—一刚体转动惯量测定

合集下载

刚体转动惯量的测定

刚体转动惯量的测定
力矩M与转角 的关系为:
M K
(1)
❖ 式中, k称扭力系数。
❖ 【忽略空气阻尼力矩的作用,根据刚体 转动定理有】

M J0
(2)
❖ 【式中,J 0为刚体对悬线轴的转动惯量, 为角加速度。】
d 2 dt 2
K
J0
2
实验原理
❖ 【扭摆作角简谐振动的运动微分方程为】
d 2
dt 2
K
J0
2
(3)
式中 K J0 为角简谐振动的圆频率。其周期T0为
T0
2
2
J0 K
或T0 2
4
2
J0
K
(4)
❖ 体【,若其K未质知量,为可m1利,用将一它个附对加其到质圆心盘轴上的,转并动使惯其量质心J1已位知于的扭物摆
悬线上,组成复合体。此复合体对以悬线为轴的转动惯量为
❖ J0 J1 ,复合体的摆动周期T为】
2
3
4
5
6
平均值
数据记录
❖ 表二:周期的测量
10 T0/S T0 /S 10 T/S 1
T /S
2
3
4
5
6 平均值
1)
数据处理
J1
m1 8
2
(D1
2
D2)
代入数据
u1和u2分别表示 D1和D2的 标准不确定度
u1
u
2 A
uB(2 只取A类不确定度)
S(D1)
(D1i D)2 n(n 1)
3保留1位 3保留2位
8)
J0 J0 U J 0 注意尾数对齐 }(kg.m2 )
K 2
注意事项
1、测量前,根据水准泡的指示,先调整底座台 面的水平。测量时,摆角尽可能小些,以满足小 角度近似。防止扭摆盘在摆动时发生晃动,以免 影响测量结果。 2、测量周期时应合理选取摆动次数。先估算 J1 的相对误差,然后推出 J的0 相对误差公式。根据 使 T的0或相T 对误差项对 的u贡J0 献J0 比 的相对J误1 差 贡献小的原则,确定摆动次数。 3、光电探头宜放置在挡光杆的平衡位置处,挡 光杆不能和它相接触,以免增大摩擦力矩。

刚体转动惯量的测定(共10张PPT)

刚体转动惯量的测定(共10张PPT)

3、学习用曲线改直的数据处理方法处理数据。 3、学习用曲线改直的数据处理方法处理数据。
00g,h= cm 保持h、r、x不变改变m(分别取m=10g,15g,20g,25g,30g)重复上述操作,分别测出相同半径下,不同质量的重物下落相同高度所需的时间t,每一 条件下,重复测量三次,将测量数据记入表一。 3、学习用曲线改直的数据处理方法处理数据。 保持h、r、x不变改变m(分别取m=10g,15g,20g,25g,30g)重复上述操作,分别测出相同半径下,不同质量的重物下落相同高度所需的时间t,每一 条件下,重复测量三次,将测量数据记入表一。 2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数据。 1、了解转动惯量的物理意义;
00g,h= cm 2、掌握转动惯量的测定方法; 1、了解转动惯量的物理意义; 3、学习用曲线改直的数据处理方法处理数据。
实验内容及操作
• 保持h、r、x不变改变m(分别取 m=10g,15g,20g,25g,30g)重复上述操作,分 别测出相同半径下,不同质量的重物下 落相同高度所需的时间t,每一条件下, 重复测量三次,将测量数据记入表一。
刚体转动惯量的测定
• 实验目的 • 实验仪器 • 实验原理 • 实验内容及操作 • 数据记录与处理
实验目的
1、了解转动惯量的物理意义; 2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数
据。
实验原理
设由塔轮、游码、横杆等组成的转动系统的转动惯量为J,系统受拉
3、学习用曲线改力直的作数据用处理力方矩法处为理数M据T。,阻力矩为Mμ,则有
2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数据。
1.00 1.50 2.00 2.50 3.00 t(s) r(cm) 3、学习用曲线改直的数据处理方法处理数据。

刚体转动惯量测定实验

刚体转动惯量测定实验

四.实验方法和步骤
5.用手轻微转动上部圆盘,使三线摆产生一个初扭转 角,然后释放圆盘,三线摆发生扭转振动 6.点击“复位”按钮,再点击“开始”按钮,系统自 动记录扭转20次所需时间,取平均即为振动周期
7.重新稳定圆盘,按“开始”按钮连续测量6次 8.重新调整摆长约为700mm和500mm,重复3-7步骤,分 析不同摆长对转动惯量测试值的影响
刚体转动惯量测定实验刚体转动惯量的测定刚体转动惯量实验报告刚体转动惯量实验仪刚体转动惯量刚体的转动惯量三线摆测刚体转动惯量刚体转动惯量数据处理测量刚体的转动惯量刚体转动惯量误差分析
工程中常见非均质物体
一.实验目的
1.了解并掌握用“三线摆”测取物体转
动惯量的原理与方法 2.掌握用“等效法”简化并解决实际工
四.实验方法和步骤
(二)非均质物体转动惯量测定
1. 点击“非均质物体转动惯量测试”按钮,进入测试界 面 2.松开三线摆顶部固定螺栓,转动手轮,使三线摆长为 600mm,调整圆盘至水平状态 3.输入等效圆柱质量m=80g,直径d=16mm、摆长l=600mm 4.将非均质物体放入圆盘,使其转动中心与盘心重合, 转动上部圆盘产生扭转振动,记录振动周期
r B’
R
三.实验原理
设圆盘最大转角为θmax,当圆盘转
角为θ 时,有
A
C
B
r l , r max l max
设三线摆作初始转角等于0、转动角 速度等于ωn的简谐振动,则有:
d max sin n t , n max dt max
四.实验方法和步骤
(二)非均质物体转动惯量测定
6.使两等效圆柱中心间距s为30、40、50、60mm,测出 其扭转振动周期,并用平行移轴定理计算转动惯量 7.用插入法求得非均质物体转动惯量

