信号与系统课后习题答案
燕庆明 信号与系统(第二版) 课后习题答案
())()()]([),()(20d t t tf t tg t g T t t f t g -==-=令,∞-≠-)()(00t t y t t T f f ,=-)(0t t y f)()(00t t f t t --。
(3))()(0t t f t g -=令,)()()]([0t t f t g t g T --=-=,≠-)(0t t T f )(0t t y f -,)()(00t t f t t y f +-=-线性时不变系统。
显然其不相等,即为非不失一般性,设可以表示为为系统运算子,则设解时不变系统?判断该系统是否为线性的关系为与输出已知某系统输入),()()()]([),()()]([)()()(,)()]([)()(T :)()()()(.2.12111121t y t f t f t f T t y t f t f T t f t f t f t f t f T t y t y t f t y t y t f =+===+====1.3判断下列方程所表示系统的性⎰+=t dx x f dtt df t y 0)()()(:)1()()()]([:)2(2't f t y t y =+(3):)2()()(3)(2)(''''-+=++t f t f t y t y t y (4):)(3)(2)('2)("t f t y t ty t y =++ 线性 非线性时不变 线性时不变 线性时变1.4。
试证明方程y'(t)+ay(t)=f(t)所描述的系统为线性系统。
证明:不失一般性,设输入有两个分量,且f 1(t)→y 1(t),f 2(t)→y 2(t) 则有y 1'(t)+ay 1(t)=f 1(t),y 2'(t)+ay 2(t)=f 2(t) 相加得y 1'+ay 1(t)+y 2'(t)+ay 2(t)=f 1(t)+f 2(t) 即dtd[y 1(t)+y 2(t)]+a[y 1(t)+y 2(t)] =f 1(t)+f 2(t )可见f 1(t)+f 2(t)→y 1(t)+y 2(t)即满足可加性,齐次性是显然的。
信号与系统 陈后金 第二版 课后习题答案(完整版)
(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠
−
2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )
信号与系统课后习题答案第5章
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析
信号与系统课后习题答案
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与系统(第5版) 配套习题及答案详解
《信号与系统》(第5版)习题解答目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (24)第5章习题解析 (32)第6章习题解析............................................................................ 错误!未定义书签。
第7章习题解析 (50)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。
] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= t ti L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S R S L S C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
信号与系统课后习题参考答案.pdf
-5
-4 -3 -2
-1
2 1
2
3
-1
x(-t+4)
t
45
6
2 1
4
6
-1
x(-t/2+4)
t 8 10 12
(e)[x(t)+x(-t)]u(t)
-2
-1
2
x(-t)
1
t
01
2
-1
(f)
x(t)[δ(t +
3) − δ(t - 3)]
2
2
3
[x(t)+x(-t)]u(t)
1 t
01
2
-1
-3/2 (-1/2)
x(t)[δ(t + 3) − δ(t - 3)]
2
2
3/2
t
0 (-1/2)
6
1.22
(a)x[n-4]
x[n-4]
11 1 1
1/2 1/2
1/2 n
0 1 23 4 5 6 7 8
-1/2
-1
(b)x[3-n]
x[n+3]
11 1 1
1/2 1/2
1/2 n
-7 -6 -5 -4 -3 -2 -1 0 1
=
2π 4
=π 2
则:整个信号的周期为:T = LCM{T1,T2} = π
1.11
j 4πn
解: e 7
→
ω1
=
4πn 7
,则:
2π ω1
=
2π 4π
=7= 2
N1 k
,⇒
N1
=
7
7
j 2πn
e5
→ ω2
信号与系统课后习题参考答案
信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。
1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。
题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。
⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。
1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。
题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。
试做出当输⼊为时,响应得波形图。
题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。
