奥数第二十五讲 同余式
奥数讲义数论专题:余数及同余
![奥数讲义数论专题:余数及同余](https://img.taocdn.com/s3/m/cc5a39a15f0e7cd185253604.png)
华杯赛数论专题:余数及同余一、带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q…r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,记作b|a,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,记作,q称为a除以b的商或不完全商二、同余的概念两个整数被同一个大于1的整数m除,所得的余数相同,就说这两个整数对于除数m来说是同余的.也可以换句话来说这个概念,如果两个整数的差能被大于1的整数m整除,那么这两个整数对于除数m来说是同余的.同余的概念和符号都是德国伟大数学家高斯引进的.一般地,两个整数a和b,除以大于1的正整数m,如果所得的余数相同,就说a、b对于模m同余,记作a≡b(mod m).由于一个整数被m除的余数只能是0、1、2、3、…、m-1这m个数,所以全体整数可按被m除的余数分类,凡是余数相同的归为一类,全体整数就被划分成了m类,同一类中的任何两数被m除的余数都相等,即同一类中任何两数的差都能被m整除,不同类的任何两数被m除的余数都不相等.三、同余的性质1.如果a≡b(mod m),那么m|(a-b);如果整数a和b对于模m是同余的,那么a 与b的差能被m整除.2.a≡a(mod m),即任何整数都与自身同余.3.若a≡b(mod m),则b≡a(mod m).4.若a≡b(mod m),b≡c(mod m),则a≡c(mod m).5.若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d (mod m),a×c≡b×d (mod m).6.若a≡b(mod m),则an≡bn(mod m)。
(其中n为正整数).例1.用一个两位数除708,余数为43,求这个两位数.【答案】95【解答】根据被除数-余数=商×除数,可知,所求两位数一定是707-43=665的大于43的约数,所以所求的两位数是95.例2.数713、1103、830、947被一个数除所得余数相同(余数不为0),求这个除数.【答案】39,13或3.【解答】1103-713=390=3×13×2×5,947-830=117=3×13×3,1103-947=156=2×13×3×2,除数为39,13或3.例3.从1、2、…100中最多能选出多少个数,使选出的数中每两个的和都不能被3整除?【答案】35【解答】1、2、…100中,除以3余1的数共34个,即1、4、7、10、…、100.除以3余2的数共33个,选出的数中,如果有除以3余1的,就一定不能有除以3余2的;如果有除以3余2的,也就不能有除以3余1的。
小学中级奥数第25讲-余数问题
![小学中级奥数第25讲-余数问题](https://img.taocdn.com/s3/m/9cfb92b790c69ec3d5bb75fd.png)
23、16除以5的余数分别是3 和1,所以(23X16)除以5 的余数等于3X1=3。
23、19除以5的余数分别是3 和1,所以(23X19)除以5 的余数等于(3X4)除以5的 余数2。
某数被13除,商是9,余数是8,则某数等于
。
一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.
求 478 296351 除以17的余数。
求 4373091993 被7除的余数。
22003 与 20032 的和除以7的余数是_______。
22008 20082 除以7的余数是多少?
有一个整数,除39,51,147所得的余数都是3,求这个数。
甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。
用某自然a去除1992,得到商是46,余数是r,求a和r。
当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?
有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个 整数是______。
课后作业 <作业2> 3782除以某个整数后所得的商恰好是余数的21倍,那么除数最小可能是_______。
课后作业 <作业3>
在大于2009的自然数中,被57除后,商与余数相等的数共有______个。
<作业4>
求 478 2569352 除以9的余数。
课后作业
<作业5>
求 3406 的个位数字。
除法算式 □□= 20 8 中,被除数最小等于________。
71427和19的积被7除,余数是几?
八年级数学知识点分类讲解25同余式(高中内容,了解即可)
![八年级数学知识点分类讲解25同余式(高中内容,了解即可)](https://img.taocdn.com/s3/m/483a35c59ec3d5bbfd0a7446.png)
八年级数学知识点分类讲解第二十五讲* 同余式(高中内容,了解即可)数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯.先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜?取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜.在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以2000年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用.同余,顾名思义,就是余数相同.定义1给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作a≡b(modm),并读作a同余b,模m.若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以 a-b=m(q1-q2),即 m|a-b.反之,若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2.于是,我们得到同余的另一个等价定义:定义2若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a 与b对模m同余.同余式的写法,使我们联想起等式.其实同余式和代数等式有一些相同的性质,最简单的就是下面的定理1.定理1 (1)a≡a(modm).(2) 若a≡b(modm),则b≡a(modm).(3) 若a≡b(modm),b≡c(modm),则a≡c(modm).在代数中,等式可以相加、相减和相乘,同样的规则对同余式也成立.定理2若a≡b(modm),c≡d(modm),则a±c≡b±d(modm),ac≡bd(modm).证由假设得m|a-b,m|c-d,所以m|(a±c)-(b±d), m|c(a-b)+b(c-d),即a±c≡b±d(modm),ac≡bd(modm).由此我们还可以得到:若a≡b(modm),k是整数,n是自然数,则a±k≡b±k(modm),ak≡bk(modm),a n≡b n(modm).对于同余式ac≡bc(modm),我们是否能约去公约数c,得到一个正确的同余式a≡b(modm)?在这个问题上,同余式与等式是不同的.例如25≡5(mod 10),约去5得5≡1(mod 10).这显然是不正确的.但下面这种情形,相约是可以的.定理3若ac≡bc(modm),且(c,m)=1,则a≡b(modm).证由题设知ac-bc=(a-b)c=mk.由于(m,c)=1,故m|a-b,即a≡b(modm).定理4若n≥2,a≡b(modm1),a≡b(modm2),…………a≡b(modm n),且M=[m1,m2,…,m n]表示m1,m2,…,m n的最小公倍数,则a≡b(modM).前面介绍了同余式的一些基本内容,下面运用同余这一工具去解决一些具体问题.应用同余式的性质可以简捷地处理一些整除问题.若要证明m整除a,只需证a≡0(modm)即可.例1求证:(1)8|(551999+17);(2) 8(32n+7);(3)17|(191000-1).证 (1)因55≡-1(mod 8),所以551999≡-1(mod 8),551999+17≡-1+17=16≡0(mod 8),于是8|(551999+17).(2)32=9≡1(mod 8),32n≡1(mod 8),所以32n+7≡1+7≡0(mod 8),即8|(32n+7).(3)19≡2(mod 17),194≡24=16≡-1(mod 17),所以191000=(194)250≡(-1)250≡1(mod 17),于是17|(191000-1).例2求使2n-1为7的倍数的所有正整数n.解因为23≡8≡1(mod 7),所以对n按模3进行分类讨论.(1) 若n=3k,则2n-1=(23)k-1=8k-1≡1k-1=0(mod 7);(2) 若n=3k+1,则2n-1=2·(23)k-1=2·8k-1≡2·1k-1=1(mod 7);(3) 若n=3k+2,则2n-1=22·(23)k-1=4·8k-1≡4·1k-1=3(mod 7).所以,当且仅当3|n时,2n-1为7的倍数.例3 对任意的自然数n,证明A=2903n-803n-464n+261n能被1897整除.证 1897=7×271,7与271互质.因为2903≡5(mod 7),803≡5(mod 7),464≡2(mod 7),261≡2(mod 7),所以A=2903n-803n-464n+261n≡5n-5n-2n+2n=0(mod 7),故7|A.又因为2903≡193(mod 271),803≡261(mod 271),464≡193(mod 271),所以故271|A.因(7,271)=1,所以1897整除A.例4把1,2,3…,127,128这128个数任意排列为a1,a2,…,a128,计算出|a1-a2|,|a3-a4|,…,|a127-a128|,再将这64个数任意排列为b1,b2,…,b64,计算|b1-b2|,|b3-b4|,…,|b63-b64|.如此继续下去,最后得到一个数x,问x是奇数还是偶数?解因为对于一个整数a,有|a|≡a(mod 2), a≡-a(mod 2),所以b1+b2+…+b64=|a1-a2|+|a3-a4|+…+|a127-a128|≡a1-a2+a3-a4+…+a127-a128≡a1+a2+a3+a4+…+a127+a128(mod 2),因此,每经过一次“运算”,这些数的和的奇偶性是不改变的.最终得到的一个数x≡a1+a2+…+a128=1+2+…+128=64×129≡0(mod 2),故x是偶数.如果要求一个整数除以某个正整数的余数,同余是一个有力的工具.另外,求一个数的末位数字就是求这个数除以10的余数,求一个数的末两位数字就是求这个数除以100的余数.例5求证:一个十进制数被9除的余数等于它的各位数字之和被9除的余数.10≡1(mod 9),故对任何整数k≥1,有10k≡1k=1(mod 9).因此即A被9除的余数等于它的各位数字之和被9除的余数.说明 (1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.例6 任意平方数除以4余数为0和1(这是平方数的重要特征).证因为奇数2=(2k+1)2=4k2+4k+1≡1(mod 4),偶数2=(2k)2=4k2≡0(mod 4),所以例7任意平方数除以8余数为0,1,4(这是平方数的又一重要特征).证奇数可以表示为2k+1,从而奇数2=4k2+4k+1=4k(k+1)+1.因为两个连续整数k,k+1中必有偶数,所以4k(k+1)是8的倍数,从而奇数2=8t+1≡1(mod 8),偶数2=(2k)2=4k2(k为整数).(1)若k=偶数=2t,则4k2=16t2=0(mod 8).(2)若k=奇数=2t+1,则4k2=4(2t+1)2=16(t2+t)+4≡4(mod 8),所以求余数是同余的基本问题.在这种问题中,先求出与±1同余的数是一种基本的解题技巧.例8 (1)求33除21998的余数.(2)求8除72n+1-1的余数.解 (1)先找与±1(mod 33)同余的数.因为25=32≡-1(mod 33),所以 210≡1(mod 33),21998=(210)199·25·23≡-8≡25(mod 33),所求余数为25.(2)因为7≡-1(mod 8),所以72n+1≡(-1)2n+1=-1(mod 8),72n+1-1≡-2≡6(mod 8),即余数为6.例9形如F n=22n+1,n=0,1,2,…的数称为费马数.证明:当n≥2时,F n的末位数字是7.证当n≥2时,2n是4的倍数,故令2n=4t.于是F n=22n+1=24t+1=16t+1≡6t+1≡7(mod 10),即F n的末位数字是7.说明费马数的头几个是F0=3,F1=5,F2=17,F3=257,F4=65537,它们都是素数.费马便猜测:对所有的自然数n,F n都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数F5是合数.证明F5是合数,留作练习.利用同余还可以处理一些不定方程问题.例10证明方程x4+y4+2=5z 没有整数解.证对于任一整数x,以5为模,有x≡0,±1,±2(mod 5),x2≡0,1,4(mod 5),x4≡0,1,1(mod 5),即对任一整数x,x4≡0,1(mod 5).同样,对于任一整数y y4≡0,1(mod 5),所以 x4+y4+2≡2,3,4(mod 5),从而所给方程无整数解.说明同余是处理不定方程的基本方法,但这种方法也非常灵活,关键在于确定所取的模(本例我们取模5),这往往应根据问题的特点来确定.练习二十五1.求证:17|(191000-1).2.证明:对所有自然数n,330|(62n-52n-11).4.求21000除以13的余数.5.求15+25+35+…+995+1005除以4所得的余数.6.今天是星期天,过3100天是星期几?再过51998天又是星期几?7.求n=1×3×5×7×…×1999的末三位数字.8.证明不定方程x2+y2-8z=6无整数解.。
