《周髀算经》中勾股定理的公式与证明
勾股定理两种主要证明方法
勾股定理两种主要证明方法勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
“勾三,股四,弦五”是勾股定理的一个最著名的例子。
当整数a,b,c满足a^2;+b^2;=c^2;这个条件时,(a,b,c)叫做勾股数组。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^2;+b^2;=c^2;。
在中国数学史中同样源远流长,是中算的重中之重。
《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。
开方除之,即弦。
”勾股定理现辨认出约有种证明方法,就是数学定理中证明方法最少的定理之一。
下面我们一起来观赏其中一些证明方法:方法一:赵爽“弦图”三国时期吴国数学家赵爽在为《周髀算是经》并作注释时,编定了一幅“勾股圆方图”,也称作“弦图”,这就是我国对勾股定理最早的证明。
年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。
方法二:刘徽“青朱进出图”约公元年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。
方法三:欧几里得“公理化证明”希腊数学家欧几里得(euclid,公元前~公元前)在巨著《几何原本》给出一个公理化的证明。
年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发售了一张邮票,图案就是由三个棋盘排序而变成。
方法四:毕达哥拉斯“拼图”毕达哥拉斯(公元前—前年),古希腊知名的哲学家、数学家、天文学家.将4个全等的直角三角形拼成边长为(a+b)的正方形abcd,使中间留下边长c的一个正方形洞.画出正方形abcd.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的`两个正方形洞。
勾股定理的六种证明
证明一
b a c ∴ (a + b)2 = c2 + 4(½ab) a2 + 2ab + b2 = c2 + 2ab a2 + b2 = c2
证明二
c c2 = (a − b)2 + 4(½ab) = a2 − 2ab + b2 + 2ab ∴ c2 = a2 + b2
【证法2】(1876年美国总统Garfield证明) 证法2 1876年美国总统Garfield证明) 年美国总统Garfield证明 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则 每个直角三角形的面积等于 1 ab 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条 直线上. . ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. . ∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º. . ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形, . 1 2 它的面积等于 c
• 1881 年成为美国第 20 任总統 • 1876 年提出有关证明
证明二及证明三的比较 明二及证明三的比较
• 两个证明基本上完全 相同!
证明四
a2
b2
证明四
证明四
证明四
证明四
∴ a2 + b2 = c2 c2
青朱出入图
• 刘徽(生於公元三世紀) • 三国魏晋时代人。 • 魏景元四年(即 263 年)为 古籍《九章算术》作注释。 • 在注作中,提出以「出入相 补」的原理來证明「勾股定 理」。后人称该图为「青朱 入出图」。
勾股定理简介与证明(3篇)
第1篇一、勾股定理简介勾股定理,又称为毕达哥拉斯定理,是数学中一个重要的几何定理。
它指出,在直角三角形中,直角边的平方和等于斜边的平方。
这个定理不仅在我国古代数学著作《周髀算经》中有记载,而且在古希腊、印度、埃及等地的数学文献中也有所体现。
勾股定理是解决直角三角形问题的基础,也是许多数学领域的重要工具。
二、勾股定理的证明1. 证明方法一:几何证明如图所示,设直角三角形ABC中,∠C为直角,AC、BC分别为直角边,AB为斜边。
作辅助线CD,使得CD⊥AB于点D。
(1)证明AC²+BC²=AB²由于CD⊥AB,∠ACD和∠BCD都是直角。
因此,三角形ACD和三角形BCD都是直角三角形。
根据直角三角形的性质,有:AC² = AD² + CD²BC² = BD² + CD²将上述两个等式相加,得到:AC² + BC² = (AD² + CD²) + (BD² + CD²)AC² + BC² = AD² + BD² + 2CD²由于AD+BD=AB,将AD+BD替换为AB,得到:AC² + BC² = AB² + 2CD²由于CD是AB的一半,即CD=AB/2,代入上式,得到:AC²+ BC² = AB² + 2(AB/2)²AC² + BC² = AB² + AB²AC² + BC² = 2AB²由于2AB²=AB²,因此:AC² + BC² = AB²(2)证明结论根据上述证明,得出勾股定理:在直角三角形中,直角边的平方和等于斜边的平方。
