初中数学优秀教案案例
初中数学教案(优秀8篇)
初中数学教案(优秀8篇)初中数学优秀教案篇一一、教学目标:1、知识目标:①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2、能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3、情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1、引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2、数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。
数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。
(按教材P63的倒数第二段进行讲解。
)强调:表示0的点与原点的距离是0,所以|0|=0.指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的`相反数,0的绝对值是0.用字母a表示数,则绝对值的代数意义可以表示为:指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3、例题精讲例1.求8,-8的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|。
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3例3.已知一个数的绝对值等于2,求这个数。
初中数学教学设计案例(热门18篇)
初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。
初中七年级数学教案(优秀12篇)
初中七年级数学教案(优秀12篇)七年级数学教案篇一一、素质教育目标(一)知识教学点使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小。
(二)能力训练点逐步培养学生观察、比较、分析、概括等逻辑思维能力。
(三)德育渗透点培养学生良好的学习习惯。
二、教学重点、难点和疑点1、重点:由锐角的正弦值或余弦值,查出这个锐角的大小。
2、难点:由锐角的正弦值或余弦值,查出这个锐角的大小。
3、疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错。
三、教学步骤(一)明确目标1、锐角的。
正弦值与余弦值随角度变化的规律是什么?这一规律也是本课查表的依据,因此课前还得引导学生回忆。
答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大)。
2、若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______。
3、不查表,比较大小:(1)sin20°______sin20°15′;(2)cos51°______cos50°10′;(3)sin21°______cos68°。
学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案。
3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算。
(二)整体感知已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值。
反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小。
因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑。
而且通过逆向思维,可能很快会掌握已知函数值求角的方法。
(三)重点、难点的学习与目标完成过程。
例8已知sinA=0.2974,求锐角A。
初中数学优秀教案【精选6篇】
初中数学优秀教案【精选6篇】作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。
那么优秀的教案是什么样的呢?牛牛范文的小编精心为您带来了6篇初中数学优秀教案,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
初中数学优秀教案篇一【教学目标】1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。
2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。
3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。
【教学重点与教学难点】1、重点:多边形的内角和公式。
2、难点:多边形内角和的推导。
3、关键:。
多边形"分割"为三角形。
【教具准备】三角板、卡纸【教学过程】一、创设情景,揭示问题1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力二、探索研究学会新知1、回顾旧知,引出问题:(1)三角形的内角和等于_________。
外角和等于____________(2)长方形的内角和等于_____,正方形的内角和等于__________。
2、探索四边形的内角和:(1)学生思考,同学讨论交流。
(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。
)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。
以四边形的内角和作为探索多边形的。
突破口。
(3)引导学生用"分割法"探索四边形的内角和:方法一:连接一条对角线,分成2个三角形:180°+180°=360°从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。
初中数学教学优质教案(7篇)
初中数学教学优质教案(7篇)初中数学教学优质教案【篇1】一、教材内容人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
三、教学重、难点认识负数的意义。
四、教学过程(一)谈话交流谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。
)今天的数学课我们就从这个话题聊起。
(板书:相反。
)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。
)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?(二)教学新知1.表示相反意义的量(1)引入实例谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。
(补充板书:相反意义的量。
)(2)尝试怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。
(3)展示交流2.认识正、负数(1)引入正、负数谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。
初中数学教学教案(20篇)
初中数学教学教案(20篇)初中数学教学教案篇1一、教学目标1、知识与技能目标掌握有理数的乘法法则,并利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点要点:用有理数乘法法则正确计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、教学过程1.创设问题情境,激发学生求知欲望,引入新课。
