2017年四川省攀枝花市中考数学试卷(含答案)
2017年中考数学真题试题与答案(word版)
XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
四川省攀枝花市中考数学试卷
四川省攀枝花市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) ||的相反数是()A .B .C . 3D . -32. (2分)(2019·广东模拟) 下列计算正确的是()A . b3·b3=2b3B . (-2a)2=4a2C . (a+b)2=a2+b2D . (x+2)(x-2)=x2-23. (2分)(2016·北仑模拟) 据初步统计,2015年北仑区实现地区生产总值(GDP)约为1134.6亿元.其中1134.6亿元用科学记数法表示为()A . 1134.6×108元B . 11.346×1010元C . 1.1346×1011元D . 1.1346×1012元4. (2分)(2017·泰兴模拟) 如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A .B .C .D .5. (2分) (2018八上·西华期末) 若一个三角形两边长分别是3、7,则第三边长可能是()A . 4B . 8C . 10D . 116. (2分)(2019·凉山) 某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A . 17,8.5B . 17,9C . 8,9D . 8,8.57. (2分) (2017九上·潮阳月考) 一元二次方程的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个相等的实数根D . 没有实数根8. (2分)(2017·滨海模拟) 函数y= 的图象经过点(﹣,2),则函数y=kx﹣2的图象不经过第几象限()A . 一B . 二C . 三D . 四二、填空题 (共8题;共8分)9. (1分)分解因式:x2﹣(x﹣3)2=________.10. (1分)(2019·银川模拟) 在一次信息技术考试中,某兴趣小组9名同学的成绩(单位:分)分别是:7,10,9,8,10,7,9,9,8,则这组数据的中位数是________.11. (1分) (2017八下·江苏期中) 关于x的方程的解是正数,则a的取值范围是________.12. (1分)(2018·宁夏模拟) 正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为________.13. (1分)(2012·辽阳) 不等式组的解集是________.14. (1分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是________.15. (1分) (2018九上·灌阳期中) 如图,l1∥l2∥l3 ,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,若DF=10,则DE=________.16. (1分) (2016七上·太康期末) 如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.解:因为EF∥AD,所以∠2=________(________).又因为∠1=∠2,所以∠1=∠3(________).所以AB∥________(________).所以∠BAC+________=180°(________).因为∠BAC=80°,所以∠AGD=________.三、解答题 (共11题;共107分)17. (10分) (2020八上·洛宁期末) 计算(1)(2)18. (5分)(2017·莒县模拟) 计算题(1)计算:4sin60°+|3﹣ |﹣()﹣1+(π﹣2017)0.(2)先化简,再求值:(﹣1)÷ ,其中x的值从不等式组的整数解中任选一个.19. (5分) (2017八上·济南期末) 某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A 商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?20. (5分) (2019八下·江苏月考) 已知:如图,矩形的对角线相交于点O,,交的延长线于点E.求证: .21. (11分) (2019九下·河南月考) 学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1) ________, ________.(2)该调查统计数据的中位数是________,众数是________.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.22. (10分)(2017·和县模拟) 如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是________.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率.23. (10分)已知的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-2,3)(1)请直接写出点A关于y轴对称的点A的坐标;(2)将绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点B的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.24. (10分) (2018九上·宁波期中) 如图,⨀O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⨀O于点D.(1)求∠ADC的度数;(2)求弦BD的长.25. (15分)(2019·长春模拟) 如图,已知直线y=﹣ x+3与x轴、y轴分别相交于点A、B,再将△A0B 沿直钱CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.(1)点A的坐标为________;点B的坐标为________;(2)求OC的长度,并求出此时直线BC的表达式;(3)直线BC上是否存在一点M,使得△ABM的面积与△ABO的面积相等?若存在,请直接写出点M的坐标;若不存在,请说明理由.26. (15分)(2020·长宁模拟) 如图,已知在Rt△ABC中,∠C=90°,AC=8,BC=6,点P、Q分别在边AC、射线CB上,且AP=CQ ,过点P作PM⊥AB ,垂足为点M ,联结PQ ,以PM、PQ为邻边作平行四边形PQNM ,设AP=x ,平行四边形PQNM的面积为y .(1)当平行四边形PQNM为矩形时,求∠PQM的正切值;(2)当点N在△ABC内,求y关于x的函数解析式,并写出它的定义域;(3)当过点P且平行于BC的直线经过平行四边形PQNM一边的中点时,直接写出x的值.27. (11分)(2017·岳阳模拟) 解答题(1)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是________,∠CAC′=________°.(2)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(3)如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF 于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4、答案:略5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14、答案:略15-1、16-1、三、解答题 (共11题;共107分)17-1、17-2、18-1、18-2、19-1、20-1、21、答案:略22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。
