问题中。

一元二次方程说课稿

一元二次方程说课稿

一元二次方程说课稿(一)我说课的题目北师版九年级(上)第二章《一元二次方程》. 下面我就从以下几个方面对一元二次方程进行说课⑴说教材⑵说目标⑶说教学方法、学法⑷说教学程序⑸说评价一、说教材教材分析本节课介绍了一元二次方程的概念及一般形式.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。

本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用。

二、说目标⑴教学目标1.知识目标:使学生充分了解一元二次方程的概念;正确掌握一元二次方程的一般形式.2.能力目标:经历抽象一元二次方程的过程, 使学生体会出方程是刻画现实世界中数量关系的一个有效数学模型; 经历探索满足方程解的过程,发展估算的意识和能力.3.情感目标:培养学生主动探索、敢于实践、勇于发现、合作交流的精神.⑵教学重点建立一元二次方程的概念,认识一元二次方程的一般形式。

⑶教学难点由实际问题抽象出方程模型的能力三、说教学方法和学生的学法⑴教法分析本节课主要采用以类比发现法为主,以讨论法、练习法为辅的教学方法.⑵学法指导本节课的教学中,教会学生善于观察、分析讨论、类比归纳,最后抽象出有价值。

让时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

⑶教学手段采用电脑多媒体辅助教学,利用实物投影进行集体交流,及时反馈相关信息四、说教学程序⑴知识回顾导入新课⑵自主探索归纳新知⑶巩固练习深化知识⑷归纳小结反思提高⑸布置作业分层落实⑴知识回顾导入新课什么是一元一次方程?(请学生举例)请同学们阅读教材的“问题1”和"问题2",进一步明确列方程解实际问题的思路和方法. (培养学生的自学能力)设计意图:方程模型的建立为下一环节的教学做好铺垫。

⑵自主探索归纳新知比较一:与一元一次方程作纵向比较得一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一元二次方程应用说课稿

一元二次方程应用说课稿

北师版九年级数学〔上册〕第二章一元二次方程一元二次方程(一)P52页——说课稿尊敬的各位评委、各位教师:大家好!今天我说课的课题是北师版九年级数学上册第二章一元二次方程的第一课时。

下面我将从以下五个方面对本节课的设计加以阐述:一、教材分析1、地位与作用一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位。

其中一元二次方程的应用也是初中数学应用问题的重点内容,同时也是难点。

它是一元一次方程应用的继续,二次函数学习的根底,具有承前启后的作用。

本节是一元二次方程的应用,它是研究现实世界数量关系和变化规律的重要数学模型。

2、教学目标〔1〕知识技能目标:学会利用一元二次方程的知识解决实际问题,将实际问题转化为数学模型。

〔2〕数学思考目标:经历由实际问题转化为一元二次方程的过程,探索问题中的数量关系,并能运用一元二次方程对之进展描述。

〔3〕解决问题目标:学会将实际应用问题转化为数学问题。

〔4〕情感态度目标:通过探究用一元二次方程解决身边的问题,体会数学知识的应用价值,激发学生学习数学的兴趣,了解数学对促进社会进步和开展人类理性精神的作用。

3、说教学重点难点:经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型。

能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。

二、学情分析知识掌握方面:学生对列方程解应用题的一般步骤已经熟悉,适合由特殊到一般的探究方式。

学生年龄特点:九年级学生具有丰富的想象力、好奇心和好胜心理。

容易开发他们的主观能动性,适合自主探究、合作交流的数学学习方式。

三、教法与学法:1.教法.根据新课程中以学生为主体,以教师为主导,关注每个学生的全面开展的理念,因此本课主要采用在教师指导下的自主探究、合作交流的教学方法。

充分利用教材,并深入挖掘教材内涵,为学生创设自主探究、合作交流的学习时机。

人教版数学九年级上册22.3.1《实际问题与一元二次方程》说课稿1

人教版数学九年级上册22.3.1《实际问题与一元二次方程》说课稿1

人教版数学九年级上册22.3.1《实际问题与一元二次方程》说课稿1一. 教材分析《实际问题与一元二次方程》是人教版数学九年级上册第22章的一部分,这一章节的主要内容是让学生通过解决实际问题,学会建立一元二次方程,并掌握求解一元二次方程的方法。

