多项式的整除性和带余除法
多项式的整除性和带余除法
多项式整除性理论主要讨论任给两个多项式 f(x),g(x), 是否有 g(x) 整除f(x)以及与此相关的多项式的最大公因式, 多项式的因式分解等问题. 在讨论一元多项式的整除性理论时,带余除法是 一个重要定理, 它给出了判断多项式 g(x)能否整除多项式f(x)的一个有效方法; 并且是讨论一元多项式的最大公因式及多项式根的理论基础.
如果f(x)|g(x),f(x)|h(x),则对任意多项式u(x),v(x) 都有f(x)|(u(x)g(x)+v(x)h(x));
为什么?
多项式的整除不是运算, 它是F[x]元素间的一种关系, 类似于实数集 R 元素间的大小关系, 相等关系; 多项式的整除性是不因数域的扩充而改变的.即当数域扩充时, 作为扩充后的数域上的多项式 f(x)和g(x), g(x)
g(x)≠0, g(x)│f(x)等价于 g(x)除 f(x)的余式零.
q(x)和r(x)的求法与中学的方
法基本相同. 在做除法时, 可
由定义不难看出 零多项式被任意一个多项式整除; 零多项式不能整除任意非零多项式; 任意多项式一定整除它自身. 零次多项式(非零常数)整除任意多项式. 当g(x)≠0时,由带余除法定理得到 Theorem1.对于P[x]中任意两个多项式f(x)与g(x),其中g(x)≠0, 则g(x)|f(x)的充分必要条件是g(x)除f(x)的余式为零.
多项式的整除性和带余除法
带余除法定理:对于P[x]中任意两个多项式f(x)与g(x),其中(g(x)≠0,一定有P[x]中的多项式q(x)和r(x)存在,使得
Definition5.(整除的定义)
称P[x]上的多项式g(x) 整除f(x),如果存在P[x]上的多项式h(x), 使得
多项式的除法
多项式的除法1. 带余除法定理1 (带余除法定理)设()f x 与()g x 是多项式,且()0g x ≠,那么存在惟一的一对多项式()q x 与()r x ,使得()()()()f x g x q x r x =+ ①其中()0r x =或者()()deg deg r x g x <。
()q x 叫做以()g x 除()f x 所得的商,()r x 叫做余式。
定义1:在①式中,当()0r x =时,称()g x 整除()f x ,记为()g x |()f x ,也称()g x 是()f x 的因式,或()f x 是()g x 的倍式。
若()0r x ≠,则称()g x 不整除()f x 。
定理2 (余数定理)多项式()f x 除以x a -所得余数为()f a 。
推论1 ()x a -|()()()f x f a -推论2 若()[]f x Z x ∈,a 与b 是不同的整数,则()a b -|()()()f a f b -.由余数定理还可以得到以下重要定理:定理3 (因式定理)多项式()f x 有因式x a -的充要条件是()0f a =.多项式整除的基本性质:(1) 若()f x |()g x ,()g x |()h x ,则()f x |()h x(2) 若()h x |()f x ,()h x |()g x ,则()h x |()()f x g x ±⎡⎤⎣⎦(3) 若()h x |()f x ,则()h x |()()f x g x ⋅,()g x 为任意多项式.(4) 若()f x |()g x ,()g x |()f x ,则()()f x c g x =⋅,其中c 是不等于零的常数.2. 多项式的分解定义2:一个次数大于零的多项式()f x ,如果在数域F 内除形如λ和()f x μ(,λμ为非零数)的因式(称为()f x 的平凡因式)外,无其它因式,则称()f x 在F 内不可约.若()f x 在F 内除平凡因式外,还有其它因式,则称()f x 在F 内可约.不可约多项式的一些重要性质:(1) 如果多项式()p x 不可约,而()f x 是任一多项式,那么,或者()()(),1p x f x =,或者()p x |()f x .(2) 如果多项式()f x 与()g x 的乘积能被不可约多项式()p x 整除,那么()f x 与()g x 中至少有一个被()p x 整除.定理4 数域F 上的次数大于零的多项式()f x ,如果不计零次因式的差异,那么()f x 可以惟一地分解为以下形式:()()()()1212t k k k t f x ap x p x p x = ②其中a 是()f x 的最高次项的系数,()()()12,,t p x p x p x 是首项系数为1的互不相等的不可约多项式,并且()()1,2,,i p x i t = 是()f x 的i k 重因式.【注】其中数域F 是指Q ,或R ,或C .关于整系数多项式的分解问题.定义3:设整系数多项式()0mj j j f x a x ==∑各项系数的最大公约数等于1,即()012,,,,1m a a a a = ;则称()f x 为本原多项式.引理 设()f x ,()g x 和()h x 都是整系数多项式并且()()()h x f x g x =⋅,如果质数p 整除多项式()h x 的所有系数,那么至少有()f x 与()g x 这两个多项式之一,其所有的系数也都能被p 整除.推论 本原多项式的乘积仍然是一个本原多项式.定理5 如果整系数多项式()f x 在有理系数范围内可约,那么,它在整系数范围内也可约. 以上论断的等价陈述是:如果整系数多项式()f x 在整系数范围内不可约,那么它在有理数范围内也不可约.3. 最大公因式定义4:如果两个多项式()f x 与()g x 同时被()d x 整除,那么()d x 叫做()f x 与()g x 的公因式.如果()d x 是()f x 与()g x 的公因式,并且()f x 与()g x 的所有公因式都整除()d x ,则()d x 叫做()f x 与()g x 的最大公因式.