攀枝花2017中考数学模拟试题及答案
2017年攀枝花中考数学模拟试题一、选择题(共10小题,每题3分,共30分) 1.√64的平方根为()A. 2√2B. +2√2C. 8D. +8 2.下列的几何图形中,一定是轴对称图形的有()A. 5个B. 4个C. 3个D. 2个3.分式W ÷(2x 2−1+1x+1)=2则W 为()A.x+1B. 2x+1 C. 2x−1 D.x-1 4. 如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF∥AB ,则EF 的长度为()A .2 B..第4题 第5题 第6题5.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面B 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan 36°≈0.73)( )圆弧 角 扇形 菱形 等腰梯形A .25.5米B .19.7米C .17.2米D .8.1米6.如图,△ABC 与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC 与△A′B′C′的面积比为( ) A .25:9B .5:3C .√5:√3D .5:37.图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟 面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分。
如图(十七), 若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分?A .3322-B . +16C .18D .19 8.已知2001年至2012年四川省小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定; ②在校学生人数有两次连续下降,两次连续增长的变化过程; ③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是( )9. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀 速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点 同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面 积大小变化情况是 A. 一直增大 B. 一直减小C. 先减小后增大D. 先增大后减小10. 已知二次函数的图象如图所示,记,.则下列选项正确的是( )A .B .C .D .m 、n 的大小关系不能确定二、填空题(共6小题,每题4分,共24分)11.康师傅方便面2016年全年销售额为388000万美元,销售额用科学记数法表示为___________。
四川省攀枝花市2017年中考数学真题试题(含扫描答案)
2017年四川省攀枝花市中考数学试题(本试卷满分120分,考试时间120分钟)第I卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分•在每小题给出的四个选项中,只有一项是符合题目要求的)1. (2017四川省攀枝花市,第1题,3分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A. 6.7 106B. 6.7 10占C. 6.7 105D. 0.67 1072. (2017四川省攀枝花市,第2题,3分)下列计算正确的是()A. 32=9B. (a—b)2=a2—b2C. (a3)4二a12D. a2a3二a63. (2017四川省攀枝花市,第3题,3分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果/ 1=33°,那么/ 2为()A. 33°B. 57°C. 67°D. 60°4. (2017四川省攀枝花市,第4题,3分)某篮球队10名队员的年龄如下表所示:年龄(岁)18192021人数2431则这10名队员年龄的众数和中位数分别是()A. 19 , 19B. 19 , 19.5C. 20 , 19D. 20 , 19.55. (2017四川省攀枝花市,第5题,3分)如图是每个面上都有一个汉字的正方体的一种表面展开图, 那么在这个正方体的表面,与“我”相对的面上的汉字是()则实数m 的取值范围是()A .真命题的逆命题都是真命题B. 在同圆或等圆中,同弦或等弦所对的圆周角相等C. 等腰三角形的高线、中线、角平分线互相重合D. 对角线相等且互相平分的四边形是矩形B. —次函数y=ax +c 的图象不经第四象限C. m ( am+b ) +b v a (m 是任意实数)D. 3b+2c >0 10. (2017四川省攀枝花市,第10题,3分)如图,正方形 ABC 中.点E , F 分别在BC, CDh ,^ AEF是等边三角形.连接 AC 交 EF 于点G.过点G 乍GH L CE 于点H •若S.E G H =3,则S ADF =()A .花 B.是 C.攀 D.家6. (2017四川省攀枝花市,第 6题,3分)关于x 的一元二次方程2(m-1)x -2x-1=0有两个实数根,A . m> 0 B. m> 0 C. m > 0且 m^ 1 D. m > 0 且 m^ 17. (2017四川省攀枝花市,第 7题,3分)下列说法正确的是& (2017四川省攀枝花市,第 8题,3分)如图,△ ABC 内接于O O, / A= 60 ,BC=6..3,则 BC 的A . 2 nB . 4 nC. 8 nD. 12 n9. (2017四川省攀枝花市,第9题,3分)二次函数 y =ax 2 • bx • c (0)的图象如图所示,则下长为()4 C. 3 D. 2第n卷(非选择题共90分)二、填空题(本大题共6小题, 每小题4分, 共24分,请把答案填在题中的横线上)11. (2017四川省攀枝花市,第11题,4分) 函数y =.、迄厂1中自变量x的取值范围为12.(2017四川省攀枝花市,第12题,4分) 一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到红球的概率是13. (2017四川省攀枝花市,第13题,4分)计算: (3F0_后(2)U卜14. (2017四川省攀枝花市,第14题,4分)若关于x的分式方程—• 3二mX无解,则实数X—1 X — 1m=15. (2017四川省攀枝花市,第15题,4分)如图, D是等边△ AB(边A吐的点,AD=2 DB=4现将△AB(折叠,使得点C与点D重合, 折痕为EF,且点E、F分别在边AC和BQh,则空CE16. (2017四川省攀枝花市,第16题,4分)如图1 , E为矩形ABC啲边AE上一点,点P从点B出发沿折线BE-ED-DC运动到点C亭止,点C从点B出发沿BC!动到点C停止,它们运动的速度都是1cm/s .