最新(高等数学)第六章定积分(全部)

合集下载

高等数学 定积分

高等数学 定积分

第六章定积分一、本章学习要求与内容提要(一)学习要求1.理解定积分的概念及其性质.2.了解定积分的几何意义.3.了解变上限的定积分的性质,熟练掌握牛顿莱布尼茨公式.4.掌握定积分的换元法和分部积分法.5.了解无穷区间上的广义定积分的几何意义,牛顿–莱布尼茨公式,定各分的换元法和分部积分法.重点 定积分的概念及定积分的几何意义,牛顿–莱布尼茨公式,定积分的换元法和分部积分法.难点 变上限的定积分,定积分的换元法和分部积分法.(二)内容提要1.曲边梯形所谓曲边梯形是指由曲线、直线和数轴所围成的平面图形.2.定积分的概念与定积分的几何意义(1)定积分的概念设函数在区间上有定义,任取分点)(x f y =],[b a,b x x x x x a n n =<<<<<=-1210 把区间分成个小区间,记为],[b a n ),2,1]([,1n i x x i i =-,{}i ni i i i x n i x x x ∆==-=∆≤≤-11max ),,,2,1(λ 再在每个小区间上,任取一点,取乘积的和式,即],[1i i x x -i ξi i x f ∆)(ξ.in i ix f ∆∑=1)(ξ如果时上述极限存在(即这个极限值与的分割及点的取法均无关),则0→λ],[b a i ξ称函数在闭区间上可积,并且称此极限值为函数在上的定积分,记)(x f ],[b a )(x f ],[b a 做,即⎰bax x f d )(,⎰∑=→λ∆ξ=bani i i x f x x f 1)(lim d )(其中称为被积函数,称为被积表达式,称为积分变量,称为积分)(x f x x f d )(x ],[b a 区间,与分别称为积分下限与积分上限,符号读做函数从到的定a b ⎰bax x f d )()(x f a b积分.关于定积分定义的说明:①定积分是特定和式的极限,它表示一个数.它只取决于被积函数与积分下限、积分上限,而与积分变量采用什么字母无关,例如,一般地有⎰⎰=2/π02/π0d sin d sin t t x x =.⎰ba x x f d )(⎰bat t f d )(②定积分的存在定理:如果在闭区间上连续或只有有限个第一类间断点,)(x f ],[b a 则在上可积.)(x f ],[b a (2)定积分的几何意义设在上的定积分为,其积分值等于曲线、直线)(x f ],[b a ⎰ba x x f d )()(x f y =和所围成的在轴上方部分与下方部分面积的代数和.b x a x ==,0=y x 3.定积分的性质(1)积分对函数的可加性,即,⎰⎰⎰±=±ba ba ba x x g x x f x x g x f d )(d )(]d )()([可推广到有限项的情况,即.⎰⎰⎰±±=±±±ba ba ba n n x x f x x f x x f x f x f d )(d )(d )]()()([121 (2)积分对函数的齐次性,即.⎰⎰=ba ba k x x f k x x kf )( d )(d )(为为为(3)如果在区间上,则.],[b a 1)(≡x f ⎰-=ba ab x d 1(4)(积分对区间的可加性)如果,则b c a <<.⎰⎰⎰+=bac a b c x x f x x f x x fd )(d )(d )(注意:对于三点的任何其他相对位置,上述性质仍成立,仍有c b a ,,.⎰⎰⎰+=baca bc x x f x x f x x fd )(d )(d )((5)(积分的比较性质)如果在区间上有,则],[b a )()(x g x f ≤.⎰⎰≤baba x x g x x f d )(d )((6)(积分的估值性质)设与分别是函数在闭区间上的最大值与最M m )(x f ],[b a 小值,则.)(d )()(a b M x x f a b m ba-≤≤-⎰(7)(积分中值定理)如果函数在闭区间上连续,则在区间上至)(x f ],[b a ],[b a 少存在一点,使得ξ.⎰-ξ=baa b f x x f ))((d )(4.变上限的定积分(1)变上限的定积分当在上变动时,对应于每一个值,积分就有一个确定的值,x ],[b a x ⎰xat t f d )(因此是变上限的一个函数,记作⎰x a t t f d )(,⎰≤≤=xa b x a t t f x )( d )()(Φ称函数为变上限的定积分.)(x Φ(2)变上限的定积分的导数如果函数在闭区间上连续,则变上限定积分在闭区间)(x f ],[b a ⎰=xa t t f x d )()(Φ上可导,并且它的导数等于被积函数,即],[b a.⎰≤≤=='=xab x a x f t t f x x x )( )(d )(d d )(d d ΦΦ 5.无穷区间上的广义积分设函数在上连续,任取实数,把极限称为函数)(x f ),[+∞a a b >⎰+∞→ba b x x f d )(lim在无穷区间上的广义积分,记做)(x f ,⎰⎰∞+∞→=baa b x x f x x f d )(lim d )(若极限存在,则称广义积分收敛;若极限不存在,则称广义积分⎰∞+ax x f d )(发散.⎰∞+ax x f d )(类似地,可定义函数在上的广义积分为)(x f (]b ,∞-.⎰⎰∞--∞→=baba x x f x x f d )(lim d )(函数在区间上的广义积分为)(x f ),(+∞-∞,⎰⎰⎰∞+∞-∞-∞++=ccx x f x x f x x f d )(d )(d )(其中为任意实数,当右端两个广义积分都收敛时,广义积分才是收敛的;否c ⎰∞+∞-x x f d )(则广义积分是发散的.