原子吸收实验报告

合集下载

原子吸收能量实验报告(3篇)

原子吸收能量实验报告(3篇)

第1篇一、实验目的1. 理解原子吸收光谱法的基本原理;2. 掌握原子吸收光谱仪的使用方法;3. 通过实验验证原子吸收光谱法的准确性和可靠性。

二、实验原理原子吸收光谱法是一种利用原子对特定波长光的吸收特性来定量分析元素含量的方法。

当原子处于基态时,其外层电子处于稳定状态,而当原子吸收一定频率的光子时,外层电子会跃迁到激发态,吸收的能量等于跃迁前后两个能级之间的能量差。

通过测量光强减弱的程度,可以计算出待测元素的含量。

三、实验仪器与试剂1. 仪器:原子吸收光谱仪、光源、样品池、标准溶液、空白溶液等;2. 试剂:待测元素的标准溶液、空白溶液、缓冲溶液等。

四、实验步骤1. 标准曲线绘制:分别取不同浓度的待测元素标准溶液,依次注入样品池,调整仪器参数,测量吸光度,以吸光度为纵坐标,浓度对数为横坐标,绘制标准曲线。

2. 样品测定:将待测样品溶液依次注入样品池,调整仪器参数,测量吸光度。

3. 空白试验:将空白溶液注入样品池,调整仪器参数,测量吸光度。

4. 计算待测元素含量:根据标准曲线,计算样品中待测元素的含量。

五、实验结果与分析1. 标准曲线绘制:以吸光度为纵坐标,浓度对数为横坐标,绘制标准曲线。

根据线性回归分析,相关系数R²大于0.99,表明标准曲线线性良好。

2. 样品测定:将待测样品溶液注入样品池,调整仪器参数,测量吸光度。

根据标准曲线,计算样品中待测元素的含量。

3. 空白试验:将空白溶液注入样品池,调整仪器参数,测量吸光度。

计算空白试验的吸光度,用于扣除样品溶液中的杂质干扰。

4. 结果分析:比较样品测定值与标准值,计算相对误差。

根据相对误差,评价原子吸收光谱法的准确性和可靠性。

六、实验结论1. 原子吸收光谱法是一种准确、可靠的元素定量分析方法;2. 通过本实验,掌握了原子吸收光谱仪的使用方法;3. 实验结果表明,原子吸收光谱法在元素含量分析中具有较高的准确性和可靠性。

七、实验讨论1. 实验过程中,需要注意仪器参数的调整,以确保测量结果的准确性;2. 样品预处理过程中,应尽量减少待测元素损失,以保证测量结果的可靠性;3. 实验过程中,应严格控制空白试验,以消除杂质干扰;4. 本实验采用的标准曲线绘制方法适用于大多数元素,但需根据实际情况进行调整。

原子吸收_锌_实验报告

原子吸收_锌_实验报告

一、实验目的1. 熟悉原子吸收光谱法的基本原理和操作步骤;2. 学习利用原子吸收光谱法测定样品中锌含量的方法;3. 掌握数据处理和分析方法,提高实验技能。

二、实验原理原子吸收光谱法是一种灵敏、快速、准确的分析方法,主要用于测定样品中金属元素的含量。

该方法基于金属原子蒸气对特定波长的光产生吸收作用,根据吸光度的大小来确定金属元素的含量。

本实验采用原子吸收光谱法测定样品中的锌含量。

首先,将样品用硝酸溶液溶解,制成待测溶液。

然后,将待测溶液喷入火焰原子吸收光谱仪中,通过测定特定波长的光吸收强度,计算出样品中锌的含量。

三、实验仪器与试剂1. 仪器:火焰原子吸收光谱仪、分析天平、移液器、容量瓶、试管、烧杯、酒精灯、镊子等。

2. 试剂:硝酸、锌标准溶液、待测样品溶液、实验用水等。

四、实验步骤1. 样品处理:准确称取待测样品0.1g于50mL容量瓶中,加入10mL硝酸溶液,振荡溶解,定容至刻度,摇匀。

2. 标准溶液配制:准确吸取1.00mL锌标准储备溶液(1000μg/mL)于100mL容量瓶中,用5%硝酸溶液定容,再逐级稀释配制锌标准溶液,浓度分别为0.1μg/mL、0.2μg/mL、0.4μg/mL、0.8μg/mL、1.0μg/mL。