教师:由于长期干旱,水库放水抗旱。
每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。
教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题2、小组探索、归纳法则(1)教师展示以下问题,学生分组探究。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×32看作向东运动2米,×3看作向原方向运动3次。
结果:向运动米2 ×3=② -2 ×3-2看作向西运动2米,×3看作向原方向运动3次。
结果:向运动米-2 ×3=③ 2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向运动米2 ×(-3)=④ (-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向运动米(-2)×(-3)=(2)学生归纳法则①符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得②积的绝对值等于。
③任何数与零相乘,积仍为。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
初中数学教学案例50篇
初中数学教学案例50篇1. 关于整数的加减乘除运算整数是初中数学中的重要内容,通过本教学案例,学生可以学习整数的加减乘除运算。
首先,教师可以通过具体的例子,如-5+3、-7-4、-2×6、-12÷3等,让学生掌握整数加减乘除的规律和方法。
然后,通过综合运算的练习题,让学生巩固和运用所学知识,提高整数运算的能力。
2. 解一元一次方程的基本步骤一元一次方程是初中数学中的基础内容,通过本教学案例,学生可以学习解一元一次方程的基本步骤。
首先,教师可以通过具体的例子,如2x+3=7、4x-5=11等,让学生掌握解一元一次方程的基本方法。
然后,通过练习题,让学生熟练运用所学知识,提高解方程的能力。
3. 计算平方根的方法和应用平方根是初中数学中的重要内容,通过本教学案例,学生可以学习计算平方根的方法和应用。
首先,教师可以通过具体的例子,如√9、√16、√25等,让学生掌握计算平方根的基本步骤。
然后,通过实际问题的应用,如求直角三角形的斜边长等,让学生理解平方根的意义和作用,提高解决实际问题的能力。
4. 理解和应用百分数的概念百分数是初中数学中的重要内容,通过本教学案例,学生可以学习理解和应用百分数的概念。
首先,教师可以通过具体的例子,如30%、50%、75%等,让学生掌握百分数的意义和计算方法。
然后,通过实际问题的应用,如计算打折优惠、计算增长率等,让学生应用百分数解决实际问题,提高数学运算能力。
5. 掌握正比例和反比例的关系正比例和反比例是初中数学中的重要内容,通过本教学案例,学生可以学习掌握正比例和反比例的关系。
首先,教师可以通过具体的例子,如y=2x、y=3/x等,让学生理解正比例和反比例的定义和特点。
然后,通过练习题,让学生熟练应用正比例和反比例的关系,提高数学解题的能力。
6. 计算三角形的面积和周长三角形是初中数学中的常见几何图形,通过本教学案例,学生可以学习计算三角形的面积和周长。
初中数学优秀教案优秀3篇
初中数学优秀教案优秀3篇初中数学优秀教案篇一一、教材分析(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。
(二)课时安排:两课时。
本节课是第一课时,第二课时是梯形的判定及应用(三)教学目标1、知识与技能目标:掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。
2、过程与方法目标:⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;⑴在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、3、情感、态度与价值观目标:让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;(四)教学重点、难点:本节课的教学重点分成三个层次:1、掌握梯形的定义,认识梯形的其他相关概念;2、熟练应用等腰梯形的性质;3、通过实际操作研究梯形的基本辅助线作法。
本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。
原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。
在这样的理念下,我设计了如下的教法、学法和教学程序:二、教学方法:根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。
如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。
三、学习方法:初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。
初中数学优秀教学教案(优秀5篇)
初中数学优秀教学教案(优秀5篇)数学属于形式科学,而不是自然科学。
不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
三人行,必有我师也。
择其善者而从之,其不善者而改之。
本文是编辑给大伙儿整编的初中数学优秀教学教案(优秀5篇),仅供参考,希望大家能够喜欢。
初中数学教学教案模板篇一一、学习目标:1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。
2、正确运用二次根式的性质及运算法则进行二次根式的混合运算。
二、学习重点:正确运用二次根式的性质及运算法则进行二次根式的混合运算。
学习难点:二次根式计算的结果要是较简二次根式。
三、过程知识准备1、满足下列条的二次根式是较简二次根式。
2、回忆有理数,整式混合运算的顺序。
3、回忆并整理整式的乘法公式。
方法探究1⑴(512+23)x15⑴(3+10)(2-5)归纳:尝试练习:⑴(3+22)x6⑴(827-53)6⑴(6-3+1)x23⑴(3-22)(33-2)⑴(22-3)(3+2)⑴(5-6)(3+2)方法探究2⑴(3+2)(3-2)⑴(3+25)2归纳:尝试练习:⑴(5+1)(5-1)⑴(7+5)(5-7)⑴(25-32)(25+32)⑴(a+b)(a-b)⑴(3-2)2⑴(32-45)2⑴(3-22)(22-3)⑴(a-b)2⑴(1-23)(1+23)-(1+3)2⑴(3+2-5)(3+2+5)例题解析1、计算:(22-3)2011(22+3)2012.2、若x=10-3,求代数式x2+6x+11的值。
3、若x=11+72,y=11—72,求代数式x2-xy+y2的值。
内反馈1、计算12(2-3)=2、计算⑴(2+3)(2-3)=⑴(5-2)2010(5+2)2011=3、计算:⑴12(75+313-48)⑴(1327-24-323)12⑴(23-5)(2+3)⑴(5-3+2)(5+3-2)⑴(312-213+48)÷234、已知a=3+2,b=3-2,求下列各式的值。
初中数学教学设计 初中数学设计教案(优秀5篇)
初中数学教学设计初中数学设计教案(优秀5篇)作为一名默默奉献的教育工作者,就有可能用到教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。
那么教学设计应该怎么写才合适呢?作者整理了5篇初中数学设计教案,希望您在阅读之后,能够更好的写作初中数学教学设计。