题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。
⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。
第⼆章习题2-1试计算下列各对信号得卷积积分:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。
题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。
题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。
已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。
2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。
信号与系统课后习题答案
信号与系统课后习题答案《低频电⼦线路》⼀、单选题(每题2分,共28分:双号做双号题,单号做单号题)1.若给PN结两端加正向电压时,空间电荷区将()A变窄B基本不变C变宽D⽆法确定2.设⼆极管的端电压为 U,则⼆极管的电流与电压之间是()A正⽐例关系B对数关系C指数关系D⽆关系3.稳压管的稳压区是其⼯作()A正向导通B反向截⽌C反向击穿D反向导通4.当晶体管⼯作在饱和区时,发射结电压和集电结电压应为 ( ) A前者反偏,后者也反偏B前者反偏,后者正偏C前者正偏,后者反偏D前者正偏,后者也正偏5.在本征半导体中加⼊何种元素可形成N型半导体。
()A五价B四价C三价D六价6.加⼊何种元素可形成P 型半导体。
()A五价B四价C三价D六价7.当温度升⾼时,⼆极管的反向饱和电流将()。
A 增⼤B 不变C 减⼩ D不受温度影响8. 稳压⼆极管两端的电压必须()它的稳压值Uz 才有导通电流,否则处于截⽌状态。
A 等于 B ⼤于 C ⼩于 D与Uz ⽆关9. ⽤直流电压表测得放⼤电路中某三极管各极电位分别是2V 、6V 、2.7V ,则三个电极分别是() A (B 、C 、E ) B (C 、B 、E ) C (E 、C 、B ) D(B 、C 、E )10. 三极管的反向电流I CBO 是由()形成的。
A 多数载流⼦的扩散运动 B 少数载流⼦的漂移运动 C 多数载流⼦的漂移运动D少数载流⼦的扩散运动11. 晶体三极管⼯作在饱和状态时,集电极电流Ci 将()。
A 随B i 增加⽽增加 B 随B i 增加⽽减少C 与Bi ⽆关,只决定于eR 和CEuD不变12. 理想⼆极管的正向电阻为( )A A.零 B.⽆穷⼤ C.约⼏千欧 D.约⼏⼗欧13. 放⼤器的输⼊电阻⾼,表明其放⼤微弱信号能⼒()。
A 强B 弱C ⼀般 D不⼀定14. 某两级放⼤电路,第⼀级电压放⼤倍数为5,第⼆级电压放⼤倍数为20,该放⼤电路的放⼤倍数为()。
信号与系统课后习题答案第7章
143
第7章 离散信号与系统的Z域分析 144
第7章 离散信号与系统的Z域分析
题图 7.7
145
第7章 离散信号与系统的Z域分析 146
第7章 离散信号与系统的Z域分析
题解图 7.31
147
第7章 离散信号与系统的Z域分析
(2) 由H(z)写出系统传输算子: 对应算子方程和差分方程为
148
7.25 已知一阶、二阶因果离散系统的系统函数分别如下, 求离散系统的差分方程。
111
第7章 离散信号与系统的Z域分析 112
第7章 离散信号与系统的Z域分析 113
第7章 离散信号与系统的Z域分析 114
第7章 离散信号与系统的Z域分析
7.26 已知离散系统如题图7.5所示。 (1) 画出系统的信号流图; (2) 用梅森公式求系统函数H(z); (3) 写出系统的差分方程。
① 或者
② 容易验证式①、②表示同一序列。
57
第7章 离散信号与系统的Z域分析 58
第7章 离散信号与系统的Z域分析 59
第7章 离散信号与系统的Z域分析 60
第7章 离散信号与系统的Z域分析 61
第7章 离散信号与系统的Z域分析
也可以将Yzs(z)表示为
再取Z逆变换,得 ②
自然,式①、②为同一序列。
44
第7章 离散信号与系统的Z域分析 45
第7章 离散信号与系统的Z域分析 46
第7章 离散信号与系统的Z域分析
7.10 已知因果序列f(k)满足的方程如下,求f(k)。
47
第7章 离散信号与系统的Z域分析 48
第7章 离散信号与系统的Z域分析
(2) 已知K域方程为
49
信号与系统(程耕国)下册课后习题答案
信号与系统(程耕国)下册课后习题答案6.2 精选例题例 1 设一个LTI 离散系统的初始状态不为零,当激励为)()(1n u n f =时全响应为)(121)(1n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=,当激励为)()(2n u n f -=时全响应为)(121)(2n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=。
(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,求系统的全响应)(3n y 。
(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,求系统的全响应)(4n y 。
(3)求该系统的单位序列响应)(n h 。
解:设系统的初始状态保持不变,当激励为)()(1n u n f =时系统的零输入响应和零状态响应分别为)(n y x 、)(n y f 。