3. 标准曲线绘制:分别吸取不同浓度的锌标准溶液各2mL于试管中,加入适量硝酸溶液,摇匀。

将试管置于火焰原子吸收光谱仪中,测定吸光度,以锌浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

4. 样品测定:分别吸取待测样品溶液和空白溶液各2mL于试管中,加入适量硝酸溶液,摇匀。

将试管置于火焰原子吸收光谱仪中,测定吸光度。

5. 数据处理:根据标准曲线和样品吸光度,计算样品中锌的含量。

五、实验结果与分析1. 标准曲线绘制:绘制锌标准溶液吸光度与浓度的标准曲线,如图所示。

2. 样品测定:测定待测样品溶液和空白溶液的吸光度,计算样品中锌的含量。

3. 结果分析:根据实验结果,样品中锌的含量为X mg/g。

原子吸收光谱法实验报告

原子吸收光谱法实验报告

原子吸收光谱法实验报告实验报告:原子吸收光谱法一、实验目的1.了解原子吸收光谱法的原理和仪器设备。

2.掌握使用原子吸收光谱法进行测定的方法和步骤。

3.学习如何分析、处理实验数据,得出准确的样品含量。

二、实验原理原子吸收光谱法是一种常用的分析方法,其基本原理是:当原子或离子吸收具有特定波长的光时,会产生吸收线,其强度与物质浓度成正比。

在实验中,使用的是原子吸收分光光度计,它由光源、光栅、光程系统、光电转换器等组成。

三、实验步骤1.仪器准备:打开仪器电源,启动仪器,预热10分钟。

2.样品制备:根据实验要求,稀释待测样品,使其浓度适合于测定。

3.设置光谱仪参数:选择合适的光谱波长,进入光谱扫描模式,设置光谱仪参数。

4.标定曲线制备:准备一系列浓度不同的标准溶液,并分别测定其吸光度,得到吸光度与浓度之间的线性关系。

5.测定样品的吸光度:依次将各个浓度样品和待测样品放入进样池中,分别测定其吸光度。

6.作图和计算:根据标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。

根据待测样品的吸光度,计算出其浓度。

四、数据处理与结果分析根据实验操作,记录下各个浓度样品和待测样品的吸光度数据。

使用标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。

根据待测样品的吸光度,计算出其浓度。

根据实验结果,我们可以得出待测样品中所含物质的浓度。

如果待测样品的浓度超出了标定曲线的范围,可以通过稀释样品重新测定,以确保结果的准确性。

五、实验总结通过本次实验,我深入了解了原子吸收光谱法的原理和仪器设备,掌握了使用该方法进行测定的步骤和技巧。

实验中,需要注意的是样品的制备和标定曲线的制备,这两个步骤对于后续的测定至关重要。

实验中可能出现的误差主要包括仪器误差、操作误差和样品制备误差等。

在实验过程中,我们需要严格控制这些误差,以确保结果的准确性和可靠性。

同时,我们也要注意实验数据的处理与分析,避免统计和计算上的错误。

原子吸收测定实验报告

原子吸收测定实验报告

一、实验目的1. 熟悉原子吸收光谱法的基本原理及操作步骤。

2. 掌握原子吸收光谱仪的使用方法。

3. 学习标准曲线法在原子吸收光谱法中的应用。

4. 测定样品中特定元素的含量。

二、实验原理原子吸收光谱法(Atomic Absorption Spectrometry,AAS)是一种基于原子蒸气对特定波长光吸收进行定量分析的方法。

在原子吸收光谱法中,样品中的待测元素首先被转化为原子蒸气,然后通过特定波长的光源照射,待测元素原子蒸气对光产生吸收,吸收程度与待测元素浓度成正比。

通过测量吸光度,可以计算出样品中待测元素的含量。

三、实验仪器与试剂1. 仪器:- 原子吸收光谱仪- 空心阴极灯- 气路系统- 移液器- 容量瓶- 酒精灯- 电脑2. 试剂:- 待测元素标准溶液- 待测样品溶液- 稀释液- 洗涤液- 酸性试剂四、实验步骤1. 样品预处理- 将待测样品溶液按照实验要求进行稀释,使待测元素浓度处于仪器检测范围内。

- 使用移液器准确移取一定量的待测样品溶液,加入容量瓶中。

- 加入适量的稀释液,摇匀。

2. 标准曲线制作- 准备一系列已知浓度的待测元素标准溶液。

- 将标准溶液按照实验要求进行稀释,使待测元素浓度处于仪器检测范围内。

- 使用移液器准确移取一定量的标准溶液,加入容量瓶中。

- 加入适量的稀释液,摇匀。

- 将标准溶液和待测样品溶液依次倒入原子吸收光谱仪中,测量吸光度。

- 以标准溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

3. 待测样品测定- 将待测样品溶液按照实验要求进行稀释,使待测元素浓度处于仪器检测范围内。

- 使用移液器准确移取一定量的待测样品溶液,加入容量瓶中。

- 加入适量的稀释液,摇匀。

- 将待测样品溶液倒入原子吸收光谱仪中,测量吸光度。

- 根据标准曲线,计算出待测样品中待测元素的含量。

五、实验结果与分析1. 标准曲线绘制- 标准曲线线性良好,相关系数R²>0.99。

2. 待测样品测定- 待测样品中待测元素含量为X mg/L。

原子吸收实验报告

原子吸收实验报告

原子吸收实验报告
原子吸收实验是一种利用原子自身吸收光子能量达到分析微量元素能量的一种分析方法,它包括多种技术,比如原子吸收火焰光谱法、原子吸收电感耦合等离子体原子发射光谱仪(ICP-AES)。

原子吸收实验涉及多个实验步骤,包括样品的制备、样品的分析和结果的分析。

1 首先,我们将样品进行制备工作,采用的技术是原子吸收分光光度计法(AAS),即专门用于火焰谱分析的比色计。

这种方法的优势在于,采用多种定容技术有效地测定样品的含量,而且分析时可以避免背景干扰。

2 其次,样品分析是原子吸收实验的核心,实验过程很复杂。

主要采用光谱分析技术,包括火焰谱法(F-AAS)、电子离子谱法(EHP)和电感耦合等离子体原子发射光谱仪(ICP-AES)。

多种技术的应用使得原子吸收分析的结果更加准确有效,也给实验工作提供了良好的参考数据。

3 最后,样品分析结果的评价和分析。

原子吸收实验中,结果分析通常采用标准曲线法、拟合法、对数线性方法等。

同时,结果还需要检验校验几何比变化,以便判断实验结果的准确性、准确度和偏差。

总之,原子吸收实验是具有广泛应用前景的研究领域,它需要严格按照实验步骤进行操作。

准确的实验结果为决策提供重要的可靠性依据.。

原子吸收光谱_实验报告

原子吸收光谱_实验报告

一、实验目的1. 掌握原子吸收光谱法的基本原理及其在重金属含量测定中的应用。

2. 熟悉火焰原子吸收光谱仪的操作方法,包括样品前处理、仪器调试、标准曲线绘制和样品测定等。

3. 培养实验操作技能,提高实验数据分析和处理能力。

二、实验原理原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是一种基于待测元素原子蒸气对特定波长光吸收的定量分析方法。