实验1 刚体转动惯量的测定

实验1   刚体转动惯量的测定

实验1:刚体转动惯量的测定教师:徐永祥1.前言:转动惯量(Moment of inertia)是表征物体转动惯性大小的物理量,它与物体平动的质量是完全对应的。

转动惯量和物体的形状、大小、密度以及转轴的位置等因素有关,密度均匀形状规则的刚体(Rigid body),其转动惯量可以方便地计算出来,但不符合此条件的刚体的转动惯量一般需要通过实验的方法测出。

目前,测量转动惯量的方法有多种,如动力学法、扭摆法(三线扭摆法、单线摆法)及复摆法等等。

本实验采用动力学方法测量被测物体的转动惯量。

2.教学方式与时间安排教师讲解、示范及与学生互动相结合;总实验时间:120分钟左右。

3.实验基本要求1) 会通过转动惯量实验仪的操作测量规则物体的转动惯量,并与理论值比较进行误差分析;2) 学会用实验方法验证平行轴原理;3)学会用作图法处理数据,熟悉并掌握用作图法处理数据的基本要求。

4.实验仪器与部件转动惯量实验仪,电子毫秒计,可编程电子计算器,铝环,小钢柱等。

5.仪器介绍转动惯量实验仪的主体由十字形承物台和塔轮构成。

塔轮带有5个不同半径的绕线轮(半径r分别为15,20,25,30,35mm共5挡),使轻质细线通过滑轮连着砝码钩;砝码钩上挂着不同数量的砝码,以改变转动体系的动力矩。

承物台呈十字形,它沿半径方向等距离地排有三个小孔,这些孔离中心的距离分别为45,60,75,90,105mm,小孔中可以安插小钢珠,籍以改变体系的转动惯量。

承物台下方连有两个细棒,它们随承物台一起转动,到达光电门处产生遮光并通过脉冲电路引起脉冲触发信号,从而便于计算遮光次数及某两次遮光之间的时间间隔,并最终由数字毫秒计显示出来。

关于数字毫秒计使用方法,请参见本实验讲义P66“数字毫秒计”部分。

6. 实验原理1)转动惯量的测定由刚体转动的动力学定律得到:βJM=(1)式中,M为转动体系所受的合外力矩,包括细绳作用于塔轮的力矩以及阻力矩;J为系统绕竖直轴的转动惯量。

刚体转动惯量测定

刚体转动惯量测定

θ=ω0t+1/2βt2
同一次转动过程中,时间分别为t1、t2的角位移可以表示为:
θ1=ω0t1+1/2βt12
(5)
θ2=ω0t2+1/2βt22
(6)
取θ1 =2π, θ2=6π并消去ω0,可以得到:
2 (6t1 2t2 )
t1t2 (t2 t1)
(7)
(二)验证平行轴定理
J=JC+md2
(2)
Mμ—阻力矩
Mμ =Jβμ
(3)
3、将(2)和(3)代入(1)式中,可得:
mfgr+Jβμ=J β 由此可得转动惯量的表达式:
J mf gr (4)

1. 承物台 2. 遮光细棒 3.
4、本实验的刚体转动可认为是匀变速转动,角位移公式:
图二 承物台俯视图
刚体转动惯量测定
1. 学习使用刚体转动惯量实验仪,测定规则物体的转动惯量,
2. 用实验方法验证平行轴定理。
二、实验原理
(一)转动惯量的测定
1、由转动定律可知: M=Jβ
其中: M—合外力矩 J—转动惯量 β—角加速度
2、本仪器转动时受到两个力矩的作用即:
M′+Mμ=Jβ
(1)
其中:M′—动力矩 M′ =Fr ≈mfgr
三、实验内容 (一)测圆环的转动惯量Jx 1. 测承物台的转动惯量J0 2. 测承物台加圆环的转动惯量J 3. 求圆环的转动惯量Jx=J-J0,并
与J理比较求相对误差 (二)验证平行轴定理
1.先将小圆柱放在孔(2,2′)位置, 测J1
2.后将小圆柱放在孔(1,3 ′ )位置, 测J2
3.验证:J2-J1=2mzd2

刚体转动惯量的测定

刚体转动惯量的测定

刚体转动惯量的测定转动惯量是描述刚体转动惯性大小的物理量,是研究和描述刚体转动规律的一个重要物理量,它不仅取决于刚体的总质量,而且与刚体的形状、质量分布以及转轴位置有关。