【注】两个不全为零的多项式的最大公因式是不唯一的,它们之间只有常数因子的差异.这时,我们约定,最大公因式是指首项系数为1的那一个,这样,两个多项式()f x 与()g x 的最大公因式就是惟一的,记为()()(),f x g x .两个多项式的最大公因式,有以下重要定理:定理6 设多项式()f x 与()g x 的最大公因式为()d x ,那么存在多项式()u x 与()v x ,使以下等式成立:()()()()()f x u x g x v x d x += ③定义5:如果两个多项式除零次多项式外无其他的公因式,那么就称这两个多项式互素. 显然,()f x 与()g x 互素()()(),1f x g x ⇔=.定理7 两个多项式()f x 与()g x 互素的充要条件是,存在多项式()u x 与()v x ,使()()()()1f x u x g x v x += ④互素多项式的一些重要性质:(1) 若()()()()()(),1,,1f x h x g x h x ==,则()()()(),1f x g x h x -=(2) 若()h x |()()f x g x ,()()(),1h x f x =,则()h x |()g x .(3) 若()g x |()f x ,()h x |()f x ,()()(),1g x h x =,则()()g x h x |()f x .针对性训练1. 求19861x -除以()()2211x x x +++所得的余式. 解:()()32111x x x x -=-++ ()21x x ∴++|()31x -又()()()662198633111x x x p x -=-=- ()31x ∴-|()19861x -()21x x ∴++|()19861x -由此可知, 19861x -除以()()2211x x x +++所得余式()()()21r x x x ax b =+++.这里,a b R ∈,于是()()()()()198********x x x x g x x x ax b -=+++++++ 令x i =,得()20i ai b -=++,即2a bi -=-+. 比较两端的实部和虚部,得2,0a b ==. 故所求余式为()()221r x x x x =++.2. 设多项式()[]32f x x bx cx d Z x =+++∈,并且bd cd +是奇数,证明:()f x 不能分解为两个整系数多项式的乘积.证明:因为()bd cd b c d +=+是奇数,所以d 与b c +均为奇数,从而()11f b c d =+++是奇数.假设()()()()2,,f x x p x qx r p q r Z =+++∈。
一元多项式的定义和运算讲解
令f (x)是F [x]的一个次数大于零的多项式,并且
此处
定理 2.4.2
例 在有理数域上分解多项式 为不可约因式的乘积.容易看出
(2)
一次因式x + 1自然在有理数域上不可约.我们证明, 二次因式 也在有理数域上不可约.不然的话, 将能写成有理数域上两个次数小于2的因式 的乘积,因此将能写成
这个定义的条件也可以用另一种形式来叙述
若多项式 有一个非平凡因式 而 ,那么 与 的次数显然都小于 的次数.反之,若 能写成两个这样的多项式的乘积,那么 有非平凡因式.因此我们可以说:
这里
多项式的减法
2.1.5 多项式加法和乘法的运算规则
(1)加法交换律:
(2)加法结合律:
(3)乘法交换律:
(4)乘法结合律:
(5)乘法对加法的分配律:
注意:
要把一个多项式按“降幂”书写
当
时,
叫做多项式的首项.
2.1.6 多项式的运算性质
定理
是数环R上两个多项式,并且
定义 2
设 是多项式 与 的一个公因式.若是 能被 与 的每一个公因式整除,那么 叫做 与 的一个最大公因式.
定义 1
的任意两个多项式 与 一定有最大公因式.除一个零次因式外, 与 的最大公因式是唯一确定的,这就是说,若 是 与 的一个最大公因式,那么数域F的任何一个不为零的数 c与 的乘积 ,而且当 与 不全为零多项式时,只有这样的乘积是 与 的最大公因式.
由此得出,
是
与
的最大公因式,而
定理 2.3.3
的两个多项式 与 互素的充分且必要条 件是:在 中可以求得多项式 与 ,使
多项式整除
例3.求实数 m , p, q 满足什么条件时多项式
x mx 1 整除多项式 x 3 px q.
2
附:整数上的带余除法
对任意整数a、b(b≠0)都存在唯一的整数q、r, 使 a=qb+r,
其中 0 r b .
q x g x r x q x g x r x
即
q x -q x g x =r x -r x .
若q x q x ,由g x 0, 有r x -r x 0
4 2i 5 2i
9 8i 9 8i
1 有
f ( x ) g( x ) x 2 2ix 5 2i 9 8i .
例2.
把 f ( x ) x 表成 x 1的方幂和.
5
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1= c0 2 3 4 1 2 3 4 5= c1 1 1 1 3 6 3 6 10= c2 1 1 1 4 4 10= c3 1 1 1 1 5= c4 x 5 ( x 1)5 5( x 1)4 10( x 1)3 10( x 1)2 5( x 1) 1
g( x ) | f ( x ) h2 x 使得 f ( x ) g ( x )h2 x .
f ( x ) h1 x h2 x f ( x ).
若 f ( x ) 0,
则 g ( x )=0,
f ( x )=cg( x ),c P ,c 0
② g ( x ) 不能整除 f ( x ) 时记作: g ( x ) | f ( x ).