小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题
![小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题](https://img.taocdn.com/s3/m/1e87d7780b1c59eef8c7b4c0.png)
小学奥数精讲:带余除法(同余式和同余方程)一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。
2、余数的性质:(1)可加性:和的余数等于余数的和。
即:两数和除以m 的余数等于这两个数分别除以m 的余数和。
例:7÷3=2……1 5÷3=1……2,则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。
(2)可减性:差的余数等于余数的差。
即:两数差除以m 的余数等于这两个数分别除以m 的余数差。
例:17÷3=5……2 5÷3=1……2,则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。
(3)可乘性:积的余数等于余数的积。
即:两数积除以m 的余数等于这两个数分别除以m 的余数积。
例:64÷7=9……1 45÷7=6……3,则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。
二、同余式在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。
即:a 与b 同余于模m。
意思就是自然数a 和b 关于m 来说是余数相同的。
用同余式表达为:a≡b(modm).注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。
(余数的可减性)三、例题。
例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?例2、(1)求多位数1234567891011…20102011除以9的余数?(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?(3)一个多位数1234567……979899,问除以11 的余数是多少?例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。
【七年级奥数】第25讲 同余(例题练习)
![【七年级奥数】第25讲 同余(例题练习)](https://img.taocdn.com/s3/m/3026f2d509a1284ac850ad02de80d4d8d05a0152.png)
第25讲同余——练习题一、第25讲同余(练习题部分)1.有没有自然数n,满足n2与n对于模30同余?这样的自然数有多少个?2.若在十进制中,m=,其中,…,为m的数字,证明m + +…+a2+a1(mod 9).3.设A=20012002,B是A的数字和,C是B的数字和,D是C的数字和.求D.4.求证:15|172013-2.5.求证:11|102013+232015.6.设a为正整数.证明a5a(mod 10).7.证明对任意整数a,10|a2049-a2013.8.正整数x除以3余2,除以4余1.求x除以12的余数.9.五位数被72整除,求数字x与y.10.求正整数n,使得(n+1)|(n2014+2006).11.求2999的末两位数字.12.求15+25+35+…+20135除以4所得余数.答案解析部分一、第25讲同余(练习题部分)1.【答案】解:∵n2-n=n(n-1),∵n-1、n为两个连续的自然数,∴其积能被2,3整除,①当n=5k时,n(n-1)=5k×(5k-1)能被5整除,②当n=5k+1时,n(n-1)=(5k+1)×5k能被5整除,③当n=5k+2时,n(n-1)=(5k+2)×(5k+1)不能被5整除,④当n=5k+3时,n(n-1)=(5k+3)×(5k+2)能被5整除,⑤当n=5k+4时,n(n-1)=(5k+4)×(5k+3)不能被5整除,∴当n=5k、5k+1、5k+3时,n2-n能被2、3、5,即能被30整除,∴当n=5k、5k+1、5k+3时,n2与n对于模30同余,∴这样的自然数有无穷多个.【解析】【分析】先将原式变形为n(n-1),由于n-1、n为两个连续的自然数,所以可知其能被2、3整除;当n=5k、5k+1、5k+3时,n2-n能被2、3、5,即n2-n能被30整除,故得证.2.【答案】证明:∵m=,∴m=,∴m-(a n+a n-1+· · ·+a2+a1)===∴m-(a n+a n-1+· · ·+a2+a1)是9的倍数,即m-(a n+a n-1+· · ·+a2+a1)能被9整除。
高中奥林匹克数学竞赛-同余
![高中奥林匹克数学竞赛-同余](https://img.taocdn.com/s3/m/d24d758a6edb6f1afe001f12.png)
第5讲 同余【知识点】1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a与b 对模同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不同余,记作)(mod m b a ≡,显然,)(|)(,)(mod b a m Z k b km a m b a -⇔∈+=⇔≡;每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质:1).反身性:)(mod m a a ≡;2).对称性:)(mod )(mod m a b m b a ≡⇔≡; 3).若)(mod m b a ≡,)(mod m c b ≡则)(mod m c a ≡;4).若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ±≡± 特别是)(mod )(mod m k b k a m b a ±≡±⇔≡;5).若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ≡; 特别是)(m od ),(m od m bk ak Z k m b a ≡⇔∈≡则 )(m od ),(m od m b a N n m b a nn≡⇔∈≡则; 6).)(mod )(m ac ab c b a +≡+;7).若)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当 )(mod )(mod ).(mod ),(m b a mc bc ac dmb a d mc ≡⇔≡≡=特别地,时,当; 8).若)(m od 1m b a ≡,)(m od 2m b a ≡ )(mod 3m b a ≡………………)(mod n m b a ≡,且)(m od ],,[21M b a m m m M n ≡⋯⋯=,则【例1】证明:完全平方数模4同余于0或1;证明:;,122Z k k n k n n ∈+==或者是任一整数,则设);4(m od 04222≡==k n k n 时,当);4(m od 1)121222≡+=+=k n k n (时,当 所以原命题成立;【例2】证明对于任何整数0≥k ,153261616+++++k k k 能被7整除;153322153266661616++⋅+⋅=∴+++=++kk kk k k M M 证:令)7(mod 0)7)(mod 1132(1173732721)122327()11047(3)197(21156257293642=+++=++⋅++⋅⋅++⋅⋅=++⋅++⋅⋅++⋅⋅=++⋅+⋅=C B A k k k k k k,,0Z k k ∈≥∀∴且对于153261616+++++k k k 都能被7整除;注:+∈≡⇒≡Z k b a b a k),(m od 1)(m od 1 【例3】试判断282726197319721971++能被3整除吗?整除;不能被又即:解:3197319721971)3(mod 2)21(),3(mod 142)3)(mod 21(197319721971)3)(mod 210(197319721971)3(mod 21973),3(mod 11972),3(mod 0197128272628142828282726282726282726++∴≡+∴≡=+≡++++≡++∴≡≡≡ΘΘ【例4】能否把1,2,……,1980这1980个数分成四组,令每组数之和为4321S S S S ,,,,且满足;=,=,,=101010342312S S S S S S ---不能这样分组;产生矛盾,又=解:依题意可知:∴∴≡⋅=⋅=++++=≡+=∴+++++++++=)4(mod 219819902198119801980321)4(mod 0604302010111114321ΛΘT S T S S S S S S S S T【例5】在已知数列1,4,8,10,16,19,21,25,30,43中,相邻若干数之和,能被11整除的数组共有多少组。
小学五年级奥数—数论之同余问题
![小学五年级奥数—数论之同余问题](https://img.taocdn.com/s3/m/e9910926c1c708a1294a44ed.png)
一、带余除法的定义及性质:之马矢奏春创作时间:二O二一年七月二十九日一般地,假如a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不成以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经由打包后共打包了c捆,那么这个c 就是商,最后还残剩d本,这个d就是余数.这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数必定要比除数小.二、三大余数定理:a与b的和除以c的余数,等于a,b辨别除以c的余数之和,或这个和除以c的余数.例如:23,16除以5的余数辨别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数.例如:23,19除以5的余数辨别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.a与b的乘积除以c的余数,等于a,b辨别除以c的余数的积,或者这个积除以c所得的余数.例如:23,16除以5的余数辨别是3和1,所以23×16除以5的余数等于3×1=3.当余数的和比除数大时,所求的余数等于余数之积再除以c的余数.例如:23,19除以5的余数辨别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子暗示为:a≡b ( mod m ),左边的式子叫做同余式.同余式读作:a同余于b,模m.由同余的性质,我们可以得到一个很是重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差必定能被m整除用式子暗示为:假若有a≡b ( mod m ),那么必定有a-b=mk,k是整数,即m|(a-b)三、弃九法道理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时常日是在一个铺有沙子的土板长进行,因为害怕以前的计算成果丧掉落而经常考验加法运算是否精确,他们的考验方法是这样进行的:例如:考验算式1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式必定是错的.