对于质量分布均匀、具有规则几何形状的刚体,可以通过数学方法计算出它绕给定转动轴的转动惯量。

对于质量分布不均匀、没有规则几何形状的刚体,用数学方法计算其转动惯量是相当困难的,通常要用实验的方法来测定其转动惯量。

因此,学会用实验的方法测定刚体的转动惯量具有重要的实际意义。

实验上测定刚体的转动惯量,一般都是使刚体以某一形式运动,通过描述这种运动的特定物理量与转动惯量的关系来间接地测定刚体的转动惯量。

测定转动惯量的实验方法较多,如拉伸法、扭摆法、三线摆法等,本实验是利用“刚体转动惯量实验仪”来测定刚体的转动惯量。

为了便于与理论计算比较,实验中仍采用形状规则的刚体。

【实验目的】1. 学习用转动惯量仪测定物体的转动惯量。

2. 研究作用在刚体上的外力矩与刚体角加速度的关系,验证刚体转动定律和平行轴定理。

3. 观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况。

【实验仪器】ZKY-ZS 转动惯量实验仪及其附件(砝码,金属圆柱、圆盘及圆柱), ZKY-J1通用电脑计时器.图1 转动惯量测定装置实物图【实验原理】根据刚体的定轴转动定律dtd JJ M ωβ==, 只要测定刚体转动时所受的合外力矩及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量,这是恒力矩转动法测定转动惯量的基本原理和设计思路。

一、转动惯量J 的测量原理砝码盘及其砝码是系统转动的动力。

分析转动系统受力如图2所示:当砝码钩上放置一定的砝码时,若松开手,则在重力的作用下,砝码就会通过细绳带动塔轮加速转动。

当砝码绳脱离塔轮后,系统将只在摩擦力矩的作用下转动。

图2 转动系统受力图本实验中待测试件放在实验台上,随同实验台一起做定轴转动。

设空实验台(未加试件)转动时,其转动惯量为0J ,加上被测刚体后的转动惯量为J ,由转动惯量的叠加原理可知,则被测试件的转动惯量被测J 为0J J J -=被测 或 被测物J J J +=0实验时,先测出系统支架(空实验台)的转动惯量0J ,然后将待测物放在支架上,测量出转动惯量为J ,利用上式可计算出待测物的转动惯量。

刚体转动惯量测定实验

刚体转动惯量测定实验

4、本实验方法为什么可以不考虑滑轮的质量及 定容气体压强~温度曲线
20mA,并可定坐标纸的大小(略大于坐标范围、数据范围) 约为130mm×130mm。 20mA,并可定坐标纸的大小(略大于坐标范围、数据范围) 约为130mm×130mm。
其转动惯量? 记录数据时要剔除错误的数据。
对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀
的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。
作图法处理数据的基本要求
表1:伏安法测电阻实验数据
坐标分度值的选取应能反映测量值的有效位数,一般以 1~2mm对应于测量仪表的仪表误差。
两边的实验点与图线最为接近且分布大体均匀。
转动惯量是刚体转动中惯性大小的量度。
对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀
tn2tmtm 2tn
k t 为计数器遮挡的次数和相应的时间
实验内容及操作步骤
实验内容
测量刚体转动测试仪空台、圆环和圆盘的转动惯量。 测量圆柱体在载物台上与中心距离为d的圆孔中的转 动惯量。 了解数据处理的方法。
操作步骤
正确连接电路,调试转动惯量测试仪; 测量并计算实验台的转动惯量 测量并计算实验台放上试样后的转动惯量 验证平行轴定理
物理系实验中心
刚体转动惯量测定实验
刚体转动惯量简介 实验装置 实验内容及操作步骤 数据处理
理论基础 实验原理 注意事项 思考与论
刚体转动惯量简介
转动惯量是刚体转动中惯性大小的量度。它取决于刚体的 总质量,质量分布、形状大小和转轴位置。对于形状简单,质 量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的 转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体, 用数学方法计算其转动惯量是非常困难的,因而大多采用实验 方法来测定。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。

在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。

实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。

实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。

本实验主要使用转动盘进行转动惯量的测定。

转动盘由一个固定轴和一个可以转动的圆盘构成。

通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。

根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。

实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。

数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。

将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。

根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。

结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。

实验结果与理论预期较为一致,验证了实验方法的正确性。

实验一刚体转动惯量的测量

实验一刚体转动惯量的测量

第二单元实验1 用扭摆法测刚体转动惯量转动惯量是刚体转动时惯性大小的量度。

刚体的转动惯量与刚体的总质量、形状大小和转轴的位置有关。

对于形状较简单的刚体,可以通过数学方法算出它绕特定轴的转动惯量。

但是对于形状较复杂的刚体,应用数学方法计算它的转动惯量非常困难,故大都用实验方法测定。

刚体的转动惯量在机械动平衡方面有着广泛的应用,凡是涉及往复式直线运动与旋转运动的相互转换,都必须借助具有较大转动惯量的“飞轮”才能实现,其中典型的例子是蒸汽机和内燃机。

此外,为了让机械转动更平稳,最简单的方法就是在其转动轴上加上一个形状规则、质量分布均匀,且具有一定转动惯量的飞轮。

因此,学会刚体转动惯量的测定方法,具有重要的实际意义。

【实验目的】1. 了解ZG-2型转动惯量测定仪测刚体转动惯量的原理和方法。

2. 测定弹簧的扭转常数及几种不同形状刚体的转动惯量。

3. 验证刚体转动的平行轴定理。

【实验原理】1. 弹簧的扭转常数及刚体的转动惯量图1 ZG-2转动惯量测定仪将待测物体在水平面内转过一定角度θ后,在弹簧恢复力矩的作用下,物体就开始绕垂直轴作往返扭转运动。

忽略轴承的摩擦阻力矩,根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即θK M -=(1)式中K 为弹簧的扭转常数。

根据转动定律βI M =式中I 为物体绕转轴的转动惯量,β为角加速度,由此可得θβIK -= (2)令ω2=IK,由(2)式得 -=-==θθβI Kdtd 22ω2θ上述微分方程表示转动惯量仪运动具有角谐振动的特性,即角加速度β与角位移θ成正比,并且方向相反。