在九年级学生的学习过程中,这是从具体形象思维向抽象逻辑思维过渡的重要环节,对于培养学生的数学素养,提高解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程有了一定的理解,这为学习一元二次方程打下了基础。

但是,由于一元二次方程的抽象性,学生可能在学习过程中存在一定的困难。

因此,在教学过程中,需要关注学生的学习困难,引导学生逐步理解一元二次方程的实质。

三. 说教学目标1.知识与技能目标:学生能理解一元二次方程的概念,学会列出一元二次方程,掌握一元二次方程的解法。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:一元二次方程的概念,列方程的方法,求解一元二次方程的算法。

2.教学难点:一元二次方程的实际应用,对一元二次方程解法的理解。

五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,引导学生通过解决实际问题,发现一元二次方程,学习一元二次方程。

同时,利用多媒体教学手段,展示实际问题的图像,帮助学生更直观地理解问题。

六. 说教学过程1.导入:通过一个实际问题,引入一元二次方程的概念。

2.新课导入:讲解一元二次方程的定义,列出一元二次方程的一般形式。

3.实例解析:通过具体的实际问题,引导学生学会列方程,理解方程的含义。

4.方法讲解:讲解一元二次方程的解法,包括因式分解法、配方法、求根公式等。

5.练习巩固:学生独立解决一些实际问题,巩固所学知识。

6.总结拓展:引导学生思考一元二次方程在实际生活中的应用,提高学生的应用能力。

浙教版数学八年级下册2.1《一元二次方程》说课稿1

浙教版数学八年级下册2.1《一元二次方程》说课稿1

浙教版数学八年级下册2.1《一元二次方程》说课稿1一. 教材分析《一元二次方程》是浙教版数学八年级下册第2章第1节的内容。

本节课的主要内容是一元二次方程的定义、解法以及应用。

一元二次方程是初中数学的重要内容,也是高中数学的基础。

它不仅在数学领域有广泛的应用,而且在物理、化学等自然科学领域也有重要作用。

二. 学情分析八年级的学生已经掌握了代数的基础知识,具备了一定的逻辑思维能力和解决问题的能力。

但是,对于一元二次方程的理解和应用还需要进一步的引导和培养。

因此,在教学过程中,我将以学生已有的知识为基础,通过实例引入一元二次方程,引导学生掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。

三. 说教学目标1.知识与技能目标:使学生理解一元二次方程的定义,掌握一元二次方程的解法,能够应用一元二次方程解决实际问题。

2.过程与方法目标:通过探究一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:一元二次方程的定义,一元二次方程的解法。

2.教学难点:一元二次方程的解法,应用一元二次方程解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法。