上述考验方法正好用到的就是我们前面所讲的余数的加法定理,即假如这个等式是精确的,那么左边几个加数除以9的余数的和再除以9的余数必定与等式右边和除以9的余数相同.而我们在求一个自然数除以9所得的余数时,经常不必去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时刻往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”.所以我们总结出弃九发道理:任何一个整数模9同余于它的各数位上数字之和.往后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可.运用十进制的这个特点,不但可以考验几个数相加,对于考验相乘、相除和乘方的成果对不合错误同样适用留心:弃九法只能知道原题必定是错的或有可能精确,但不克不及包管必定精确.例如:考验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,假如一个算式必定是精确的,那么它的等式2两端必定知足弃九法的规律.这个思惟往往可以帮忙我们解决一些较复杂的算式迷问题.四、中国残剩定理:1.中国现代趣题:中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三.”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”.韩信点兵又称为中国残剩定理,相传汉高祖刘邦问大将军韩信统御兵士若干,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人…….刘邦茫然而不知其数.我们先推敲下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有若干?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人).孙子算经的作者及确实著作年代均不成考,不过按照考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人创造得比西方早,所以这个问题的推广及其解法,被称为中国残剩定理.中国残剩定理(Chinese Remainder Theorem)在近代抽象代数学中占据一席很是重要的地位.2.核心思惟和方法:对于这一类问题,我们有一套看似繁琐但是一旦掌握即可一通百通的方法,下面我们就以《孙子算经》中的问题为例,阐发此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?标题中我们可以知道,一个自然数辨别除以3,5,7后,得到三个余数辨别为2,3,2.那么我们首先机关一个数字,使得这个数字除以3余1,并且照样5和7的公倍数.先由,即5和7的最小公倍数出发,先看35除以3余2,不适合要求,那么就中断看5和7的“下一个”倍数是否可以,很显然70除以3余1类似的,我们再机关一个除以5余1,同时又是3和7的公倍数的数字,显然21可以适合要求.最后再机关除以7余1,同时又是3,5公倍数的数字,45适合要求,那么所求的自然数可以这样计算:,个中k是从1开始的自然数.也就是说知足上述关系的数有无穷多,假如按照实际情况对数的范围加以限制,那么我们就能找到所求的数.例如对上面的问题加上限制前提“知足上面前提最小的自然数”,那么我们可以计算得到所求假如加上限制前提“知足上面前提最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128.例题精讲:【模块一:带余除法的定义和性质】【例 1】(第五届小学数学报竞赛决赛)用某自然数去除,得到商是46,余数是,乞降.【解析】因为是的倍还多,得到,得,所以,.【巩固】(清华附中小升初分班测验)甲、乙两数的和是,甲数除以乙数商余,求甲、乙两数.【解析】(法1)因为甲乙,所以甲乙乙乙乙;则乙,甲乙.(法2)将余数先去掉落落变成整除性问题,运用倍数关系来做:从中减掉落落往后,就应该是乙数的倍,所以得到乙数,甲数.【巩固】一个两位数除310,余数是37,求这样的两位数.【解析】本题为余数问题的根本题型,需要学生明白一个重要常识点,就是把余数问题---即“不整除问题”转化为整除问题.方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数.本题中310-37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要知足比37大,适合前提的有39,91.【例 1】(年全国小学数学奥林匹克试题)有两个自然数相除,商是,余数是,已知被除数、除数、商与余数之和为,则被除数是若干?【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,因为被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【巩固】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是若干?【解析】本题为带余除法定义式的底子题型.按照题意设两个自然数辨别为x,y,可以得到,解方程组得,即这两个自然数辨别是856,21.【例 2】(2000年“祖冲之杯”小学数学邀请赛试题)三个不合的自然数的和为2001,它们辨别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______.【解析】设所得的商为,除数为.,,由,可求得,.所以,这三个数辨别是,,.【巩固】(2004年福州市“迎春杯”小学数学竞赛试题)一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【解析】设这个自然数除以11余,除以9余,则有,即,只有,,所以这个自然数为.【例 3】(1997年我爱数学少年数学夏令营试题)有48本书分给两组小同伙,已知第二组比第一组多5人.假如把书全部分给第一组,那么每人4本,有残剩;每人5本,书不敷.假如把书全分给第二组,那么每人3本,有残剩;每人4本,书不敷.问:第二组有若干人?【解析】由,知,一组是10或11人.同理可知,知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【巩固】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【解析】因为一个两位数除以13的商是6,所以这个两位数必定大于,并且小于;又因为这个两位数除以11余6,而78除以11余1,这个两位数为.【模块二:三大余数定理的运用】【例 4】有一个大于1的整数,除所得的余数相同,求这个数.【解析】这个题没有奉告我们,这三个数除以这个数的余数辨别是若干,但是因为所得的余数相同,按照同余定理,我们可以得到:这个数必定能整除这三个数中的随便率性两数的差,也就是说它是随便率性两数差的合同数.,,,的约数有,所以这个数可能为.【巩固】有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】(法1),,,12的约数是,因为余数为3要小于除数,这个数是;(法2)因为所得的余数相同,得到这个数必定能整除这三个数中的随便率性两数的差,也就是说它是随便率性两数差的合同数.,,,所以这个数是.【巩固】在小于1000的自然数中,辨别除以18及33所得余数相同的数有若干个?(余数可以为0)【解析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.【巩固】(2008年仁华考题)一个三位数除以17和19都有余数,并且除以17后所得的商与余数的和等于它除以19后所得到的商与余数的和.那么这样的三位数中最大数是若干,最小数是若干?【解析】设这个三位数为,它除以17和19的商辨别为和,余数辨别为和,则.按照题意可知,所以,即,得.所所以9的倍数,是8的倍数.此时,由知.因为为三位数,最小为100,最大为999,所以,而,所以,,得到,而是9的倍数,所以最小为9,最大为54.当时,,而,所以,故此时最大为;当时,,因为,所以此时最小为.所以这样的三位数中最大的是930,最小的是154.【例 5】两位自然数与除以7都余1,并且,求.【解析】能被7整除,即能被7整除.所以只能有,那么可能为92和81,验算可得当时,知足标题要求,【巩固】黉舍新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,假如将这三种物品等分给每个班级,那么这三种物品剩下的数目相同.请问黉舍共有若干个班?【解析】所求班级数是除以余数相同的数.那么可知该数应该为和的合同数,所求答案为17.【巩固】(2000年全国小学数学奥林匹克试题)在除13511,13903及14589时能剩下相同余数的最大整数是_________.【解析】因为, ,因为13511,13903,14589要被同一个数除时,余数相同,那么,它们两两之差必能被同一个数整除.,所以所求的最大整数是98.【例 6】(2003年南京市少年数学智力冬令营试题)与的和除以7的余数是________.【解析】找规律.用7除2,,,,,,…的余数辨别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为,所以除以7余4.又两个数的积除以7的余数,与两个数辨别除以7所得余数的积相同.而2003除以7余1,所以除以7余1.故与的和除以7的余数是.【巩固】(2004年南京市少年数学智力冬令营试题)在1995,1998,2000,2001,2003中,若个中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【解析】1995,1998,2000,2001,2003除以9的余数依次是6,0,2,3,5.因为,,所以这样的数组共有下面4个:, ,,.【例 7】(2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】,,除数应该是290的大于17小于70的约数,只可能是29和58,,,所以除数不是58.,,,,所以除数是【巩固】(2002年全国小学数学奥林匹克试题)用自然数n去除63,91,129得到的三个余数之和为25,那么n=________【解析】n能整除.因为,所以n是258大于8的约数.显然,n不能大于63.适合前提的只有43.【巩固】号码辨别为101,126,173,193的4个运策动进行乒乓球竞赛,规定每两人竞赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运策动打了若干盘?【解析】本题可以表现出加法余数定理的巧用.计算101,126,173,193除以3的余数辨别为2,0,2,1.那么随便率性两名运策动的竞赛盘数只需要用2,0,2,1两两相加除以3即可.显然126运策动打5盘是最多的.【例 8】(2002年《小学生数学报》数学邀请赛试题)六名小学生辨别带着14元、17元、18元、21元、26元、37元钱,一路到新华书店采办《成语大词典》.一看定价才创造有5集团带的钱不敷,但是个中甲、乙、丙3人的钱凑在一路正好可买2本,丁、戊2人的钱凑在一路正好可买1本.这种《成语大词典》的定价是________元.【解析】六名小学生共带钱133元.133除以3余1,因为甲、乙、丙、丁、戊的钱正好能买3本,所以他们五人带的钱数是3的倍数,另一人带的钱除以3余1.易知,这个钱数只能是37元,所以每本《成语大词典》的定价是(元) .【巩固】(2000年全国小学数学奥林匹克试题)市廛里有六箱货品,辨别重15,16,18,19,20,31千克,两个顾客买走了个中的五箱.已知一个顾客买的货品重量是另一个顾客的2倍,那么市廛剩下的一箱货品重量是________千克.【解析】两个顾客买的货品重量是的倍数.,剩下的一箱货品重量除以3应该余2,只能是20千克.【例 9】求的余数.【解析】因为,,,按照同余定理(三),的余数等于的余数,而,,所以的余数为5.【巩固】(华罗庚金杯赛模拟试题)求除以17的余数.【解析】先求出乘积再求余数,计算量较大.可先辨别计算出各因数除以17的余数,再求余数之积除以17的余数.除以17的余数辨别为2,7和11,.【巩固】求的最后两位数.【解析】即推敲除以100的余数.因为,因为除以25余2,所以除以25余8,除以25余24,那么除以25余1;又因为除以4余1,则除以4余1;即能被4 和25整除,而4与25互质,所以能被100整除,即除以100余1,因为,所以除以100的余数即等于除以100的余数,而除以100余29,除以100余43,,所以除以100的余数等于除以100的余数,而除以100余63,所以除以100余63,即的最后两位数为63.【巩固】除以13所得余数是_____.