此微分方程的解为:)cos(ϕωθ+=t A式中θ为角位移,A为谐振动的角振幅, ϕ为初相位角,ω为圆频率。

此谐振动的周期为KI T πωπ22==则 224T I K π= (3)根据(3)式,只要测得转动惯量仪的摆动周期T ,在I 和K 中任何一个量已知时就可计算出另一个量。

刚体转动惯量的测定

刚体转动惯量的测定
量其转动惯量J2 ,计算样品的转动惯量J3 。
(4)用一对圆柱来验证平行轴定理。
注意: 1、原始数据记录表需要记录4个表格(空
转台、圆环、圆盘、1对圆柱 )
【数据处理】
1、计算出圆盘、圆环的转动惯量。
2、计算出两圆柱的转动惯量,验证平行轴定理。
3、计算出圆盘、圆环及园柱转动惯量的相对误差。
*由于存在各方面的误差,测出来的实验值和理论值误 差范围在15%——30%内都是允许的。
J2
mRg R4
4 3
由于转动惯量具有叠加性,被测物体的转动惯量J3为
J3 J2 J1
2、β的测量
通用电脑计时器计录遮挡次数和载物台旋转 kπ弧度所经历的时间。固定在载物台边缘相差π弧 度的两遮片,在转台每转动半圈遮挡一次光电门, 光电门产生一个计数光电脉冲,计数器可以记录 遮档次数k和相应的时间t。
的张力为T=m(g-a)若此时转台的角加速度 为β2,则有a=Rβ2 ,细线给转台的力矩为 TR=m(g- Rβ2 )R,此时有:
mg R 2 R M J1 2
将Mμ带入上式,可得:
J1
mRg
2
R 2 1
同理,若转台放上被测物体后系统的转动惯量
为J2,加砝码前后的角加速度分别为β3和β4, 则有:
在实验上测定刚体的转动惯量通常采用扭 摆法或恒力矩转动法。本实验我们采用的是恒 力矩转动法来测量刚体的转动惯量。为了方便 理论值与计算值进行比较,实验中我们选择的 刚体仍然是形状简单、质量分布均匀的刚体。
【实验目的】
➢ 掌握测定刚体转动惯量的方法和原理,测定出 刚体的转动惯量。
➢ 验证平行轴定理。 ➢ 学会使用通用电脑计量器来测量时间 。
实验报告评分细则

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的,通过实验测定刚体转动惯量,掌握测定刚体转动惯量的方法和技巧。

实验仪器,转动惯量实验仪、测微卡尺、螺旋测微器、电子天平、计时器等。

实验原理,刚体转动惯量是刚体绕固定轴线旋转时所具有的惯性。

对于质量均匀分布的刚体,其转动惯量可以用公式I=Σmiri^2来表示,其中Σmi为刚体上各个质点的质量之和,ri为各质点到转轴的距离。

实验步骤:1. 将实验仪器放置在水平台面上,并调整水平仪使其处于水平状态。

2. 用测微卡尺测量实验仪器上转轴的直径d,并记录下数据。

3. 将刚体放置在转轴上,并用螺旋测微器测量刚体到转轴的距离r,并记录下数据。

4. 用电子天平测量刚体的质量m,并记录下数据。

5. 通过实验仪器上的刻度盘,测量刚体转动的角度θ,并记录下数据。

6. 重复以上步骤,分别在不同的转动角度下进行测量。

实验数据处理:根据实验数据,我们可以计算出刚体的转动惯量。

根据公式I=Σmiri^2,我们可以根据实验数据计算出不同转动角度下的转动惯量,并绘制出转动惯量随角度变化的曲线图。

实验结果分析:通过实验数据处理和曲线图的分析,我们可以得出刚体转动惯量与转动角度之间的关系。

从曲线图可以看出,随着转动角度的增大,刚体的转动惯量也随之增大。

这符合我们对刚体转动惯量的理论预期。

实验结论:通过本次实验,我们成功测定了刚体的转动惯量,并得出了转动惯量随角度变化的规律。

同时,我们也掌握了测定刚体转动惯量的方法和技巧,对刚体转动惯量有了更深入的理解。

实验中还存在一些误差,如实验仪器的精度限制、实验操作技巧等因素都可能对实验结果产生影响。

因此,在今后的实验中,我们需要更加严格地控制实验条件,提高实验操作技巧,以减小误差,提高实验结果的准确性和可靠性。

总之,本次实验对我们深入理解刚体转动惯量的概念和测定方法具有重要意义,为我们今后的学习和科研工作奠定了基础。

刚体转动惯量的测定

刚体转动惯量的测定

实验4 刚体转动惯量的测定转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。

例如在电磁式仪表、发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,都需精确地测定转动惯量。

测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。

实验目的1. 掌握刚体转动惯量的概念和物理意义;2. 学习用恒力矩转动法测定刚体转动惯量的原理和方法;3. 观测刚体的转动惯量随其质量、质量分布及转轴不同而改变的情况,验证平行轴定理。

实验预习思考题1. 刚体的概念。

2. 刚体转动惯量的概念。

3. 质量分布均匀的常见规则形状刚体(例如杆、圆盘、圆环、圆柱体)的转动惯量计算方法。

4. 刚体的定轴转动定律。

5. 转动惯量实验仪的构成。

6. 实验操作中如何施加的恒力矩?7. 什么是转动惯量的叠加原理?8. 实验中载物台绕中心轴转动的角加速度如何测量?9. 恒力矩转动法测定刚体转动惯量的基本原理。