若点P、点0同时开始运动,设运动时间为t ( s) , △ BPQ勺面积为y ( cm2),已知y与t之间的函数图象如图2所示.D给出下列结论:①当O v t < 10时,△ BP(是等腰三角形;② S ABE=48cm2;③当14V t V22时,y=110-5t :④在运动过程中,使得△ ABP是等腰三角形的P点一共有3个;⑤厶BP(与△ ABEf似时,t=14.5 .其中正确结论的序号是_________ .三、解答题(本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤)17. (2017四川省攀枝花市,第17题,6分)2 x2 _1先化简,再求值:(1 ———厂——,其中x=2 .x+1 x2+x18. (2017四川省攀枝花市,第18题,6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A, B, C, D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有__ 名;(2)在扇形统计图中,m的值为____ ,表示“ D等级”的扇形的圆心角为 _____ ;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19. (2017四川省攀枝花市,第19题,6分)如图,在平行四边形ABCD中,AE± BC C F丄AD,垂足分别为E, F, AE, CF分别与BD交于点G和H,且AB=2'、5 .(1)若tan / ABE =2,求CF 的长;(2)求证:BG=DH4 _______ £__ p20. (2017四川省攀枝花市,第20题,8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了I箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21. (2017四川省攀枝花市,第21题,8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD勺对称中心.边AB与x轴平行,点B (1 , -2 ),k反比例函数y ( k工0)的图象经过A, C两点.x(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O, C, E为顶点的三角形的面积.22. (2017四川省攀枝花市,第22题,8分)如图,△ ABC中,以BC为直径的O O交AB于点D, AE平分/ BAC交BC于点E,交CD于点F.且CE=CF (1)求证:直线CA是O O的切线;4 DF(2)若BD=^DC,求竺的值.3 CF23. (2017四川省攀枝花市,第23题,12 分) 如图1,在平面直角坐标系中,,直线MN分别与x轴、y轴交于点M(6, 0) , N(0, 2灵),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边厶ABC从图I的位置沿x轴正方向以每秒I个单位长度的速度平移,边AB, AC分别与线段MN交于点E,F (如图2所示),设△ ABC平移的时间为t(s).(1)等边△ ABC的边长为_______ ;(2)在运动过程中,当t= _______ 时,MN垂直平分AB;(3)若在△ ABC开始平移的同时.点P从厶ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA-AC 运动.当点P运动到C时即停止运动.△ ABC也随之停止平移.①当点P在线段BA上运动时,若△ PEF与A MNOW似.求t的值;②当点P在线段AC上运动时,设S.PEF=S,求S与t的函数关系式,并求出S的最大值及此时点24. (2017四川省攀枝花市,第24题,12分)如图,抛物线y =x2,bx与x轴交于A, B两点,B点坐标为(3, 0).与y轴交于点C (0, 3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△ BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△ BCD是锐角三角形,求点D的纵坐标的取值范围.答案m率枝花市2017年赢中阶段敦育学校圾一衲生考试14■37S9Ula D E El >• A【詹宾】杠邑工芳月稈学记牧fit农不较大的数・6 700000*ft - 1 W0 000-5,7X10* T&选A+A* dX 10'.* 申IE P I VI O M 为螯虬2 c 式静*fl关计韓用口即血一檢仁□* — 2oi—* . £=占*B J =a1*1"a1*所WKWCZ«-a<C3-B W極H■写逢“三介挹写平行故的棕會应用.TZI-iT.二2了 =旳'一三】-»0*-33* = S7*t叮宜尺的曲边互^¥H,*\Z2-Z3-S7\故选B.四用戟苧•琴30 -< A【解祈】本邀韦査汰数和中位数的覆念"现察统计表,19岁出现了*次,次数Jtt多,因而众數捷19 H0个: 数中4t于中闾位置的购个数都是旧,因而中低数挞:19,啟选A.5.D【解析14:議考査正方体的表面廉开图"正方体的:翹面展开图中处于閒一行上的正方形,栩隔一个小正方形的面亠定晶对面•由图形可知与“攀”字相对的宇i 屋1花r.导”枝”字相对的字是"是”.故与“我"字相对1 的字£“家”,故选D.數皓于疆正方怀的表面展畀囲的特盍是鮮题妁戋*t6.C【解析】本题考査一元二次方程中字M系数取俄范圉的确定「・*关于工的一元二次方程(枷一— 2工一j 1=0右两牛实數且心匸厂一4X(wt- 1)X(—1)^0.m>0 M Fn^lr-Fn 曲耿值范tH 处心。
最新四川省攀枝花中考数学试卷(解析版)及答案.docx
攀枝花市中考数学试题一、选择题:本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中只有一项是符合题目要求的。
1、( 1)2等于()A 、1B 、1C、2D、2答案: B考点:乘方运算。
解析:(- 1)2=(-1)×(-1)= 12、在0 ,1, 2 , 3 这四个数中,绝对值最小的数是()A 、0B、1C、2D、3答案: A考点:实数的绝对值。
解析:| 0|= 0,|- 1|= 1,| 2|= 2,|- 3|= 3显然 0 最小,所以,选 A 。
3、用四舍五入法将130542精确到千位,正确的是()A 、131000B 、0.131106C、1.31105D、13.1104答案: C (A 答案是精确到个位,所以错误)考点:科学记数法。
解析:把一个数表示成 a 与 10 的 n 次幂相乘的形式(1≤a<10,n 为整数),这种记数法叫做科学记数法。
所以, 130542= 1.30542× 105,又精确到千位,所以,130542 = 1.30542×105≈ 1.31×1054、下列运算正确的是()A 、3a22a2a2B 、(2a)22a2C、(a b)2a2b2 D 、2(a 1)2a 1答案: A考点:整式的运算。
解析:合并同类项,可知, A 正确;B、错误,因为(2a) 24a2C 错误,因为(a b)2a22ab b2D 错误,因为2(a 1)2a25、如图 , AB∥CD , AD CD , 1 50 ,则 2 的度数是()A 、55B、60C、65D、70A2B1C D答案: C考点:两直线平行的性质。
解析:因为 AD = CD,所以,∠ DCA=1(18050 ) =65°,2又因为 AB ∥CD,,所以,∠ 2=∠ DCA= 65°,选 C。
6、下列说法错误的是()A 、平行四边形的对边相等B、对角线相等的四边形是矩形C、对角线互相垂直的平行四边形是菱形D、正方形既是轴对称图形、又是中心对称图形答案: B考点:特殊四边形的性质。
中考数学专题09三角形(第03期)-2017年中考数学试题分项版解析汇编(原卷版)