【解析】我们创造222222整除13,2000÷6余2,所以答案为22÷13余9.【巩固】求除以7的余数.【解析】法一:因为 (143被7除余3),所以 (被7除所得余数与被7除所得余数相等)而,(729除以7的余数为1),所以.故除以7的余数为5.法二:计算被7除所得的余数可以用找规律的方法,规律如下表:于是余数以6为周期变更.所以.【巩固】(2007年实验中学考题)除以7的余数是若干?【解析】因为,而1001是7的倍数,所以这个乘积也是7的倍数,故除以7的余数是0;【巩固】被除所得的余数是若干?【解析】31被13除所得的余数为5,当n取1,2,3,时被13除所得余数辨别是5,12,8,1,5,12,8,1以4为周期轮回消掉,所以被13除的余数与被13除的余数相同,余12,则除以13的余数为12;30被13除所得的余数是4,当n取1,2,3,时,被13除所得的余数辨别是4,3,12,9,10,1,4,3,12,9,10,以6为周期轮回消掉,所以被13除所得的余数等于被13除所得的余数,即4,故除以13的余数为4;所以被13除所得的余数是.【巩固】(2008年奥数网杯)已知,问:除以13所得的余数是若干?【解析】2008除以13余6,10000除以13余3,留心到;;;按照这样的递推规律求出余数的变更规律:20082008除以13余,200820082008除以13余,即200820082008是13的倍数.而除以3余1,所以除以13的余数与除以13的余数相同,为6.【巩固】除以41的余数是若干?【解析】找规律:,,,,,……,所以77777是41的倍数,而,所以可以分红399段77777和1个7组成,那么它除以41的余数为7.【巩固】除以10所得的余数为若干?【解析】求成果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一轮回的,而对一个数的幂方的个位数,我们知道它老是4个一轮回的,是以把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不合组中对应的个位数字应该是一样的.首先计算的个位数字,为的个位数字,为4,因为2005个加数共可分红100组另5个数,100组的个位数字和是的个位数即0,别的5个数为、、、、,它们和的个位数字是的个位数 3,所以原式的个位数字是3,即除以10的余数是3.【例 10】 求所有的质数P,使得与也是质数.【解析】 假如,则,都是质数,所以5适合题意.假如P 不等于5,那么P 除以5的余数为1、2、3或者4,除以5的余数即等于、、或者除以5的余数,即1、4、9或者16除以5的余数,只有1和4两种情况.假如除以5的余数为1,那么除以5的余数等于除以5的余数,为0,即此时被5整除,而大于5,所以此时不是质数;假如除以5的余数为4,同理可知不是质数,所以P 不等于5,与至少有一个不是质数,所以只有知足前提.【巩固】 在图表的第二行中,正好填上这十个数,使得每一竖列凹凸两个因数的乘积除以11所得的余数都是3.【解析】 因为两个数的乘积除以11的余数,等于两个数辨别除以11的余数之积.是以原题中的可以改换为,这样凹凸两数的乘积除以11余3就随便马虎计算了.我们得到下面的成果:因数 89 90 91 92 93 94 95 96 97 98因数因数 89 90 91 92 93 94 95 96 97 98因数37195621048进而得到本题的答案是:89909192939495969798因数91958997939490989296因数【巩固】(2000年“华杯赛”试题)3个三位数乘积的算式(个中), 在校正时,创造右边的积的数字次序消掉错误,但是知道最后一位6是精确的,问原式中的是若干?【解析】因为,, 于是,从而(用代入上式考验)…(1),对进行谈论:假如,那么…(2),又的个位数字是6,所以的个位数字为4,可能为、、、,个中只有适合(2),经考验只有适合题意.假如,那么…(3),又的个位数字为2或7,则可能为、、、、,个中只有适合(3),经考验,不合题意.假如,那么…(4),则可能为、,个中没有适合(4)的.假如,那么,,,是以这时不成能适合题意.综上所述,是本题独一的解.【例 11】一个大于1的数去除290,235,200时,得余数辨别为,,,则这个自然数是若干?【解析】按照题意可知,这个自然数去除290,233,195时,得到相同的余数(都为).既然余数相同,我们可以运用余数定理,可知个中随便率性两数的差除以这个数肯定余0.那么这个自然数是的约数,又是的约数,是以就是57和38的合同数,因为57和38的合同数只有19和1,而这个数大于1,所以这个自然数是19.【巩固】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是若干?【解析】这个自然数去除90、164后所得的两个余数的和等于这个自然数去除后所得的余数,所以254和220除以这个自然数后所得的余数相同,是以这个自然数是的约数,又大于10,这个自然数只能是17或者是34.假如这个数是34,那么它去除90、164、220后所得的余数辨别是22、28、16,不适合标题前提;假如这个数是17,那么他去除90、164、220后所得的余数辨别是5、11、16,适合标题前提,所以这个自然数是17.【例 12】甲、乙、丙三数辨别为603,939,393.某数除甲数所得余数是除乙数所得余数的2倍,除乙数所得余数是除丙数所得余数的2倍.求等于若干?【解析】按照题意,这三个数除以都有余数,则可以用带余除法的形式将它们暗示出来:因为,,要消去余数,,,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:这样余数就处理成相同的.最后两两相减消去余数,意味着能被整除.,,.51的约数有1、3、17、51,个中1、3显然不知足,考验17和51可知17知足,所以等于17.【巩固】一个自然数除429、791、500所得的余数辨别是、、,求这个自然数和的值.【解析】将这些数转化成被该自然数除后余数为的数:,、,这样这些数被这个自然数除所得的余数都是,故同余.将这三个数相减,得到、,所求的自然数必定是和的合同数,而,所以这个自然数是的约数,显然1是不适合前提的,那么只能是19.经由验证,当这个自然数是时,除、、所得的余数辨别为、、,时成立,所以这个自然数是,.【模块三:余数分化运用】【例 13】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为若干?【解析】斐波那契数列的组成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以按照余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项中断两个是1,与第一项和第二项的值相同且地位中断,所以裴波那契数列被3除的余数每8个一个周期轮回消掉,因为2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【巩固】(2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】因为两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数辨别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以创造这串余数中,每20个数为一个轮回,且一个轮回中,每5个数中第五个数是5的倍数.因为,所以前2009个数中,有401个是5的倍数.【例 14】(圣彼得堡数学奥林匹克试题)托玛想了一个正整数,并且求出了它辨别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.【解析】除以3、6和9的余数辨别不超出2,5,8,所以这三个余数的和永远不超出,既然它们的和等于15,所以这三个余数辨别就是2,5,8.所以该数加1后能被3,6,9整除,而,设该数为,则,即(为非零自然数),所以它除以18的余数只能为17.【巩固】(2005年喷鼻香港圣公会小学数学奥林匹克试题)一个家庭,有父、母、兄、妹四人,他们随便率性三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是若干岁?【解析】从随便率性三人岁数之和是3的倍数,100除以3余1,就知四个岁数都是型的数,又是质数.只有7,13,19,31,37,43,就随便马虎看出:父43岁,母37岁,兄13岁,妹7岁.【例 15】(华杯赛试题)如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从孔出发沿着逆时针标的目标,每隔几孔跳一步,欲望一圈往后能跳回到A孔.他先试着每隔2孔跳一步,成果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有若干个孔吗?【解析】设想圆圈上的孔已按下面方法编了号:A孔编号为1,然后沿逆时针标的目标按序编号为2,3,4,…,B孔的编号就是圆圈上的孔数.我们先看每隔2孔跳一步时,小明跳在哪些孔上?很随便马虎看出应在1,4,7,10,…上,也就是说,小明跳到的孔上的编号是3的倍数加1.按题意,小明最后跳到B孔,是以总孔数是3的倍数加1.同样道理,每隔4孔跳一步最后跳到B孔,就意味着总孔数是5的倍数加1;而每隔6孔跳一步最后跳回到A孔,就意味着总孔数是7的倍数.假如将孔数减1,那么得数既是3的倍数也是5的倍数,因而是15的倍数.这个15的倍数加上1 就等于孔数,设孔数为,则(为非零自然数)并且能被7整除.留心15被7除余1,所以被7除余6,15的6倍加1正好被7整除.我们还可以看出,15的其他(小于的7)倍数加1都不克不及被7整除,罢了经大于100.7以上的倍数都不必推敲,是以,总孔数只能是.【巩固】(1997年全国小学数学奥林匹克试题)将依次写到第1997个数字,组成一个1997位数,那么此数除以。
小学五年级奥数—数论之同余问题
![小学五年级奥数—数论之同余问题](https://img.taocdn.com/s3/m/0512332af524ccbff1218493.png)
一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式12341898189226789671789028899231234除以9的余数为 11898除以9的余数为818922除以9的余数为 4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为 2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题
![小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题](https://img.taocdn.com/s3/m/c1b447fa77eeaeaad1f34693daef5ef7ba0d1223.png)
小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题小学奥数精讲:带余除法(同余式和同余方程)一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。
2、余数的性质:(1)可加性:和的余数等于余数的和。
即:两数和除以m 的余数等于这两个数分别除以m 的余数和。
例:7÷3=2……1 5÷3=1……2,则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。
(2)可减性:差的余数等于余数的差。
即:两数差除以m 的余数等于这两个数分别除以m 的余数差。
例:17÷3=5……2 5÷3=1……2,则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。
(3)可乘性:积的余数等于余数的积。
即:两数积除以m 的余数等于这两个数分别除以m 的余数积。
例:64÷7=9……1 45÷7=6……3,则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。
二、同余式在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。
即:a 与b 同余于模m。
意思就是自然数a 和b 关于m 来说是余数相同的。
用同余式表达为:a≡b(modm).注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。
(余数的可减性)三、例题。
例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?例2、(1)求多位数1234567891011…20102011除以9的余数?(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?(3)一个多位数1234567……979899,问除以11 的余数是多少?例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。