原题目:多项式的整除性质
原题目:多项式的整除性质
多项式的整除性质
在代数学中,多项式的整除性质是一种非常重要的属性。
它描
述了多项式之间的除法关系。
本文将介绍多项式的整除性质及其应用。
定义
设A(x)和B(x)是两个多项式,如果存在另一个多项式C(x),
使得A(x) = B(x) * C(x),则称B(x)可以整除A(x),记作B(x) | A(x)。
整除定理
多项式的整除性质可以通过整除定理来描述。
整除定理指出,
当B(x)是一个一次多项式,即B(x) = ax + b,并且B(x)整除A(x)时,A(x)在x = -b/a时取值为零。
应用
多项式的整除性质在代数学和计算学中有广泛的应用。
一些重要的应用包括:
1. 确定多项式的公因式:如果B(x)整除A(x),则B(x)是A(x)的一个公因式。
这可以用来简化多项式、分解多项式或找到多项式的根。
2. 带余除法:根据整除性质,可以使用带余除法来将一个多项式除以另一个多项式。
带余除法是一种有效的算法,可以用于多项式的除法运算。
3. 多项式的因式分解:利用多项式的整除性质,可以将一个多项式因式分解为较低次数的多项式乘积的形式。
这在代数学和数值计算中都是非常重要的操作。
4. 多项式的最大公因式:通过利用多项式的整除性质,可以求解多项式的最大公因式。
最大公因式是两个或多个多项式共有的最高次数的公因式。
总结
多项式的整除性质是一种重要的代数属性,它描述了多项式之间的除法关系。
整除定理提供了判断多项式整除性的方法,而多项式的整除性质在代数学和计算学中有广泛的应用。
2.2多项式的整除性
2.基本性质
(a). 对f(x)∈F[x]和c∈F( c≠0),总有f(x)|0, c|f(x), c f(x)|f(x).
注:(1)任何多项式f(x)都有因式c和cf(x)(0 ≠c∈F),
它们称为f(x)的平凡因式.
2.综合除法
若 f ( x) an xn + an1xn-1 + L + a0, 则 x c 除 f ( x) 的商式 q( x) bn1xn1 b0 和余式 r(x)
可按下列计算格式求得:
c an an1 an2 L a1 a0
+) cbn1 cbn2 L cb1 cb0
均不成立。
问题:
(1).零多项式能否整除零多项式? (2).任意非零多项式能否整除零多项式? (3).零多项式能否整除任意非零多项式? (4).零次多项式能否整除任意多项式? (5).零次多项式能否被任意多项式整除?
结论:
1.零多项式能整除且仅能整除零多项式。 2.零多项式能被任意多项式整除(即零多
此时称g(x)是f(x)的一个因式,f(x)是g(x) 的一个倍式。
否则,则称g(x)不整除f(x),记作g(x) † f(x).
注:
(1).g(x)|f(x)不能写作g(x)/f(x),以免与分式混淆; (2).整除性不是多项式的运算,它只是F[x]元素
间的一种关系; (3).若g(x) †f(x),则对h(x)F[x], f(x)=g(x)h(x)
f ( x) c0 c1( x a) c2( x a)2 L 的形式.
例2.3 设 f ( x) x4 x2 4x 77 , g( x) x 3, 求g( x)除f ( x)所得商式q( x)和余式r,并指出 是否有 g( x) f ( x).
第六节:整式的除法及余数定理
整式的除法及余数定理【教学目标】1.综合除法:多项式除法时,我们有带余除法:)()()()(x r x q x g x f +⋅= 其中)(x f 表示被除式,)(x g 表示除式,)(x q 表示商式,)(x r 表示余式,且余式)(x r 的次数小于除式)(x g 的次数.2.余数定理和因式定理:余数定理:多项式)(x f 除以)(a x -所得的余数等于)(a f 因数定理:若多项式)(x f 能被a x -整除,亦即)(x f 有一个因式a x -,则0)(=a f ;反之,如果,0)(=a f 那么a x -必为多项式)(x f 的一个因式.【经典例题】例1.求6532234++--x x x x 除以)1(+x 所得的商式和余数.例2.求多项式)(x f 除以,1-x 2-x 所得的余数分别为3和5,求)(x f 除以)2)(1(--x x 所得的余式.例3.证明:当b a ,是不相等的常数进,若关于x 的整式)(x f 被a x -和b x -整除,则)(x f 也被))((b x a x --整除.例4.试确定a 和b 的值,使b x ax x x x f +++-=532)(234被)2)(1(-+x x 整除.例5. 已知关于x 的整式)(x f 除以3+x 时余数为-5;所得的商再除以12-x 时余数为4,求)(x f 除以12-x 时的余数、除以3522-+x x 时的余式.整式的除法及余数定理练习一、选择题1.化简3422222++⋅⋅-n nn ,得( ) A 、8121-+n B 、87 C 、12+-n D 、47 2.如果822+++bx ax x 有两个因式1+x 和2+x ,则b a +=( )A 、7B 、8C 、15D 、213.如果b a ,是整式,且12--x x 是123++bx ax 的因式,那么b 的值是( )A 、-2B 、-1C 、0D 、2 二、填空题:1.已知k 是整数,并且k x x x +-+3323有一个因式是1+x ,则=k ;另一个二次因式,它是 .2.已知62-+x x 是12234-+++-+b a bx ax x x 的因式,则=a ,=b .3.多项式6522++-++y x by axy x 的一个因式是2-+y x ,则b a +的值是 .三、解答题1.计算6533+-x x 除以)2(-x 所得的商式及余数.2.用综合除法计算)23()2527(23-=-+-x x px x3.设1183)(234+-++=kx x x x x f 被3+x 整除,求k 的值.4.设2)(24+--=bx ax x x f 被())2(1++x x 整除,求b a ,的值.5.若b ax x x x f ++-=2332)(除以1+x 所得的余数为7,除以1-x 所得的余数为5,试求b a ,的值.6.多项式)(x f 除以)2(),1(--x x 和)3(-x 所得的余数分别为1,2,3求)(x f 除以)3)(2)(1(---x x x 所得的余式.7.