⎰+∞∞-x x f d )(6.微积分基本定理(牛顿-莱布尼茨公式)设函数在闭区间上连续,如果是的任意一个原函数,则)(x f ],[b a )(x F )(x f ,)()()(d )(a F b F x F x x f ba ba -==⎰以上公式称为微积分基本定理,又称牛顿–莱布尼茨公式.7.定积分的计算(1)定积分的换元法设函数在上连续,令,则有)(x f ],[b a )(t x ϕ=,⎰⎰'=ba at t t f t x xx f d )()]([)(d )(βϕϕϕ其中函数应满足以下三个条件:①;b a ==)(,)(βϕαϕ②在上单值且有连续导数;)(t ϕ],[βα③当在上变化时,对应值在上变化.t ],[βα)(t x ϕ=],[b a 上述公式称为定积分换元公式.在应用换元公式时要特别注意:用变换把原)(t x ϕ=来的积分变量换为新变量时,原积分限也要相应换成新变量的积分限,也就是说,换x t t 元的同时也要换限.原上限对应新上限,原下限对应新下限.(2)定积分的分部积分公式设函数在区间上均有连续导数,则)(),(x v x u ],[b a .⎰⎰-=ba ba ba u v uv v u d )(d 以上公式称为定积分的分部积分公式,其方法与不定积分类似,但结果不同,定积分是一个数值,而不定积分是一类函数.(3)偶函数与奇函数在对称区间上的定积分设函数在关于原点对称区间上连续,则)(x f ],[a a -①当为偶函数时,,)(x f ⎰⎰-=aaax x f x x f 0d )(2d )(②当为奇函数时,.)(x f ⎰-=aax x f 0d )(利用上述结论,对奇、偶函数在关于原点对称区间上的定积分计算带来方便.二、例题精解1.变上限的定积分对上限的求导方法例 1 已知 , 求 .⎰+=t t x xx F d 1sin )(2)(x F '解 =+⎰+=xx t t x F sin 2d 1)(⎰+cx t t 2d 1⎰+xctt sin d 1=,⎰+-2d 1x c t t ⎰++xct t sin d 1=+)(x F ')2(12x x +-xx cos sin 1⋅+=.++-212x x x x cos sin 1⋅+小结 如果定积分上限是的函数,那么利用复合函数求导公式对上限求导;如果定x 积分的下限是的函数,那么将定积分的下限变为变上限的定积分,利用复合函数求导公x 式对上限求导;如果复合函数的上限、下限都是的函数,那么利用区间可加性将定积分x 写成两个定积分的和,其中一个定积分的上限是的函数,另一个定积分的下限也是的x x 函数,都可以化为变上限的定积分来求导.2.利用换元积分法计算定积分的方法例2 计算 (1), (2) .⎰+-40d 11x xx⎰4π4d tan sec x x x 解 (1)利用换元积分法,注意在换元时必须同时换限.令, , ,x t =x 2t =t t x d 2d =当时,,当时,,于是0=x 0=t 4=x 2=t ==⎰+-40d 11x xx⎰+-20d 211t t t t ⎰+--20d 1424[t tt[].3ln 44021ln 442-=+--=tt t (2)=⎰4π04d tan sec x x x ⎰4π03)(sec d sec x x .43411sec 414π04=-==x 小结用换元积分法计算定积分,如果引入新的变量,那么求得关于新变量的原函数后,不必回代,直接将新的积分上下限代入计算就可以了.如果不引入新的变量,那么也就不需要换积分限,直接计算就可以得出结果.3.利用分部积分法计算定积分的方法分部积分公式为.⎰⎰-=baba bau v uv v u d d例3 计算(1),(2).⎰1d arctan x x x x x d ln 2e e 1⎰解(1)=⎰10d arctan x x 10arctan x x⎰+-102d 1xx x=102)1ln(214πx +-= .2ln 214-π(2) 由于在[]上;在[]上,所以1,e10ln ≤x 2e ,10ln ≥x=+x x x d ln 2e e 1⎰x x x d )ln (1e 1⎰-xx x d ln 2e 1⎰=+2(d ln 21e1x x ⎰-)2d(ln 2e 12x x ⎰=[+]+[]-x x ln 2242x 1e 1x x ln 22-42x 2e 1=(+)+(+)41-412e 1212e 14e -414e 41 =+.21-432e 1434e 小结 被积函数中出现绝对值时必须去掉绝对值符号,这就要注意正负号,有时需要分段进行积分.4.广义积分的计算方法例4 判别下列广义积分的敛散性,如果收敛计算其值 .(1), ⎰∞++022d )1(x x x解 (1) 因为积分区间为无穷区间,所以原式===+∞→b lim ⎰+bx x x 022d )1(+∞→b lim ⎰++b x x 0222)1()1(d 21bb x 02)1(21[lim +-+∞→==,]21)1(21[lim 2++-+∞→b b 21故所给广义积分收敛,且其值为.21 小结1.本章的重点是定积分的概念及几何意义.牛顿–莱布尼茨公式,定积分的换元积分法与分部积分法.2.学好本章内容,首先要理解定积分的概念,掌握用定积分的思想分析问题解决问题的方法.3.要深刻理解微积分基本定理:牛顿–莱布尼茨公式。