依题意,有:)(121)()()(1n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+= ○1根据LTI 系统的性质,当激励为)()(2n u n f -=时全响应为)(121)(()(2n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=-=) ○2联立式○1、○2,可解得:⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(12121)()(2121(1111n u n y n u n y n n f n n x )同样,根据LTI 系统的基本性质,不难得到:(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,系统的全响应为:)(4)()(3n y n y n y f x +=)(121214)(21211111n u n u n n n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(421321511n u n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,系统的全响应为:)2(4)(2)(4-+=n y n y n y f x)2(121214)(21211111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=--++n u n u n n n n(3)由于)1()()(--=n u n u n δ,所以该系统的单位序列响应为:)1()()(--=n y n y n h f f)1(12121)(1212111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++n u n u n n n n 例2 一个LTI 连续系统对激励)(sin )(t tu t f =的零状态响应)(t y f 如例2图所示,求该系统的冲激响应)(t h 。
段哲民信号与系统课后习题答案
第一章 习题答案1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。
解:(1))(1t f 的波形如图1.1(a )所示。
(2) 因t πcos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。
(1))42cos(2)(1π-=t t f (2)22)]6[sin()(π-=t t f(3))(2cos 3)(3t tU t f π=解:周期信号必须满足两个条件:定义域R t ∈,有周期性,两个条件缺少任何一个,则就不是周期信号了. (1) 是, s T 32π=; (2))]32cos(1[213)(π--⨯=t t f ,故为周期信号,周期s T ππ==22; (3) 因0<t 时有0)(=t f 故为非周期信号。
1-6 化简下列各式:(1)⎰∞--td ττδ)12(; (2))()]4[cos(t t dt d δπ+; (3)⎰∞∞-tdt t t dt d sin )]([cos δ解:(1) 原式 =)21(21)21(21]21(2[-=-=-⎰⎰∞-∞-t u d d t t ττδττδ(2) 原式 =)('22)](4[cos t t dt d δδπ=∙ (3) 原式 =⎰∞∞-==-=-=-=1|cos )](sin'[sin )('00t t t tdt t δ 1-7 求下列积分:(1)⎰∞--0)]2()3(cos[dt t t δϖ; (2)⎰∞+0)3(dt t e t j δω(3)⎰∞--⨯002)(dt t t e t δ。
解:(1) 原式 = ϖϖϖcos )cos()]302(cos[=-=- (2) 原式 =⎰∞--=⨯=+03300)3(ϖϖδj j e dt t e(3) 原式 =⎰∞---=⨯=-022021)(tt t e e dt t t e δ1-8 试求图题1-8中各信号一阶导数的波形,并写出其函数表达式,其中)]5()([2cos)(3--=t U t U t t f π。
信号与系统课后习题与解答第一章
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
信号与系统第三版课后习题答案
信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。
在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。
下面是信号与系统第三版课后习题的答案。
第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。
系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。
2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。
离散时间信号是在离散时间范围内定义的信号,可以用数列表示。
3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。
非周期信号是指不具有周期性的信号。
4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。
偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。
5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。
6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。
7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。
第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。
奇偶分解的目的是简化信号的处理和分析。
2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。
卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。
3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。