2.教学手段:多媒体课件、黑板、粉笔。

六. 说教学过程1.导入新课:通过一个实际问题引入一元二次方程,激发学生的兴趣。

2.自主学习:学生自主探究一元二次方程的定义和解法,教师给予引导和帮助。

3.课堂讲解:教师讲解一元二次方程的定义和解法,通过实例解释一元二次方程的应用。

4.课堂练习:学生进行课堂练习,巩固一元二次方程的解法。

5.小组讨论:学生分组讨论一元二次方程的应用问题,分享解题思路和方法。

6.总结提升:教师引导学生总结一元二次方程的解法和应用,强调重点和难点。

7.课后作业:学生完成课后作业,巩固所学内容。

《一元二次方程》说课稿

《一元二次方程》说课稿

《一元二次方程》说课稿一.教材分析1.教材内容:本节课主要介绍了一元二次方程的概念及一元二次方程的一般式。

2.地位和作用:一元二次方程的学习是一元一次部分知识点的回顾,同时又是方程组和不等式知识的延续和深化,也是函数等重要思想方法的基础。

本节课是研究一元二次方程的导入课,通过引入实际的生活问题,使同学对学习一元二次方程的兴趣增大,对比已经学习的一元一次方程,使学生正确抓住其本质特点,形成概念。

为进一步学习方程的解法和简单应用起铺垫作用。

本节课的教学不但能使同学在原有的知识和经验的基础上进一步体会数学思想,而且可以提高观察、分析、比较、抽象概括的能力以及发展简单的逻辑思维的能力。

3.教学重点与难点教学重点:一元二次方程的概念及一般形式是今后继续学习一元二次方程的重要基础,因此是本节课的重点。

教学难点:对一元二次方程的一般形式的正确理解。

二.教学目标根据学生已有的认知基础,结合素质教育的要求。

根据新课程标准纲要,我从以下方面确定了本节课的教学目标:(1)知识目标使学生充分了解一元二次方程的概念,正确掌握一元二次方程的一般形式。

(2)能力目标通过教学培养学生观察、分析、归纳等思维能力。

(3)情感目标培养学生积极参与、合作交流的主体意识和主动探索,勇于发现的科学精神。

在知识的探索和发现的过程中,使同学感受到数学学习的意义,从而产生良好的数学学习态度。

三.教学过程的设计1.复习巩固,引入新知因为数学来源于生活,因而以学生的实际生活背景为素材,引入问题,易于被同学接受和感知,所以我列举了生活中长方形草坪的面积问题,从情境分析中,更结合以前学过的一元一次方程解决实际生活问题的方法,得出了一个新的方程。

而通过与已知的一元一次方程的定义和一般形式的对比和比较,分析归纳出一元二次方程的定义及一般形式。

从生活情境和从学生身边的生活问题入手,更能激发学生的求知欲,顺利的进行新课。

2.启发探究、获取新知通过上述情境,让同学们合作交流,列出新的方程式。

一元二次方程说课稿

一元二次方程说课稿

一元二次方程说课稿一、教材分析(一)、教材的地位和作用《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。

同时为今后学习一元二次不等式及二次函数打下基础。

(二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。

(三)、教学重难点及关键介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。

教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。

因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。

二、学生分析任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。

这就要求我们教师必须从学生的认知结构和心理特征出发。

九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。

使得他们很快就能融入课堂,接受知识也事半功倍。

当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。

从而激发学生学习的兴趣,促进学生个性的形成和发展。

要让学生成为课堂真正的主人,变厌学为乐学。

人教版数学九年级上册22.1《一元二次方程》说课稿

人教版数学九年级上册22.1《一元二次方程》说课稿

人教版数学九年级上册22.1《一元二次方程》说课稿一. 教材分析《一元二次方程》是人教版数学九年级上册第22.1节的内容,它是整个初中数学的重要部分,也是学生首次接触到的较为复杂的方程。

本节内容主要介绍一元二次方程的定义、解法及其应用。

通过学习一元二次方程,学生能够进一步理解和掌握方程的解法,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的代数基础,能够理解和掌握一元一次方程的解法。

但是,一元二次方程的解法较为复杂,需要学生能够理解和运用新的解法。

因此,在教学过程中,我将会关注学生对一元二次方程的理解和掌握程度,以及他们在解题过程中遇到的困难。

三. 说教学目标1.知识与技能:学生能够理解一元二次方程的定义,掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。

2.过程与方法:通过自主学习、合作交流和探究实践,学生能够培养自己的问题解决能力和创新能力。

3.情感态度与价值观:学生能够体验数学的乐趣,增强对数学学科的兴趣,培养自己的逻辑思维能力。

四. 说教学重难点1.重点:一元二次方程的定义和解法。

2.难点:一元二次方程的解法以及如何在实际问题中应用一元二次方程。

五. 说教学方法与手段在教学过程中,我将采用自主学习、合作交流和探究实践的教学方法。

同时,我还会利用多媒体教学手段,如PPT、视频等,来帮助学生更好地理解和掌握一元二次方程。

六. 说教学过程1.引入新课:通过一个实际问题,引导学生思考并引入一元二次方程的概念。

2.讲解与演示:讲解一元二次方程的定义和解法,并进行演示,让学生理解和掌握一元二次方程的解法。

3.练习与讨论:让学生进行练习,并在合作交流中讨论解题思路和解法。

4.应用与拓展:让学生运用一元二次方程解决实际问题,并进行拓展训练。

5.总结与反思:让学生总结一元二次方程的解法,并反思自己在学习过程中的收获和不足。

七. 说板书设计板书设计主要包括一元二次方程的定义、解法和应用。

一元二次方程说课稿

一元二次方程说课稿

尊敬的各位评委、各位老师:大家好!非常高兴能有机会参加这次说课活动,并借这个机会和同行们交流学习。

我说课的内容是《一元二次方程》.现代数学教育观认为,数学教学过程就在学生已有的认知水平和知识经验的基础上,引导学生通过实践探索、交流等多种活动理解和掌握基本的数学知识和技能、数学思想和方法的过程。