已知多项式128)(23--+=x bx ax x f 被2-x 和3-x 整除,试求b a ,的值,并求)(x f 除以)3)(2(--x x 后所得的商式.8.若r px x 455+-被2)2(-x 整除,求q 与r 的值.9.若164-x 除以14-x 得256,求x 的值.10.若0132=--x x ,求200257623+-++x x x 的值.11.当m p ,为何值时,多项式23-+px x 能被12-+mx x 整除?整式的除法及余数定理作业1.设n mx x x f ++=2)((n m ,都是整数)既是多项式25624++x x 的因式,又是多项式5284324+++x x x 的因式,求)(x f2.求一个关于x 的二次三项式)(x f ,它被1-x 除余2,被)2(-x 除余8,并且它被1+x 整除.3.用综合除法求商式和余式)4()181496(345+÷+-++x x x x x4.当2=x 或3=x 时,多项式6632)(234++++=bx x ax x x f 的值都为0,试求多项式)(x f 除以652+-x x 的商式和余式.。
高等代数第二版课件§1[1].3_整除的概念
若 g x 0 则在 F x 中有
f x g x q x r x , r x 0
第二章 多项式
但 F x 中的多项式 q x , r x 仍是 F x 的多项式。 因而在 F x 中,这一等式仍然成立。 由 q x , r x 的唯一性知, 在 F x 中 g x
第二章 多项式
x f k x 例1.3.2:证明
k 1 的充要条件是 x f x
证:充分性显然。 x xq x c
k
k
xq1 x c k
由于 x f
f g h x m1 x m2 x , h x f g
第二章 多项式
m1 x , m2 x F x
若 性质3: h x f x ,对 g x F x 。 h fg 有 证:
f x
第二章
多项式
作业 P44 1(1),2(1),3(1)
第二章
多项式
h x f x
m1 x , m2 x F x
性质2:若 h x g x , h x f x ,则 h f g 。 证: g x h x m1 x , f x h x m2 x
g x 除 f x 的余式 r x 0
证: 充分性。 若 f x g x q x r x 且 r x 0 则有 g x f x 必要性。 若 g x f x ,则 f x g x q x 例1.3.1 设 f x 5x4 2x3 3x2 7x 1, g x x2 2x 3 求 g x 除 f x 所得的余式和商式。
多项式的带余除法及同余问题
多项式的带余除法及同余问题一、多项式的带余除法带余除法是一种基础的多项式运算,它可以用来确定两个多项式之间的整除关系。
带余除法的核心思想是,用一个已知的多项式去除另一个多项式,然后求出余数和商。
下面我们就来介绍一下多项式的带余除法及其应用。
1.多项式的定义在代数中,多项式是由常数、变量和运算符号构成的表达式。
多项式的一般形式如下:P(x) = a0 + a1x + a2x^2 + … + anxn其中,a0,a1,a2 … an是常数项,n是该多项式的最高次数。
2.多项式的带余除法设P(x)和Q(x)是两个多项式,其中Q(x)≠0,且Q(x)的最高次数不小于P(x)的最高次数。
那么,多项式P(x)除以Q(x)所得的商多项式为R(x),余数多项式为S(x)。
带余除法的表示如下:P(x)= Q(x)× R(x) + S(x)其中,余数多项式S(x)的次数小于除式Q(x)的次数。
带余除法的流程如下:(1)将被除式P(x)和除式Q(x)按照它们的次数从高到低排列;(2)将P(x)中的最高次数项除以Q(x)中的最高次数项,得到商式的首项;(3)用得到的商式的首项乘以Q(x),并从P(x)中减去这个积,得到一个新的多项式;(4)重复以上操作,直到得到的新多项式的次数小于除式Q(x)的次数为止,最后所得的新多项式就是余数多项式S(x)。
3.例子说明我们以P(x) = x^4 + 2x^3 - 3x^2 + x + 1和Q(x) = x^2 -x - 2为例,来说明多项式的带余除法的具体操作。
首先,将P(x)和Q(x)按照从高到低的次数排列:P(x) = x^4 + 2x^3 - 3x^2 + x + 1Q(x) = x^2 - x - 2其次,将P(x)中的最高次数项除以Q(x)中的最高次数项,得到商式的首项为:x^2接着,用得到的商式的首项乘以Q(x),并从P(x)中减去这个积,得到一个新的多项式:P(x) - x^2 Q(x) = (x^4 + 2x^3 - 3x^2 + x + 1) - (x^2 -x - 2) x^2 = 3x^3 - 2x^2 + 3x + 1重复以上操作,将新的多项式3x^3 - 2x^2 + 3x + 1除以Q(x),得到商式的首项为:3x然后,用得到的商式的首项乘以Q(x),并从3x^3 - 2x^2 + 3x + 1中减去这个积,得到一个新的多项式:3x^3 - 2x^2 + 3x + 1 - 3x(x^2 - x - 2) = -5x^2 + 9x + 1 继续重复以上操作,将新的多项式-5x^2 + 9x + 1除以Q(x),得到商式的首项为:-5最后,用得到的商式的首项乘以Q(x),并从-5x^2 + 9x + 1中减去这个积,得到余数多项式:-5x^2 + 9x + 1 - (-5)(x^2 - x - 2) = 4x + 11因此,P(x)除以Q(x)所得的商多项式为x^2 + 3x - 5,余数多项式为4x + 11。
多项式的带余除法
多项式带余除法1.多项式带余除法定理:若()f x 和()g x 是[]F x 中的两个多项式,且()0g x ≠,则在()F x 中有唯一的多项式()q x 和()r x ,满足()()()()f x q x g x r x =+其中(())(())r x g x ∂<∂,或者()0r x =。
1) 此时()q x 称为()g x 除()f x 的商式,()r x 称为余式(非0余式的次数小于除式)。
2) 当()g x x a =-时,则()()r x f a =称为余元,式中a 的F 是的元素。
此时带余除法具有形式()()()()f x q x g x f a =+,称为余元定理。