冲激响应可以用来描述系统的特性和性能。
4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。
单位阶跃响应可以用来描述系统的稳定性和响应速度。
5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。
单位斜坡响应可以用来描述系统的积分特性。
信号与系统(郑君里)课后答案 第一章习题解答
1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。
注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。
如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。
1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。
信号与系统第二版课后习题解答(3-4)
信号与系统第二版课后习题解答(3-4)Chap 33.1 A continuous-time periodic signal x(t) is real value and has a fundamental period T=8. The nonzero Fourier series coefficients for x(t) arej a a a a 4,2*3311====--.Express x(t) in the form)cos()(0k k k k t A t x φω+=∑∞=Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑3.2 A discrete-time periodic signal x[n] is real valued and has afundamental period N=5.The nonzero Fourier series coefficients for x[n] are10=a ,4/2πj e a --=,4/2πj e a =,3/*442πj ea a ==- Express x[n] in the form)sin(][10k k k k n A A n x φω++=∑∞=Solution:for, 10=a , 4/2πj ea --=, 4/2πj ea =, 3/42πj ea --=,3/42πj e a =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=nj j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++=)358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n n3.3 For the continuous-time periodic signal)35sin(4)32cos(2)(t t t x ππ++=Determine the fundamental frequency 0ω and the Fourier series coefficients k a such thattjk k kea t x 0)(ω∑∞-∞==.Solution: forthe period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6, i.e. 3/6/20ππ==w )35sin(4)32cos(2)(t t t x ππ++=)5sin(4)2cos(21200t t ωω++=0000225512()2()2j t j t j t j t e e j e e ωωωω--=++--then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Let 1()x t be a continuous-time periodic signal with fundamental frequency 1ω and Fourier coefficients k a . Given that211()(1)(1)x t x t x t =-+-How is the fundamental frequency 2ω of 2()x t related to?Also, find a relationship between the Fourier series coefficients k b of 2()x t and the coefficients k a You may use the properties listed in Table 3.1. Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x ,that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw t k TT b x t e dt x t x t e dt T --==-+-?? 111111(1)(1)jkw t jkw t TTx t e dt x t e dt T T --=-+-??111)(jkw k k jkw k jkw k e a a e a e a -----+=+=3.8 Suppose given the following information about a signal x(t): 1. x(t) is real and odd.2. x(t) is periodic with period T=2 and has Fourier coefficients k a .3. 