一、选择题目1.(2017四川省南充市)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .1) C .D .(1)2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .23B .56C .1D .763.(2017四川省眉山市)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺4.(2017四川省绵阳市)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距离旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m5.(2017四川省绵阳市)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=AEO =120°,则FC 的长度为( )A .1B .2 CD6.(2017四川省绵阳市)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF 的值为( )A .12 BC .23 D7.(2017山东省枣庄市)如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .8.(2017山东省枣庄市)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A .15B .30C .45D .609.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( )A.r << Br << C5r << D.5r <<10.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 1211.(2017广西四市)如图,△ABC 中,∠A =60°,∠B =40°,则∠C 等于( )A .100°B .80°C .60°D .40°12.(2017广西四市)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC 13.(2017广西四市)如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )A .60√3nmileB .60√2nmileC . 30√3nmileD .30√2nmile14.(2017江苏省连云港市)如图,已知△ABC ∽△DEF ,DE =1:2,则下列等式一定成立的是( )A.12BCDF B.12AD∠的度数∠的度数C.12ABCDEF△的面积△的面积D.12ABCDEF△的周长△的周长15.(2017河北省)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B 的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变16.(2017河北省)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()A. B. C. D.17.(2017浙江省台州市)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2B.3C D.418.(2017浙江省台州市)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE 19.(2017浙江省绍兴市)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米20.(2017浙江省绍兴市)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF =∠AFC ,∠F AE =∠FEA .若∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .24°21.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .822.(2017湖北省襄阳市)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .623.(2017重庆市B 卷)已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为( ) A .1:4 B .4:1 C .1:2 D .2:124.(2017重庆市B 卷)如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1:2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米 二、填空题目25.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③222222DE BG a b +=+,其中正确结论是(填序号)26.(2017四川省广安市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8,D 、E 分别为AC 、AB 的中点,连接DE ,则△ADE 的面积是 .27.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .28.(2017四川省绵阳市)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA =5,AB =6,AB =1:3,则MD +12MA DN 的最小值为 .29.(2017四川省绵阳市)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112,则1tan ∠ACH的值是 .30.(2017四川省达州市)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 .31.(2017山东省枣庄市)在矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∠BED 的角平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC = .(结果保留根号)32.(2017山西省)如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .33.(2017山西省)如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为米(结果保留一位小数.参考数据:sin 540.8090=,cos540.5878=,tan 54 1.3764=).34.(2017江苏省盐城市)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.35.(2017江苏省连云港市)如图,已知等边三角形OAB 与反比例函数ky x(k >0,x >0)的图象交于A 、B 两点,将△OAB 沿直线OB 翻折,得到△OCB ,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC 的值为 .(已知sin15624)36.(2017河北省)如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM =AC ,BN =BC ,测得MN =200m ,则A ,B 间的距离为 m .37.