周髀算经 (1)
周髀算经---神奇的宇宙与勾股定理数学与软件科学学院2013级1班王李俊、前言数学是中国古代科学中一门重要的学科,它的历史悠久,成就辉煌。
中国数学起源于仰韶文化,距今有五千余年历史,在周公时代,数乃是六艺之一。
而勾股定理作为“人类最伟大的十个科学发现之一”,则在很久以前就已被发现,甚至比毕达哥拉斯还早。
天文学是最古老的自然科学学科之一,它的起源可以追溯到人类文化的萌芽时代。
远古时候,人们为了指示方向,确定时间和季节,就自然会观察太阳、月亮和星星在天空中的位置,找出它的随时间变化的规律,并在此基础上编制历法,用于生活和农牧业生产活动。
早期天文学的内容就其本质来说就是天体测量学。
《周髀算经》是中国流传至今的一部最早的数学著作,同时也是一部天文学著作。
在数学上的主要成就是介绍了勾股定理的公式与证明及其在测量上的应用以及怎样引用到天文计算。
中国古代,按所提出的宇宙模式的不同,天文学共有3家学说,“盖天说”是其中之一,而《周髀算经》是“盖天说”的代表。
从所包含的数学内容来看,书中主要讲述了学习数学的方法、用勾股定理来计算高深远近和比较复杂的分数计算等。
书中还介绍了矩(一种量直角、画矩形的工具)的用途,勾股定理及其在测量上的应用,相似直角三角形对应边成比例定理等数学内容。
在《周髀算经》中还有开平方的问题,等差级数的问题,使用了相当繁复的分数算法和开平方法,以及应用于古代的“四分历”计算的相当复杂的分数运算.还有相当繁杂的数字计算和勾股定理的应用。
总的来说,这是一本能很好地帮助了解中国的数学和天文学的发展的书籍。
本文我将从它的历史、基本简介、天文历法和勾股定理介绍整本书籍。
《周髀算经》历史《周髀(bì)算经》乃是算经的十书之一。
约成书于公元前1世纪,原名《周髀》,它是中国最古老的天文学着作,主要阐明当时的盖天说和四分历法。
唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。
《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用以及怎样引用到天文计算。
勾股定理的证明(比较全的证明方法)
传说中毕达哥拉斯的证法
证明:从Rt△ABC的三边向外各作一个正方形(如图),作CN⊥DE 交AB于M,那么正方形ABED被分成两个矩形.连结CD和KB. ∵由于矩形ADNM和△ADC同底(AD),等高(即平行线AD和CN间的距离), ∴S矩形ADNM=2S△ADC. 又∵正方形ACHK和△ABK同底(AK)、等高(即 平行线AK和BH间的距离), ∴S正方形ACHK=2S△ABK. ∵AD=AB,AC=AK,∠CAD=∠KAB, ∴△ADC≌△ABK. 由此FG. ∴S矩形ADNM+S矩形MNEB=S正方形ACHK+S正方形CBFG.
返回
A
B
这棵树漂亮吗?如果在树上挂上 几串彩色灯泡,再挂上些小铃铛、小 彩球、小礼盒、小的圣诞老人,是不 是更像一棵圣诞树. 也许有人会问:“它与勾股定理 有什么关系吗?” 仔细看看,你会发现,奥妙在树 干和树枝上,整棵树都是由下方的这 个基本图形组成的:一个直角三角形 以及分别以它的每边为一边向外所作 的正方形.
32
42
52
勾
股
在中国古代,人们把弯曲成直角的手臂的上半部分称为 " 勾",下半部分称为"股"。我国古代学者把直角三角形较 短的直角边称为“勾”,较长的直角边称为“股”,斜 边称为“弦”.
勾股定理的由来
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉 斯定理”。为什么一个定理有这么多名称呢?商高是公元前十一世 纪的中国人。当时中国的朝代是西周,是奴隶社会时期。 在中国古代大约是战国时期西汉的数学著作《周髀算经》中记 录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修 四,经隅五。“什么是”勾、股“呢?在中国古代,人们把弯曲成 直角的手臂的上半部分称为“勾”,下半部分称为“股”。商高那 段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和 4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事 实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的 话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世 纪的人,比商高晚出生五百多年。希腊另一位数学家欧几 里德(Euclid,是公元前三百年左右的人)在编著《几何原本》 时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个 定理称为“毕达哥拉斯定理”,以后就流传开了。(为了庆祝这一定理
勾股定理的证明(比较全的证明方法)
∴S矩形ADNM+S矩形MNEB=S正方形ACHK+S正方形CBFG. 即S正方形ADEB=S正方形ACHK+S正方形CBAFG ,
DN
也就是 a2+b2=c2.