初中数学教学设计篇一为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。
努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下:一、教学目标:通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。
对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的较大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物的熏陶,提高学生素质。
二、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十六章分式本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
第十七章反比例函数函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。
学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。
初中数学教案案例模板范文(15篇)
初中数学教案案例模板范文(15篇)初中数学教案案例模板范文篇1教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。
教材通过一元二次方程a_2+b_+c=0(a≠0)的根_1、_2得出一元二次方程根与系数的关系,以及以数_1、_2为根的一元二次方程的求方程模型。
然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。
体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
板书设计:一元二次方程根与系数的关系如果a_+b_+c=0(a≠0)的两根是_1,_2,那么_1+_2=,_1_2=。
问题6.在方程a_+b_+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4a c≥0时,_1+_2=,_1_2=。
初中数学教学案例50篇
初中数学教学案例50篇案例1:整数运算应用问题描述:小明乘以一个整数后得到的结果是-30,如果小明除以这个整数,商是-6。
请问这个整数是多少?解决思路:设这个整数为x,根据题意可以建立如下方程:x * (-30) = -6。
解这个方程可以得到整数x的值。
案例2:解一元一次方程问题描述:有一辆火车从A地出发,以每小时60公里的速度向B 地行驶。
另外一辆从B地出发,以每小时80公里的速度向A地行驶。
两车相遇时,两地相距1200公里,则两车分别行驶多长时间?解决思路:假设两车相遇所行驶的时间为t小时,利用速度和时间的关系可以建立方程:60t + 80t = 1200。
解这个方程可以得到时间t的值。
案例3:等差数列求和问题描述:有一个等差数列,首项是5,公差是2,求这个数列的前10项和。
解决思路:根据等差数列的求和公式,可以得到这个数列的前10项和。
案例4:三角形面积计算问题描述:已知一个三角形的底是5cm,高是8cm,求这个三角形的面积。
解决思路:利用三角形面积的计算公式,可以得到这个三角形的面积。
案例5:平方根运算问题描述:求解方程x^2 = 16的解。
解决思路:通过开平方的运算,可以得到方程的解。
案例6:倍数关系问题描述:某个数的13倍再加上5等于123,请问这个数是多少?解决思路:设这个数为x,可以建立如下方程:13x + 5 = 123。
解这个方程可以得到数x的值。
案例7:解一元二次方程问题描述:解方程x^2 + 5x - 6 = 0。
解决思路:通过解一元二次方程的方法,可以得到方程的解。
案例8:等差数列通项计算问题描述:有一个等差数列,公差是3,第5项是14,求解这个数列的通项。
解决思路:利用等差数列的通项公式,可以得到数列的通项。
案例9:计算百分比问题描述:小明考试得了80分,满分是100分,他的得分占总分的百分之多少?解决思路:通过计算分数所占百分比的方法,可以得到小明的得分在总分中的百分比。
初中数学优秀教案 初中数学优秀教案(优秀8篇)
初中数学优秀教案初中数学优秀教案(优秀8篇)作为一名教师,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。
教案应该怎么写呢?这里是小编阿青给大家收集整理的8篇初中数学优秀教案的相关范文。
初中数学优秀教案篇一一、背景知识《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。
课本安排了做一做等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。
二、教学目标1、使学生能说出有理数大小的比较法则2、能熟练运用法则结合数轴比较有理数的大小,特别是应用定值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号∵∵写出表示推理过程中简单的因果关系。
三、教学重点与难点重点:运用法则借助数轴比较两个有理数的大小。
难点:利用定值概念比较两个负分数的大小。
四、教学准备多媒体课件五、教学设计(一)交流对话,探究新知1、说一说(多媒体显示)某一天我们5个城市的较低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的较低气温10∵比上海的较低气温0∵高,有些学生会说哈尔滨的较低气温零下20∵比北京的较低气温零下10∵低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。
比较这一天下列两个城市间较低气温的高低(填高于或低于)广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市较低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?(3)温度的高低与相应的数在数轴上的位置有什么?(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。
初中数学教学案例(精选8篇)
初中数学教学案例(精选8篇)1. 线性方程组的解法教学目标:理解线性方程组的概念,掌握解法方法。
教学内容:线性方程组的定义,解法方法,实例演练等。
教学过程:教师引导学生理解线性方程组的概念,引入解法方法,通过实例演练提高学生的解题能力。
教学效果:学生在实践中掌握了线性方程组的解法方法,能够独立完成相关题目。
2. 平面几何与三维几何的联系教学目标:认识平面几何与三维几何的联系,培养学生的几何思维。
教学内容:平面几何与三维几何的基本概念及联系,实例演练。
教学过程:教师通过生动的例子和图像让学生了解平面几何与三维几何的联系,鼓励学生发挥几何思维来解决相关问题。
教学效果:学生掌握了平面几何与三维几何的联系,培养了几何思维。
3. 十字相乘法因式分解教学目标:掌握十字相乘法因式分解的方法。
教学内容:十字相乘法因式分解的概念,方法和实例演练。
教学过程:教师通过具体的实例,引导学生理解十字相乘法因式分解的方法,提高学生的解题能力。
教学效果:学生掌握了十字相乘法因式分解的方法,能够独立解题。
4. 直线与平面的位置关系教学目标:了解直线与平面的位置关系,培养学生的几何思维。
教学内容:直线与平面的基本概念、位置关系及公式推导,实例演练。
教学过程:教师通过生动的图像,引导学生了解直线与平面的位置关系,鼓励学生发挥几何思维来解决相关问题。
教学效果:学生掌握了直线与平面的位置关系,培养了几何思维。
5. 平移、旋转和翻转变换教学目标:了解平移、旋转和翻转变换的概念及应用。