10. 什么是刚体转动的平行轴定理?实验原理1、转动惯量实验仪转动惯量实验仪如图1所示,绕线塔轮通过特制的轴承安装在主轴上,使转动时的摩擦力矩很小。

载物台用螺钉与塔轮连接在一起,随塔轮转动。

被测试样有1个圆盘,1个圆环,两个圆柱。

圆柱试样可插入载物台上的不同孔内,由内向外半径分别为d1=50mm、d2=75mm。

小滑轮的转动惯量与实验台相比可忽略不记。

仪器的主要参数如下:(1)塔轮半径为15、20、25、30mm共4挡;(2)挂钩(45g)和5g、10g、20g的砝码组合,产生大小不同的力矩;(3)圆盘:质量约486g,半径R=100mm;(4)圆环:质量约460g,外半径R外=100mm,内半径R内=90mm;(5)圆柱体:R=15mm,h=25mm。

图1 转动惯量实验仪2、恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M = (1)只要测定刚体转动时所受的合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。

大学物理(精品本科)1刚体的转动惯量测定

大学物理(精品本科)1刚体的转动惯量测定

刚体转动惯量的测量一、实验目的1.学习测量刚体转动惯量的方法。

2.用实验方法验证平行轴定理。

3.用最小二乘法处理数据,进一步熟悉各种数据处理方法。

二、实验仪器刚体转动惯量实验仪,TH-4通用电脑式毫秒计,铝环,铝板,小钢柱,牵引砝码等。

1.刚体转动惯量实验仪刚体转动惯量实验仪如图1所示。

它不但能测定质量分布均匀、断面形状规则刚体的转动惯量,而且能测定质量分布不均匀、断面形状不规则刚体的转动惯量,并可验证物理学的转动定律、平行轴定理等。

它的转动体系由十字形承物台和塔轮组成,可绕它的垂直方向对称轴进行平稳的转动。

两根对称放置的遮光细棒随刚体系统一起转动,依次通过光电门不断遮光。

光电门由发光器件和光敏器件组成,发光器件的电源由毫秒计提供,它们构成一个光电探测器,光电门将细棒每次经过时的遮光信号转变成电脉冲信号,送到通用电脑式毫秒计。

毫秒计记录并存储遮光次数和每次遮光的时刻。

塔轮上有五个不同半径的绕线轮,以提供不同的力臂,从下到上分15mm、20 mm、25 mm、30 mm、35 mm五档。

砝码钩上可以放置不同数量的砝码来改变对转动体系的拉力。

在实验仪十字形承物台每个臂上,沿半径方向等距离d有三个小孔,如图2所示。

小钢柱可以放在这些小孔上,小钢柱在不同的孔位置就改变了它对转动轴的转动惯量,因而也就改变了整个体系的转动惯量,所以可用来验证平行轴定理。

图1 图23通用电脑式毫秒计(左:前面板;右:后面板)2.通用电脑式毫秒计通用电脑式毫秒计是为测量刚体转动惯量而设计的,也可用于物理实验中各种时间测量和计数。

本仪器使用了微电脑(单片机)作为核心器件,它具有记忆功能,最多可记忆九十九组测量时间,并可随时把需要的测量结果取出来。

时间测量有几种方法,可根据需要选择一种。

计时范围0-99.9999s ,计时精度0.1ms 。

两路2.2V 直流电源输出;两路光电门信号或TTL/CMOS 信号电平输入通道;可与计算机通过标准RS232串口通信。

刚体转动惯量的测定

刚体转动惯量的测定
三、实验原理 四、实验内容 五、数据记录 六、数据处理 七、思考题
一、试验目旳
一、实验目的
1、测定刚体旳转动惯量并观察刚体旳转动 惯量随质量及质量分布而变化旳情况。
2、研究刚体转动时合外力矩与刚体转动角加速 度旳关系。
3、验证平行轴定理
二、试验仪器
七、思考题
思索题
1、怎样安装和调整刚体转动试验仪?
2、本试验过程中应该注意哪些问题?
(2-6-7)
(2-6-8)
三、实验原理
从(2-6-6)、(2-6-8)两式中消去 ,可得:
由式(2-6-9)即可计算角加速度 。
(2-6-9)
三、实验原理
3、考察刚体旳质量分布对转动惯量旳影响
理论分析表白,质量为
旳物体围绕经过质心O旳转轴转动时旳转动惯量
行移动距离 后,绕新转轴转动旳转动惯量为:
最小。当转轴平
(2-6-10)
四、试验内容
四、实验内容及步骤 1、试验准备
2、测量并计算试验台旳转动惯量 (1)测量 (2)测量
3、测量并计算试验台加待测物旳转动惯量
其中
圆环外径 =120 ,内径 =105 ,质量
圆盘半径 =120 ,质量
=465 ;
半径 =15 ,质量
=332 ;
=436 ;
六、数据处理 圆盘、圆柱绕几何中心轴转动旳转动惯量理论值为
圆围绕几何中心轴旳转动惯量理论值为
(2-6-11) (2-6-12)
计算试样旳转动惯量理论值并与测量值 比较,计算测量值旳相对误差
(2-6-13)
六、数据处理
2、平行轴定理验证 按照转动惯量测量计算措施求出测量值,并与由式(2-6-10)、(2-6-11)所得 旳计算值进行分析比较,得出结论。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。