F B
E
12
返回
刘徽的证法
刘徽在《九章算术》中对勾股定理的证明:
勾自乘为朱方,股自乘为青方,令出入相补,各
从其类,因就其余不移动也.合成弦方之幂,开 方除之,即弦也.
里德(Euclid,是公元前三百年左右的人)在编著《几何原本》
时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个
定理称为“毕达哥拉斯定理”,以后就流传开了。(为了庆祝这一定理
的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做
“百牛定理”.)
A
3
走
进
数
学
史
A
4
勾股定理的证明
美妙的勾股定理
——数形结合之美
32
42
52
A
1
勾 股
勾股弦的定义
在中国古代,人们把弯曲成直角的手臂的上半部分称为
"勾",下半部分称为"股"。我国古代学者把直角三角形
较短的直角边称为“勾”,较长的直角边称为“股”,
斜边称为“弦”.
A
2
勾股定理的由来
走 进 数 学 史
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉
勾 看 关 砖 一
你系 铺 次
股 能 , 成 毕
发同 的 达
A
现学 地 哥 什们 面 拉
定 么 , 反 斯
?我 映 去
理 们 直 朋 9
数学家毕达哥拉斯的发现:
《周髀算经》勾股定理
《周髀算经》勾股定理《周髀算经》是中国古代数学史上的重要典籍,收录了种种重要的数学结论。
其中有一类叫做勾股定理,即已知直角三角形中两条直腿长度,求斜腿长度(见图1)。
根据勾股定理,斜腿长度x=√(a²+b²),其中a为直腿长度1,b为直腿长度2。
勾股定理是世界一流的古典数学定理。
它由古希腊数学家勾践(公元前530年-公元前475年)提出,他是“四大数学家”之一,他的作用是,最早提出数学理论,成立数学原理。
勾践的这条公理,利用三角定理的最重要的性质:三角形的两个意义不同的角以及两条边之间有一定关系,这就是勾股定理。
这个定理最初是由古希腊数学家勾践提出的,它被认为是由古希腊数学家的微积分杰出成就之一。
勾践是公元前400年左右的古希腊时期,他被誉为古希腊“四大数学家”之一,也是古希腊演绎几何学和初步不完全微积分学的著名创始人。
勾践曾在《周髀算经》中记载过这条定理,勾践把这条定理用来说明三角形内角之比例。
他指出,通过改变两条边的重比来改变三角形的面积,“二辛大斜三小”,二角之比为`9比4`,角之比为`1比4`。
这两个比例就是勾股定理的最初的表现形式,当然,前提是三角形中一条边等于1单位。
勾股定理被不断应用于各种实践中,被称为数学家及其他科学家的重要帮手,用于分析不完全微积分,三角学等复杂的技术。
勾股定理至今在数学界应用广泛,是数学及其他多种学科的理想工具。
勾股定理的例子最多的是直角三角形的应用:1×1=1;2×2=4;3×3=9;4*4=16;以此类推,可以将任意一个正整数的平方和再求平方根,就可以得出勾股定理的解。
总之,勾股定理,是一个千古不变的至理名言,在艰苦的实践中证明了其可信性,被世界范围内数学家所认可,是数学史上一块极重要的宝石,是我们深表敬仰的经典定理。
勾股定理的证明方法(精选多篇)
勾股定理的证明方法(精选多篇)勾股定理的证明方法绪论勾股定理是世界上应用最广泛,历史最悠久,研究最深入的定理之一,是数学、几何中的重要且基本的工具。
而数千年来,许多民族、许多个人对于这个定理之证明数不胜数,达三百余种。
可见,勾股定理是人类利用代数思想、数学思想解决几何问题、生活实际问题的共同智慧之结晶,也是公理化证明体系的开端。
第一节勾股定理的基本内容文字表述:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。
数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2 事实上,它是余弦定理之一种特殊形式。
第二节勾股定理的证明2.1欧洲在欧洲,相传最早证明勾股定理的是毕达哥拉斯,故在欧洲该定理得名毕达哥拉斯定理;又因毕达哥拉斯在证毕此定理后宰杀一百头牛庆祝,故亦称百牛定理。
欧洲最早记载这一定理之书籍,属欧几里得《几何原本》。
毕达哥拉斯的证明方法(相传):一说采用拼图法,一说采用定理法。
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像左图那样拼成两个正方形。
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等。
a2+b2+4×1/2ab = c2+4×1/2ab ,整理即可得到。
定理法就是几何原本当中的证法:设△abc为一直角三角形,其中a为直角。
从a点划一直线至对边,使其垂直于对边上的正方形。
此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。
(sas定理)三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。