当具有特定波长的光通过待测元素原子蒸气时,蒸气中的原子会吸收该波长的光,导致光强度减弱。

通过测量光强度的减弱程度,可以计算出待测元素的含量。

实验采用火焰原子吸收光谱法测定水样中重金属含量。

待测元素在火焰中原子化,形成原子蒸气。

通过测量原子蒸气对特定波长的光吸收,可以确定待测元素的含量。

三、实验仪器与试剂1. 仪器:火焰原子吸收光谱仪、电子天平、微波消解仪、移液器、容量瓶、试管、洗耳球等。

2. 试剂:硝酸、高氯酸、氢氧化钠、盐酸、待测元素标准溶液、水样等。

四、实验步骤1. 样品前处理(1)取一定量的水样,加入适量的硝酸和高氯酸,用微波消解仪消解至近干。

(2)用去离子水将消解液定容至一定体积,混匀。

2. 标准溶液配制(1)准确吸取一定量的待测元素标准溶液,用去离子水稀释至一定浓度。

(2)依次配制不同浓度的标准溶液,并测定其吸光度。

3. 仪器调试(1)开启火焰原子吸收光谱仪,预热至稳定状态。

(2)设定合适的波长、灯电流、燃烧器高度等参数。

(3)调整光束路径,确保光束顺利通过样品池。

4. 样品测定(1)将配制好的标准溶液依次注入样品池,测定其吸光度。

(2)绘制标准曲线。

(3)将处理好的水样注入样品池,测定其吸光度。

(4)根据标准曲线,计算水样中待测元素的含量。

五、实验结果与分析1. 标准曲线绘制根据实验数据,绘制待测元素的标准曲线,线性相关系数R²大于0.99。

2. 水样中重金属含量测定根据标准曲线,计算水样中待测元素的含量,结果如下:(1)水样中铅含量:0.5 mg/L(2)水样中镉含量:0.2 mg/L(3)水样中汞含量:0.1 mg/L六、实验讨论1. 样品前处理过程中,消解液的消解程度对实验结果影响较大。

原子吸收光谱实验报告

原子吸收光谱实验报告

一、实验目的1. 学习原子吸收光谱分析法的基本原理,掌握其分析方法。

2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法。

3. 掌握以标准曲线法测定水样中重金属元素(如铅、镉、铜等)含量的方法。

二、实验原理原子吸收光谱法(AAS)是一种利用原子蒸气对特定波长光线的吸收特性进行元素定量分析的方法。

当具有一定能量的光照射到含有待测元素的样品时,如果样品中的待测元素处于激发态,则部分能量会被吸收,从而产生特征光谱。

通过测量特征光谱的吸光度,可以确定样品中待测元素的含量。

火焰原子吸收光谱法是AAS的一种,其原理是利用火焰的热能将样品中的待测元素转化为基态原子。

常用的火焰为空气-乙炔火焰,其绝对分析灵敏度可达10^-9g。

根据实验需要,可选择不同的火焰类型和燃烧器。

三、实验仪器与试剂1. 仪器:火焰原子吸收分光光度计、移液器、锥形瓶、烧杯、玻璃棒、容量瓶、滤纸等。

2. 试剂:标准溶液(铅、镉、铜等)、硝酸、盐酸、氢氧化钠、去离子水等。

四、实验步骤1. 标准溶液配制:根据实验要求,配制一定浓度的标准溶液,用于绘制标准曲线。

2. 样品处理:取一定量的水样,加入适量的硝酸和盐酸,煮沸至近干,加入适量的去离子水,搅拌溶解,定容至一定体积。

3. 标准曲线绘制:将标准溶液按照一定比例稀释,分别测定吸光度,以浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

4. 样品测定:将处理好的样品按照与标准曲线绘制相同的步骤进行测定,得到吸光度值。

5. 结果计算:根据标准曲线,查得样品中待测元素的含量,并进行计算。

五、实验结果与分析1. 标准曲线绘制:根据实验数据,绘制铅、镉、铜的标准曲线,如图1、图2、图3所示。

图1 铅的标准曲线图2 镉的标准曲线图3 铜的标准曲线2. 样品测定:根据标准曲线,测定样品中铅、镉、铜的含量,结果如下:铅含量:0.5mg/L镉含量:0.2mg/L铜含量:0.3mg/L3. 结果分析:实验结果表明,火焰原子吸收光谱法可以有效地测定水样中铅、镉、铜等重金属元素的含量,具有较高的准确度和灵敏度。

原子吸收演示实验报告

原子吸收演示实验报告

一、实验目的1. 了解原子吸收光谱仪的基本构造和原理。

2. 掌握原子吸收光谱分析样品的预处理方法。

3. 学会应用原子吸收光谱法进行金属元素的定量分析。

4. 熟悉实验操作流程和注意事项。

二、实验原理原子吸收光谱法(AAS)是一种基于原子蒸气对特定波长的光产生吸收作用来测定金属元素浓度的分析方法。

当金属元素原子蒸气被光源发出的特定波长的光照射时,部分原子会吸收光能,跃迁到激发态。

当激发态原子回到基态时,会释放出与吸收光相对应的特定波长的光。

通过测量该特定波长的光强度,可以计算出样品中金属元素的浓度。

三、实验仪器与试剂1. 仪器:原子吸收分光光度计、金属样品、标准溶液、试剂、移液器、容量瓶、烧杯、酒精灯、洗瓶、滤纸等。

2. 试剂:盐酸、硝酸、氢氧化钠、金属标准溶液、待测样品溶液等。

四、实验步骤1. 样品预处理a. 称取一定量的待测样品,用盐酸溶解,煮沸去除干扰物质。

b. 将溶液转移至容量瓶中,用蒸馏水定容至刻度线。

c. 用移液器吸取一定量的标准溶液,加入烧杯中,用盐酸溶解,煮沸去除干扰物质。

d. 将标准溶液转移至容量瓶中,用蒸馏水定容至刻度线。

2. 标准曲线绘制a. 在原子吸收分光光度计上,选择合适的波长和灯电流。

b. 调整仪器,使仪器稳定。

c. 依次测量标准溶液的吸光度,记录数据。

d. 以标准溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

3. 待测样品分析a. 在原子吸收分光光度计上,选择合适的波长和灯电流。

b. 调整仪器,使仪器稳定。

c. 测量待测样品溶液的吸光度,记录数据。

d. 在标准曲线上,根据待测样品溶液的吸光度,查得金属元素的浓度。

五、实验结果与分析1. 标准曲线绘制结果a. 标准曲线呈线性关系,相关系数R²大于0.99。

b. 标准曲线的线性范围为1-10mg/L。

2. 待测样品分析结果a. 样品中金属元素的浓度为3.5mg/L。

b. 与标准曲线法测定的结果相符。

六、实验总结1. 本实验成功演示了原子吸收光谱法的基本原理和操作流程。

实验报告原子吸收光谱实验

实验报告原子吸收光谱实验

实验报告原子吸收光谱实验实验报告:原子吸收光谱实验一、引言原子吸收光谱实验是一种常用的分析方法,用来研究样品中的化学元素。

通过测定原子在特定波长下的吸收量,可以得到样品中某种特定元素存在的浓度信息。

本实验旨在通过测量钠离子的吸收光谱,探究原子吸收光谱的原理和应用。

二、实验目的1. 了解原子吸收光谱的基本原理;2. 学习操作原子吸收光谱仪器,掌握相关实验技术;3. 探究不同样品浓度下钠离子的吸收光谱特征;4. 建立标准曲线,用于测量未知样品中钠离子的浓度。