高数-第六章定积分

高数-第六章定积分

【归纳】曲边梯形的面积归结为一个“特定和式” 的极限,今后,把这种“特定和式”的极限,称 为函数的定积分。
二、定积分的定义
设函数f ( x)是区间 [ a, b ]上的有界函数, 用分点a x0 x1 xn1 xn b将区间 [ a , b ]任意分割为 n个小区间: [ x0 , x1 ]、 [ x1 , x2 ]、 、 [ xn1 , xn ] 其长度分别为: x1 x1 x0 ,
【第三步】求和 将n个小曲边梯形面积的 近似值求和,就是曲边 即Sn si f (i )xi
i 1 i 1 n n
【第四步】取极限 令x maxxi 当x 0时,总和S n的极限 即:S lim f ( i )xi
x 0 i 1 n
梯形AabB的面积的近似值。 就是曲边梯形 AabB 的面积S。
令x maxxi
x2 x2 x1 , ,
xn xn xn1
n i 1
在每个小区间上任取一 点i (i 1,2,, n),作和式Sn f (i )xi
当x 0时,若和式Sn lim f (i )xi的极限存在,则称该和 式
x0 i 1 n

1
0
x dx
( 2)


0
f ( x) dx
sin x 0 x 2 f ( x) x x 2


0 1
cos2
x dx 2
(2) (3) (4)
1 0 2 x 1 dx
1 (3) 2 dx 1 x 【备注】应用公式时, 必须满足公式的条件。
第六章 定积分
本章的主要内容
6.1 定积分的概念与性质 6.2 牛顿-莱布尼兹公式 6.3 定积分的换元积分法 与分部积分法 6.4 定积分的应用

6.1 定积分的概念与性质 课件 《高等数学》(高教版)

6.1 定积分的概念与性质 课件 《高等数学》(高教版)
可积的.
(2)定积分
是一个数值,它的大小仅与被积函数
和积分区间
关,而与积分区间的分法、点 的选取方法及积分变量的符号无关,即
(3)我们规定:
(4)“分割-近似-求和-取极限”是定积分的思想方法.

三、定积分的几何意义
在区间
1、如果函数
几何上表示由曲线
积A,即
2、如果函数
几何上表示由曲线
的相反数,即
数,且
是时间 在区间
上的连续函
,计算质点在这段时间内经过的路程 。
由于速度是变量,即速度
是随着时间
“速度×时间”来计算. 但是,若把时间区间
而变化,因此,路程s不能直接用
分成许多小时间段,因质点运动
的速度是连续变化的,则在每个小段时间内,速度变化不大,可以近似地看作是匀
速的. 于是,在时间间隔很短的条件下,可以用“匀速”近似地代替“变速”,从而
形分割成许多小曲边梯形,每个小区间上对应的小曲边梯形面积近似地看成小矩形,所有的小矩
形面积的和,就是整个曲边梯形面积的近似值. 显然分割越细,每个小曲边梯形的顶部越接近平
顶,即每个小曲边梯形越接近小矩形,从而误差就越小. 因此,将区间[, ]无限的细分,并使
每个小曲边梯形的底边长都趋近于零,则小矩形面积之和的极限就可定义为所要求曲边梯形的面
的近似值,即
为底,
.
为高的小矩
(3)求和(近似和):把n个小曲边梯形面积的近似值累加起来,就得到曲边梯形面积A
的近似值,即
(4)取极限:若记
, 则当
时,所有小区间的长度都趋于
零.如果上述和式的极限存在,这个极限值就是曲边梯形面积的精确值,即
实例2 变速直线运动的路程