证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方(本文来源麦档网:2.2 中国《周髀算经》、《九章算术》当中都有相关问题的记载。
勾股定理
D A
C B
(1) 你能替小明想办法完成任务吗 你能替小明想办法完成任务吗? (2) 小明量得 长是30厘米 小明量得AD长是 厘米 长是40厘米 长是 厘米,AB长是 厘米 长是 厘米, BD长是 厘米 边垂直于 边吗 长是50厘米 边垂直于AB边吗 长是 厘米AD边垂直于 边吗?
(3) 小明随身只有一个长度为20厘米的刻度尺 他能有办 小明随身只有一个长度为 厘米的刻度尺,他能有办 厘米的刻度尺 法检验AD边是否垂直于 边吗 边与AB边呢 法检验 边是否垂直于AB边吗 边是否垂直于 边吗?BC边与 边呢 边与 边呢?
4 股 弦 千多年) 期(约公元 1 千多年)有个叫商高
如果勾是 3, 股是 那么弦等于 5. 角, , 股是4, 两端连接得一个直角三角形, 两端连接得一个直角三角形
5
∟
的人对周公说, 的人对周公说,把一根直尺折成直
勾
3
人们还发现, 在直角三角形中, 人们还发现, 在直角三角形中, 勾是6, 股是8, 弦一定是10; 勾是 , 股是 , 弦一定是 62=36, 82=64, 102=100 62+82=102 勾是5, 股是12, 弦一定是13, 勾是 , 股是 , 弦一定是 , 2=25, 2=144, 132=169 52+122=132等等 等等. 5 12 是不是所有的直角三角形都有这个性质呢? 是不是所有的直角三角形都有这个性质呢? 世界上许多数学家, 世界上许多数学家,先后用不同方法证明了 这个结论. 我国把它称为勾股定理. 这个结论 我国把它称为勾股定理
勾股定理 勾股定
1 2 3 探索勾股定理 能得到直角三角形吗 蚂蚁怎样走最近
1
A
你知道直角三角形的三边长 有什么关系吗? 有什么关系吗
周髀算经——精选推荐
周髀算经《周髀算经》原名《周髀》,是算经的十书之一。
中国最古老的汉族天文学和数学著作,约成书于公元前1世纪,主要阐明当时的盖天说和四分历法。
唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。
《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用以及怎样引用到天文计算。
《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明引。
在中国古代,按所提出的宇宙模式的不同,天文学共有3家学说,"盖天说"是其中之一,而《周髀算经》是"盖天说"的代表。
这派学说主张:天像盖笠,地法覆盆(天空如斗笠,大地像翻扣的盆)。
据考证,现传本《周髀算经》大约成书于西汉时期(公元前1世纪)为赵君卿所作,北周时期甄鸾重述,唐代李淳风等注。
历代许多数学家都曾为此书作注,其中最著名的是唐李淳风等人所作的注。
《周髀算经》还曾传入朝鲜和日本,在那里也有不少翻刻注释本行世。
从所包含的数学内容来看,书中主要讲述了学习数学的方法、用勾股定理来计算高深远近和比较复杂的分数计算等。
书中有矩(一种量直角、画矩形的工具)的用途,勾股定理及其在测量上的应用,相似直角三角形对应边成比例定理等数学内容.在《周髀算经》中还有开平方的问题,等差级数的问题,使用了相当繁复的分数算法和开平方法,以及应用于古代的"四分历"计算的相当复杂的分数运算.还有相当繁杂的数字计算和勾股定理的应用。
还有有名的圆周率(π):3.141592654······勾股定理编辑本段首先,《周髀算经》中明确记载了勾股定理的公式:"若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日"(《周髀算经》上卷二)而勾股定理的证明呢,就在《周髀算经》上卷一 --昔者周公问于商高曰:"窃闻乎大夫善数也,请问昔者包牺立周天历度--夫天可不阶而升,地不可得尺寸而度,请问数安从出?"来。
勾股定理的几何证明与代数证明
勾股定理的几何证明与代数证明勾股定理是数学中一个重要而又基础的定理,它被广泛应用于几何学和代数学中。
本文将分别介绍勾股定理的几何证明和代数证明,以展示这一定理的多种表达方式。
一、勾股定理的几何证明勾股定理最早可以追溯到公元前6世纪的中国周朝时期,《周髀算经》中就有对勾股定理的几何证明。
这一证明基于直角三角形的性质,可以用图形直观地展示。
我们以一个直角三角形ABC为例,其中∠C为直角。
设AB=c、AC=a、BC=b。
根据勾股定理,我们有:c² = a² + b²为了证明这一关系,我们可以做如下构造:1. 在AB边上作高AD,使得D落在BC边上;2. 连接CD。
根据直角三角形的性质,我们可以得出AD=ab/c,同样有BD=ac/c。