三、实验仪器与试剂1. 原子吸收光谱仪器: 包括光源、单色器、样品室和光电倍增管等;2. 钠离子标准溶液:分别配制1mol/L、0.8mol/L、0.6mol/L、0.4mol/L、0.2mol/L的钠离子标准溶液;3. 稀释液:用于将标准溶液稀释至符合实验需求的浓度。

四、实验步骤1. 准备工作:a. 打开原子吸收光谱仪器,预热光源,调节单色器波长至钠离子吸收峰位置;b. 配制不同浓度的钠离子标准溶液,并标明浓度;c. 将各浓度标准溶液进行稀释,以获得更多的浓度点。

2. 测量标准溶液:a. 将第一种浓度的标准溶液放入样品室中,调节比色杯高度使其与光束平行;b. 通过控制仪器操作界面,记录吸收峰对应的吸光度值;c. 重复上述步骤,完成所有标准溶液的测量。

3. 建立标准曲线:a. 将浓度与吸光度数据绘制成散点图;b. 使用合适的拟合函数拟合散点图,并确定拟合曲线的方程。

4. 测量未知样品:a. 将未知样品放入样品室中,调节比色杯高度;b. 测量吸光度值,并利用标准曲线确定未知样品的钠离子浓度。

五、结果与讨论1. 标准曲线:在本实验中,我们得到了浓度与吸光度之间的线性关系曲线,其方程表示如下:吸光度 = a ×浓度 + b2. 未知样品测量:利用标准曲线,我们测量了未知样品的吸光度为0.3。

代入标准曲线方程,求得未知样品的钠离子浓度为0.5mol/L。

原子吸收光谱实验报告

原子吸收光谱实验报告

原子吸收光谱实验报告原子吸收光谱实验报告引言:原子吸收光谱(Atomic Absorption Spectroscopy,AAS)是一种常用的分析技术,用于测定元素的含量。

本实验旨在通过使用原子吸收光谱仪,对不同金属离子溶液的吸收光谱进行测量和分析,以了解其吸收特性和浓度。

实验方法:1. 实验仪器和试剂准备:实验所需的仪器包括原子吸收光谱仪、进样器、气体源等。

试剂则包括不同金属离子的溶液,如钠、钙、铜等。

2. 样品制备:分别取一定体积的不同金属离子溶液,将其稀释至一定浓度,以便进行后续的吸收光谱测量。

3. 实验操作:a. 打开原子吸收光谱仪,预热和调节仪器至稳定状态。

b. 选择合适的光源和滤波器,以获得所需的波长范围。

c. 使用进样器将样品溶液逐一注入光谱仪中,记录吸收光谱曲线。

d. 对每个金属离子的溶液重复实验,以获得准确的数据。

实验结果:通过实验,我们获得了不同金属离子溶液的吸收光谱曲线。

以钠离子为例,我们观察到在波长为589.0 nm处有一个明显的吸收峰。

而钙离子则在波长为422.7 nm处呈现吸收峰,铜离子在波长为324.7 nm处有显著的吸收峰。

通过对吸收峰的测量和分析,我们可以推断出金属离子的存在和浓度。

讨论与分析:1. 吸收峰的特征:不同金属离子在吸收光谱中呈现不同的吸收峰。

这是由于每个金属离子具有特定的电子能级结构,其电子在不同波长的光照射下会发生跃迁,从而产生吸收峰。

2. 吸收峰的强度与浓度关系:实验中,我们可以观察到随着金属离子溶液浓度的增加,吸收峰的强度也会增加。

这是因为在高浓度下,更多的金属离子可与光子发生相互作用,从而增加吸收的可能性。

3. 实验误差与精确度:在实验中,我们需要注意一些误差来源,如进样器的精确度、仪器的灵敏度等。

为了提高实验的精确度,我们可以进行多次重复实验并取平均值,同时进行空白试验以排除背景干扰。

结论:通过本实验,我们学习了原子吸收光谱的基本原理和操作方法。

原子吸收光谱实验报告

原子吸收光谱实验报告

原子吸收光谱实验报告篇一:原子吸收光谱实验报告原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:XX012127 一、实验目的:1.了解石墨炉原子吸收分光光度计的使用方法。

2.了解石墨炉原子吸收分光光度计进样方法及技术关键。

3. 学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。

二、实验原理:在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。

相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。

石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。

石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至XX ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。

样品用量也少,仅5 ~ 100 uL。

还能直接分析固体样品。

该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。

本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。

三、仪器和试剂:1.仪器由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。

镉元素空心阴极灯容量瓶 50 mL(5只)微量分液器 0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液四、实验步骤:1.测定条件分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。

原子吸收_实验报告

原子吸收_实验报告

一、实验目的1. 了解原子吸收光谱法的基本原理和操作步骤;2. 掌握原子吸收光谱仪的使用方法;3. 通过标准曲线法测定水样中铁的含量。

二、实验原理原子吸收光谱法(AAS)是一种利用原子蒸气对特定波长的光产生吸收作用进行定量分析的方法。

当样品溶液经过原子化系统后,被激发成原子蒸气,其中特定元素原子的共振线被激发,产生特定波长的光,这些光通过原子蒸气时被吸收,其吸收程度与样品中该元素的含量成正比。

实验中采用的标准曲线法,即通过配制一系列已知浓度的标准溶液,在相同条件下测定其吸光度,绘制标准曲线,然后根据待测样品的吸光度从标准曲线上查得待测样品中该元素的含量。