小升初奥数余数同余要点总结
![小升初奥数余数同余要点总结](https://img.taocdn.com/s3/m/a8e0f2cc9a89680203d8ce2f0066f5335a8167f5.png)
小升初奥数余数同余要点总结
小升初奥数余数同余要点总结
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的'余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M 的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:
如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
小学五年级奥数—数论之同余问题
![小学五年级奥数—数论之同余问题](https://img.taocdn.com/s3/m/c1a91a6fe53a580217fcfea6.png)
一、带余除法的定义及性质:之老阳三干创作时间:二O二一年七月二十九日一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不成以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求依照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c 就是商,最后还剩余d本,这个d就是余数.这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数一定要比除数小.二、三大余数定理:a与b的和除以c的余数,等于a,b辨别除以c的余数之和,或这个和除以c的余数.例如:23,16除以5的余数辨别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数.例如:23,19除以5的余数辨别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.a与b的乘积除以c的余数,等于a,b辨别除以c的余数的积,或者这个积除以c所得的余数.例如:23,16除以5的余数辨别是3和1,所以23×16除以5的余数等于3×1=3.当余数的和比除数大时,所求的余数等于余数之积再除以c的余数.例如:23,19除以5的余数辨别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子暗示为:a≡b ( mod m ),左边的式子叫做同余式.同余式读作:a同余于b,模m.由同余的性质,我们可以得到一个很是重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子暗示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方法是这样进行的:例如:检验算式1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的.上述检验办法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同.而我们在求一个自然数除以9所得的余数时,经常不必去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种办法被称作“弃九法”.所以我们总结出弃九发原理:任何一个整数模9同余于它的各数位上数字之和.以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可.利用十进制的这个特性,不但可以检验几个数相加,对于检验相乘、相除和乘方的结果对不合错误同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不克不及包管一定正确.例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律.这个思想往往可以帮忙我们解决一些较庞杂的算式迷问题.四、中国剩余定理:1.中国现代趣题:中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三.”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”.韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御战士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人…….刘邦茫然而不知其数.我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人).孙子算经的作者及确实著作年代均不成考,不过按照考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发明得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理.中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席很是重要的地位.2.核心思想和办法:对于这一类问题,我们有一套看似繁琐但是一旦掌握即可一通百通的办法,下面我们就以《孙子算经》中的问题为例,阐发此办法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数辨别除以3,5,7后,得到三个余数辨别为2,3,2.那么我们首先机关一个数字,使得这个数字除以3余1,并且还是5和7的公倍数.先由,即5和7的最小公倍数出发,先看35除以3余2,不合适要求,那么就继续看5和7的“下一个”倍数是否可以,很显然70除以3余1类似的,我们再机关一个除以5余1,同时又是3和7的公倍数的数字,显然21可以合适要求.最后再机关除以7余1,同时又是3,5公倍数的数字,45合适要求,那么所求的自然数可以这样计算:,其中k是从1开始的自然数.也就是说满足上述关系的数有无穷多,如果按照实际情况对数的规模加以限制,那么我们就能找到所求的数.例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128.例题精讲:【模块一:带余除法的定义和性质】【例 1】(第五届小学数学报竞赛决赛)用某自然数去除,得到商是46,余数是,求和.【解析】因为是的倍还多,得到,得,所以,.【巩固】(清华附中小升初分班考试)甲、乙两数的和是,甲数除以乙数商余,求甲、乙两数.【解析】(法1)因为甲乙,所以甲乙乙乙乙;则乙,甲乙.(法2)将余数先去掉酿成整除性问题,利用倍数关系来做:从中减掉以后,就应当是乙数的倍,所以得到乙数,甲数.【巩固】一个两位数除310,余数是37,求这样的两位数.【解析】本题为余数问题的基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题.办法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数.本题中310-37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,合适条件的有39,91.【例 1】(年全国小学数学奥林匹克试题)有两个自然数相除,商是,余数是,已知被除数、除数、商与余数之和为,则被除数是多少?【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【巩固】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【解析】本题为带余除法定义式的基本题型.按照题意设两个自然数辨别为x,y,可以得到,解方程组得,即这两个自然数辨别是856,21.【例 2】(2000年“祖冲之杯”小学数学邀请赛试题)三个不合的自然数的和为2001,它们辨别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______.【解析】设所得的商为,除数为.,,由,可求得,.所以,这三个数辨别是,,.【巩固】(2004年福州市“迎春杯”小学数学竞赛试题)一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【解析】设这个自然数除以11余,除以9余,则有,即,只有,,所以这个自然数为.【例 3】(1997年我爱数学少年数学夏令营试题)有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不敷.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不敷.问:第二组有多少人?【解析】由,知,一组是10或11人.同理可知,知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【巩固】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于,并且小于;又因为这个两位数除以11余6,而78除以11余1,这个两位数为.【模块二:三大余数定理的应用】【例 4】有一个大于1的整数,除所得的余数相同,求这个数.【解析】这个题没有告知我们,这三个数除以这个数的余数辨别是多少,但是由于所得的余数相同,按照同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的条约数.,,,的约数有,所以这个数可能为.【巩固】有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】(法1),,,12的约数是,因为余数为3要小于除数,这个数是;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的条约数.,,,所以这个数是.【巩固】在小于1000的自然数中,辨别除以18及33所得余数相同的数有多少个?(余数可以为0)【解析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.【巩固】(2008年仁华考题)一个三位数除以17和19都有余数,并且除以17后所得的商与余数的和等于它除以19后所得到的商与余数的和.那么这样的三位数中最大数是多少,最小数是多少?【解析】设这个三位数为,它除以17和19的商辨别为和,余数辨别为和,则.按照题意可知,所以,即,得.所以是9的倍数,是8的倍数.此时,由知.由于为三位数,最小为100,最大为999,所以,而,所以,,得到,而是9的倍数,所以最小为9,最大为54.当时,,而,所以,故此时最大为;当时,,由于,所以此时最小为.所以这样的三位数中最大的是930,最小的是154.【例 5】两位自然数与除以7都余1,并且,求.【解析】能被7整除,即能被7整除.所以只能有,那么可能为92和81,验算可得当时,满足题目要求,【巩固】学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?【解析】所求班级数是除以余数相同的数.那么可知该数应该为和的条约数,所求答案为17.【巩固】(2000年全国小学数学奥林匹克试题)在除13511,13903及14589时能剩下相同余数的最大整数是_________.【解析】因为, ,由于13511,13903,14589要被同一个数除时,余数相同,那么,它们两两之差必能被同一个数整除.,所以所求的最大整数是98.【例 6】(2003年南京市少年数学智力冬令营试题)与的和除以7的余数是________.【解析】找规律.用7除2,,,,,,…的余数辨别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为,所以除以7余4.又两个数的积除以7的余数,与两个数辨别除以7所得余数的积相同.而2003除以7余1,所以除以7余1.故与的和除以7的余数是.【巩固】(2004年南京市少年数学智力冬令营试题)在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【解析】1995,1998,2000,2001,2003除以9的余数依次是6,0,2,3,5.因为,,所以这样的数组共有下面4个:, ,,.【例 7】(2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】,,除数应当是290的大于17小于70的约数,只可能是29和58,,,所以除数不是58.,,,,所以除数是【巩固】(2002年全国小学数学奥林匹克试题)用自然数n去除63,91,129得到的三个余数之和为25,那么n=________【解析】n能整除.