(2017浙江省丽水市)等腰三角形的一个内角为100°,则顶角的度数是 .38.(2017浙江省丽水市)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形I J KL 的边长为2,且I J ∥AB ,则正方形EFGH 的边长为.39.(2017浙江省绍兴市)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.40.(2017浙江省绍兴市)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB、AC各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为.41.(2017湖北省襄阳市)在半径为1的⊙O中,弦AB、AC的长分别为1,则∠BAC的度数为.42.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.三、解答题43.(2017四川省南充市)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.44.(2017四川省广安市)如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE.45.(2017四川省广安市)如图,线段AB、CD分别表示甲乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米(1)求甲、乙两建筑物之间的距离AD.(2)求乙建筑物的高CD.46.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.47.(2017四川省眉山市)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.48.(2017四川省眉山市)如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.49.(2017四川省眉山市)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G 为CD 的中点,求HGGF 的值.50.(2017四川省绵阳市)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ;(2)连接DF ,若cos ∠DF A =45,AN=,求圆O 的直径的长度.51.(2017四川省达州市)如图,在△ABC 中,点O 是边AC 上一个动点,过点O 作直线EF ∥BC 分别交∠ACB 、外角∠ACD 的平分线于点E 、F . (1)若CE =8,CF =6,求OC 的长;(2)连接AE 、AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.52.(2017四川省达州市)如图,信号塔PQ 座落在坡度i =1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ 落在斜坡上的影子QN 长为25米,落在警示牌上的影子MN 长为3米,求信号塔PQ 的高.(结果不取近似值)53.(2017四川省达州市)如图,△ABC 内接于⊙O ,CD 平分∠ACB 交⊙O 于D ,过点D 作PQ ∥AB 分别交CA 、CB 延长线于P 、Q ,连接BD . (1)求证:PQ 是⊙O 的切线; (2)求证:BD 2=AC •BQ ;(3)若AC 、BQ 的长是关于x 的方程4x mx +=的两实根,且tan ∠PCD =13,求⊙O 的半径.54.(2017山东省枣庄市)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.55.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.56.(2017山西省)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.57.(2017山西省)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.58.(2017广东省)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.59.(2017广东省)如图,在平面直角坐标系中,抛物线b ax x y ++-=2交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线b ax x y ++-=2的解析式; (2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin ∠OCB 的值.60.(2017广东省)如图,AB 是⊙O 的直径,AB=E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)61.(2017广东省)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C(0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF . (1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DEDB②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.62.(2017广西四市)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF . (1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形AB CD 的面积.63.(2017江苏省连云港市)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB .AC 上,且AD =AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .64.(2017江苏省连云港市)如图,湿地景区岸边有三个观景台A 、B 、C ,已知AB =1400米,AC =1000米,B 点位于A 点的南偏西60.7°方向,C 点位于A 点的南偏东66.1°方向. (1)求△ABC 的面积;(2)景区规划在线段BC 的中点D 处修建一个湖心亭,并修建观景栈道AD ,试求A 、D 间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,c os60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41≈1.414).65.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A=43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan ∠A tan A =3:2时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留).66.(2017浙江省丽水市)如图是某小区的一个健身器材,已知BC =0.15m ,AB =2.70m ,∠BOD =70°,求端点A 到地面CD 的距离(精确到0.1m ).