三、实验仪器与试剂1. 仪器:原子吸收光谱仪、空心阴极灯、电子天平、移液器、容量瓶、烧杯、玻璃棒、酸洗过的试管等。

2. 试剂:金属铁(优级纯)、浓盐酸(优级纯)、浓硝酸(优级纯)、蒸馏水、铁标准溶液(1000mg/L)。

四、实验步骤1. 标准溶液的配制:(1)准确称取0.1000g金属铁,用少量浓硝酸溶解,转移至100mL容量瓶中,用蒸馏水定容至刻度;(2)取1.00mL上述溶液,用蒸馏水稀释至100mL,得到10mg/L的铁标准溶液;(3)根据需要,进一步稀释标准溶液,配制一系列不同浓度的标准溶液。

2. 样品溶液的制备:(1)准确量取一定量的水样,用浓盐酸酸化;(2)将酸化后的水样转移至烧杯中,用电子天平准确称量;(3)加入适量浓硝酸,充分混合;(4)将混合液转移至酸洗过的试管中,用电子天平准确称量;(5)重复上述步骤,得到一定量的样品溶液。

3. 吸光度的测定:(1)打开原子吸收光谱仪,预热30分钟;(2)将铁空心阴极灯置于工作位置,调整仪器至最佳工作状态;(3)依次测定标准溶液和样品溶液的吸光度;(4)绘制标准曲线,并计算样品溶液中铁的含量。

五、实验结果与分析1. 标准曲线绘制:根据标准溶液的吸光度,绘制标准曲线,得到线性回归方程为:A = 0.0045C + 0.0032,其中A为吸光度,C为铁的浓度。

原子吸收仪实验报告

原子吸收仪实验报告

一、实验目的1. 了解原子吸收光谱分析法的原理和操作方法。

2. 掌握使用原子吸收仪测定水中铁含量的方法。

3. 分析实验数据,评估实验结果的准确性和可靠性。

二、实验原理原子吸收光谱分析法(AAS)是一种基于原子蒸气对特定波长的光产生吸收的现象进行元素定量分析的方法。

当特定波长的光通过含有待测元素的原子蒸气时,原子蒸气中的基态原子会吸收这部分光,使光强度减弱。

通过测量光强度的减弱程度,可以计算出待测元素的含量。

三、实验仪器与试剂1. 仪器:原子吸收分光光度计、铁空心阴极灯、无油空气压缩机、乙炔钢瓶、通风设备、移液器、容量瓶、玻璃棒等。

2. 试剂:金属铁、浓盐酸、浓硝酸、蒸馏水、标准铁溶液、水样。

四、实验步骤1. 标准溶液配制:根据实验要求,准确称取一定量的金属铁,用浓盐酸溶解,转移至容量瓶中,用水定容至刻度,得到一定浓度的标准铁溶液。

2. 标准曲线绘制:取一定量的标准铁溶液,依次稀释至不同浓度,分别加入原子吸收仪中,测量其吸光度。

以标准溶液的浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

3. 水样测定:取一定量的水样,用浓盐酸和浓硝酸进行消解,待溶液澄清后,转移至容量瓶中,用水定容至刻度。

取一定量的水样溶液,加入原子吸收仪中,测量其吸光度。

4. 结果计算:根据水样溶液的吸光度,从标准曲线上查得水样中铁的含量,再换算成原始水样中铁的含量。

五、实验结果与分析1. 标准曲线绘制:根据实验数据,绘制标准曲线,发现标准曲线呈线性关系,相关系数R²大于0.99,表明实验数据具有良好的线性关系。

2. 水样测定:根据水样溶液的吸光度,从标准曲线上查得水样中铁的含量,计算得到水样中铁的含量为X mg/L。

3. 结果分析:将实验结果与文献值进行对比,发现实验结果与文献值基本一致,说明实验结果的准确性和可靠性较高。

六、实验总结1. 本实验通过原子吸收光谱分析法成功测定了水样中铁的含量,实验结果准确可靠。

2. 实验过程中,操作步骤规范,仪器设备运行正常,数据记录完整。

原子吸收实验报告

原子吸收实验报告

一、实验目的1. 熟悉原子吸收光谱仪的基本原理和操作方法。

2. 掌握标准曲线法测定水样中铁含量的实验步骤。

3. 了解铁元素在水环境中的存在形式及测定意义。

二、实验原理原子吸收光谱法(AAS)是一种基于原子蒸气对特定波长的光产生吸收的原理进行定量分析的方法。

当样品中的铁元素被激发到高能态时,部分原子会吸收特定波长的光,使原子跃迁回低能态,同时释放出能量。

通过测量吸收光的强度,可以计算出样品中铁元素的含量。

本实验采用火焰原子吸收光谱法测定水样中铁的含量。

在实验过程中,将水样与浓硝酸、浓盐酸混合,以消除干扰。

然后,将混合液导入火焰原子吸收光谱仪,测定其在特定波长下的吸光度,根据标准曲线法计算出样品中铁的含量。

三、实验仪器与试剂1. 仪器:火焰原子吸收光谱仪、移液器、容量瓶、烧杯、玻璃棒等。

2. 试剂:金属铁标准溶液(1000mg/L)、浓硝酸、浓盐酸、蒸馏水等。

四、实验步骤1. 标准溶液的配制:分别取0.00、0.10、0.20、0.30、0.40、0.50mL的金属铁标准溶液于50mL容量瓶中,用蒸馏水稀释至刻度,得到浓度分别为0.00、0.02、0.04、0.06、0.08、0.10mg/L的标准溶液。

2. 样品的预处理:取一定量的水样于烧杯中,加入浓硝酸、浓盐酸,充分混合,煮沸至溶液澄清,冷却后转移至50mL容量瓶中,用蒸馏水定容。

3. 吸光度的测定:将标准溶液和样品溶液依次导入火焰原子吸收光谱仪,在特定波长下测定吸光度。

4. 标准曲线的绘制:以标准溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

5. 样品中铁含量的计算:根据样品溶液的吸光度,从标准曲线上查得铁的浓度,再根据样品体积计算出样品中铁的含量。

五、实验结果与分析1. 标准曲线的绘制:以浓度为横坐标,吸光度为纵坐标,绘制标准曲线,得到线性回归方程为y=0.0125x+0.0018,相关系数R²=0.998。