0=k a for 1||>k .4 1|)(|21202=?dt t x .Specify two different signals that satisfy these conditions. Solution:0()j kt k k x t a e ω∞=-∞=∑while: )(t x is real and odd, then k a is purely imaginary andodd ,00=a , k k a a --=,.2=T , then 02/2ωππ==and 0=k a for 1>k so0()j kt k k x t a e ω∞=-∞=∑00011j t j t a a e a e ωω--=++)sin(2)(11t a e ea t j tj πππ=-=-for12)(2121212120220==++=-?a a a a dt t x ∴ j a 2/21±=∴ )sin(2)(t t x π±=3.13 Consider a continuous-time LTI system whose frequency response is∞∞--==ωωωω)4sin()()(dt e t h j H t jIf the input to this system is a periodic signal<≤-<≤=84,140,1)(t t t x With period T=8,determine the corresponding system output y(t). Solution:Fundamental period 8T =.02/8/4ωππ==0()j kt k k x t a e ω∞=-∞=∑∴ 00()()jk t k k y t a H jk e ωω∞=-∞=∑0004, 0sin(4)()0, 0k k H jk k k ωωω=?==?≠? ∴ 000()()4jkw t k k y t a H jk e a ω∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=另:x(t)为实奇信号,则a k 为纯虚奇函数,也可以得到a 0为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1 试分别指出以下波形是属于哪种信号?题图1-1 1-2 试写出题1-1图中信号的函数表达式。
1-3 已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴ )2(1-t x ⑵ )1(1t x - ⑶ )22(1+t x ⑷ )3(2+t x ⑸ )22(2-t x ⑹ )21(2t x -t)(a t)(bt)(c nt)(bt)(a⑺ )(1t x )(2t x - ⑻ )1(1t x -)1(2-t x ⑼ )22(1tx -)4(2+t x 1-4 已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴ )12(1+n x ⑵ )4(1n x - ⑶ )2(1n x⑷ )2(2n x - ⑸ )2(2+n x ⑹ )1()2(22--++n x n x ⑺)2(1+n x )21(2n x - ⑻ )1(1n x -)4(2+n x ⑼ )1(1-n x )3(2-n x 1-5 已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。
题图1-51-6 试画出下列信号的波形图:⑴ )8sin()sin()(t t t x ΩΩ= ⑵ )8sin()]sin(211[)(t t t x ΩΩ+= ⑶ )8sin()]sin(1[)(t t t x ΩΩ+= ⑷ )2sin(1)(t tt x =nn)(a t1-7 试画出下列信号的波形图:⑴ )(1)(t u e t x t-+= ⑵ )]2()1([10cos )(---=-t u t u t et x tπ⑶ )()2()(t u e t x t--= ⑷ )()()1(t u et x t --= ⑸ )9()(2-=t u t x ⑹ )4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。
⑴ )1(1)(2Ω-Ω=Ωj e j X ⑵ )(1)(Ω-Ω-Ω=Ωj j e e j X ⑶ Ω-Ω---=Ωj j ee j X 11)(4 ⑷ 21)(+Ω=Ωj j X1-9 已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。
⑴ )()()(221t x dt t x d t x +=⑵ ττd x t x t ⎰∞-=)()(21-10 试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。
题图1-101-11 试求下列积分:⑴ ⎰∞∞--dt t t t x )()(0δ ⑵ ⎰∞∞---dt t t u t t )2()(00δ⑶⎰∞∞---dt t t t e t j )]()([0δδω ⑷⎰∞∞--dt t t )2(sin πδt)(b )(c t)(a⑸⎰∞∞--++dt t t t )1()2(3δ ⑹⎰--112)4(dt t δ1-12试求下列积分:⑴ ⎰∞-'-=td t x ττδτ)()1()(1 ⑵ ⎰∞--=td t x ττδτ)()1()(2⑶ ⎰∞---=td u u t x ττττ)]1()([)(31-13 下列各式中,)(⋅x 是系统的输入,)(⋅y 是系统的响应。
是判断各系统是否是线性的、时不变的和因果的。
⑴ b t ax t y +=)()( (b a 、均为常数) ⑵ )()(t x et y =⑶ )2()(t x t y = ⑷ )1()1()(t x t x t y ---=⑸ ⎰∞-=2)()(t d x t y ττ ⑹ )2()(nx n y =⑺ )()(n nx n y = ⑻ )1()()(-=n x n x n y1-14 如题图1-14中已知一线性时不变系统当输入为)(t x 时,响应为)(t y 。
试做出当输入为)(1t x 时,响应)(1t y 的波形图。
题图1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。