3) ()g x 是()f x 的因式的充分必要条件是()g x 除()f x 所得余式等于零。
4) 特别的,x a -是()f x 的因式的充分必要条件是()0f x =,这时称a 是()0f x =的一个根。
5) 商式与余式的计算。
2.整除的概念与性质:对数域上的任意两个多项式()f x ,()g x ,如果存在多项式()h x 满足()()()f x h x g x =那么称()g x 能整除()f x ,或()f x 能被()g x 整除记作()|()g x f x 。
此时称()g x 是()f x 的一个因式,()f x 是()g x 的一个倍式。
1) 1|(),()|(),()|0f x f x f x f x ,…2) 若()()()()f x h x g x r x =+符合带余除法定理,则()|()g x f x 当且仅当余式()0r x =3) 若()|()g x f x ,()|()f x h x 则()|()g x h x4) 若()|(),1,2,3....i g x f x i s =,则对任意的1()[],()|()()si i i i u x F x g x u x f x =∈∑5) 若()|()g x f x ,()|()f x g x 则,()()f x cg x =其中c 为非零常数6) 多项式的整除性质与数域无关经典例题1.(中国人民大学1991)多项式()f x 除以(0)ax b a -≠所得余式__()b a f __ 解:设()()()f x ax b q x A =-+ 将b ax =代入上式,得()b a f A =,由商式和余式的唯一性即可。
第一讲高等代数选讲之多项式理论
一、数域的判定
1、数域的概念
设P是至少含有两个数(或包含0与1)的数集,如果 P中任意两个数的和、差、积、商(除数不为零)仍是P 中的数,则称P为一个数域。
2、数域的有关结论 (1)所有的数域都包含有理数域,即有理数域是最
(3)因式分解理论:包括不可约多项式、因式分解、 重因式、实系数与复系数多项式的因式分解、有理系数多 项式不可约的判定等。
(4)根的理论:包括多项式函数、多项式的根、代 数基本定理、有理系数多项式的有理根求法、根与系数 的关系等。
一元多项式的内容十分丰富,重点是整除与因式分 解的理论,最基本的结论是带余除法定理、最大公因式 存在定理、因式分解唯一性定理。在学习的过程中,如 能把握这两个重点和三大基本定理,就能够整体把握一 元多项式的理论。
验根法:现设出g x 的全部复根,并假设 g x无重根,即
g x ax 1x 2 x k
其中1,2, ,k互异。再证 f i 0 i 1, 2, , k , 则有
x i f x i 1, 2, ,k , 从而 g x f x. 这是因为
称为数域P上文字 x 的一元多项式,其中 a0 , a1, , an P,
n 是非负整数。当 an 0 时,称多项式 f x的次数为 n.
记为 f x n.
2、多项式的相等关系 设
f x anxn an1xn1 a1x a0
g x bnxn bn1xn1 b1x b0
bn1 an , bn2 an1 abn1, , b0 a1 ab1, c0 a0 ab0
第一章 多项式
3)当 a0 a1 an 0 时,称 f (x) 为零多项式, 零多项式是唯一不定义次数的多项式。 3. 多项式环 数域P上一切多项式全体所成集合称作多项式环, 记为 Px ,数域P上一切次数小于n的多项式全体 记为 Px n P7 定义4
推广:如果 ( f1 ( x), f 2 ( x),, f s ( x)) 1 那么多项式
f1 ( x), f 2 ( x),, f s ( x)
就称为互素的.
注:①如果
f1 ( x), f 2 ( x),, f s ( x) 互素,不一定两两互素。
②互素关系不因为数域改变而改变。
2.互素的判定条件
f ( x) | (u1 ( x) g1 ( x) u2 ( x) g 2 ( x) ur ( x) g r ( x))
其中 u i (x) 是数域P上任意的多项式。
(8)若 f ( x) | g ( x), f ( x) | h( x) 则 f ( x) | g ( x) h( x)
其中, (r ( x)) ( g ( x)) 或者 r ( x) 0
P8带余除法定理
2.综合除法 (略)
用途: (1)求 f ( x) 在
x c 点的值。
(2)判断多项式 f ( x) 是否有一次因式。 (3)判断多项式 f ( x) 是否有根 x=c。 (4)把多项式 f ( x) 表示成x-c的方幂和。即
3. 定理:任何一个数域都包含有理数域,即有理数域 是最小的数域。 P3 4. 会验证一个数集是否为数域或者数环。 二、一元多项式 1. 数域P上一元多项式定义
n n1 定义:形式表达式 f ( x) an x an1 x a1 x a0
高等代数考研辅导第1讲多项式
(1)零多项式只能整除零多项式 4.说明 (2) f ( x), cf ( x)有相同的因式和倍式
例1.1: 证明:x2 +x 1| x3m +x3n 1 x3 p 2 (m, n, p N ).
(1)( x 1) | f ( x n ) x n 1| f ( x n ) 同理可证明 (2) x 2 x 1| f ( x 3 ) xf ( x 3 ) ( x 1) | f ( x), ( x 1) | f ( x). 1 2 1 2
r 标准分解式:f ( x) cp1r1 ( x) p22 ( x) psrs ( x), c是f ( x)的首项系数,p1 ( x), ,ps ( x)是首项系数为1的
互不相同的不可约多项式,ri是正整数.
k l r 1 (1) f ( x) ap1k1 ( x) prkr ( x) prk11 ( x) pmm ( x), g ( x) bp1l1 ( x) prlr ( x) qrlr1 ( x) qnn ( x), 其中pr 1 ( x), , pm ( x)与
(1)找u ( x), v( x), 使u ( x) f ( x) v( x) g ( x) 1; (2)证明f ( x), g ( x)的任一公因式都是非零常数; (3)证明( f ( x), g ( x)) 1的方法: (3)反证法; (4) f ( x)的均不是g ( x)的根.