教学内容:平移、旋转和翻转变换的基本概念,公式推导及实例演练。
教学过程:教师以具体的图像为例,引导学生了解平移、旋转和翻转变换的概念及公式推导,并通过实例演练提高学生的应用能力。
教学效果:学生掌握了平移、旋转和翻转变换的概念及应用。
6. 加减法与倍数基本关系教学目标:认识加减法与倍数基本关系,掌握解题方法。
教学内容:加减法与倍数基本关系的定义,解题方法及实例演练。
初中数学教学设计优秀案例(分享九篇)
初中数学教学设计优秀案例(分享九篇)初中数学教学设计优秀案例(分享九篇)。
初中数学教学设计优秀案例篇1一学期的工作结束了,可以说紧张忙碌却收获多多。
回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:一、在备课方面在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。
二、在教学过程方面在课堂教学中我一直注重学生的参与。
让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。
波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。
”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。
但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。
后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。
三、工作中存在的问题1)、教材挖掘不深入。
2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。
3)、新课标下新的教学思想学习不深入。
对学生的自主学习,合作学习,缺乏理论指导4)、差生末抓在手。
由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。
上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。
导致了教学中的盲目性。
四、今后努力的方向1)、加强学习,学习新教学模式下新的教学思想。
2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。
3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。
4)、加强转差培优力度。
5)、加强教学反思,加大教学投入。
一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。
初中数学优秀教案(优秀7篇)
初中数学优秀教案(优秀7篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
这里给大家分享一些关于初中数学优秀教案大全,方便大家学习。
下面作者为大家整理了7篇初中数学优秀教案,希望可以帮助您更好的写作初中数学优秀教案。
初中数学优秀教案篇一学习目标1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
学习重点分式的概念,掌握分式有意义的条件学习难点分式有、无意义的条件教学流程预习导航一、创设情境:京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国较繁忙的铁路干线之一。
如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:(1)货运列车从北京到上海需要多长时间?(2)快速列车从北京到上海需要多长时间?(3)已知从北京到上海快速列车比货运列车少用多少时间?观察刚才你们所列的式子,它们有什么特点?这些式子与分数有什么相同和不同之处?合作探究一、概念探究:1、列出下列式子:(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是元。
(3)正n边形的每个内角为度。
(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。
这两块棉田平均每公顷产棉花______㎏。
2、两个数相除可以把它们的商表示成分数的形式。
如果用字母分别表示分数的分子和分母,那么可以表示成什么形式呢?3、思考:上面所列各式有什么共同特点?(通过对以上几个实际问题的研讨,学会用的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)分式的概念:4、小结分式的概念中应注意的问题。
初中数学课堂教学精彩教学案例设计【三篇】
初中数学课堂教学精彩教学案例设计【三篇】教学案例是真实而典型的问题大事。
以下是为大家整理的学校数学课堂教学精彩教学案例设计的文章3篇 ,欢迎品鉴!学校数学课堂教学精彩教学案例设计一、教学目标:1、理解二元一次方程及二元一次方程的解的概念;2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段:通过与一元一次方程的比较,加强同学的类比的思想方法;通过"合作学习',使同学熟悉数学是依据实际的需要而产生进展的观点。
四、教学过程:1、情景导入:新闻链接:x70岁以上老人可领取生活补助。
得到方程:80a+150b=902880、2、新课教学:引导同学观看方程80a+150b=902880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
做一做:(1)依据题意列出方程:①小明去探望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;②在高速大路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,假如设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2、判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间记求是中学"学雷锋、关爱老人'志愿者活动。
问题:参与活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟支配8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由同学检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
初中数学教案(8篇)
初中数学教案(8篇)初中数学优秀教案篇一一、教材内容及设置依据【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。
【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。
二、教材的地位和作用本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了类比依据。
也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。
三、对重点、难点的处理【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。
为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。
同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。