2. 样品中铁含量的测定:根据样品溶液的吸光度,从标准曲线上查得铁的浓度为0.035mg/L,样品体积为10mL,计算出样品中铁的含量为0.35mg/L。

原子吸收能量实验报告书

原子吸收能量实验报告书

一、实验目的1. 了解原子吸收光谱分析的基本原理和方法。

2. 掌握原子吸收光谱仪器的操作方法。

3. 学习利用原子吸收光谱法对样品中特定元素进行定量分析。

二、实验原理原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是一种利用原子蒸气对特定波长的光产生吸收,根据吸光度与样品中待测元素浓度之间的关系,对样品进行定量分析的方法。

其基本原理如下:1. 当样品中的待测元素被加热至原子状态时,原子中的外层电子吸收特定波长的光子,跃迁到高能级。

2. 外层电子从高能级回到基态时,释放出与吸收光子相同能量的光子,产生特征光谱线。

3. 通过测量特征光谱线的强度,可以确定样品中待测元素的含量。

三、实验仪器与试剂1. 仪器:原子吸收光谱仪、分析天平、移液器、烧杯、试管、酒精灯、玻璃棒等。

2. 试剂:待测元素标准溶液、硝酸、盐酸、氢氧化钠、蒸馏水等。

四、实验步骤1. 样品前处理:准确称取一定量的样品,用硝酸、盐酸等溶解,制成待测元素的标准溶液。

2. 标准曲线绘制:准确移取一定量的标准溶液,加入适量的硝酸、盐酸等,调节溶液的酸度,将溶液转移至试管中,加热蒸发至近干。

加入适量的蒸馏水,定容至一定体积,得到标准溶液系列。

3. 仪器调试:开启原子吸收光谱仪,预热30分钟。

调整仪器的各项参数,如波长、狭缝宽度、灯电流等。

4. 样品测定:将待测元素的标准溶液和样品溶液依次注入仪器,测定吸光度。

5. 数据处理:根据标准曲线和样品溶液的吸光度,计算样品中待测元素的含量。

五、实验结果与分析1. 标准曲线绘制:以标准溶液的浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

2. 样品测定:根据标准曲线和样品溶液的吸光度,计算样品中待测元素的含量。

六、实验讨论1. 实验过程中,应注意仪器的预热和调试,以保证实验结果的准确性。

2. 样品前处理过程中,应注意溶液的酸度,以避免对实验结果的影响。

3. 实验过程中,应严格按照操作规程进行,以保证实验的安全性。

原子吸收光谱法 实验报告

原子吸收光谱法 实验报告

原子吸收光谱法实验报告原子吸收光谱法实验报告引言:原子吸收光谱法是一种常用的分析技术,可以用于测定样品中的金属元素含量。

本实验旨在通过原子吸收光谱法测定未知溶液中钠离子的浓度,并探究实验条件对测定结果的影响。

实验步骤:1. 实验前准备:清洗玻璃仪器、配制标准溶液、校准光谱仪。

2. 测定吸收光谱:将标准溶液依次放入光谱仪中,记录吸收峰的波长和吸光度。

3. 绘制标准曲线:根据测定得到的吸光度数据,绘制出吸光度与浓度的曲线。

4. 测定未知溶液:将未知溶液依次放入光谱仪中,测定其吸光度。

5. 计算未知溶液中钠离子的浓度:根据标准曲线,通过吸光度值得到未知溶液中钠离子的浓度。

实验结果与讨论:通过测定吸收光谱,我们得到了标准溶液中钠离子的吸光度数据,并绘制了标准曲线。

在测定未知溶液时,我们得到了相应的吸光度值。

通过标准曲线,我们可以计算出未知溶液中钠离子的浓度。

在实验过程中,我们还探究了实验条件对测定结果的影响。

首先,我们改变了光谱仪的入射光强度,发现随着光强度的增加,吸光度也相应增加,但当光强度过高时,吸光度反而下降。

这是因为在过高的光强度下,样品中的钠原子发生饱和吸收,无法继续吸收更多的光能量。

其次,我们改变了样品的浓度,发现吸光度与浓度呈线性关系。

这是因为当样品中的钠离子浓度增加时,更多的钠原子吸收入射光,导致吸光度增加。

因此,通过测量吸光度,我们可以准确地测定样品中钠离子的浓度。

实验中还需要注意的是,样品的溶解度和光谱仪的校准。

样品的溶解度应适中,过高或过低都会影响实验结果。

而光谱仪的校准需要定期进行,以确保测量结果的准确性。

结论:通过原子吸收光谱法,我们成功测定了未知溶液中钠离子的浓度。

实验结果表明,该方法可以准确、快速地测定金属元素的含量。

在实验过程中,我们还发现实验条件对测定结果有一定的影响,因此在实际应用中需要注意控制实验条件。

总结:原子吸收光谱法是一种重要的分析技术,可以应用于环境监测、食品安全等领域。

原子吸收光谱实验报告

原子吸收光谱实验报告

原子吸收光谱实验报告《原子吸收光谱实验报告》实验目的:本实验旨在通过原子吸收光谱实验,研究不同金属元素在吸收光谱中的特征峰,探索其原子结构和化学性质。

实验原理:原子吸收光谱是一种分析化学方法,通过测量样品中金属元素吸收光的特征波长,来确定其存在的浓度和化学形态。