2、加深对转动惯量概念的理解。

3、掌握使用秒表、游标卡尺、米尺等测量工具。

二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。

当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。

根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。

三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。

四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。

2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。

3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。

4、测量下盘质量\(m_0\)。

5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。

6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。

五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。

刚体转动惯量的测定实验报告2篇

刚体转动惯量的测定实验报告2篇

刚体转动惯量的测定实验报告2篇实验一:采用悬挂法测定刚体转动惯量一、实验目的1. 学习测量刚体的质心位置和转轴的位置。

2. 学习借助实验数据推导直线密集分布的质点转动惯量公式。

3. 通过实验学习刚体转动惯量的测量方法。

二、实验原理1. 刚体的转动惯量物体围绕旋转轴转动时,物体的惯性越大,物体的转动越难。

当物体惯性越大时,转动惯量也越大。

物体围绕旋转轴转动时,物体转动惯量的定义为:I = Σmiri²其中,m表示物体的质量,r表示物体的质心离旋转轴的距离。

2. 直线密集分布的质点转动惯量公式一个质量为m,长为L的物体中,满足密集分布的质点,它们的质心离旋转轴的距离为r,那么此物体的转动惯量公式为:I = Σmiri² = mΣri² = m(Σr²)Σr²表示每个质点到旋转轴的距离平方和。

3. 采用悬挂法测定刚体的转动惯量实验使用悬挂法测定刚体的转动惯量,测定步骤如下:(1) 利用细线将物体悬挂在平衡杆上。

(2) 利用相应的杠杆称来测量物体的重量,此时物体的质心在杆的下方。

(3) 将物体沿竖直方向旋转,并用底部的指示器(如图)记录物体的振动周期。

(4) 将物体沿竖直方向旋转,记录下物体在两个位置的转动周期,用于计算旋转轴的位置。

(5) 用距离表测量出物体质心到旋转轴的距离。

(6) 计算物体的转动惯量。

三、实验器材1. 刚体(统一物体):统一吊杆、金属球、转轴、细线、竖直级尺等。

2. 实验仪器和设备:相应的计时器、杠杆称、距离表、指示器等。

3. 实验环境:采用教学实验室。

四、实验步骤和实验数据处理1. 准备工作(1) 将距离表和指针从竖直级尺上挂起,调整它们的位置和高度,以便将它们分别与转动轴和统一吊杆的下端对准。

(2) 将一根平衡杆垂直地悬挂在旋转轴的上方,小球挂在平衡杆下方的细线上。

2. 测量物体质心位置(3) 抬起小球,使其与距离表的指针、旋转轴及统一吊杆的下端对齐。

实验一 测量刚体的转动惯量

实验一  测量刚体的转动惯量

实验一 测量刚体的转动惯量【实验目的】1.学习用恒力矩转动法测定刚体转动惯量的原理和方法。

2.观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况,验证平行轴定理。

3.学会使用通用电脑计时器测量时间。

【实验仪器】ZKY —ZS 转动惯量实验仪,ZKY —JI 通用电脑计时器。

【实验原理】1.恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M = (1-1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体的角速度 β,则可计算出该刚体的转动惯量J 。

设以某初始角速度转动的空实验台转动惯量J 1,未加砝码时,在摩擦阻力矩M μ 的作用下,实验台将以角速度β1作匀减速运动,即:-M μ = J 1β1 (1-2 ) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。

若砝码的加速度为a ,则细线所受张力为T = m (g -a )。

若此时实验台的角加速度β2,则有a = R β2。

细线施加给实验台的力矩为TR = m (g -R β2) R ,此时有:m (g -R β2)R - M μ= J 1β2 (1-3) 将(1-2)、(1-3)两式联立消去M μ后,可得:J 1=122)(βββ--R g mR (1-4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:J 2=344)(βββ--R g mR (1-5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:J 3= J 2-J 1 (1-6)测得R 、m 及β1、β2、β3、β4,由(23-4)、(23-5)、(23-6)式即可计算被测试件的转动惯量。

2.β 的测量实验中采用ZKY-JI 通用电脑计时器记录遮挡次数和相应的时间。

固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮挡次数K 和相应得时间t 。

刚体转动惯量的测量

刚体转动惯量的测量

分析与思考
1.分析实验误差产生的原因。 2.在本实验理论的基础上,能否再提出一种新的实验方案,并推导计算公式。
归纳பைடு நூலகம்小结
用转动定律测转动惯量要解决的关键之一就是要处理好阻力矩问题。实验中将阻 力矩当作常量来处理。两种思路均从(3.4-31)式出发。式中有 Mr、J、β三个未知量, 要解决问题还缺少两个独立关系式。根据运动学可以提出 3.4-32 关系式,却又增加了 ,仍缺少两个独立关系式。这么 未知量 ω 0 (θ 、t 是可以直接测量的,不看成未知量) 做似乎是把问题复杂化了,其实不然。因为(3.4-32)式中每改变一组θ、t 值就可以 新增加一个关系式而不增加新的未知量,由三组θ 、t 值就能得到转动惯量值。但是有 ,这时必须另想办法。 的老式数字毫秒计最多只能记录两组(或只能记录一组θ 、t 值) 第一种思路是针对只能记录两组数据情况提出的。 实验中改变砝码质量 (变为零) ,
M r =bgr
实验方案
1.角度与时间的测量 用数字毫秒计(计时器)计时,在承放刚体的转盘径向装有一对挡光杆。当挡杆 随转盘转动首次通过光电门挡住光束,开始计时。转盘每转动半周挡一次光电门,毫 秒计就计时一次,其中第 N 次计数时对应的转动角度为θ N=(N—1) π。 MCJS20 型自动计数仪是一种单片机控制的自动毫秒计,可以记录、存储并显示 转动角为π、2π、3π、……、99π的时间值。操作步骤如下: 开机数秒后显示选项菜单,用上移和下移键选择”刚体转动惯量测定”项,按”进入” 键进入测量菜单,按”启动”键后开始计时;随着转盘的转动,显示各转动角度对应的计 时值;按”停止”键后,可通过按上移和下移键显示全部计时值。再按”启动”键则进入 新一轮测量。 2.测试装置本身转动惯量的扣除 上面方法测量的转动惯量实际是待测样品转动惯量和仪器系统转动惯量之和。仪 器系统的转动惯量包括托盘、塔轮和转轴等装置的转动惯量,可以统记做 J'。实验时 可先测出总的转动惯量 J,再测出系统的转动惯量 J',样品净转动惯量为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2 刚体转动惯量的测量[预习思考题]1.实验中的刚体转动惯量实验仪是由哪几部分组成的?2.实验中可以通过什么方法改变转动力矩?3.实验中刚体转动过程的角加速度如何测得?转动惯量是描述刚体转动中惯性大小的物理量,对于绕定轴转动的刚体,它为一恒量,以J表示,即∑=iii r mJ2式中,m i为刚体上各个质点的质量,r i为各个质点至转轴的距离。