因此学生应成为学习活动的主体,教师应成为学习得组织者、合作者与引导者。

基于这一理念我准备从教材分析、目标分析、教法与学法分析、教学过程分析四个大方面进行说课。

一:教材分析:(一)、教材内容的地位和作用:一元二次方程是本章节的重要内容,它不仅是前面学过的一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习二次函数等知识的基础,此外学好一元二次方程对学好其他学科也有重要作用。

(二)、学情分析:由于学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

二:目标分析:(一)教学目标新课标要求教学目标的制定要使学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识,以及基本的数学思想方法和必要的应用技能,学会应用数学的思维方式去观察分析问题,了解数学的价值,增进对数学的理解和学好数学的信心。

“和谐高效、思维对话”新理念要求我们设计目标时既让学生“学会”(知识与技能),又让学生“会学”(过程与方法),还要让学生“乐学”(情感态度价值观),依据这些理念,结合学生的认知水平我制定本节课的教学目标如下:1.知识与技能:经历抽象一元二次方程概念的过程,发展学生思维能力,激发想象力和创造潜能。

2.过程与方法:通过学生观察,推理,类比,分析.体会一元二次方程是刻画现实世界的有效模型。

增强学生的数学应用意识。

一元二次方程说课稿

一元二次方程说课稿

一元二次方程的概念说课稿今天我说课的内容是人教版九年级上册第二章第一节的第一课时《一元二次方程》。

我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明。

一、教材分析(一)教材的地位和作用“一元二次方程”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程等知识的基础上,要求掌握一元二次方程的概念和一般形式,为以后学习解一元二次方程的解法做了铺垫。

通过本节课的教学使学生明确一元二次方程的概念,同时会根据题意列出满足条件的一元二次方程。

(二)教学目标知识技能方面:理解一元二次方程的概念,能写出一元二次方程的一般形式,并指出项和系数。

数学思考方面:通过实际问题转化为数学问题的过程,培养学生建模的数学思想。

(三)教学重、难点重点:掌握一元二次方程的概念,能熟练把一个一元二次方程转化为一般形式。

难点:从实际问题中抽象出一元二次方程,并正确指出一般式中的项和系数。

二、教学法分析教法:本节课采用引导发现式的自主探究式与小组交流讨论结合的方法;在教学中由旧知识引导探究新知识,由问题探究新知识的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。

结合讲授式和启发式。

学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,使学生的思维能力得到培养,在教师的引导下,自主合作学习。

三、过程分析本节课的教学设计成以下六个环节:复习回顾——导入新课——探求新知——巩固练习——小结——作业。

1、复习回顾:这节课,我首先让大家看着我书写板书“22.1一元二次方程(1)”,然后让同学们从字面上找出与一元一次方的不同点。

设计意图:让学生巩固以前的知识,然后猜测性的从字面意思了解一元二次方程,从而为今天学习一元二次方程的概念做好铺垫,达到“温故而知新”。

2、导入新课:通过两个问题导入今天的新课。

设计意图:激发学生的兴趣。

3、探求新知思考: 这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?例题1、2、34、巩固练习“试一试,你最棒”;下列方程中哪些是一元二次方程?1.x(5x-2)=x(x+1)+4x 22. 7x 2+6=2x(3x+1)3. 4. 6x 2=x 5 . 2x 2=5y 6. -x 2=07212=x 562=-x x 0350752=+-x x“举一反三” 2.当m 为何值时,方程 是一元二次方程?“应用” 3.将下列方程化为一般形式,并指出二次项系数,一次项系数和常数项。

人教版九年级数学上册:21.1《一元二次方程》说课稿1

人教版九年级数学上册:21.1《一元二次方程》说课稿1

人教版九年级数学上册:21.1 《一元二次方程》说课稿1一. 教材分析《一元二次方程》是人教版九年级数学上册第21.1节的内容。

本节内容是在学生已经掌握了方程和方程的解法的基础上,引入一元二次方程的概念,以及它的解法。

教材通过实例引入一元二次方程,让学生通过观察、分析、归纳等过程,理解一元二次方程的概念,并掌握它的解法。

同时,教材还引导学生运用一元二次方程解决实际问题,培养学生的应用能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对方程和方程的解法有一定的了解。