当金属原子处于基态时,它们能够吸收特定波长的光,使得电子跃迁到高能级,形成吸收峰。

通过测量吸收峰的位置和强度,可以得到金属元素的浓度信息。

实验步骤:1. 准备样品:取不同金属元素的溶液样品,如铁、铜、锌等,以及空白对照样品。

2. 调试仪器:将原子吸收光谱仪调试至稳定状态,确保其能够准确测量样品的吸收光谱。

3. 测量样品:依次将各种金属元素的溶液样品装入原子吸收光谱仪中,记录吸收光谱的特征峰位置和强度。

4. 数据处理:利用仪器提供的分析软件,对吸收光谱数据进行处理和分析,得出不同金属元素的浓度和特征峰信息。

实验结果:通过实验测量和数据处理,我们得到了不同金属元素的吸收光谱图谱,发现它们在吸收光谱中具有明显的特征峰。

通过比对标准曲线,我们成功地确定了样品中金属元素的浓度,并且验证了原子吸收光谱的分析方法的准确性和可靠性。

实验结论:本实验通过原子吸收光谱的实验方法,成功地研究了不同金属元素的吸收光谱特征,揭示了它们在光谱中的独特性质。

这为进一步研究金属元素的原子结构和化学性质提供了重要的实验数据和参考依据。

总结:原子吸收光谱实验是一种重要的分析化学方法,能够准确测量样品中金属元素的浓度和化学形态。

通过本实验的研究,我们对原子吸收光谱的原理和应用有了更深入的理解,为进一步的科研工作和实际应用提供了有益的参考。

原子吸收光谱法实验报告

原子吸收光谱法实验报告

原子吸收光谱法实验报告原子吸收光谱法实验报告一、引言原子吸收光谱法是一种常用的分析方法,它基于原子在特定波长的光线照射下吸收能量的原理。

通过测量样品溶液中吸收光的强度,可以得到元素的浓度信息。

本实验旨在通过使用原子吸收光谱法来测定未知溶液中金属离子的浓度。

二、实验步骤1. 实验前准备在实验开始前,我们需要清洗玻璃仪器,以确保实验结果的准确性。

同时,准备不同浓度的金属离子溶液作为标准溶液,以便后续的测量和比较。

2. 样品制备将未知溶液中的金属离子转化为可测量的形式。

首先,将未知溶液与一定浓度的酸性溶液混合,使金属离子与酸反应生成金属离子络合物。

然后,通过加入还原剂,将金属离子还原成原子态。

最后,将样品溶液稀释至适当浓度。

3. 光谱测量使用原子吸收光谱仪器,选择合适的波长进行测量。

根据实验的需要,可以选择单波长或多波长测量。

在测量过程中,需要注意调整光源的强度和样品吸收池的位置,以确保测量结果的准确性。

4. 数据处理根据实验测得的吸光度数据,绘制标准曲线。

标准曲线是浓度与吸光度之间的关系曲线,可以用来计算未知溶液中金属离子的浓度。

通过线性回归分析,可以得到标准曲线的方程。

5. 测定未知样品使用标准曲线来计算未知溶液中金属离子的浓度。

根据实验测得的吸光度值,代入标准曲线的方程,即可得到未知溶液的浓度。

三、实验结果与讨论通过实验测得的数据,我们得到了标准曲线的方程。

利用该方程,我们可以计算未知溶液中金属离子的浓度。

实验结果显示,未知溶液中金属离子的浓度为X mol/L。

在实验过程中,我们注意到光源的强度对测量结果有一定的影响。

如果光源强度过弱,测量结果可能会有较大误差。

因此,在进行测量前,我们需要确保光源的强度适中,并进行必要的校准。

此外,实验中还需要注意样品溶液的稀释程度。

如果样品溶液过于稀释,可能会导致吸光度值过低,难以准确测量。

因此,在进行稀释时,需要根据样品的浓度选择合适的稀释倍数。

四、实验结论本实验利用原子吸收光谱法成功测定了未知溶液中金属离子的浓度为X mol/L。

原子吸收分析实验报告

原子吸收分析实验报告

一、实验目的1. 熟悉原子吸收分光光度法的基本原理和操作步骤。

2. 掌握原子吸收分光光度计的使用方法。

3. 学会运用标准曲线法进行定量分析。

4. 了解实验中可能出现的误差及处理方法。

二、实验原理原子吸收分光光度法(AAS)是一种利用原子蒸气对特定波长光的吸收特性进行定量分析的方法。

当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸汽的入射光将减弱,其减弱的程度与蒸汽中该元素的浓度成正比。

根据比尔定律,吸光度与溶液中待测元素的浓度成正比,从而可以定量分析待测元素的含量。

三、实验仪器与试剂1. 仪器:原子吸收分光光度计、原子化器、移液器、容量瓶、玻璃仪器等。

2. 试剂:标准溶液(待测元素)、分析纯试剂、蒸馏水等。

四、实验步骤1. 标准溶液的配制:根据实验要求,配制一系列已知浓度的标准溶液。

2. 标准曲线的绘制:在一定的仪器条件下,依次测量标准溶液的吸光度,以标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。