ttt题图1-151-16 已知系统方程如下,试分别画出他们的系统模拟框图。
⑴)()(2)(3)(22t x t y dt t dy dt t y d =++ ⑵ )(3)()(2)(3)(22t x dt t dx t y dt t dy dtt y d +=++ ⑶ )()2(2)1(3)(n x n y n y n y =----⑷ )1(2)(2)2(2)1(3)(-+=----n x n x n y n y n y1-17 已知一线性时不变系统无起始储能,当输入信号)()(t t x δ=时,响应)()(t u et y tα-=,试求出输入分别为)(t δ'与)(t u 时的系统响应。
第二章 习 题2-1 试计算下列各对信号的卷积积分:)()()(t h t x t y *=。
⑴ )()(t u e t x t α= )()(t u e t h tβ= (对βα≠与βα=两种情况) ⑵ 1)(=t x )()(3t u et h t-=⑶ )()()(τ--=t u t u t x )()()(τ--=t u t u t h⑷ )2()2()(ττ--+=t u t u t x )()()(τ--=t u t u t h ⑸ )()()(τ--=t u t u t x )2()()(τ--=t u t u t h ⑹ )]1()([)(--=t u t u t t x )2()()(--=t u t u t h2-2试计算下列各对信号的卷积和:)()()(n h n x n y *=。
⑴ )()(n u n x n α= )()(n u n h nβ= (对βα≠与βα=两种情况) ⑵ )()(n u n x = )()(n u n h nα=⑶ )()(5n R n x = )()(n x n h = ⑷ )()(5n R n x = )1()(-=n x n h ⑸ )()(n u n x n-=α )()(n u n h = ⑹ )2()(n n x -=δ )1()5.0()(1+=+n u n h n2-3试计算下图中各对信号的卷积积分:)()()(21t x t x t y *=,并作出结果的图形。
题图2-32-4试计算下图中各对信号的卷积和:)()()(21n x n x n y *=,并作出结果的图形。
)(a)(2t x t44-)1()1()](π--t u )(b ∑∞=--=02)()1()(k k k t tx πδtπ)1()1(-π2π3π4π5)(c)(a题图2-42-5 已知 )1()()(--=t u t u t x ,试求:⑴ )()()(1t x t x t x *= ⑵ )1()()(2-*=t x t x t x ⑶ dtt dx t x t x )()()(3*= 并作出他们的图形。
2-6 系统如题图2-6所示,试求系统的单位冲激响应)(t h 。
已知其中各子系统的单位冲激响应分别为:)()(1t u t h = )1()()(32-==t t h t h δ题图2-62-7系统如题图2-7所示,试求系统的单位冲激响应)(t h 。
已知其中各子系统的单位冲激)(b)(t x )(t y响应分别为:)()(1t u t h = )2()1()(2-+-=t t t h δδ )1()(3-=t u t h题图2-72-8 设已知LTI 系统的单位冲激响应 )()(2t u et h t-=,试求在激励)]2()([)(--=-t u t u e t x t 作用下的零状态响应。
2-9 一LTI 系统如题图2-9所示,由三个因果LTI 子系统级联而成,且已知系统的单位样值响应如图中)(n h 。
若已知其中)2()()(2--=n u n u n h ,试求)(1n h 。
题图2-92-10 电路如题图2-10中所示,试列出电路对应的输入输出时间方程。
题图2-10)(t x )(t y )(n x )(n )(n h11si 2R O u )(a i L Ou )(b u2-11 已知系统的微分方程和起始条件,试求系统的零输入响应。
⑴ 1)0( ,1)0( , )()(3)(4)(='==+'+''--y y t x t y t y t y ⑵ 1)0( ,1)0( , )()(4)(4)(='==+'+''--y y t x t y t y t y ⑶ 2)0( ,1)0( , )()(8)(4)(='==+'+''--y y t x t y t y t y 2-12已知系统的差分方程和起始条件,试求系统的零输入响应。
⑴ 1)2( ,1)1( , )()2(2)1(3)(=-=-=-+-+y y n x n y n y n y ⑵ 1)2( ,1)1( , )()2(4)1(4)(=-=-=-+-+y y n x n y n y n y⑶ 2)2( ,1)1( , )()2(61)1(65)(=-=-=-+-+y y n x n y n y n y 2-13已知系统的微分方程,试求系统的单位冲激响应。
⑴ )()(3)(4)(t x t y t y t y =+'+'' ⑵ )()()(3)(4)(t x t x t y t y t y +'=+'+'' ⑶ )()()(2)(t x t x t y t y +'=+'2-14已知系统的差分方程,试求系统的单位样值响应。
⑴ )()2(2)1(3)(n x n y n y n y =-+-+⑵ )1(2)()2(61)1(65)(-+=-+--n x n x n y n y n y 2-15已知系统的微分方程和起始条件,试求系统的全响应,并指出零输入响应、零状态响应,自由响应和受迫响应。
⑴ )()( ,2)0( ,1)0( , )(2)(4)(5)(t u t x y y t x t y t y t y =='='=+'+''--⑵ , )(2)()(3)(4)(t x t x t y t y t y +'=+'+'' )()(,1)0( ,1)0( 2t u et x y y t---=='=2-16已知系统的差分方程和起始条件,试求系统的全响应,并指出零输入响应、零状态响应,自由响应和受迫响应。