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)67.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.68.(2017浙江省丽水市)如图1,在△ABC 中,∠A =30°,点P 从点A 出发以2c m /s 的速度沿折线A ﹣C ﹣B 运动,点Q 从点A 出发以a (c m /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.69.(2017浙江省丽水市)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设ADn AE .(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ADAB 的值;(3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.70.(2017浙江省台州市)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,已知小汽车车门宽AO 为1.2米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)71.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.72.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹); (2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?73.(2017浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18°,教学楼底部B 的俯角为20°,量得实验楼与教学楼之间的距离AB =30m . (1)求∠BCD 的度数.(2)求教学楼的高BD .(结果精确到0.1m ,参考数据:tan20°≈0.36,tan18°≈0.32)74.(2017浙江省绍兴市)已知△ABC ,AB =AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD =AE ,设∠BAD =α,∠CDE =β.(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果∠ABC =60°,∠ADE =70°, 那么α=_______,β=_______. ②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.75.(2017重庆市B 卷)如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数ky x(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC=cos ∠ACH,点B 的坐标为(4,n )(1)求该反比例函数和一次函数的解析式; (2)求△BCH 的面积.76.(2017重庆市B 卷)如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE . (1)如图1,若AB =42,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF ,当AF =DF 时,求证:DC =BC .祝你考试成功!祝你考试成功!。
2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)
2017年四川省各市中考数学试题汇编(1)(含参考答案)(word版,9份)目录1.四川省成都市中考数学试题及参考答案 (2)2.四川省攀枝花市中考数学试题及参考答案 (15)3.四川省自贡市中考数学试题及参考答案 (36)4.四川省泸州市中考数学试题及参考答案 (53)5.四川省宜宾市中考数学试题及参考答案 (70)6.四川省绵阳市中考数学试题及参考答案 (87)7.四川省眉山市中考数学试题及参考答案 (109)8.四川省南充市中考数学试题及参考答案 (125)9.四川省达州市中考数学试题及参考答案 (136)2017年四川省成都市中考数学试题及参考答案A 卷(共100分)一、选择题(本大题共10 个小题,每小题3 分,共30 分).1. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上010C 记作010C +,则03C -表示气温为 ( ) A.零上03C B.零下03C C.零上07C D.零下07C2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D.3. 总投资647 亿元的西域高铁预计2017 年11月竣工,届时成都到西安只需3 小时,上午游武侯区,晚上看大雁塔将成为现实.用科学计数法表示647 亿元为( )A.864710⨯B.96.4710⨯C.106.4710⨯D. 116.4710⨯4. x 的取值范围是( )A.1x ≥B. 1x >C. 1x ≤D.1x < 5. 下列图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.6. 下列计算正确的是 ( )A.5510a a a +=B. 76a a a ÷=C. 326a a a =D.()236aa -=-7. 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70 分,70 分B.80 分,80 分C. 70 分,80 分D.80 分,70 分 8. 如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A. 4:9B. 2:5C. 2:3 9. 已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.-1 B. 0 C. 1 D.210. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A. 20,40abc b ac <-> B.20,40abc b ac >-> C. 20,40abc b ac <-< D.20,40abc b ac >-< 二、填空题(本大题共4 个小题,每小题4 分,共16 分).11.)1=________________.12. 在ABC ∆中,::2:3:4A B C ∠∠∠=,则A ∠的度数为______________.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y2y .(填“>”或“<”)14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .三、解答题(本大题共6 个小题,共54 分)15.(12112sin 452-⎛⎫+ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 16.化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中1x = .17. 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求,B C 两地的距离.19. 如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数ky x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若AE 为H 的中点,求EFFD的值; (3)若1EA EF ==,求圆O 的半径.