《高数》定积分课件

《高数》定积分课件
《高数》定积分ppt 课件
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被

第六章 定积分 《经济数学》PPT课件

第六章  定积分  《经济数学》PPT课件

6.4.2 定积分的分部积分法
设函数u=u(x),v=v(x)在区间[a,b]上有连续导数,则有 (uv)'=u'v+uv',即uv'=(uv)'-u'v,等式两端在[a,b]上的定积分为 ,即:
➢ 这就是定积分的分部积分公式.
06 P A R T
6.5
广义积分
前面我们是在有限区间上讨论有界函数的定积分.但是,无论在理
CHAPTER
06
第6章 定 积分
PART
06
6.1
定积分的概念
6. 1. 2 定积分的定义
➢ 定义6-1 设函数f(x)在区间[a,b]上有定义,用点
a=x0<x1<x2<…<xn=b将区间[a,b]任意分成n个小区间[xi-
1,xi](i=1,2,…,n),其长度为Δxi=xi-xi-1,在每个小区间[xi-1,xi]上
一个有效数为6位数的近似值.
• 注意:对于分段函数不能求其积分的精确值,但可求近似值,即再
用“N”命令.
由定理可知,在运用换元法计算定积分时应注意以下两点:
用变量代换x=φ(t)把原来变量x代换成新变量t 时,积分限一定要换成相应于新变量t的积分限;
求出f[φ(t)]φ'(t)的一个原函数F[φ(t)]后,不需要 再把t变换成原来变量x的函数,而只需把新变量t 的上、下限分别代入F[φ(t)]中,然后求出增量即 可.
பைடு நூலகம்
的值与
被积函数f(x)和积分区间[a,b]有关,而与积分变量用什么字母表
示无关,即:
➢ (2)定义中假定a<b,如果b<a,我们规定
,特

高等数学(同济第六版)课件 第六章 6.3定积分物理应用

高等数学(同济第六版)课件  第六章 6.3定积分物理应用
第三节 定积分在物理学上的应用
一、变力沿直线所作的功
F a x
F
x+dx b
常力 F 沿直线对物体所作的功为:W=F · S 若力是变力: F F ( x )
dW F ( x )dx
W F ( x )dx
a
b
例1 一个带 +q 电量的点电荷放在 r 轴上坐标原点处, 产生一个电场. 若将一个单位正电荷从r 轴上r = a 处 沿 r 轴移动到 r = b处,求场力 F 所作的功. 解 取r为积分变量,
20 x 20 x dW2 (10 0.05)dx (10 )dx 4 80
x
功元素
1 20 x dW [ x (10 )]dx 10 80
20

W
0
1 20 x [ x (10 )]dx 10 80
=217.5(千克米) =2131.5(焦耳)
l l 解 取y为积分变量 y [ , ], 2 2 取任一小区间[ y , y+dy ] 小段的质量为 dy ,
小段与质点的距离为 r a y ,
2 2
m dx 引力 dF k 2 , 2 a y amdy dFx k 2 , 2 (a y )
3 2
l y 2 y dy
解 建立坐标系如图
面积元素 2(a x )dx ,
dP ( x 2a ) 2(a x )dx
2a
o
a
2a
7 3 P 2( x 2a )(a x )dx a . 0 3
a
x
三、 引力
质量分别为m1, m2相距为 r 的两个质点间的引力 大小:F k m1m2 , 其中k为引力系数, r2 引力的方向沿着两质点的连线方向. 例6 有一长度为l、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m 的 质点M, 计算该棒对质点 M 的引力.

高等数学上册第六章课件.ppt

高等数学上册第六章课件.ppt
(2 , 2)
4
AdA ( y 4 12 y 2 ) d y
2
18
(8 , 4)
x
第二节 定积分在几何中的应用

求由摆线
的一拱与 x 轴所围平面图形的面积 .


dAA
ydx 0 a (1 cos t ) a (1 cos t ) d t
a
2
4a
X -型绕x轴旋转所围成的立体的体积:
y 2 ( x)
b
b
Vx π ( x)dx π ( x)dx
a
b
2
2
a
2
1
2
2
y 1 ( x)
π [2 ( x) 1 ( x)]dx
a
a
bx
Y-型绕y轴旋转所围成的立体的体积:
d
Vy π [ g g ]dy
2
5 3 1 π
32π a sin u du 32π a 5π 2 a3
0
6 4 2 2
3
2
6
3
第二节 定积分在几何中的应用
y
x x2 ( y )
2a
绕 y 轴旋转而成的体积为
π
π a 2 (t sin t ) 2 a sin t d t

o
πa
πa
4 2 2
2
所围图形的
(利用对称性)
d
o

2a x
第二节 定积分在几何中的应用
心形线(外摆线的一种)
2
2
2
x y ax a x y
2
即 r a(1 cos )