但是,对于一元二次方程的概念和解法,学生可能还比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、分析、归纳等过程,理解一元二次方程的概念,并掌握它的解法。

同时,学生对于实际问题的解决,还有一定的困难,需要教师在教学中给予引导和帮助。

三. 说教学目标1.知识与技能目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。

2.过程与方法目标:学生通过观察、分析、归纳等过程,理解一元二次方程的概念,并掌握它的解法。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和信心。

四. 说教学重难点1.教学重点:一元二次方程的概念,一元二次方程的解法。

2.教学难点:一元二次方程的解法,运用一元二次方程解决实际问题。

五. 说教学方法与手段1.教学方法:引导发现法,学生通过观察、分析、归纳等过程,发现一元二次方程的解法。

2.教学手段:多媒体教学,通过动画和图片等形式,帮助学生理解一元二次方程的概念和解法。

六. 说教学过程1.导入:通过实例引入一元二次方程,引导学生观察、分析,引出一元二次方程的概念。

2.新课:讲解一元二次方程的解法,引导学生通过观察、分析、归纳等过程,理解一元二次方程的解法。

3.应用:运用一元二次方程解决实际问题,培养学生的应用能力。

4.总结:对本节课的内容进行总结,强化学生对一元二次方程的概念和解法的理解。

数学人教版九年级上册《一元二次方程》说课稿

数学人教版九年级上册《一元二次方程》说课稿

(三观察迁移、采用发现法、探究法、 练习法为辅的教学方法.
2、学法分析 :在教学活动中,指导学生自主探究
为出发点养,让学生合作探究。建立数学模型.通 过观察类比得出一元二次方程的相关概念及根的意 义
三、说教学程序(五个环节)
(一)情境激趣与引入。
(以上问题引导学生讨论,检查学生对基础知识的掌握情况.对 一元二次方程的根有更深刻的理解。)
(四)课堂总结
本节课你学到了什么知识?从中得到了什么启发? (1)一元二次方程的概念; (2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、 二次项系数,一次项、一次项系数,常数项的概念及其它们的运 用; (3)一元二次方程根的概念以及作用 教师引导学生归纳小结,学生反思学习和解决问题的过程. 学生独立完成作业,教师批改、总结.
六、 板书设计
谢谢观赏!
(三) 应用拓展
1.下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 2.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3) 3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁 片应该怎样剪? 设长为xcm,则宽为(x-5)cm,列方程x(x-5)=150,即x2-5x-150=0 请根据列方程回答以下问题: (1)x可能小于5吗?可能等于10吗?说说你的理由. x1011121314151617…x2-5x-150
由实际问题入手,设置情境问题, 激发学生的兴趣,体会数学来源于生活, 又应用于生活,让学生初步感受一元二 次方程,同时让学生体会方程这一刻画 现实世界的数学模型.
(二)探索新知
通过活动一的情景分析,让学生小组合作,列出方程.在学生 列出方程后,对所列方程进行整理,并引导学生分析所列方程的特 征得出一元二次方程的概念.由于一元二次方程的概念是本节的重 点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、 自我分析、自我修正、自我反思,让学生真正理解一元二次方程概 念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数 的最高次数是2. 创设学生熟悉的生活情境,由学生自主探索一元二次方程的定 义及其相关概念.同时体现出一种“问题情景---数学模型-----概 念归纳”的模式,有计划的逐步展示知识的产生过程,渗透方程思 想.通过例1.例2进一步巩固一元二次方程的基本概念. 通过活动二 探究一元二次方程根的概念以及作用。

人教版数学九年级上册22.2.4《一元二次方程解法》(公式法1)说课稿

人教版数学九年级上册22.2.4《一元二次方程解法》(公式法1)说课稿

人教版数学九年级上册22.2.4《一元二次方程解法》(公式法1)说课稿一. 教材分析《一元二次方程解法》是人教版数学九年级上册第22.2.4节的内容,属于初中数学的代数部分。

本节内容是在学生已经掌握了方程的解法、一元二次方程的定义和性质等知识的基础上进行教学的。

本节课的主要内容是一元二次方程的公式法求解,是解决一元二次方程问题的重要方法之一。

教材通过具体的例子引导学生掌握公式法的步骤和应用,培养学生解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的代数基础,对一元二次方程的概念和性质有一定的了解。