2.因式分解定理及唯一性定理:P上每个次数 1的多项式f ( x )都可以唯一 分解成P上一些不可约多项式的乘积.所谓唯一性指 f ( x ) p1 ( x ) ps ( x ) q1 ( x ) qt ( x ), 那么s t且适当调序后有pi ( x ) ci qi ( x )(ci 0)
多项式除以多项式
多项式除法示例多项式除以多项式的一般步骤:多项式除以多项式一般用竖式进行演算(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐. (2)用被除式的第一项去除除式的第一项,得商式的第一项.(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来. (4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除多项式除以多项式的运算多项式除以多项式,一般可用竖式计算,方法与算术中的多位数除法相似,现举例说明如下: 例1 计算)4()209(2+÷++x x x规范解法 ∴ .5)4()209(2+=+÷++x x x x解法步骤说明: (1)先把被除式2092++x x 与除式4+x 分别按字母的降幂排列好.(2)将被除式2092++x x的第一项2x 除以除式4+x 的第一项x ,得x x x =÷2,这就是商的第一项.(3)以商的第一项x 与除式4+x 相乘,得x x 42+,写在2092++x x 的下面.(4)从2092++x x减去x x 42+,得差205+x ,写在下面,就是被除式去掉x x 42+后的一部分.(5)再用205+x 的第一项x 5除以除式的第一项x ,得55=÷x x ,这是商的第二项,写在第一项x 的后面,写成代数和的形式.(6)以商式的第二项5与除式4+x 相乘,得205+x ,写在上述的差205+x 的下面. (7)相减得差0,表示恰好能除尽. (8)写出运算结果,.5)4()209(2+=+÷++x x x x例2 计算)52()320796(2245--÷+-+-x x x x x x .规范解法 ∴ )52()320796(2245--÷+-+-x x x x x x163323-+-=x x x ……………………………余29-x .注 ①遇到被除式或除式中缺项,用0补位或空出;②余式的次数应低于除式的次数. 另外,以上两例还可用分离系数法求解.如例2. ∴ )52()320796(2245--÷+-+-x x x x x x163323-+-=x x x ……………………………余29-x .8.什么是综合除法?由前面的问题4我们知道两个多项式相除可以用竖式进行,但当除式为一次式,而且它的首项系数为1时,情况比较特殊. 如:计算)3()432(3-÷-+x x x.因为除法只对系数进行,和x 无关,于是算式(1)就可以简化成算式(2).还可以再简化.方框中的数2、6、21和余式首项系数重复,可以不写.再注意到,因除式的首项系数是1,所以余式的首项系数6、21与商式的系数重复,也可以省略.如果再把代数和中的“+”号省略,除式的首项系数也省略,算式(2)就简化成了算式(30的形式:将算式(3)改写成比较好看的形式得算式(4),再将算式(4)中的除数-3换成它的相反数3,减法就化为了加法,于是得到算式(5).其中最下面一行前三个数是商式的系数,末尾一个数是余数.多项式相除的这种算法,叫做综合除法,它适合于除式为一次式,而且一次项系数为1. 例1 用综合除法求12333234+-+-x x x x 除以1-x 的商式和余式.规范解法 ∴ 商式2223-+-=x x x ,余式=10.例2 用综合除法证明910152235-+-x x x 能被3+x 整除.规范证法 这里)3(3--=+x x ,所以综合除法中的除数应是-3.(注意被除式按降幂排列,缺项补0.) 因余数是0,所以910152235-+-x x x能被3+x 整除.当除式为一次式,而一次项系数不是1时,需要把它变成1以后才能用综合除法.. 例3 求723-+x x除以12+x 的商式和余数.规范解法 把12+x 除以2,化为21+x ,用综合除法. 但是,商式2322+-≠x x ,这是因为除式除以2,被除式没变,商式扩大了2倍,应当除以2才是所求的商式;余数没有变.∴ 商式43212+-=x x ,余数437-=. 为什么余数不变呢?我们用下面的方法验证一下. 用723-+x x除以21+x ,得商式2322+-x x ,余数为437-,即 ∴ 437232213223-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=-+x x x x x()4374321122-⎪⎭⎫ ⎝⎛+-+=x x x .即 323-+x x除以12+x 的商式43212+-=x x ,余数仍为437-. 综合除法与余数定理综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。
高等代数
例6: Q, R, C 对通常加法和乘法均是 域。 有理数域 Q, 实数域 R, 复数域 C.
若 F的子集合 K 对 F中的原运算仍是一个域 , 称 K为 F的子域,而 F称为 K的扩域。
C的子域被称作数域, 有理数域 Q是最小的数域 - -是任意数域的子域。 7
II
Polynomial form
an q1 = X bm
nm
,
则 g q1 与 f 的首项相同。
令 f s = r , q1 + q 2 + + q s = q , 即可。
唯一性,设 f = q g + r = gq0 + r0,
= 于是 g(q q0) r0 r 若两边均非零,则由 deg g(q q0)) deg g > deg r0 r) ( ≥ ( 矛盾, 故q = q0, r = r0 。
群 : 设 G 是非空集合 , 在 G 中定义了一个二元 运算 (即对 G 中任意 a , b 有 G 中唯一元素 (记为 a b )与之对应 , 且满足如下规律 : (1)封闭性 . 对任意 a , b ∈ G , 总有 a b ∈ G . ( 2 )结合律 .a ( b c ) = ( a b ) c ( 对任 a , b, c ∈ G ). ( 3)( 恒元 )存在 e ∈ G , 使 e a = a 对任 a ∈ G . ( 4 )( 逆元 )对任 a ∈ G , 总存在 b ∈ G , b a = e.