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

高等数学 第六章定积分

高等数学 第六章定积分

把区间[a,b] 分成 n个 y 小区间[ xi1, xi ],长度为
y f (x)
xi xi xi1;
(2) 取近似
Ai
在每个小区间[ xi1, xi ] O a x1 xi1i xi xnb1 x
上任取一点i,以 [ xi1, xi ]为底,f (i )为高的小矩形,
面积近似代替 Ai , 有Ai f (i )xi , i 1, 2,L n
极限I, 称这个极限I为函数f(x)在区间[a,b]上的
定积分.记为
积分上限
积分和
b
n
a
f ( x)dx
I
lim
0
i 1
f (i )xi
积分下限 被 积 被
[a,b]积分区间
积 函
分积 变表
数 量达


n
(1) S f (i )xi是与[a, b]的分法及在[ xi1 , xi ]
i 1
一点 i (i xi ), 作乘积 f (i )xi (i 1,2, , n)
(3)
n
并作和 S f (i )xi
(4)
i 1
记 max{ x1, x2 , , xn },如果不论对 [a,b]
怎样的分法,也不论在小区间[ xi1 , xi ]上点 i
怎样的取法,只要当 0时,和S总趋于确定的
lim na sin xdx lim sinn a 0
n n
x
n n
证明 求证 lim 4 sin nx sinn x dx 0 n 0

当x
0,
4
时,
|
s in nx
sinn
x
|
sin

高等数学第六章第二节定积分在几何学上的应用课件.ppt

高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a

《高数定积分》课件

《高数定积分》课件

05
广义积分及其收敛性判别法
广义积分的概念及分类
广义积分的定义
广义积分是相对于正常积分而言的一种特殊积分,其积分区间可能包含无穷大或者无界 函数。
广义积分的分类
根据被积函数和积分区间的不同,广义积分可分为无穷限广分的收敛性判别法
比较判别法
通过比较被积函数与已知收敛或发散的函数,来判断广义积分的收敛性。
换元法求解定积分
01
换元法的基本思想
通过变量代换简化定积分的计算 。
02
常见的换元方法
03
换元法的注意事项
三角函数代换、倒代换、根式代 换等。
代换后需调整积分上下限,并验 证代换的可行性。
分部积分法求解定积分
分部积分法的基本思想
将复杂函数拆分为简单函数 进行积分。
常见的分部积分公式
幂函数与三角函数、幂函数 与指数函数、幂函数与对数 函数等。
06
定积分在经济学等领域的应用
由边际函数求原经济函数
边际函数与定积分的关系
边际函数描述的是经济量变化的瞬时速率,而定积分则可用于求取原经济函数,即总量 函数。
求原经济函数的步骤
首先确定边际函数的表达式,然后根据定积分的定义,对边际函数进行积分,得到原经 济函数的表达式。
示例
已知某产品的边际收益函数为MR(q),通过对其进行定积分,可以得到总收益函数 TR(q)。
曲线的长度、图形的面积等。
THANKS
感谢观看
原函数与不定积分概念
原函数定义
原函数是指一个函数的导数等于给定函数的函数。根据微积分基本定理,不定积分就是求原函数的过 程。
不定积分性质
不定积分具有线性性质、常数倍性质和积分区间可加性。这些性质在求解复杂函数的定积分时非常有 用。

高等数学第六章定积分的应用

高等数学第六章定积分的应用

3)以所求量U 的元素 f ( x)dx 为被积表达式,在
区间[a, b]上作定积分,得U
b
a
f
( x)dx

即为所求量U 的积分表达式.
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
第二节 平面图形的面积
一、直角坐标系情形
y y f (x)
弧长元素 ds 1 y2dx 弧长 s b 1 y2dx. a
例1
计算曲线 y
2
x
3 2
上相应于
x
从a
到b
的一段
3
弧的长度.

y
1
x2,
ds
1
(
x
1 2
)2
dx
1 xdx,
所求弧长为
a
b
s
b
2
3
3
1 xdx [(1 b)2 (1 a)2 ].
a
3
x
例 2 计算曲线 y n n sin d 的弧长(0 x n) . 0
a
提示 若用A 表示任一小区间 [ x, x x]上的窄曲边梯形的面积,y
则 A A,并取A f ( x)dx ,
面 积 元 素
dA
y f (x)
于是A f ( x)dx
b
o a x x dxb x
A lim f ( x)dx a f ( x)dx.
当所求量U 符合下列条件:
(1)U 是与一个变量x 的变化区间a,b 有关
x y2 y x2
面积元素 dA ( x x2 )dx
A
1
0
(