由此可见,物体的转动惯量J与刚体的总质量、质量分布及转轴的位置有关。

对于几何形状规则、对称和质量分布均匀的刚体,可以通过积分直接计算出它绕某定轴的转动惯量。

对于形状复杂或非匀质的任意物体,则一般要通过实验来测定,例如,机械零件、电机的转子、炮弹等。

测定物体的转动惯量有多种实验方法,主要分为扭摆法和恒力矩转动法两类。

本实验介绍用塔轮式转动惯量仪测定的方法,是使塔轮以一定形式旋转,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。

该方法属于恒力矩转动法。

转动惯量是研究、设计、控制转动物体运动规律的重要参数,实验测定刚体的转动惯量具有十分重要的意义,是高校理工科物理实验教学大纲中的一个重要基本实验。

一、实验目的1.学习用转动惯量仪测定刚体的转动惯量。

2.研究作用于刚体上的外力矩与角加速度的关系。

3.验证转动定律及平行轴定理。

二、实验仪器IM-2刚体转动惯量实验仪及其附件(霍尔开关传感器、砝码等)和MS-1型多功能数字毫秒仪。

三、仪器介绍1.滑轮 2.滑轮高度和方向调节组件 3.挂线 4.塔轮组 5.铝质圆盘承物台 6.样品固定螺母 7.砝码 8.磁钢 9.霍尔开关传感器 10.传感器固定架 11.实验样品水平调节旋钮(共3个) 12.毫秒仪次数预置拨码开关,可预设1-64次 13.次数显示屏 14.时间显示屏 l5.次数+1查阅键 16.毫秒仪复位键 17.+5V 电源接线柱 18.电源GND (地)接线柱 19.INPUT 输入接线柱 20.输入低电平指示 21.次数-1查阅键图4-3-1 IM-2刚体转动惯量实验仪和MS -1型多功能数字毫秒仪结构示意图IM-2刚体转动惯量实验仪主要由绕竖直轴转动的铝质圆盘承物台、绕线塔轮、霍尔开关传感器、磁钢、滑轮组件、砝码等组成。

样品放置在铝质圆盘承物台上,承物台上有许多圆孔,可用于改变样品的转轴位置。

绕线塔轮是倒置的塔式轮,分为四层,自上往下半径分别为3cm 、2.5cm 、2cm 、1.5cm 。

磁钢随转动系统转动,每半圈经过霍尔开关传感器一次,传感器输出低电平,通过连线送到多功能数字毫秒仪。

传感器红线接毫秒仪+5V 电源接线柱,黑线接电源GND (地)接线柱,黄线接INPUT 输入接线柱。

MS -1型多功能数字毫秒仪通过预置拨码开关预置实验所需感应次数。

每轮实验开始前通过复位键清0,直到输入低电平信号触发计时开始,次数显示屏从0次开始计时,直至达到预置次数停止。

计时停止后,方能查阅各次感应时间。

四、实验原理1. 任意样品的转动惯量测定设转动惯量仪空载(不加任何样品)时的转动惯量为J 1,称为系统的本底转动惯量,转动惯量仪负载(加上样品)时的转动惯量为J 2,根据转动惯量的可加性,则样品的转动惯量J x 为21x J J J =-2. 系统的转动惯量测定1)刚体的转动定律刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比,这个关系称为刚体的转动定律。

M J β=利用转动定律,测得刚体转动时的合外力矩及该力矩作用下的角加速度,则可计算出刚体的转动惯量,这是恒力矩转动法测定转动惯量的基本原理和设计思路。

2)应用转动定律求转动惯量塔轮的转动是由挂线加上砝码通过滑轮带动的。

改变砝码的质量或改变塔轮的半径,可以获得不同的转动力矩以满足实验需要。

给系统加一个外力矩,即加适当的砝码,在重力的作用下,砝码会通过挂线带动塔轮作匀加速转动。

该系统的受力分析如图所示。

此时系统所受合外力矩有两个,一个为绳子张力T 产生的力矩M T r =⋅(r 为塔轮上绕线轮的半径),一个为摩擦力矩M μ。

由转动定律得T r M J μβ⋅+= (4-3-1)式中β为加速过程系统的角加速度,此时为正值,J 为转动系统的转动惯量,M μ为摩擦力矩,数值为负。

由牛顿第二定律可知,设砝码m 下落时的加速度为a ,则运动方程为mg T ma -=。

因为a r β=,则绳子张力T 为()T m g r β=- (4-3-2)当连接砝码的挂线脱离塔轮后,系统所受张力0T =,故外力矩0M =,此时系统只受摩擦力矩M μ的作用,作匀减速转动。