因为,所以n是258大于8的约数.显然,n不能大于63.合适条件的只有43.【巩固】号码辨别为101,126,173,193的4个运动员进行乒乓球角逐,规定每两人角逐的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【解析】本题可以体现出加法余数定理的巧用.计算101,126,173,193除以3的余数辨别为2,0,2,1.那么任意两名运动员的角逐盘数只需要用2,0,2,1两两相加除以3即可.显然126运动员打5盘是最多的.【例 8】(2002年《小学生数学报》数学邀请赛试题)六名小学生辨别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店采办《成语大词典》.一看定价才发明有5团体带的钱不敷,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.【解析】六名小学生共带钱133元.133除以3余1,因为甲、乙、丙、丁、戊的钱恰好能买3本,所以他们五人带的钱数是3的倍数,另一人带的钱除以3余1.易知,这个钱数只能是37元,所以每本《成语大词典》的定价是(元) .【巩固】(2000年全国小学数学奥林匹克试题)商店里有六箱货物,辨别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克.【解析】两个顾客买的货物重量是的倍数.,剩下的一箱货物重量除以3应当余2,只能是20千克.【例 9】求的余数.【解析】因为,,,按照同余定理(三),的余数等于的余数,而,,所以的余数为5.【巩固】(华罗庚金杯赛模拟试题)求除以17的余数.【解析】先求出乘积再求余数,计算量较大.可先辨别计算出各因数除以17的余数,再求余数之积除以17的余数.除以17的余数辨别为2,7和11,.【巩固】求的最后两位数.【解析】即考虑除以100的余数.由于,由于除以25余2,所以除以25余8,除以25余24,那么除以25余1;又因为除以4余1,则除以4余1;即能被4 和25整除,而4与25互质,所以能被100整除,即除以100余1,由于,所以除以100的余数即等于除以100的余数,而除以100余29,除以100余43,,所以除以100的余数等于除以100的余数,而除以100余63,所以除以100余63,即的最后两位数为63.【巩固】除以13所得余数是_____.【解析】我们发明222222整除13,2000÷6余2,所以答案为22÷13余9.【巩固】求除以7的余数.【解析】法一:由于 (143被7除余3),所以 (被7除所得余数与被7除所得余数相等)而,(729除以7的余数为1),所以.故除以7的余数为5.法二:计算被7除所得的余数可以用找规律的办法,规律如下表:于是余数以6为周期变更.所以.【巩固】(2007年实验中学考题)除以7的余数是多少?【解析】由于,而1001是7的倍数,所以这个乘积也是7的倍数,故除以7的余数是0;【巩固】被除所得的余数是多少?【解析】31被13除所得的余数为5,当n取1,2,3,时被13除所得余数辨别是5,12,8,1,5,12,8,1以4为周期循环出现,所以被13除的余数与被13除的余数相同,余12,则除以13的余数为12;30被13除所得的余数是4,当n取1,2,3,时,被13除所得的余数辨别是4,3,12,9,10,1,4,3,12,9,10,以6为周期循环出现,所以被13除所得的余数等于被13除所得的余数,即4,故除以13的余数为4;所以被13除所得的余数是.【巩固】(2008年奥数网杯)已知,问:除以13所得的余数是多少?【解析】2008除以13余6,10000除以13余3,注意到;;;按照这样的递推规律求出余数的变更规律:20082008除以13余,200820082008除以13余,即200820082008是13的倍数.而除以3余1,所以除以13的余数与除以13的余数相同,为6.【巩固】除以41的余数是多少?【解析】找规律:,,,,,……,所以77777是41的倍数,而,所以可以分红399段77777和1个7组成,那么它除以41的余数为7.【巩固】除以10所得的余数为多少?【解析】求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不合组中对应的个位数字应该是一样的.首先计算的个位数字,为的个位数字,为4,由于2005个加数共可分红100组另5个数,100组的个位数字和是的个位数即0,另外5个数为、、、、,它们和的个位数字是的个位数 3,所以原式的个位数字是3,即除以10的余数是3.【例 10】 求所有的质数P,使得与也是质数.【解析】 如果,则,都是质数,所以5合适题意.如果P 不等于5,那么P 除以5的余数为1、2、3或者4,除以5的余数即等于、、或者除以5的余数,即1、4、9或者16除以5的余数,只有1和4两种情况.如果除以5的余数为1,那么除以5的余数等于除以5的余数,为0,即此时被5整除,而大于5,所以此时不是质数;如果除以5的余数为4,同理可知不是质数,所以P 不等于5,与至少有一个不是质数,所以只有满足条件.【巩固】 在图表的第二行中,恰好填上这十个数,使得每一竖列上下两个因数的乘积除以11所得的余数都是3.【解析】 因为两个数的乘积除以11的余数,等于两个数辨别除以11的余数之积.因此原题中的可以更换为,这样上下两数的乘积除以11余3就容易计算了.我们得到下面的结果:因数 89 90 91 92 93 94 95 96 97 98因数因数 89 90 91 92 93 94 95 96 97 98因数37195621048进而得到本题的答案是:89909192939495969798因数91958997939490989296因数【巩固】(2000年“华杯赛”试题)3个三位数乘积的算式(其中), 在校对时,发明右边的积的数字顺序出现错误,但是知道最后一位6是正确的,问原式中的是多少?【解析】由于,, 于是,从而(用代入上式检验)…(1),对进行讨论:如果,那么…(2),又的个位数字是6,所以的个位数字为4,可能为、、、,其中只有合适(2),经检验只有合适题意.如果,那么…(3),又的个位数字为2或7,则可能为、、、、,其中只有合适(3),经检验,不合题意.如果,那么…(4),则可能为、,其中没有合适(4)的.如果,那么,,,因此这时不成能合适题意.综上所述,是本题唯一的解.【例 11】一个大于1的数去除290,235,200时,得余数辨别为,,,则这个自然数是多少?【解析】按照题意可知,这个自然数去除290,233,195时,得到相同的余数(都为).既然余数相同,我们可以利用余数定理,可知其中任意两数的差除以这个数肯定余0.那么这个自然数是的约数,又是的约数,因此就是57和38的条约数,因为57和38的条约数只有19和1,而这个数大于1,所以这个自然数是19.【巩固】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】这个自然数去除90、164后所得的两个余数的和等于这个自然数去除后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数辨别是22、28、16,不合适题目条件;如果这个数是17,那么他去除90、164、220后所得的余数辨别是5、11、16,合适题目条件,所以这个自然数是17.【例 12】甲、乙、丙三数辨别为603,939,393.某数除甲数所得余数是除乙数所得余数的2倍,除乙数所得余数是除丙数所得余数的2倍.求等于多少?【解析】按照题意,这三个数除以都有余数,则可以用带余除法的形式将它们暗示出来:由于,,要消去余数,,,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:这样余数就处理成相同的.最后两两相减消去余数,意味着能被整除.,,.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以等于17.【巩固】一个自然数除429、791、500所得的余数辨别是、、,求这个自然数和的值.【解析】将这些数转化成被该自然数除后余数为的数:,、,这样这些数被这个自然数除所得的余数都是,故同余.将这三个数相减,得到、,所求的自然数一定是和的条约数,而,所以这个自然数是的约数,显然1是不合适条件的,那么只能是19.经过验证,当这个自然数是时,除、、所得的余数辨别为、、,时成立,所以这个自然数是,.【模块三:余数综合应用】【例 13】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】斐波那契数列的组成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以按照余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【巩固】(2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数辨别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发明这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数.由于,所以前2009个数中,有401个是5的倍数.【例 14】(圣彼得堡数学奥林匹克试题)托玛想了一个正整数,并且求出了它辨别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.【解析】除以3、6和9的余数辨别不超出2,5,8,所以这三个余数的和永远不超出,既然它们的和等于15,所以这三个余数辨别就是2,5,8.所以该数加1后能被3,6,9整除,而,设该数为,则,即(为非零自然数),所以它除以18的余数只能为17.【巩固】(2005年香港圣公会小学数学奥林匹克试题)一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁?【解析】从任意三人岁数之和是3的倍数,100除以3余1,就知四个岁数都是型的数,又是质数.只有7,13,19,31,37,43,就容易看出:父43岁,母37岁,兄13岁,妹7岁.【例 15】(华杯赛试题)如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从孔出发沿着逆时针标的目的,每隔几孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有多少个孔吗?【解析】设想圆圈上的孔已按下面方法编了号:A孔编号为1,然后沿逆时针标的目的顺次编号为2,3,4,…,B孔的编号就是圆圈上的孔数.我们先看每隔2孔跳一步时,小明跳在哪些孔上?很容易看出应在1,4,7,10,…上,也就是说,小明跳到的孔上的编号是3的倍数加1.按题意,小明最后跳到B孔,因此总孔数是3的倍数加1.同样道理,每隔4孔跳一步最后跳到B孔,就意味着总孔数是5的倍数加1;而每隔6孔跳一步最后跳回到A孔,就意味着总孔数是7的倍数.如果将孔数减1,那么得数既是3的倍数也是5的倍数,因而是15的倍数.这个15的倍数加上1 就等于孔数,设孔数为,则(为非零自然数)并且能被7整除.注意15被7除余1,所以被7除余6,15的6倍加1正好被7整除.我们还可以看出,15的其他(小于的7)倍数加1都不克不及被7整除,罢了经大于100.7以上的倍数都不必考虑,因此,总孔数只能是.【巩固】(1997年全国小学数学奥林匹克试题)将依次写到第1997个数字,组成一个1997位数,那么此数除以。
【七年级奥数】第25讲 同余(例题练习)
![【七年级奥数】第25讲 同余(例题练习)](https://img.taocdn.com/s3/m/1f13615fe418964bcf84b9d528ea81c759f52e52.png)