但是,学生对于公式法的理解和运用可能还存在一些困难。

因此,在教学过程中,我需要关注学生的学习需求,针对学生的实际情况进行教学设计和调整。

三. 说教学目标1.知识与技能目标:使学生理解和掌握一元二次方程的公式法,能够熟练运用公式法求解一元二次方程。

2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 说教学重难点1.教学重点:一元二次方程的公式法及其应用。

2.教学难点:理解一元二次方程的公式法,能够灵活运用公式法解决实际问题。

五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动参与课堂,提高学生的学习兴趣和参与度。

2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,使教学内容更加直观和生动。

六.说教学过程1.导入新课:通过一个实际问题,引导学生思考如何解决一元二次方程,激发学生的学习兴趣。

2.讲解新课:介绍一元二次方程的公式法,通过具体的例子解释公式法的步骤和应用。

3.实践操作:学生分组进行练习,运用公式法求解一元二次方程,教师巡回指导。

4.总结提升:引导学生总结公式法的解题步骤和注意事项,归纳一元二次方程的解法。

实际问题与一元二次方程说课稿

实际问题与一元二次方程说课稿

§22.3实际问题与一元二次方程(1)说课稿尊敬的各位评委,大家好:我今天说课的课题是人教版九年级数学上册第22章第三节第一课时《实际问题与一元二次方程》。

下面我将从教材分析、学情分析、教学策略、教学程序、几点说明五个方面对本节课的设计进行说明。

一、教材分析:1、教材的地位和作用:生活中不少实际问题的解决都要用到方程的知识,在学习本节课之前,学生已经学会了用一元一次方程、二元一次方程(组)解决实际问题,所以本节课对学生来说并不陌生。

本节内容是运用一元二次方程分析解决生活中的两类实际问题:传播问题和增长率问题。

通过本节课的学习,可以对一元二次方程的解法加以巩固,同时本节课的学习又是后面继续学习列方程解决实际问题、用二次函数解决实际问题的基础。

因此,它具有承上启下的作用。

2、教学目标:知识和技能目标:能根据具体问题中的数量关系,列出一元二次方程,并求解检验。

过程和方法目标:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对其进行描述。

培养学生将实际问题转化为数学问题的能力。

情感态度和价值观目标:通过主动探究用一元二次方程解决身边的问题,体会数学知识的应用价值,激发学生学习数学的兴趣。

3、教学重点、难点:教学重点:列出一元二次方程解应用题。

教学难点:发现问题中的等量关系。

二、学情分析:1、知识掌握方面:学生对列方程解应用题的一般步骤已经熟悉,适合由特殊到一般的探究方式。

2、学生年龄特点:九年级学生具有丰富的想象力、好奇心和好胜心理。

容易开发他们的主观能动性,适合自主探究、合作交流的数学学习方式。

三、教学策略:教法:1、我将先用“传染病”这一个学生很熟悉的媒介,激起学生的兴趣,采用“探索、归纳与合作交流”相结合的方法,以学生主动参与为前提、自主学习为途径、合作交流为形式,培养学生动脑、动手、合作、交流的能力,为学生的终身学习奠定基础,同时渗透数学的人文教育。

2、考虑到学生的认知水平、思维能力和学习能力,进行分层次教学教学手段:主要利用班班通共享的资源配合计算机多媒体辅助教学,使学生在寻找实际问题中的等量关系时,更加生动、形象和直观,提高教学效率。

北师大版数学九年级上册《建立一元二次方程解决销售问题》说课稿1

北师大版数学九年级上册《建立一元二次方程解决销售问题》说课稿1

北师大版数学九年级上册《建立一元二次方程解决销售问题》说课稿1一. 教材分析《建立一元二次方程解决销售问题》是北师大版数学九年级上册第五章第一节的内容。

这部分内容是在学生已经掌握了一元二次方程的基本知识以及解一元二次方程的基础上进行学习的。

通过这部分内容的学习,让学生能够运用一元二次方程解决实际问题,提高学生运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一元二次方程的知识和解一元二次方程的方法已经有了一定的了解。