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分) 21. 如图,数轴上点A 表示的实数是_____________.22.已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________. 23.已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P =______________.24.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫'⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若AB =k =____________.25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =_____________cm .二、解答题(共3个小题 ,共30分)26. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数, 其关系如下表:(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 27.问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC ⊥于点D ,则D 为BC的中点,01602BAD BAC ∠=∠=,于是2BC BD AB AB== 迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC ADE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆;② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,0120BAC ∠=,在ABC ∠内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接,CE CF . ① 证明:CEF ∆是等边三角形; ② 若5,2AE CE ==,求BF 的长.28.如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,AB =(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形,若能,求出m 的值;若不能,请说明理由.试卷答案A 卷一、选择题1-5:BCCAD 6-10: BCADB. 二、填空题11. 1; 12. 40°; 13. <; 14. 15. 三、解答题15.(1)解:原式1241432-⨯+=-= (2)解:①可化简为:2733x x -<-,4x -<,∴4x >-; ②可化简为:213x ≤-,∴1x ≤- ∴ 不等式的解集为41x -<≤-. 16.解:原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++,当1x =时,原式=. 17.解:(1)50,360;(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==. 18.解:过点B 作BD AC ⊥,由题060,4BAD AB ∠==,∴0cos602AD AB ==,∵0145∠=, ∴045CBD ∠=,∴BD CD =,∵0sin 60BD AB ==∴CD =∴0cos 45BC BD ==19.解:(1)把(),2A a -代入12y x =,4a ⇒=-, ∴()4,2A --, 把()4,2A --代入ky x=,8k ⇒=, ∴8y x=, 联立812y x y x ⎧=⎪⎪⎨⎪=⎪⎩4x ⇒=-或4x =,∴()4,2B ;(2)如图,过点P 作//PE y 轴,设8,P m m ⎛⎫⎪⎝⎭,AB y kx b =+,代入A B 、两点, 12AB y x ⇒=, ∴1,2C m m ⎛⎫ ⎪⎝⎭, 118322POCS m m m ∆=-=,1862m m m -=,2862m m -=⇒=,218622m m -=⇒=,∴P ⎛ ⎝⎭或()2,4P . 20.(1)证明: 连接OD ,∵OB OD =,∴OBD ∆是等腰三角形, OBD ODB ∠=∠ ①,又在ABC ∆中, ∵AB AC =, ∴ABC ACB ∠=∠ ②,则由①②得,ODB OBD ACB ∠=∠=∠, ∴//OD AC , ∵DH AC ⊥, ∴DH OD ⊥,∴DH 是O 的切线;(2)在O 中, ∵E B ∠=∠, ∵由O 中可知,E B C ∠=∠=∠,EDC ∆是等腰三角形,又∵DH AC ⊥且点A 是EH 中点,∴设,4AE x EC x ==,则3AC x =, 连接AD ,则在O 中,090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点, 则在ABC ∆中,OD 是中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEFODF ∆∆,∴2,332EF AE AE x FD OD OD x ===, ∴23EF FD =. (3)设O 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴OF OD r ==, ∴1DE DF EF r =+=+, ∴1BD CD DE r ===+,在O 中, ∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形, ∴1BF BD r ==+,∴()2211AF AB BF OB BF r r r =-=-=-+=-, 在BFD ∆与EFA ∆中BFD EFAB E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆,∴11,1EF BF r FA DF r r+==-,解得12r r ==(舍) ∴综上,O.B 卷一、填空题21.; 22.752; 23.2π; 24.43-;二、解答题26. 解:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:818920k b k b +=⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, 故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=2x+2+12x 2﹣11x+78=12x 2﹣9x+80, ∴当x=9时,y 有最小值,y min =2148092142⨯⨯-⨯=39.5, 答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟. 27. 迁移应用:①证明:如图2,∵∠BAC=∠ADE=120°, ∴∠DAB=∠CAE , 在△DAE 和△EAC 中,DA EA DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△EAC ,②解:结论:理由:如图2﹣1中,作AH ⊥CD 于H.∵△DAB ≌△EAC , ∴BD=CE ,在Rt △ADH 中,, ∵AD=AE ,AH ⊥DE , ∴DH=HE ,∵AD+BD.