再根据三角形的相似性质,我们可以得出以下两个相似关系:△ACD ∽△ABC 和△CBD ∽△ABC根据相似三角形的对应边比例相等,我们可以得到:AD/AC = AC/AB 和 BD/BC = BC/AB进一步化简得到:(AB² + AC²)/AC = AC²/AB 和 (AB² + BC²)/BC = BC²/AB整理后可以得到:AB² + AC² = AC²/AB 和 AB² + BC² = BC²/AB将两个等式相加可以得到:2AB² + AC² + BC² = AC²/AB + BC²/AB化简后得到:AB² + AC² + BC² = (AC² + BC²)/AB乘以AB得到:AB³ + ABC² + AB²C = AC² + BC²根据角平分线定理可以得到∠ABC=90°,因此有2ABC=180°,化简可得:AB³ + ABC² = AC² + BC²根据角平分线定理和三角形内角和定理,我们可以知道△ABC和△CAB都是直角三角形,角ABC和角CAB是对应于△ABC和△CAB 的锐角。
证明勾股定理的4种方法
证明勾股定理的4种方法证明勾股定理的4种方法今天小编为大家精心整理了一篇有关数学的相关内容,以供大家阅读,更多信息请关注学习方法网!勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
“勾三,股四,弦五”是勾股定理的一个最著名的例子。
当整数a,b,c满足a?2;+b?2;=c?2;这个条件时,(a,b,c)叫做勾股数组。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a?2;+b?2;=c?2;。
在中国数学史中同样源远流长,是中算的重中之重。
《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。
开方除之,即弦。
”勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
下面我们一起来欣赏其中一些证明方法:方法一:赵爽“弦图”三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明。
2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。
方法二:刘徽“青朱出入图”约公元263年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。
方法三:欧几里得“公理化证明”希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》给出一个公理化的证明。
1955年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发行了一张邮票,图案是由三个棋盘排列而成。
方法四:毕达哥拉斯“拼图”毕达哥拉斯(公元前572—前497年),古希腊著名的哲学家、数学家、天文学家.将4个全等的直角三角形拼成边长为(a+b)的正方形ABCD,使中间留下边长c的一个正方形洞.画出正方形ABCD.移动三角形至图2所示的`位置中,于是留下了边长分别为a与b的两个正方形洞.则图1和图2中的白色部分面积必定相等,所以c的平方=a的平方+b的平方方法五:达·芬奇的证明达·芬奇,意大利人,欧洲文艺复兴时期的著名画家。
勾股定理的证明方法(完整版)
勾股定理的证明方法勾股定理的证明方法第一篇:勾股定理的证明方法勾股定理的证明方法绪论勾股定理是世界上应用最广泛,历史最悠久,研究最深入的定理之一,是数学、几何中的重要且基本的工具。
而数千年来,许多民族、许多个人对于这个定理之证明数不胜数,达三百余种。
可见,勾股定理是人类利用代数思想、数学思想解决几何问题、生活实际问题的共同智慧之结晶,也是公理化证明体系的开端。
第一节勾股定理的基本内容文字表述:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。
数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为,那么a^2+b^2=^2 事实上,它是余弦定理之一种特殊形式。
第二节勾股定理的证明1欧洲在欧洲,相传最早证明勾股定理的是毕达哥拉斯,故在欧洲该定理得名毕达哥拉斯定理;又因毕达哥拉斯在证毕此定理后宰杀一百头牛庆祝,故亦称百牛定理。
欧洲最早记载这一定理之书籍,属欧几里得《几何原本》。
毕达哥拉斯的证明方法(相传):一说采用拼图法,一说采用定理法。
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为,再做三个边长分别为a、b、的正方形,把它们像左图那样拼成两个正方形。
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等。
a2+b2+4×12ab = 2+4×12ab ,整理即可得到。
定理法就是几何原本当中的证法:设△ab为一直角三角形,其中a为直角。
从a点划一直线至对边,使其垂直于对边上的正方形。