3. 试样溶液的制备:将待测样品进行适当处理后,配制待测溶液。

4. 吸光度测量:在相同的实验条件下,测量待测溶液的吸光度。

5. 定量分析:根据待测溶液的吸光度,在标准曲线上查出待测元素的含量,并换算成原始试样中被测元素的含量。

五、实验结果与分析1. 标准曲线的绘制:根据实验数据,绘制标准曲线,并计算相关系数。

2. 待测溶液的吸光度测量:根据实验数据,测量待测溶液的吸光度。

3. 定量分析:根据待测溶液的吸光度,在标准曲线上查出待测元素的含量,并换算成原始试样中被测元素的含量。

4. 误差分析:分析实验中可能出现的误差,如仪器误差、试剂误差、操作误差等,并提出相应的处理方法。

六、实验结论通过本次实验,掌握了原子吸收分光光度法的基本原理和操作步骤,学会了运用标准曲线法进行定量分析。

实验结果表明,该方法具有较好的准确度和灵敏度,适用于待测元素的定量分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
样品转移定容完成后,前处理操作基本完成,将其放在试管架上待测。
三、上机测试
(一)上机准备
1、检查灯池,安装Zn和Cu灯,并记下所在位置;
2、开启电源;
3、用纸将燃烧器的狭缝擦干净(若有异物,则气体燃烧不充分,火焰呈锯齿状,清理干净后,火焰为一蓝色亮线);
4、打开乙炔气阀门,检查乙炔气是否足够,调节乙炔气压约 0.09~0.1MP;
准系列按浓度从低到高的顺序进样,读完数再进下一个标准液(读取出现频率较高的那一个数)。进样完毕以后,绘制标准曲线并保存。标准曲线应满足以下三点要求:?起码有4个点落在标线上;?标线最好通过原点,若没通过,则距离原点上下不能超过1cm;?相关系数>0.998。如果不能达到要求,可以将离直线远的点屏蔽,如果少于四个点还不能满足要求,则表明标样制备不合格,应该重新制备。
2、样品测试:设置好相关参数后,开始测试样品6空,读取最小的数据;然后分别测试样品6和6’,读取出现频率较高的数据(如果再测试其他样品,需用超纯水清洗仪器)。
3、测试结果:测试完以后,计算机将显示其结果,样品6和6’分别为430.7910μg/g和438.0042μg/g,相差不大,视为平行。但数值过高,初步认为是理发店洗发水太差的缘故。
2、实验仪器
WFX-120型原子吸收分光光度计
3、辅助设备
万分之一天平、恒温电热板、烤箱、超纯水机、空气压缩机、乙炔气
4、化学试剂
超纯水、高纯硝酸、优级纯高氯酸、Zn和Cu的标准系列
5、玻璃仪器
消化杯、10ml刻度吸管、10ml刻度离心管、胶头滴管、烧杯
二、实验步骤
(一)样品的采集
采集样品时应注意:
称样时,一只手扶着天平,另一只手戴手套将消化杯6小心地放在天平上,关上玻璃,归零;然后将消化杯取出,用镊子小心夹取样品放入消化杯中,把消化杯放入天平中,读数,记下数据m。 1
用同样的方法得到平行样6’的质量m。 2
2、样品消解
用10ml刻度吸管向三个消化杯中分别加入 3ml 高纯硝酸,之所以使用硝酸是因为:?只有硝酸有高纯级别的;?其氧化能力最强;?电热板消解样品的温度是170~180?,与硝酸的沸点最接近。然后用胶头滴管向其中分别加入 2 滴优级纯高氯酸,目的是保持杯底的湿润,不至于使样品丢失。盖上球形杯盖,将消化杯放到恒温电热板上加热,样品消解完全后取下消化杯,其临界标志是当杯底还有一两滴时,将球形杯盖上的一滴滴入杯中,有白烟冒出。
这次试验使我认识到了自己的不足,在以后的学习中提醒自己去改正,当然
自己还有很多问题可能没发现,需要自己在实践中不断发现和改正,但我会努力
培养自己虚心好学的精神。
5、打开空气压缩机(空气压缩机需连接空气过滤Байду номын сангаас,使空气干燥);
6、打开空气过滤器,使气流保持在“5”左右;
7、打开乙炔气开关;
8、按下“点火”按钮,调节火焰(使空气和乙炔气含量配比合适,此时火焰为蓝色)。
(二)元素测试
1、标准曲线的测定:打开相关软件,设置相关参数后,点火进超纯水清洗仪器,直到计算机显示数值较小时调零,然后开始测试标准样品。将元素Zn的标
原子吸收实验报告
中国矿业大学(北京)
煤炭资源与安全工程国家重点实验室
姓 名:王佩佩
专 业:矿产普查与勘探
指导老师:田瑞泉老师
原子吸收实验报告
一、
1、实验目的
通过测定头发中Zn元素的含量,掌握原子吸收实验的基本方法,包括样品的采集、样品预处理、样品前处理、原子吸收分光光度计的使用等相关理论与实际
操作。
这次试验我不但学会了原子吸收实验的方法,而且对实验有了新的认识。实验需要谨小慎微的习惯,严谨周密的思维。严格按照实验步骤进行,知其然更要知其所以然,实验结果受很多因素影响,虽然不可能完全消除误差,但可以尽可能减小误差。试验过程中很多细节容易忽视,但这些细节对结果影响最大,因此我们在今后的实验中一定注意,养成自己做事细心的习惯。
1、要随机采样,保证样品的均一性和代表性;
2、采来的样品不能用报纸包裹,以免造成Pb污染。
本次实验中,头发应取后枕部距头皮1cm处,这样测得的Zn含量与实际最接近。但为了简单起见,可随意剪取所需的头发。
(二)样品预处理
将取来的头发用不锈钢剪刀剪碎。
(三)样品前处理
1、称样
称样前准备三个消化杯,分别编号 6、6’和6空,然后进行称量。称样时应注意三点:?坐着称量;?拿消化杯的手要戴手套,以免将其污染;?加减样品等操作一定要在天平外进行,以免样品掉在天平上。
五、心得体会
通过原子吸收的理论学习与实验操作,我受益匪浅。实验是一个实践的过程,在实践中有很多宝贵的经验,田老师给我们传授的不仅仅是理论,更多的是实践经验。在田老师的指导下,实验很容易就能到达预期的效果。我们在操作过程中很容易忽略一些细节,从而导致实验结果不准确,这就需要自己在今后的实验中不断体会并积累经验。
3、转移定容:
取三个10ml刻度离心管,分别编号6、6’和6空。然后将消化杯中的样品转移到对应编号的离心管中。方法如下:用胶头滴管从烧杯中取大概1-2ml超纯水冲洗球形杯盖和消化杯,水沿杯的内壁滴入,充分洗涤杯壁,然后轻轻震荡,防止样品洒出来,将洗液倒入到离心管中,像这样重复洗涤消化杯3-4次,并将离心管定容到10ml,最后用封口膜将管口密封,上下摇匀。用同样的方法将消化杯6’和6空中的样品转移定容。
(三)关闭仪器和电脑,清洗实验用具,收拾整理实验室。
四、原子吸收测定微量元素的实际意义
原子吸收实验是一种极其重要的分析方法,它具有检出限低、准确度高、选择性好、分析速度快等优点,已广泛用于冶金工业、食品鉴定、医学、科学实验等领域,尤其是在科学实验中,不仅对于一般元素的检测都能满足要求,而且能检测多种元素,成本相对较低,实验操作相对简单,数据可靠。随着技术的不断改进,原子吸收实验会越来越普及,运用越来越广泛。
相关文档
最新文档