但是,学生对于如何将实际问题抽象为一元二次方程,以及如何运用一元二次方程解决实际问题还有一定的困难。

因此,在教学过程中,需要引导学生将实际问题抽象为数学模型,并通过列式计算解决实际问题。

三. 说教学目标1.知识与技能目标:让学生掌握将实际问题抽象为一元二次方程的方法,学会运用一元二次方程解决实际问题。

2.过程与方法目标:通过解决实际问题,培养学生的数学建模能力和解决问题的能力。

3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣和自信心。

四. 说教学重难点1.教学重点:将实际问题抽象为一元二次方程的方法,运用一元二次方程解决实际问题。

2.教学难点:如何引导学生将实际问题抽象为数学模型,以及如何列式计算解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过自主学习、合作学习解决问题。

2.教学手段:利用多媒体课件,展示实际问题,引导学生进行思考和讨论。

六. 说教学过程1.导入新课:通过一个具体的销售问题,引发学生对一元二次方程解决实际问题的兴趣。

2.自主学习:学生自主探究如何将实际问题抽象为一元二次方程,并学会解一元二次方程。

3.合作学习:学生分组讨论,共同解决实际问题,分享解题过程中的心得体会。

4.教师讲解:针对学生解决实际过程中遇到的问题,进行讲解和指导。

5.练习巩固:学生独立完成练习题,巩固所学知识。

《实际问题与一元二次方程》的说课稿(通用15篇)

《实际问题与一元二次方程》的说课稿(通用15篇)

《实际问题与一元二次方程》的说课稿〔通用15篇〕篇1:《实际问题与一元二次方程》说课稿今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。

它是继传播问题、百分率问题、长宽比例问题这几个根本问题的学习后的探究活动课,对于本节课我将从教材分析^p 与学生现实分析^p 、教学目的分析^p ,教法确实定与学法指导,教学过程这四个方面加以阐述。

(一)教材分析^p 与学生现实分析^p一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的根底,它是研究现实世界数量关系和变化规律的重要模型。

本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究表达数学建模的过程帮助学生增强应用认识。

一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。

这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐,本节课主要侧重于一元二次方程在几何方面的应用大量事实说明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。

对于初中学生来说他们比拟缺乏社会生活经历,搜集信息处理信息的才能较弱,这就构成了本节课的难点。

〔二〕数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的开展。

我根据新课标对方程的详细要求和初三学生的认知的特点,确定了如下教学目的的:1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。

以一元二次方程解决实际问题为载体,加强学生对数学建模的根本方法的掌握。

2、过程与方法:经历将实际问题抽象为数学问题的过程,探究问题中的数量关系,并能运用一元二次方程对之进展描绘。

配方法解一元二次方程说课稿-1

配方法解一元二次方程说课稿-1

例:
2、用配方法解一元 二次方程的步骤: 3、课堂小结: 学生板演
教案设计说明
著名的科学家爱因斯坦说过:“单纯的 专业知识的灌输只能产生机器,而不可能造 就一个和谐发展的人才”,因此,本节课的 设计力求贯彻“以人发展为本”的教育理念, 体现“教师为主导,学生为主体”的现代教 学思想。发挥学生的主体作用,提高学生的 参与意识,使学生体会到自己在课堂上主人 公的地位。让学生在生生互动、师生互动中 掌握知识,体验成功,培养学生勇于战胜困 难的意志品质。
巩固练习:教材P39 练习第2题 提高练习:①多项式 ②多项式 的值相等吗? 的值能等于0吗? 的值与多项式
(四)课堂小结,深化目标
①本节课的主要内容 ②配方法的关键步骤 ③本节课的数学思想
驶向胜利 的彼岸
(五)作业布置,巩固提高
教材 P45
第3题
P46
第7题
板书设计
用配方法解一元二次方程
1、配方法的定义
( a ≠ 0)
根据新课标的要求,遵照新教材自主、 合作、探究的学习原则,本节课的学习方法 为“自主探究、合作交流”。
( a ≠ 0)
教学方法:引导观察发现法
实践探索法
( a ≠ 0)
相关教学课件
(一)、创设情境,导入新课 (二)、师生互动,探求新知
(三)、应用新知,体验成功
(四)、课堂小结,深入目标 (五)、作业布置,能力升华
x4 5
x2 4 5
由此可得
x1 4 5
配方法的定义: 像上面那样,方程两边同加上一次项系数 一半的平方配成完全平方形式来解一元二次方 程的方法,叫做配方法。
强调:上面第二步“两边加上(-4)2 ”就是 “配方”