例3: n阶可逆方阵的全体(按 通常矩阵的 乘法)是乘法群。称为 一般线性群 .-- general linear group 简记为 GL n (F). 而 SL n (F)={ A ∈ M n (F) detA =1 } 称为特殊线性群-- Special Linear group
整除的概念
若 f1 x n, 由归纳假设,存在 q1( x),r1( x)
§1.3 整除的概念
若q x q x,由g x 0, 有r x-r x 0
q x-q x+ g x= r x-r x max r , r gx
但 q x-q x+ g x g x, 矛盾.
一定存在 q( x),r( x) P[x], 使 f ( x) q( x)g( x) r( x)
成立,其中 (r( x)) (g( x)) 或 r( x) 0, 并且这样的 g( x),r( x) 是唯一决定的.
称 q( x) 为 g( x) 除 f ( x) 的商, r( x)为 g( x) 除 f ( x) 的余式.
为 g( x)的倍式. ② g( x)不能整除 f ( x) 时记作: g( x) | f ( x).
§1.3 整除的概念
③ 允许 g( x) 0,此时有 0 0h( x), h( x) P[x]
即 0 0.
区别:
00 0
零多项式整除零多项式,有意义.
0 除数为零,无意义.
④ 当 g( x) | f ( x) 时, 如果 g( x) 0, 则 g( x) 除
使得 f1 x q1 x g x r1 x
§1.3 整除的概念
其中 r1 x < g( x) 或者 r1( x) 0. 于是
f x b1axnm q1 x g x r1 x.
多项式的整除性
4)若h( x)| fi ( x),ci ( x) F ( x), i 1,2,3, , n,
n
则h( x) | ci ( x) fi ( x); (整除倍式和) i 1
前页 后页 返回
5) f (x) F[x],c F,c 0 c | f (x);cf (x) | f (x). 6)若 f ( x) | g( x), g( x) | f ( x),,则存在c F ,c 0,
使 f ( x) cg( x). 二.带余除法
1.实例(中学中的多项式除多项式)
重复对 f1( x)的同样讨论,由于
( f ( x)) ( f1( x)) ( f2( x)) ,
而( f (x))有限,因此在进行了有限步后,必有 fk ( x) 适合 fk ( x) 0或( fk ( x)) ( g( x))。于是可得到
一串等式:
f ( x) g( x) a0b01 xnm f1( x), f1( x) g( x) a10b01 xn1m f2( x),
a b x , 1 nk1m k1,0 0
r(x)
fk ( x)
适合式(1),并且r( x) 0,或
(r( x)) (g( x))
前页 后页 返回
3)现证唯一性
设还能找到F[ x]的多项式q1( x), r1( x),使
f ( x) g( x)q1( x) r1( x)
前页 后页 返回
但 ( g( x)(q( x) q1( x)) ( g( x)), 而显然有 (r1( x) r( x)) ( g( x)),
多项式的整除
若是 r(x)r(x)0 那么,
q(x)q(x)0
这时等式右边的次数将小于g(x)的次数,而等式左 边的次数将不小于g(x)的次数,这是不可能的。 因此必有:
r(x)r(x)0
因而 q(x)q(x)0
即 r(x ) r(x )q ,(x ) q (x )
说明:1。若无r(x)=0或(r(x))< (g(x))的限制,则使 f(x)=g(x)q(x)+r(x)成立的,q(x),r(x)不唯一,此时不能定 义商式与余式,也不能判断一个多项式能否整除另外一 个多项式。
§2.5 多项式的整除
设F是一个数域,F[x]是F上一元多项式环。 一、多项式整除的定义与性质。 <一>多项式整除的定义
定义:令f(x)和g(x)是数域F上多项式环F[x]的两 个多项式,如果存在F[x]的多项式h(x),使
g(x)=f(x)h(x)
则称f(x)整除(能除尽)g(x). 记为 f(x)|g(x) 此时称f(x)是g(x)的因式, g(x)是f(x)的倍式。 否则,则称f(x)不整除g(x),记作f(x) † g(x).
•
五、一个人要实现自己的梦想,最重要的是要具备以下两个条件:勇气和行动。——俞敏洪
•
六、将相本无主,男儿当自强。——汪洙
•
七、我们活着不能与草木同腐,不能醉生梦死,枉度人生,要有所作为。——方志敏
•
八、当我真心在追寻著我的梦想时,每一天都是缤纷的,因为我知道每一个小时都是在实现梦想的一部分。——佚名
•
十九、要想成就伟业,除了梦想,必须行动。——佚名
•
二十、忘掉今天的人将被明天忘掉。──歌德
•
二十一、梦境总是现实的反面。——伟格利
5多项式详解
最大公因式_唯一性
设 d(x), d1 (x) 是 f (x) 和 g(x)的最大公因 式, 据定义有 d(x) | d1 (x)且 d1(x) | d(x) , 故存 在c∈K, 使得d(x) = cd1 (x). 即f (x), g(x)的最 大公因式最多差一个非零常数。
第五章 多项式
概述_1
代数角度 代数运算:+、-、乘、除(带余除法)及性质
最大公因式、互素、不可约、标准型、重因式等
函数角度 根及其性质,余数定理
二者关联 两多项式函数相等充要条件为这两多项式代 数相等
概述_2
与数域扩大无关的多项式性质 整除、最大公因式、互素、余数定理等
与数域扩大有关的多项式性质 不可约、因式分解、根理论等
一元多项式
定义
K :数域, ai∈K, 0≤i≤n ; n≥0, x : 未定元, 形如 f (x) an xn an1xn1 a0
称为K上关于x 的一元多项式.