第25讲同余——例题一、第25讲同余1.如果今天是星期日,那么253天后是星期几?【答案】解:大家都知道,如果今天是星期日,那么每7天后,又是星期日.因为253 1(mod7),(即253÷7余1),所以253天后是星期一.在这类问题中,除数(模)7是“周期”,253÷7的商并不重要,重要的是余数1.【解析】【分析】根据除数7是周期,用253除以7得出的余数即可得出答案.2.伸出你的右手,从大拇指开始往下数,1,2,3,4,5,数到小指再往回数(如图),数到大拇指又往回数,如此继续进行下去,问数到2004是在哪-个手指?【答案】解:从任一个手指开始往下数,每数8个数又回到这个手指,所以8就是“周期”.∴2004÷8=250……4,因此数到2004是在无名指.【解析】【分析】这类“周而复始”的问题,关键是找出周期,然后求出整数周期外还剩余多少.3.2017年的元旦是星期日,在这以后的第天是星期几?【答案】解:1993 5 -2(mod7),19933(-2)3=-8 -1(mod7),19936(-1)2=1(mod7).因此应当计算19991997被6除,所得的余数.因为1999 1(mod6),所以199919971(mod6),199315(mod7).因此这一天是星期五.【解析】【分析】因为199361(mod 7),所以19936k1(mod 7),只需求出19991997?(mod 6).这种使a n1(modm)的n是很有用的.可以证明只要a不是7的倍数,一定有a61(mod 7).4.证明:31980+41981被5整除.【答案】证明:∵32=9 -1(mod 5),4 ≡-1(mod 5).∴34(-1)2=1(mod 5).∴31980+41981(34)495+(-1)19811+(-1) 0(mod 5).【解析】【分析】先分别求出9=32,4被5整除的余数,从而得出原式被5整除的余数为0即可得证.5.设x为整数,证明:x20或1(mod 4).【答案】证明:如果x是偶数,那么x2被4整除,即x20(mod 4).如果x是奇数,那么可设x=2n+1,其中n为整数,∴x2=(2n+1)2=4n2+4n+1 1(mod 4).【解析】【分析】根据题意分情况讨论:①若x是偶数,②若x是奇数,再分别计算即可得证.6.整数的平方称为平方数.证明11,111,1111,…中没有平方数.【答案】证明:因为100是4的倍数,所以 3 11 111 1111…(mod 4).∴11,111,1111,…都不是平方数.【解析】【分析】根同余的性质即可得证.7.证明不定方程2x2-5y2=7 ①无整数解.【答案】证明:假设①有整数解.因为7是奇数,所以①式左边也应当是奇数,从而y是奇数.在①的两边mod 4得2x2-5y2-1(mod 4).②由y21(mod 4),所以②即2x20(mod 4),③从而x必为偶数.在①的两边mod 8.因为2x20(mod 8),所以3y27(mod 8).④因为y是奇数,设y=2n+1,则y2=(2n+1)2=4n2+4n+1=4n(n+1)+1.n与n+1中有一个为偶数,4n(n+1)被8整除,所以y21(mod 8),⑤3y23(mod 8).⑥④与⑥矛盾.因此①无整数解.【解析】【分析】先判断奇偶性,即mod2.然后mod 4,最后mod 8.步步深入.为了产生矛盾,我们常常选择不同的模.用质数及其幂为模最为常见.。
同余式的简单介绍
![同余式的简单介绍](https://img.taocdn.com/s3/m/c198b24269eae009581bec9f.png)
关于a x≡b(modm)的解法1.当(a,m)≡1时:(1)若a,b<m,(a,b)=1且模数较大,可取余,将a变小,然后求出解。
eg:121x≡87(m0d257) 因为(121,257)=1,所以有一个解,x=194(mod257)(2)若a,b<m,(a,b)= 1且模数较小,用欧拉公式;eg: 7x≡5(mod10) 因为(7,10)所以有一个解。
(3)若(a,b )=1,且a,b中至少有一个大于m,利用同余知识,将a,b化小再用(1)(2)式去解(4)若(a,b),≠约去两端的公因数;再用(1)(2)(3)式去解。
1Eg:58x≡87(mod47)2当(a,m)=d>1时:用d去除同于式,再用(a,m)=1去解<1>同余取倍法:(期刊-核心期刊和田师专科学校学报)JOURNAL OF HOTAN TEA CHERS COLLEGE 2009年第03期<2>一次同余式的初等变换解法:(山西大学学报:自然科学版)——袁虎延<3>一次同余式的逐级满足法<4>观察法解一次同余式<5>Euler定理解一次同余式<6>把同余式化为不定方程的解法<7>减少模数的方法解一次同余式<8>欧几里得法解一次同余式<9>分式法解一次同余式<10>威尔逊定理算法解一次同余式<下面仔细介绍>代数/数论/组合理论/《.黑龙江科技信息》2008年19期》摘要一次同余式解法的特点及其分析——作者:李婷只讨论(a,m )=1时,同余式ax ≡b(modm)有以下七种解法(一)(1)观察法:在模m 的完全剩余系0,1,、、、,m-1中考虑同余式的解1.,当m 较小时,可用观察法,直接快速的得出方程的解eg 2x ≡1(mod3) 因为(2,3)=1所以有一个解,x ≡2(mod3)为其解2.当系数较大时,可用同余性质 ,将同余式系数减小,而且用带余除法定理,保证系数在一个固定范围内作为模m 的系数,进而用观察法,可快速得到方程的解。
2018最新五年级奥数.数论.余数性质及同余定理(B级).学生版
![2018最新五年级奥数.数论.余数性质及同余定理(B级).学生版](https://img.taocdn.com/s3/m/c25a07a86529647d27285271.png)
知识框架一、带余除法的定义及性质1.定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2.余数的性质⑴被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵余数小于除数.二、余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=余数性质及同余定理2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
小学的奥数同余问题
![小学的奥数同余问题](https://img.taocdn.com/s3/m/8da42f2ba22d7375a417866fb84ae45c3b35c2f2.png)
同余问题一在平时解题中;我们经常会遇到把着眼点放在余数上的问题..如:现在时刻是7时30分;再过52小时是几时几分我们知道一天是24小时;;也就是说52小时里包含两个整天再加上4小时;这样就在7时30分的基础上加上4小时;就是11时30分..很明显这个问题的着眼点是放在余数上了..1. 同余的表达式和特殊符号37和44同除以7;余数都是2;把除数7称作“模7”;37、44对于模7同余..记作:mod7 “”读作同余..一般地;两个整数a和b;除以大于1的自然数m所得的余数相同;就称a、b对于模m同余;记作:2. 同余的性质1每个整数都与自身同余;称为同余的反身性..2若;那么这称作同余的对称性3若;;则这称为同余的传递性4若;;则这称为同余的可加性、可减性称为同余的可乘性5若;则;n为正整数;同余还有一个非常有趣的现象:如果那么的差一定能被k整除这是为什么呢k也就是的公约数;所以有下面我们应用同余的这些性质解题..例题分析例1. 用412、133和257除以一个相同的自然数;所得的余数相同;这个自然数最大是几分析与解答:假设这个自然数是a;因为412、133和257除以a所得的余数相同;所以;;说明a是以上三个数中任意两数差的约数;要求最大是几;就是求这三个差的最大公约数..所以a最大是31..例2. 除以19;余数是几分析与解答:如果把三个数相乘的积求出来再除以19;就太麻烦了;利用同余思想解决就容易了..所以此题应用了同余的可乘性;同余的传递性..例3. 有一个1997位数;它的每个数位都是2;这个数除以13;商的第100位是几最后余数是几分析与解答:这个数除以13;商是有规律的..商是170940六个数循环;那么;即;我们从左向右数“170940”的第4个数就是我们找的那个数“9”;所以商的第100位是9..余数是几呢则所以商的个位数字应是“170940”中的第4个;商应是9;相应的余数是5..模拟试题答题时间:20分钟1. 求下列算式中的余数..1 23 42. 6254与37的积除以7;余数是几3. 如果某数除482;992;1094都余74;这个数是几同余问题二例题分析例1. 除以7;余数是几分析与解答:例2. 一个自然数除以3余2;除以5余3;除以7余1;这个自然数最小是几分析:假设这个自然数为a那么这道题考虑的困难是它们的余数不相同..如果把这道题改一下;使它们的余数相同;利用整除的知识;便容易考虑了;先看下面一道题:一个自然数除以3余2;除以5余2;除以7余2;那么;这个自然数若减去2;便同时是3;5;7的倍数;这样的自然数有:105;210;315;……分别被3;5;7除余2的数是2;107;212;317;……最小的自然数是2..回过头来看刚才的题;能不能把它也变为余数相同的数呢稍加变式;可以写成:这样同时是3;5;7倍数的数有105;210;315;……那么同时被3;5;7余8的数有:8;113;218;323;……其中最小的自然数为8..所以余数是5刘老师说;小明的算法不仅正确;而且巧妙迅速;你知道其中的道理吗分析与解答:看了下面的算式;你就会明白的..小明用的这种方法;有比较广泛的应用;常称之为“拼凑法”在解关于用几除的余数的问题时;常常“拼凑”出显然是几的倍数的部分;对于这部分;简直可以“置之不理”;这样可以使解答过程简化..例4. 除以3的余数是几为什么分析与解答:在上式的加项中;显然可以被3整除;因此只须计算被3除余数是几..由于因此由此可知;只须计算被3除的余数;它又等于被3除的余数..由于;所以所以余数是1模拟试题1. 今天是星期日;再过天又是星期几2. 求除以3所得的余数..3. 某数除680;970和1521;余数相同;这个数最大是几4. 有一列数排成一行;其中第一个数是3;第二个数是7;从第三个数开始;每个数恰好是前两个数的和;那么;第1997个数被3除;余数是几5. 若将一批货物共千克装入纸箱;每箱装10千克;最后余多少千克若每箱装17千克;最后还余多少千克6、1309被一个质数相除;余数是21;求这个质数..7、1796被一个质数相除;余数是24;求这个质数..8、求2001×2000除以7的余数..9、求123×345+234×456除以11的余数..10、有一个大于1的整数;它除1000、1975、2001都得到相同的余数;那么这个整数是多少11、有三个数1989、901和306被同一个自然数除;得到相同的余数;求这个自然数..12、两个自然数相除;商15;余3;被除数、除数、商、余数的和是853;求被除数..8、两数相除商40余7;被除数、除数、余数和商的和是710;求被除数..13、有一个数除以3余1;除以4余2;问这个数除以12;余数是几14、一个数除以5余1;除以6余3;除以7余4;这个数最小是几15、3867×4253=1644□351;求□里的数.. 4937×6845=3379□765;求□里的数..16、两个自然数相除;商8余16;被除数、除数、商与余数的和为265;求除数是多少17、写出除以8所得的商和余数不为0相同的所有的数..18、2002×2002-2001除以9的余数是多少19、当2002和1781除以某一个自然数;余数分别是2和1;那么这个数最大是多少20、一个数除以17的余数是5;被除数扩大2倍;余数是多少21、有一个数;除以3余数是1;除以4余数是3 ..这个数除以12;余数是多少..22、570被一个两位数除;余数是15;这个两位数是多少23、有一个数加上22的和被9除余3;这个数加上35的和被9被余几B组24、有一个整数;用它去除45;53;143得到的3个伤痕的和是20;这个数是多少25、有一个数用它去除100;余数是1;用它去除50;余数是6;求这个数..26、把几十个苹果平均分成若干份;每份9个余8个;每份8个余7个每份4个余3个..这堆苹果共有多少个27、有一个数被5和11整除均余4;被3正好整除;这个数最小是几28、求被4除余2;被6除余2;被9除余5的两位数..29、一个数能被3、5、7整除;若用11去除则余7;这个数最小是几30、小红收数学学习小组买奥数练习本的钱;她只记下四组各交的钱;第一组6.3元;第二组7.7元;第三组6.3元;第四组9.1元;又知道每本练习本价格都超过1角;求数学学习小组共有多少人提示:练习本单价是总价的公约数..31、五年级两个班的学生一起排队出操;如果8人排一行;多出一个人;如果11人排一行;同样多出一个人..这两个班最小共有多少人提示:如果减去一人那么人数就能被8和11整除了..32、一个数被4除余3;被5除余4;被6除余5;这样的数中最小的是几提示:余数与除数有什么关系33、一筐苹果;如果按5个一堆放;最后多出3个;如果按6个一堆放;最后多出4个;如果按7个一堆放;还多出1个;这筐苹果至少有多少个提示:先满足被7除余1;再从中找出被6除余4……竞赛题精选1、若2836;4582;5164;6522四个自然数都被同一个自然数相除;所得余数相同且为两位数;除数和余数的和为 ..2001小学数学奥林匹克试题决赛B卷2、一个自然数除以3余2;除以5余2;除以7余5;除以9余5;除以11余4;则满足这些条件的最小自然数是 ..1996年我爱数学少年冬令营试题3、某数除以11余8;除以13余10;除以17余12;那么这个数的最小可能值是 ..1998年小学数学奥林匹克试题预赛A卷4、一个小于200的数;它除以11余8;除以13余10;那么这个数是 ..1998年小学数学奥林匹克试题预赛B卷5、在一道有余数的除法算式中;被除数、除数;商和余数的和是599;已知商是15;余数是12;请问;题目中的除数是多少厦门实小2000-2001学年第二学期数学科竞赛卷B组同余问题——提高训练1、求437×309×1993被7除的余数..2、求被3除余2;被5除余3;被7除余5的最小三位数.3、分别求满足下列条件的最小自然数1用3除余1;用5除余1;用7除余1..2用3除余2;用5除余1;用7除余1..3用3除余1;用5除余2;用7除余2..4、有一个整数;除300、262、205得到相同的余数.