此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。
(sas定理)三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。
证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
勾股定理的证明(比较全的证明方法)80488
a
以a、b 为直角边,以c为斜边做四个全等的直 角三角形,则每个直角三角形的面积等于 . 把 这四个直角三角形拼成如图所示形状,使A、E、 B三点在一条直线上,B、F、C三点在一条直 线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90º ,∴ ∠AEH + ∠BEF = 90º .∴ ∠HEF = 180º―90º= 90º. ∴ 四边形EFGH是一个边长为c的正方形. 它的 面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90º ,∴ ∠EHA + ∠GHD = 90º . 又∵ ∠GHE = 90º ,∴ ∠DHA = 90º + 90º = 180º . ∴ ABCD是一个边长为a + b的正方形,它的面 积等于(a+b)² , ∴(a+b)² =4×½ab+c² , ∴a² +b² =c²
返回
A
B
这棵树漂亮吗?如果在树上挂上 几串彩色灯泡,再挂上些小铃铛、小 彩球、小礼盒、小的圣诞老人,是不 是更像一棵圣诞树. 也许有人会问:“它与勾股定理 有什么关系吗?” 仔细看看,你会发现,奥妙在树 干和树枝上,整棵树都是由下方的这 个基本图形组成的:一个直角三角形 以及分别以它的每边为一边向外所作 的正方形.
已知:如图,以在Rt△ABC中, ∠ACB=90°,分别以a、b、c 为边向外作正方形.
K A H C b c a B F
求证:a2 +b2=c2.
D E
数 学 故 事 链 接
也角 友 来三 家 观角 作 相 察形 客 传 下三 , 两 面边 发 千 的的 现 五 图某 朋 百 案种 友 年 ,数 家 前 看量 用 , 看关 砖 一 你系 铺 次 能, 成 毕 发同 的 达 现学 地 哥 什们 面 拉 么, 反 斯 ?我 映 去 们直朋
勾股定理史话及证明
勾股定理史话在我国最古老的数学经典著作《周髀算经》上记载着如下一段历史:西周开国之初(约公元前一千多年)有一个叫商高的数学家对周公(周武王的弟弟,封在鲁国当诸侯)说:把一根直尺折成直角,两端联结起来构成一个直角三形。
它的短直角边称为勾,长直角边称为股,斜边称为弦。
发现勾为3,股为4,那么弦必为5. 《周髀算经》记载了勾股定理的公式与证明相传在夏禹王治水时,就已发现这一定理,并已把它应用于简易的水利测量,这当然知识传说,当时的历史文献并无确切的记载,但是这一定理的发现在两千多年前则是毫无疑问的。
在公元前六世纪到公元前五世纪希腊数学家毕达哥拉斯也发现这一定理,并给出了证明,但他的证明也已失传。
后来欧几里得写《几何原本时》,给出一个证明留传至今。
因而西方称这一定理为毕达哥拉斯定理。
这一定理在数学上有广泛的应用,而且在工程技术、测量中也有许多应用。
它在人类文明史上有重要的地位。
有人设想,把勾股定理的图形与内容发射到外星球去,如果外星球上有高级智慧动物,一定会向地球作出反馈信息,以此作为与外星人交流的“语言”。
由此可见它在人类文明史中的地位。
勾股定理的证明现在大概有400多种。
在我国古代多用割补、拼图方法。
我国古代数学家赵爽在他的《勾股圆方图》中,用四个斜边为,两直角边分别为,的全等的三角形拼成边长为的正方形如图1.因为△ABE≌△BCF≌△CDG≌△DAH,所以∠EAB=∠FBC=∠GCD=∠HAD,∠ABE=∠BCF=∠CDG=∠DAH,因为 ∠ABE+∠EAB=90°,所以 ∠ABC=∠ABE+∠FBC=90°,又 AB=BC=CD=DA=c,同理 ∠BCD=∠CDA=∠DAB=90°,所以ABCD、EFGH都是正方形,边长分别为c和a-b.从而有.所以,从而,可得 .这就是勾股定理的一种古老的证明。
据传,达·芬奇曾设计出一种奇妙的证明,如图2,△ABC是直角三角形,其中∠ACB=90°,在两直角边BC、AC上向外作正方形BCDE、CAFG,再在斜边AB上向外作正方形ABHK。
勾股定理公式
勾股定理公式勾股定理公式勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
下面是店铺整理的关于勾股定理公式,希望大家认真阅读!勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是由西周人商高发现(公元前1000年),故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a+b=c。
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