《一元二次方程》说课稿(最新)

《一元二次方程》说课稿(最新)

《一元二次方程》说课稿对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。

今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

本节课主要讲述的是一元二次方程的概念及其一般式。

在本节课之前学生已经掌握了一元一次方程的概念以及解法,所以,为本节课一元二次方程概念的学习打下基础。

另外,本节课是后续学习解一元二次方程的基础,它的学习起到了很好的铺垫作用。

故而,既锻炼了学生的类比推理能力,还能够完善学生在方程这一部分的知识,让学生在方程这一部分形成比较完善的体系。

二、说学情合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元二次方程的具体的事例,所以在生活上面有了很多的经验基础。

为本节课的顺利开展做好了充分准备。

三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:(一)知识与技能理解一元二次方程的概念及其一般式,了解一元二次方程根的概念。

(二)过程与方法通过解决问题的过程,逐渐形成数学建模的数学思想以及提高类比迁移的能力。

(三)情感态度价值观通过数学建模,提高对数学的学习兴趣。

四、说教学重难点本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:(一)教学重点理解一元二次方程的概念及其一般式。

(二)教学难点建立数学模型列方程。

五、说教法和学法古人云:教学有法,教无定法,贵在得法。

这句话说明教学是有一定的方法,但是却没有固定的方法,难能可贵的是选择适合自己以及自己学科的方法。

所以,我针对数学学科以及学生等特点,制定了如下的教学方法:讲授法、练习法、小组讨论法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用公式法解一元二次方程说课稿
今天我说课的内容是浙教版八年级下册第二章第二节的第三课时《用公式法解一元二次方程》。

我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明。

一、教材分析
(一)教材的地位和作用
“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。

通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。

一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。

(二)教学目标
知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。

数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。

解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。

情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。

(三)教学重、难点
重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。

难点:理解求根公式的推导过程和判别式
二、教学法分析
教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。

学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。

三、过程分析
本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习——课时小结——布置作业。

1、复习引入:
这节课,我首先从旧知问题(1)用配方法解方程22890x x --=的练习引入,问题(2)总结配方法的一般步骤(化一般方程——二次项系数为1——配方使左边为完全平方式——两边开方——求解)。

设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。

2、问题呈现:
你能用配方法解一般形式的一元二次方程吗?2
0(0)ax bx c a ++=≠
此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。

为降低推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到2224()24b b ac x a a
-+=这步时,提出
问题:①此时可以直接开平方吗?
②等号右边的值需要满足什么条件?为什么?
③等号右边的值只跟哪个式子有关?
设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。

通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对
24b ac -进行讨论,
掌握24b ac -与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,应加以强化。

最终总结出:
当24b ac -<0时,原方程无实数解。

当24b ac -≥0时,原方程有实数解,
再进一步谈论:24b ac -=0与24b ac +>0时,两个解区别?
(24b ac -=0时,两个相等的实数解,24b ac +>0时,两个不等的实数解)
由此可知,方程有解还是无解是由24b ac -决定,即24b ac -是方程解的判别式。

同时,方程的解是可以将a 、b 、c 的值带入公式x =而得到,这个公式就称为“求根公式”,利用它解一元二次方程叫做公式法。

3、例题讲解
例4:用公式法解下列方程
22530x x -+= 2414x x +=- 2312042
x x --= 总结步骤:1、把方程公成一般形式,并写出a,b,c 的值。

2、求出24b ac -的值
3、代入求根公式:20,40)x a b ac =≠-≥
4、写出方程的解:x 1= ,x 2=
设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。

4、巩固练习
解下列一元二次方程:①260x x +-=
②2490x x --=
③2100x +=
设计意图:(1)熟悉公式法,强化解题格式,(2)及时发现错误及时解决。

例5:解方程:21(1)(2)2x x x -=-
化简得213402
x x -+= 强调:①当方程不是一般形式时,应先化成一般形式,再运用求根公式。

②你还能用其他方法解本例方程吗?
设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。

5、课时小结
(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。

(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。

6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。

四、板书设计
教学评价
本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。

通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。

相关文档
最新文档