这个整数是几5、今天是星期四;过14389天后是星期几6.试一试:粮库有717千克大米;用每袋50千克的袋子装;最后余下多少千克7、数2001;2232除以整数n;得到相同的余数;而且这个余数是合数;求n.8、用一个自然数去除715和903所得余数相同;且商相差4.求这个数.9、若2836;4582;5146;6522四个自然数被一个自然数相除;所得余数相同且为两位数;除数和余数的和为多少10、有三个不同的三位数;它们分别除以a ;得到的余数相同而且是最大二位偶数;当a为两位数时;这三个数最小的和是多少11、某年级有将近400名学生..有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列;结果还是多余1人;聪名的你知道该年级共有学生多少名吗12、希望小学六年级和五年级去春游;每辆车可乘36人.六年级先坐满几车;剩下的16人与五年级坐满一车;五年级又坐满若干车.到达目的地后;每一个五年级的学生和每一个六年级学生合影一张;每个胶卷可拍36张.全部学生照相完毕;最后一个胶卷还剩几张未拍13、甲、乙、丙、丁四个学校分别有69人、85人、93人、97人旅行.现在要把这四校学生分别进行分组;并使每组的人数尽可能多;以便乘车参观游览.已知甲、乙、丙三个学校分组后;所剩的人数相同;问丁校分组后还剩下几个人14、试一试:乐乐玩具店有大小相同的红、蓝、黄、绿四种颜色的小球各344个、277个、411个和555个.现在要用一种精致的小盒分别去装这些小球;每只盒子里装的小球同样多.真巧剩下的红、蓝、黄三色小球也恰好同样多.小剩下的绿球有多少个15、计算机录入员平均每分钟可以输入72个汉字;输入一篇有X679Y个汉字的文章所用的分钟数恰好是整数;求五位数X679Y..。
小学奥数教程:同余问题_全国通用(含答案)
![小学奥数教程:同余问题_全国通用(含答案)](https://img.taocdn.com/s3/m/97482e486c175f0e7dd1371b.png)
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711-()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题 【难度】1星 【题型】解答【解析】 (法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12例题精讲知识点拨教学目标5-5-3.同余问题【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
小学奥数之 同余问题(含详细解析)
![小学奥数之 同余问题(含详细解析)](https://img.taocdn.com/s3/m/3fd5f3e2aaea998fcc220ecc.png)
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,(12,108)12-=,14739108=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五讲* 同余式数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯.先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜?取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜.在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以2000年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用.同余,顾名思义,就是余数相同.定义1给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作a≡b(modm),并读作a同余b,模m.若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以 a-b=m(q1-q2),即 m|a-b.反之,若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2.于是,我们得到同余的另一个等价定义:定义2若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.同余式的写法,使我们联想起等式.其实同余式和代数等式有一些相同的性质,最简单的就是下面的定理1.定理1 (1)a≡a(modm).(2) 若a≡b(modm),则b≡a(modm).(3) 若a≡b(modm),b≡c(modm),则a≡c(modm).在代数中,等式可以相加、相减和相乘,同样的规则对同余式也成立.定理2若a≡b(modm),c≡d(modm),则a±c≡b±d(modm),ac≡bd(modm).证由假设得m|a-b,m|c-d,所以m|(a±c)-(b±d), m|c(a-b)+b(c-d),即a±c≡b±d(modm),ac≡bd(modm).由此我们还可以得到:若a≡b(modm),k是整数,n是自然数,则a±k≡b±k(modm),ak≡bk(modm),a n≡b n(modm).对于同余式ac≡bc(modm),我们是否能约去公约数c,得到一个正确的同余式a≡b(modm)?在这个问题上,同余式与等式是不同的.例如25≡5(mod 10),约去5得5≡1(mod 10).这显然是不正确的.但下面这种情形,相约是可以的.定理3若ac≡bc(modm),且(c,m)=1,则a≡b(modm).证由题设知ac-bc=(a-b)c=mk.由于(m,c)=1,故m|a-b,即a≡b(modm).定理4若n≥2,a≡b(modm1),a≡b(modm2),…………a≡b(modm n),且M=[m1,m2,…,m n]表示m1,m2,…,m n的最小公倍数,则a≡b(modM).前面介绍了同余式的一些基本内容,下面运用同余这一工具去解决一些具体问题.应用同余式的性质可以简捷地处理一些整除问题.若要证明m整除a,只需证a≡0(modm)即可.例1求证:(1)8|(551999+17);(2) 8(32n+7);(3)17|(191000-1).证 (1)因55≡-1(mod 8),所以551999≡-1(mod 8),551999+17≡-1+17=16≡0(mod 8),于是8|(551999+17).(2)32=9≡1(mod 8),32n≡1(mod 8),所以32n+7≡1+7≡0(mod 8),即8|(32n+7).(3)19≡2(mod 17),194≡24=16≡-1(mod 17),所以191000=(194)250≡(-1)250≡1(mod 17),于是17|(191000-1).例2求使2n-1为7的倍数的所有正整数n.解因为23≡8≡1(mod 7),所以对n按模3进行分类讨论.(1) 若n=3k,则2n-1=(23)k-1=8k-1≡1k-1=0(mod 7);(2) 若n=3k+1,则2n-1=2·(23)k-1=2·8k-1≡2·1k-1=1(mod 7);(3) 若n=3k+2,则2n-1=22·(23)k-1=4·8k-1≡4·1k-1=3(mod 7).所以,当且仅当3|n时,2n-1为7的倍数.例3 对任意的自然数n,证明A=2903n-803n-464n+261n能被1897整除.证 1897=7×271,7与271互质.因为2903≡5(mod 7),803≡5(mod 7),464≡2(mod 7),261≡2(mod 7),所以A=2903n-803n-464n+261n≡5n-5n-2n+2n=0(mod 7),故7|A.又因为2903≡193(mod 271),803≡261(mod 271),464≡193(mod 271),所以故271|A.因(7,271)=1,所以1897整除A.例4把1,2,3…,127,128这128个数任意排列为a1,a2,…,a128,计算出|a1-a2|,|a3-a4|,…,|a127-a128|,再将这64个数任意排列为b1,b2,…,b64,计算|b1-b2|,|b3-b4|,…,|b63-b64|.如此继续下去,最后得到一个数x,问x是奇数还是偶数?解因为对于一个整数a,有|a|≡a(mod 2), a≡-a(mod 2),所以b1+b2+…+b64=|a1-a2|+|a3-a4|+…+|a127-a128|≡a1-a2+a3-a4+…+a127-a128≡a1+a2+a3+a4+…+a127+a128(mod 2),因此,每经过一次“运算”,这些数的和的奇偶性是不改变的.最终得到的一个数x≡a1+a2+…+a128=1+2+…+128=64×129≡0(mod 2),故x是偶数.如果要求一个整数除以某个正整数的余数,同余是一个有力的工具.另外,求一个数的末位数字就是求这个数除以10的余数,求一个数的末两位数字就是求这个数除以100的余数.例5求证:一个十进制数被9除的余数等于它的各位数字之和被9除的余数.10≡1(mod 9),故对任何整数k≥1,有10k≡1k=1(mod 9).因此即A被9除的余数等于它的各位数字之和被9除的余数.说明 (1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.例6 任意平方数除以4余数为0和1(这是平方数的重要特征).证因为奇数2=(2k+1)2=4k2+4k+1≡1(mod 4),偶数2=(2k)2=4k2≡0(mod 4),所以例7任意平方数除以8余数为0,1,4(这是平方数的又一重要特征).证奇数可以表示为2k+1,从而奇数2=4k2+4k+1=4k(k+1)+1.因为两个连续整数k,k+1中必有偶数,所以4k(k+1)是8的倍数,从而奇数2=8t+1≡1(mod 8),偶数2=(2k)2=4k2(k为整数).(1)若k=偶数=2t,则4k2=16t2=0(mod 8).(2)若k=奇数=2t+1,则4k2=4(2t+1)2=16(t2+t)+4≡4(mod 8),所以求余数是同余的基本问题.在这种问题中,先求出与±1同余的数是一种基本的解题技巧.例8 (1)求33除21998的余数.(2)求8除72n+1-1的余数.解 (1)先找与±1(mod 33)同余的数.因为25=32≡-1(mod 33),所以 210≡1(mod 33),21998=(210)199·25·23≡-8≡25(mod 33),所求余数为25.(2)因为7≡-1(mod 8),所以72n+1≡(-1)2n+1=-1(mod 8),72n+1-1≡-2≡6(mod 8),即余数为6.例9形如F n=22n+1,n=0,1,2,…的数称为费马数.证明:当n≥2时,F n的末位数字是7.证当n≥2时,2n是4的倍数,故令2n=4t.于是F n=22n+1=24t+1=16t+1≡6t+1≡7(mod 10),即F n的末位数字是7.说明费马数的头几个是F0=3,F1=5,F2=17,F3=257,F4=65537,它们都是素数.费马便猜测:对所有的自然数n,F n都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数F5是合数.证明F5是合数,留作练习.利用同余还可以处理一些不定方程问题.例10证明方程x4+y4+2=5z没有整数解.证对于任一整数x,以5为模,有x≡0,±1,±2(mod 5),x2≡0,1,4(mod 5),x4≡0,1,1(mod 5),即对任一整数x,x4≡0,1(mod 5).同样,对于任一整数yy4≡0,1(mod 5),所以 x4+y4+2≡2,3,4(mod 5),从而所给方程无整数解.说明同余是处理不定方程的基本方法,但这种方法也非常灵活,关键在于确定所取的模(本例我们取模5),这往往应根据问题的特点来确定.练习二十五1.求证:17|(191000-1).2.证明:对所有自然数n,330|(62n-52n-11).4.求21000除以13的余数.5.求15+25+35+…+995+1005除以4所得的余数.6.今天是星期天,过3100天是星期几?再过51998天又是星期几?7.求n=1×3×5×7×…×1999的末三位数字.8.证明不定方程x2+y2-8z=6无整数解.[文章来源:教师之家/转载请保留出处][相关优质课视频请访问:教学视频网/]。