【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。
同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)四、关于教学方法的选用根据本节课的内容和学生的实际水平,本节课可采用的方法:1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:二元一次方程一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念.难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880.2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.做一做:(1)根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .(2)课本P80练习2. 判定哪些式子是二元一次方程方程.合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.并提出注意二元一次方程解的书写方法.试一试:检验下列各组数是不是方程2x=y+1的解:①4,3,xy=⎧⎨=⎩②2.5,4,xy=⎧⎨=⎩③6,13.xy=-⎧⎨=-⎩②③是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.3.合作学习:给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?出示例题:已知二元一次方程 x+2y=8.(1)用关于y的代数式表示x;(2)用关于x的代数式表示y;(3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)4.课堂练习:(1)已知:5xm-2yn=4是二元一次方程,则m+n= ;(2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;(3) 已知2,1xy=⎧⎨=⎩是关于x,y的方程2x+ay=5的一个解,则a= .5.你能解决吗?小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.6.课堂小结:(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);(2)二元一次方程解的不定性和相关性;(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.7.布置作业:(1)教材P82; (2)作业本.教学设计意图:依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.《4.1二元一次方程》教学设计衢州市兴华中学徐勇一、教材的地位与作用《二元一次方程》是九年义务教育课程标准实验教科书浙教版教材七年级下册第四章《二元一次方程组》的第一节。
在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。
本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。
二、教学目标(一)知识与技能:1.了解二元一次方程概念;2.了解二元一次方程的解的概念和解的不唯一性;3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
(二)数学思考:体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。
(三)问题解决:初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。
获得求二元一次方程解的思路方法。
(四)情感态度:培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。
三、教学重点与难点教学重点:二元一次方程及其解的概念。
教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
四、教法与学法分析教法:情境教学法、比较教学法、阅读教学法。
学法:阅读、比较、探究的学习方式。
五、教学过程(一)创设情境,引入新课从学生熟悉的姚明受伤事件引入。
师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。
(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了203x y y +-=2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?设姚明投进了x 个两分球,罚进了y 个球,可列出方程______。
(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。
你知道他分别投进几个两分球、几个三分球吗?设易建联投进了x 个两分球,y 个三分球,可列出方程______。
师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?从而揭示课题。
(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。
另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”、“乐学”。
)(二) 探索交流,汲取新知1、 概念思辩,归纳二元一次方程的特征师:那到底什么叫二元一次方程?(学生思考后回答)师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)师:根据概念,你觉得二元一次方程应具备哪几个特征?活动:你自己构造一个二元一次方程。
快速判断:下列式子中哪些是二元一次方程?③ ④ ⑤ ⑦ (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化 。
在归纳二元一次方程特征的时候,引导学生理解“含有未知数的项的次数都是一次”实际上是说明方程的两边是整式。
在判断的过程中,②⑥⑦是在书本的基础上补充的,②是让学生先认识这种形式,后面出现用关于一个未知① x 2+y=0 ② y=2x +4 ⑥2x+1=2-x 21x y =+12y x +4=+b ab数的代数式表示另一个未知数实际上是方程变形;⑥是方程两边都出现了x,强化概念里两个未知数是不一样的;⑦是再次理解“项的次数”。
)2、二元一次方程解的概念师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。
(学生看书本上的记法)使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。
引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。
)3、二元一次方程解的不唯一性对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。
)4、如何去求二元一次方程的解例已知方程3x+2y=10(1)当x=2时,求所对应的y 的值;(2)取一个你自己喜欢的数作为x的值,求所对应的y 的值;(3)用含x的代数式表示y;(4)用含y的代数式表示x;(5)当x=-2,0时,所对应的y 的值是多少?(6)写出方程3x+2y=10的三个解.(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。