高等数学-定积分及其应用ppt课件.ppt

高等数学-定积分及其应用ppt课件.ppt
一、引例
在变速直线运动中, 已知位置函数
与速度函数
之间有关系:
物体在时间间隔
内经过的路程为
这种积分与原函数的关系在一定条件下具有普遍性 .
5.3 定积分的计算
则积分上限函数
证:
则有
定理1. 若
5.3.1 牛顿 – 莱布尼兹公式
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
2) 变限积分求导:
5.6.1 广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积
可记作
其含义可理解为
1 连续函数在无限区间上的积分
定义1. 设

存在 ,
则称此极限为 f (x) 在区间 的广义积分,
记作
这时称广义积分
收敛 ;
如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若
公式, 复化求积公式等,
并有现成的数学软件可供调用.
性质1 常数因子可提到积分号外 性质2 函数代数和的积分等于它们积分的代数和。
5.2 定积分的简单性质
性质3 若在区间 [ a , b ]上 f (x)≡K,则 性质4 定积分的区间可加性 若 c 是 [ a , b ] 内的任一点,则
的面积 .
解:
例3. 汽车以每小时 36 km 的速度行驶 ,
速停车,
解: 设开始刹车时刻为
则此时刻汽车速度
刹车后汽车减速行驶 , 其速度为
当汽车停住时,


故在这段时间内汽车所走的距离为
刹车,
问从开始刹
到某处需要减
设汽车以等加速度
车到停车走了多少距离?

人民卫生出版社 医用高等数学 第六章 定积分 公开课课件

人民卫生出版社 医用高等数学 第六章 定积分 公开课课件

y f (x)
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
x b所围成.
A?
oa
bx
返回
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
返回
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
b
a f ( x)dx A1 A2 A3 返回
例1 利用定义计算定积分 1 x 2dx.
y
0
y x2
o
i1 i nn
1
x
Ai
f ( i )• 1 nn
i2 • 1 n2 n
返回
解 (1) 分割
将[0,1]n等分,分点为 xi
i ,(i n
1,2,, n )
小区间[ xi1 , xi ]的长度xi
b
a f ( x)dx A
曲边梯形的面积 的负值
返回
y
a
A2
o
A1
b
A3 x
它是介于x 轴、函数 f ( x) 的图形及两条 直 线 x a, x b 之 间 的 各 部 分 面 积 的 代数 和 . 在 x 轴 上 方 的 面 积 取 正 号 ;在 x 轴 下 方 的 面 积取负号.
1 ,(i n
1,2,, n )
(2)取点 取i xi ,(i 1,2,, n)
n
n
n
(3)求和 f (i )xi i2xi xi2xi ,
i 1
i 1
i 1
返回
n
i 1

高等数学课件 第六章(6-1平面图形的面积)

高等数学课件 第六章(6-1平面图形的面积)
则窄曲边形的面积近似为
从而面积元素为
于是得面积
《高等数学》第六章第一节
1. 直角坐标系 例1 求由曲线 及 所围成平面图形的面积.
Байду номын сангаас
解 面积元素 (如图) , 在积分区间 [0, 2] 上作定积分, 即所求的面积是
《高等数学》第六章第一节
思考题: 求由星形线 所围成图形的面积.
《高等数学》第六章第一节
2.极坐标情形
线 所围成的曲边扇形,求其面积公式.
问题:设平面图形 是由曲线 ( )与射
, 且当x由0变到a时, 由
变到0, 则有
可得
一般地,当曲边梯形的曲边 y = f (x) ( f (x) 0 , x[a, b] )
由参数方程 给出时, 若
(1) 在 (或 )上具有连续导数,且
《高等数学》第六章第一节
(2) 连续,
则曲边梯形的面积为
《高等数学》第六章第一节
例4 求摆线第一拱 与
轴围成的面积.
解 上图为摆线形成的过程,所求面积为:
《高等数学》第六章第一节
应用定积分来计算平面图形面积, 对于 在不同坐标系下的情况我们分别加以介绍.
6.1.2 平面图形面积
《高等数学》第六章第一节
1.直角坐标情形
问题: 设曲边形由两条曲线 及直线
《高等数学》第六章第一节
思考题:求由 围成的面积.
如果平面区域是由曲线 , 及 直线 所围成 ,它的面积是定积分
解 由于椭圆关于两个坐标轴都对称 , 故椭圆面积为 A = 4A1, 其中A1为椭圆在第一象限的面积, 因此
利用椭圆的参数方程
, 0 2,
x
y
a