赵爽在注解《周髀算经》中给出了“赵爽弦图”证明了勾股定理的准确性,勾股数组程a + b = c的正整数组(a,b,c)。
(3,4,5)就是勾股数。
其发展历程称为商高定理,而更普遍地则称为勾股定理。
中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。
正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
中国是发现和研究勾股定理最古老的国家之一。
中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。
在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。
既方之,外半其一矩,环而共盘,得成三四五。
两矩共长二十有五,是谓积矩。
”因此,勾股定理在中国又称“商高定理”。
在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
还有的国家称勾股定理为“毕达哥拉斯定理”。
公元前550年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。
数学勾股定理
勾股定理在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。
数学公式中常写作a²+b²=c²内容勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
目前初二学生学,教材的证明方法采用赵爽弦图。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国周朝由商高发现。
据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a^2+b^2=c^2勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理其实是余弦定理的一种特殊形式。
我国古代著名数学家商高说:“若勾三,股四,则弦五。
”它被记录在了《九章算术》中。
勾股数组满足勾股定理方程 a^2+b^2=c^2;的正整勾股定理数组(a,b,c)。
例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
勾股数组的通式:a=√M^2-N^2b=√M²+N²c=√M^2+N^2(M>N,M,N为正整数)推广1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。
即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2、勾股定理是余弦定理的特殊情况。
编辑本段勾股定理定理如果直角三角形两直角边分别为A,B,斜边为C,那么 A^2+B^2=C^2;;即直角三角形两直角边长的平方和等于斜边长的平方。
《周髀算经》中勾股定理的公式与证明
《周髀算经》中勾股定理的公式与证明首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二)而勾股定理的证明呢,就在《周髀算经》上卷一[2] ——昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。
故折矩,以为句广三,股修四,径隅五。
既方之,外半其一矩,环而共盘,得成三四五。
两矩共长二十有五,是谓积矩。
故禹之所以治天下者,此数之所生也。
”周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。
于是商高以勾股定理的证明为例,解释数学知识的由来。
“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。
”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。
“故折矩①,以为句广三,股修四,径隅五。
”:开始做图——选择一个勾三(圆周率三)、股四(四方)的矩,矩的两条边终点的连线应为5(径隅五)。
“②既方之,外半其一矩,环而共盘,得成三四五。
”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有边长三勾方、边长四股方、边长五弦方三个正方形。
“两矩共长③二十有五,是谓积矩。
”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是大正方形减去右上、左下两个长方形面积后为勾方股方之和。
因三角形为长方形面积的一半,可推出四个三角形面积等于右上、左下两个长方形面积,所以勾方+股方=弦方。
勾股定理
答:x=
,
y=
.
4.如右图,图中的三个三角形均为直角三角 形,以这三个三角形的三边为边长向外作 正方形,其中最大的正方形的边长为7cm, 则正方形A,B,C,D的面积之和为 ________cm2.