K(x) {an xn an1xn1 a0 | ai K, 0 i n}
aixi : 称为第i 次项, ai : 第i 次项系数. n 次多项式: 当an ≠0时, 次数记为deg f (x)=n, anxn :首项,
定义f (x) 与g(x)的乘积: f (x) g(x) = h(x) 其中
h(x)
cnm xnm
c xnm1 nm1
c1x
c0
K[x]
cnm anbm
cnm1 an1bm anbm1
c k i jk aibj a0bk a1bk 1 akb0
c0 a0b0
K[x]对加法,数乘和乘法构成K-代数, 即满足(1) ~ (8)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 作业: • 认真复习总结所学知识,作学习笔记; • P-44-2、3、4
成立. 整除 f ( x ),
用g ( x) f ( x )表示g ( x )不能整除f ( x). | 当g ( x ) | f ( x ) 时, 称g ( x )为 f ( x )的因式, 称f ( x)为 g ( x)的倍式.
▲g(x)≠0, g(x)│f(x)等价于 g(x) 除 f(x)的余式零. ▲q(x)和r(x)的求法与中学的方 法基本相同. 在做除法时, 可以 分离系 数, 因为n次多项 式是由它的n+1 个系数唯一确 定的, (做除法时按降幂排列).
EXERCISES2. 设f ( x) 2 x x 3 x 5
3 2
用综合除法求 f (2). EXERCISES3. 求用 ( x i ) 除 f ( x) x 2ix (1 i ) x 3 x 7 i
4 3 2
的商式与余数. * 结论 : f (c) 0 ( x c) | f ( x)
EXAMPLE1 . 实数 m, p, q 满足什么条件时, 多项式 x mx 1 能 整除 x px q ?
2 4
EXA2. 求 l , m,使f ( x) x 3 lx 2 5 x 2 能被g ( x) x 2 mx 1整除. 证明 : x a | ( x n a n ) 2.4 EXERCISES. 设 P是一个数域, a P.
EXAMPLE3. 用综合除法求, 用x 3除 f ( x) x 2 x 5 x 94 的商式和余数.
4 2
解 : 作综合除法 : 3 | 1 0 3 1 3
3
2 5 94 9 33 114 11 38
2
20
所以 q ( x) x 3 x 11x 38 r f (3) 20
其中q ( x)通常称为g ( x)除f ( x)的商, r ( x)称为g ( x)除f ( x)的余式.
• Definition5.(整除的定义) • 称P[x]上的多项式g(x) 整除f(x),如果 存在P[x]上的多项式h(x), 使得
f ( x ) g ( x ) h( x ) 用g ( x) | f ( x )表示g ( x )
由定义不难看出 1.零多项式被任意一个多项式整除; 2.零多项式不能整除任意非零多项式; 3.任意多项式一定整除它自身. 4.零次多项式(非零常数)整除任意多项式. 当g(x)≠0时,由带余除法定理得到 Theorem1.对于P[x]中任意两个多项式 f(x)与g(x),其中g(x)≠0, 则g(x)|f(x)的充分必要条件是g(x)除 f(x)的余式为零.
• 带余除法定理:对于P[x]中任意两个 多项式f(x)与g(x),其中(g(x)≠0, 一定有P[x]中的多项式q(x)和r(x) 存在,使得
f ( x) q( x) g ( x) r ( x) 成立, 其中 (r ( x)) ( g ( x)) 或者, r ( x) 0, 并且这样的 q( x), r ( x) 是唯一决定的. Nhomakorabea得注意的是:
多项式的整除不是运算, 它是F[x]元素间 的一种关系, 类似于实数集 R 元素间的大小 关系, 相等关系; 多项式的整除性是不因数域的扩充而改变的. 即当数域扩充时, 作为扩充后的数域上的多项 式 f(x)和g(x), g(x) 除f(x)的商式和余式仍 然是上面的q(x)和r(x).
EXAMPLE3. 设
3 2
2 x x 3x 5
3 2
a ( x 2) b ( x 2) c ( x 2 ) d 求a, b, c, d的值。
课堂小结
• • • • • 1.整除的概念及性质 2.带余除法定理 3.整除的定义及性质 4.整除与带余除法的关系 5.综合除法原理
1-3 多项式的整除性和带余除法
多项式整除性理论主要讨论任给两个多项 式 f(x),g(x), 是否有 g(x) 整除f(x)以及 与此相关的多项式的最大公因式, 多项式的 因式分解等问题. 在讨论一元多项式的整除性理论时,带余 除法是 一个重要定理, 它给出了判断多项 式 g(x)能否整除多项式f(x)的一个有效方法; 并且是讨论一元多项式的最大公因式及多项 式根的理论基础.
• 整除性的几个常用性质:
• 1.任一多项式 f(x)都能被 cf(x) 整除 • 2.如果f(x)|g(x),g(x)|f(x),则 f(x)=cg(x)(c≠0); • 3.如果f(x)|g(x),g(x)|h(x),则 f(x)|h(x); • 4.如果g(x)|f(x),则对任意多项式u(x) 都有 g(x)|u(x)f(x); • 5.如果f(x)|g(x),f(x)|h(x),则对任意 多项式u(x),v(x) 都有 f(x)|(u(x)g(x)+v(x)h(x));
• 补充:综合除法
设 f ( x ) a n x n a n 1 x n 1 a1 x a 0 f ( x) ( x c)q( x) r q ( x ) bn 1 x
n 1
bn 2 x
n2
b1 x b0
比较系数, 有 a n bn 1 , a n 1 bn 2 cbn 1 , , a 0 r cb0 我们得到综合除法 c | an a n 1 cbn 1 bn 1 bn 2 an2 cbn 2 bn 3 a1 cb1 b0 a0 cb0 r