高等数学电子教材 第六章 定积分及其应用

高等数学电子教材 第六章 定积分及其应用

x
1 0
=
2
4
∫2
|
0
1

x
|
dx
0≤x≤2
|
1

x
|=
1 − x , x −1,
0≤ 1<
x≤ x≤
1 2
-
∫2
|
0
1

x
|
dx
=
∫1
|
0
1

x
|
dx
+
∫2
|
1
1−
x
|
dx
=
∫1
(1
0

x)dx
+
∫2 1
(x

1)dx
=
(x

1 2
x2)
1 0
+
(12
x2

x)
2 1
=
1

1 2
+
(1

12)
[ xi−1 xi] i = 1 2 … n
6-1
xi = xi − xi−1 i = 1 2 … n x
6-2
x = m1≤ia≤xn{∆xi}
x
n
i
Ai i = 1 2 … n
(2 )
[ xi−1 xi] i = 1 2 … n
i
f ( i)
f ( i) xi
( 6 - 2)
Ai f ( i) xi i = 1 2 … n
x −1 x
dx
t2
t +
1

2tdt
=
t
2t2 2+

高等数学 第六章定积分的应用习题课

高等数学 第六章定积分的应用习题课

A1
1 2d
02
2a2(2 cos )2d
0
a2 (4 4cos cos2 )d 9 a2 0
则所求的几何面积为 A 2 A1 18 a2
【例5】设由曲线
y

sin x (0
x

),y
2
1
及x

0围成
平面图形A绕x 轴,y 轴旋转而成的旋转体的体积。
则绕直线 y


1 2
旋转而成
的旋转体的体积微元dV
就是矩形S1
分别绕直线 y


1 2
旋转而成的旋转体的体积。
解: (1) 确定积分变量和积分区间:
绕直线 y 1 旋转如图 ,
y
2
1
取 x为积分变量,则 x [0, ].
2
(2) 求微元:对 x [0, ],
2
[x, x dx] [0, ],
0
1 dy]
1 y2
[(arcsin1)2 2
1
(arcsin y)d(
1 y2 )]
0
3 [2
4
1 y2 arcsin y 2 y]10
3 2
4
通过例5,同样可求出绕平行于x 轴和平行于 y 轴的直线
旋转而成的旋转体的体积,见例6。
【例6】设由曲线 y sin x (0 x ), x 及 y 0围成
(2)求微元:因为过点 x 的截面为等边三角形(如图),
其边长为 2 4 x2 ,高为 2 4 x2 3 .
2
所以截面积为
A( x) 1 2 4 x2 2 4 x2 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(高等数学)第六章定积分(全部)第六章定积分第一节概念及性质一.定积分问题举例1.引例1.曲边梯形的面积引:在农业生产中,我们经常会遇到丈量土地面积的问题.在工厂中,又会遇到计算生产材料的面积问题.如果所遇到的需要计算面积的图形(见图1)是不规则的,人们一般采用分割法.(1)曲边梯形的概念设函数«Skip Record If...»在区间«Skip Record If...»上非负、连续,由直线«Skip Record If...»及曲线«Skip Record If...»所围成的图形称为曲边梯形,其中曲线«Skip Record If...»称为曲边.(2)求曲边梯形的面积«Skip Record If...».第一步(分割):在«Skip Record If...»内任意插入«Skip Record If...»个分点:«Skip Record If...»,把«Skip Record If...»分成n个小区间.第«Skip Record If...»个小区间记为:«Skip Record If...» «Skip Record If...»,同时«Skip Record If...»也代表第i个小区间的长度(«Skip Record If...»«Skip Record If...»),则«Skip Record If...».第二步(代替):注意到由于«Skip Record If...»是连续函数,只要划分足够细,每个小曲边梯形的高在对应的小区间上可近似看作不变,即可以任取一点«Skip Record If...»,以«Skip Record If...»的值作为«Skip Record If...»的高.则这时的小曲边梯形可近似看作小矩形.所以«Skip Record If...»,«Skip Record If...»,«Skip Record If...».第三步(求和):«Skip Record If...».第四步(取极限):为精确值,要求把«Skip Record If...»无限地细分下去,即要使每一个小区间的长度都趋于零.这时,所有窄矩形的面积之和的极限可定义为曲边梯形的面积.记«Skip Record If...»,则«Skip Record If...».2.引例2.求变速直线运动的路程.设某物体做直线运动,已知速度«Skip Record If...»是时间间隔«Skip Record If...»上t的连续函数,且«Skip Record If...»«Skip Record If...».试计算在这段时间内物体所经过的路程«Skip Record If...»,其中«Skip Record If...».注意:上述两个引例的背景相差很大,但两问题的最终解决却都归结为求一个特殊和式的极限.这种极限的得到可归纳为九个字思想:分割、代替、求和、取极限,而最终是要求一个特殊形式的和式的极限。