树的奥秘
第2层 C B 第1层 A ①
D ②
E
B
A
C
正方形SA、SB 、SC有什么关系? 正方形SA、SB 、SC 、SD、SE 有什么关系?
①本节课,我学到了哪些知识?
②本节课,我感受最深的是什么?
③我还有哪些困惑?
看似平淡无奇的现象,有时却 隐藏着深刻的道理。
思考1:
(1)
(2) (3)
思考2:
试用本节课所学的方法,探究 钝角三角形和锐角三角形的三边 长度是否具有“较短两边平方和 等于最长边的平方”的性质
当堂检测
1.勾股定理的内容为: . 2.判断题(下列叙述正确的打“√”,错误的打“×”). (1)已知:a、b、c是三角形的三边,则有a2+b2=c2. (2)在直角三角形中,两边的平方和等于第三边的平方. 3.如左图,图中的三角形都是直角三角形,以三角形的 三边为边长向外作的四边形都为正方形. 请根据图中所示 的数据,写出直角三角形的未知边的长度.
问题2:已知直角三角形的两边长分别 为3、4,第三边的长度为x,求x的值.
勾股定理很容易Leabharlann 其中一角是直角。 应用注意三条边, 分清哪条是斜边。 直角边的平方和, 等于斜边的平方。
在一张纸上画两个全等的直角三角 形,并把它们拼成如图形状,请用两种 方法表示这个梯形的面积。利用你的表 示方法,你能得到勾股定理吗?
勾股定理的命名
在我国古代,人们把弯曲成直角的手臂的 上半部分称为“勾”,下半部分称为“股”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《周髀算经》中勾股定理的公式与证明
首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二)
而勾股定理的证明呢,就在《周髀算经》上卷一[2] ——
昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”
商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。
故折矩,以为句广三,股修四,径隅五。
既方之,外半其一矩,环而共盘,得成三四五。
两矩共长二十有五,是谓积矩。
故禹之所以治天下者,此数之所生也。
”
周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。
于是商高以勾股定理的证明为例,解释数学知识的由来。
“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。
”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。
“故折矩①,以为句广三,股修四,径隅五。
”:开始做图——选择一个勾三(圆周率三)、股四(四方)的矩,矩的两条边终点的连线应为5(径隅五)。
“②既方之,外半其一矩,环而共盘,得成三四五。
”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有边长三勾方、边长四股方、边长五弦方三个正方形。
“两矩共长③二十有五,是谓积矩。
”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是大正方形减去右上、左下两个长方形面积后为勾方股方之和。
因三角形为长方形面积的一半,可推出四个三角形面积等于右上、左下
两个长方形面积,所以勾方+股方=弦方。
注意:
① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。
古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。
② “既方之,外半其一矩”此句有争议。
清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。
经陈良佐[3]、李国伟[4]、李继闵[5]、曲安京[1]等学者研究,“既方之,外半其一矩”更符合逻辑。
③ 长指的是面积。
古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。
赵爽注称:“两矩者, 句股各自乘之实。
共长者, 并实之数。
由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明)。
所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。
其实不然,摘录赵爽注释《周髀算经》时所做的《句股圆方图》[2]——“句股各自乘, 并之为弦实, 开方除之即弦。
案: 弦图又可以句股相乘为朱实二, 倍之为朱实四, 以句股之差自相乘为中黄实, 加差实亦成弦实。
”
注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一
种方法证明,于是他给出了新的证明。
赵爽弦图。
注意中间的中黄实
参考资料:
1.曲安京: 商高、赵爽与刘徽关於勾股定理的证明. 刊於《数学传播》20卷, 台湾, 1996年9月第
3期, 20-27页。
2.周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。
3.陈良佐: 周髀算经勾股定理的证明与出入相补原理的关系. 刊於《汉学研究》, 1989年第7卷第
1期, 255-281页。
4.李国伟: 论「周髀算经」“商高曰数之法出于圆方”章. 刊於《第二届科学史研讨会汇刊》, 台
湾, 1991年7月, 227-234页。
5.李继闵: 商高定理辨证. 刊於《自然科学史研究》,1993年第12卷第1期,29-41页。