根据转动定律得M J μβ'= (4-3-3)式中β'为减速过程系统的角加速度,此时为负值。

由式(4-3-1)、式(4-3-2)、式(4-3-3)解得βββ'--=)(r g mr J (4-3-4) 利用以上方法,分别可测得空载及负载时系统的转动惯量1J 和2J 。

式中,m 、g 、r 都是已知或是可以直接测量的物理量,关键在于如何测定角加速度β和β'。

3)β和β'的测量设转动体系统在0t =时刻初角速度为0ω,角位移为0,转动t 时间后,其角位移θ,转动中角加速度为β,则2021t t βωθ+= (4-3-5)若测得角位移1θ,2θ,与相应的时间1t ,2t ,得2110121t t βωθ+= 2220221t t βωθ+= 所以 )()(2)(2122121122211222112t t t t t t t t t t t t --=--=θθθθβ (4-3-6) 实验时,角位移1θ,2θ可取为2π、4π…等,实验转动系统转过π角位移,计数计时毫秒仪的计数窗内计数次数+1。

计数为0作为角位移开始时刻,实时记录转过π角位移的时刻,计算角位移时间时应减去角位移开始时刻,应用上述公式(4-2-6),得到角加速度。

在求角加速度β'时,注意砝码挂线与绕线塔轮脱离的时刻,以下一时刻作为角位移起始时刻,计算角位移时间时,减去该角位移开始时刻,在该时间段系统角加速度为负。

4)验证平行轴定理将已知质量为M 、转动惯量为0J 的物体依次插入承物台上与轴心相距 ,2,,0a a d =的小孔,测出x J ,作2d J x -曲线,若为直线便验证了平行轴定理20Md J J += (4-3-7)五、实验内容1. 测量前的准备工作,具体操作如下:1)合理放置仪器,滑轮置于实验台外3-4cm ,调节仪器水平;2)连接传感器与计数计时毫秒仪;3)将砝码连线的一端打结,沿塔轮上开的细缝塞入(任选一层挂线,结头在下),另一端绕过定滑轮垂下砝码,调节滑轮的方向和高度,使挂线与绕线塔轮相切,挂线与绕线轮的中间呈水平;4)转动铝盘绕线(务必使得绕线整齐,减少摩擦),将砝码提升到一定高度,调整霍尔传感器探头与一磁钢相对,间距为0.3-0.5cm ,可见毫秒仪低电平指示灯亮;5)复位毫秒仪,转动铝盘缓慢放线,直到挂线与塔轮恰好脱离时即刻停止,此时次数显示屏上所显次数即为加速过程与减速过程的分界处,根据分界处设定加速过程的三个时间点(保证小于分界时刻),减速过程的三个时间点(保证大于分界时刻),根据选取的时间点设定预置次数(大于等于最大时间点),并填入表格表头部分。

2. 测量空载时转动系统的转动惯量J 1。

在空载的情况下,重复挂线→绕线→复位毫秒仪→释放砝码→查阅相应时间点→记录数据的实验过程,要求测量10组左右的数据,从中选取较为稳定的五组填入表格1。

3. 测量加载钢环时转动系统的转动惯量J 2。

将金属钢环置于承物台上,使其转动轴位于圆心位置,重复挂线→绕线→复位毫秒仪→释放砝码→查阅相应时间点→记录数据的实验过程,要求测量10组左右的数据,从中选取较为稳定的五组填入表格2。

4. (选做部分)以金属盘偏心孔d = 3.0,4.0,5.0cm 为转轴,重复以上步骤,求出相应的x J ,作2d J x -曲线,验证平行轴定理,20Md J J x +=。

六、注意事项1. 实验中,砝码置于相同的高度后释放,以利数据一致。

实验中,做好保护措施,防止砝码直接砸落地板引起磨损。

2. 挂线长度以挂线脱离绕线塔轮后,砝码离地3厘米左右为宜。

3. 实验中,砝码置于相同的高度后释放,以利数据一致。

霍尔传感器放置于合适的位置固定不动,每次绕线到相同高度,保证指示灯亮,按下RESET 键,以0初速度释放砝码。

从指示灯亮到刚灭,系统转过约π角位移后,毫秒仪开始计数计时。

4. 实验中,在砝码挂线脱离绕线塔轮前转动体系作正加速度β,在砝码挂线脱离塔轮后转动体系作负加速度β',须分清正加速度β到负加速度β'的计时分界时刻。

七、数据处理根据实验要求,将有关数据填入对应表格中,按所学的理论对数据进行处理。

选择=r ________m 进行绕线,分界处为 ;选择时间点:加速过程选 、 、 ,减速过程选 、 、 ;预置次数定为 。

=1J ______2m g ⋅, =2J ______2m g ⋅, =3J _______2g⋅m∵理论值='3J0.33792mg⋅∴相对误差E=_______%[课后思考题]1.挂线的长度太短会如何,太长又会如何,应怎样调整?2.用该刚体转动惯量仪来测刚体的转动惯量,其主要误差有哪些?应如何消除或减小?。

相关文档
最新文档