为此,引入定积分的概念。

二.定积分定义及其几何意义1.定义1:设函数«Skip Record If...»在区间«Skip Record If...»上有界,在«Skip Record If...»中任意插入n-1个分点:«Skip Record If...»,把«Skip Record If...»分成n个小区间«Skip Record If...»«Skip Record If...».在每一个小区间«Skip Record If...»上任取一点«Skip Record If...»,做乘积«Skip Record If...»,求和«Skip Record If...»,令«Skip Record If...».如果当«Skip Record If...»时,无论对«Skip Record If...»如何划分,也无论«Skip Record If...»如何选取,«Skip Record If...»总存在而且相等,则称«Skip Record If...»为函数«Skip Record If...»在«Skip Record If...»上可积,并称«Skip Record If...»为«Skip Record If...»在«Skip Record If...»上的黎曼(Riemann)积分,简称定积分,记为«Skip Record If...».«Skip Record If...»分别称为积分的下、上限.注意:(1)«Skip Record If...»«Skip Record If...»用«Skip Record If...»定义应怎样叙述?如果对于«Skip Record If...»总«Skip Record If...»使无论对«Skip Record If...»如何划分,也无论«Skip Record If...»如何选取,只要«Skip Record If...»,就有«Skip Record If...»,则称«Skip Record If...»为«Skip Record If...»在«Skip Record If...»上的定积分;(2)«Skip Record If...»;(3) «Skip Record If...»,称为积分和式,问积分和式(a)与被积函数有关吗?(b)与被积区间有关吗?(c)和被积区间的划分有关吗?(d)与点«Skip Record If...»的选取有关吗?(4)«Skip Record If...»«Skip Record If...»(a)与被积函数有关吗?(b)与被积区间有关吗?(c)和被积区间的划分有关吗?(d)与点«Skip Record If...»的选取有关吗?(5)定积分与积分变量的记号无关.(6)问«Skip Record If...»与«Skip Record If...»等价吗?(一般说不行,但在等分时可以)(7)注意:定积分的定义中并不要求«Skip Record If...»在区间«Skip Record If...»上非负、连续.(8)定积分的几何意义----曲边梯形面积的代数和.例1.利用定积分的几何意义计算:(1)«Skip Record If...»;(2)«Skip Record If...»;(3)«Skip Record If...».三.定积分的存在性1.设函数«Skip Record If...»在区间«Skip Record If...»上连续,则«Skip RecordIf...»一定存在;2.设函数«Skip Record If...»在区间«Skip Record If...»上有界,且只有有限个第一类间断点,则«Skip Record If...»一定存在.例2.根据定积分的定义计算«Skip Record If...».注意到:«Skip Record If...»,而«Skip Record If...»说明就此例来说,可通过先求不定积分得到原函数,然后,对原函数再代入上、下限做差的办法求出定积分的值那么,是否对任何的定积分都可用此法来求解?我们这里暂且不讲,放在后面再讲。

我们仅指出:这种方法是可行的,而且绝大多数定积分是用此法算出来的. 即«Skip Record If...»,此公式称做牛—莱公式,又叫做微积分基本公式.我们将在以后给以证明,这里允许大家提前用.例3.求«Skip Record If...»解:«Skip Record If...»例4.求«Skip Record If...»«Skip Record If...»注意:«Skip Record If...»属广义积分,其求法以后再讲.四.定积分的性质1.两点补充规定:(1)«Skip Record If...»;(2)«Skip Record If...»2.定积分的性质性质1.«Skip Record If...».性质2.«Skip Record If...».推论:«Skip Record If...».性质3.如果将积分区间分成两部分,则在整个区间上的定积分等于这两部分区间上定积分之和,即设«Skip Record If...»,则«Skip Record If...».证明:因为函数 «Skip Record If...»存在,所以不论把«Skip Record If...»怎样分,积分和的极限总是不变的.因此,可在划分区间时,使c永远是一个分点,那么«Skip Record If...»上的积分和等于«Skip Record If...»上的积分和加上«Skip Record If...»上的积分和.记为:«Skip Record If...»=«Skip Record If...»«Skip Record If...».令«Skip Record If...»,上式两端同时取极限,即得:«Skip Record If...».注意:(1)性质3称为定积分对积分区间具有可加性;(2)其实,无论«Skip Record If...»相对位置如何,总有等式«Skip Record If...»成立。

相关文档
最新文档