拓展延伸:①证明:如图3中,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC=120°, ∴△ABD ,△BDC 是等边三角形, ∴BA=BD=BC ,∵E 、C 关于BM 对称,∴BC=BE=BD=BA ,FE=FC , ∴A 、D 、E 、C 四点共圆, ∴∠ADC=∠AEC=120°, ∴∠FEC=60°,∴△EFC 是等边三角形, ②解:∵AE=5,EC=EF=2, ∴AH=HE=2.5,FH=4.5,在Rt △BHF 中,∵∠BHF=30°, ∴HFBF=cos30°,∴BF ==28.解:(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为y=ax 2+4,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为y=12-x 2+4.(2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为y=12(x ﹣m )2﹣4, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到x 2﹣2mx+2m 2﹣8=0, 由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()()2222428020280m m m m ⎧--⎪⎪⎨⎪-⎪⎩>>>,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形, ∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m , ∴M (m+2,m ﹣2), ∵点M 在y=﹣12x 2+4上, ∴m ﹣2=﹣12(m+2)2+4,解得﹣3﹣3(舍弃), ∴﹣3时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M(m﹣2,2﹣m)代入y=﹣12x2+4中,2﹣m=﹣12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.2017年四川省攀枝花市中考数学试题及参考答案一、选择题(本大题共l0小题,每小题3分,共30分)1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1072.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a63.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.55.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是()A.m≥0B.m>0 C.m≥0且m≠1D.m>0且m≠17.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.如图,△ABC内接于⊙O,∠A=60°,BC=6√3,则BĈ的长为()A .2πB .4πC .8πD .12π9.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax+c 的图象不经第四象限C .m (am+b )+b <a ( m 是任意实数)D .3b+2c >010.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2二、填空题(本大题共6小题,每小题4分,共24分)11.在函数y =中,自变量x 的取值范围是 .12.一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n .13.计算:()113|12π-⎛⎫-+= ⎪⎝⎭.14.若关于x 的分式方程7311mxx x +=--无解,则实数m= . 15.如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE= .16.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C 停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题(本大题共8小题,共66分)17.(本题满分6分)先化简,再求值:222111xx x x-⎛⎫-÷⎪++⎝⎭,其中x=2.18.(本题满分6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(本题满分6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(本题满分8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(本题满分8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(本题满分8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC 于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC,求DFCF的值.23.(本题满分12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2√3),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t=时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P 的坐标.24.(本题满分12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.参考答案与解析一、选择题1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°【考点】平行线的性质.【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.5【考点】众数;中位数.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()。
【试题】2017年四川省凉山州中考数学试题及答案清晰无错版
【关键字】试题凉山州2017年中考数学试题及答案(清晰无错版)A卷(共120分)第Ⅰ卷(选择题共48分)一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置。
1.在2,,0,这四个数中,最小的数是()A.2 B.C.0 D.2.如右图,,则下列式子一定成立的是()A.B.C.D.3.下列运算正确的是()A.B.C.D.4.指出下列事件中是随机事件的个数()①投掷一枚硬币正面朝上;②明天太阳从东方升起;③五边形的内角和是;④购买一张彩票中奖。
A.0 B.1 C.2 D.35.一列数4,5,6,4,4,7,,5的平均数是5,则中位数和众数分别是()A.4,4 B.5,4 C.5,6 D.6,76.有一个数值转换器,原理如下:当输入的为64时,输出的是()A.B.C.D.87.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店。
小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家。
下面的图象中哪一个表示哥哥离家时间与距离之间的关系()8.一元二次方程两实根的和与积分别是()A.,B.,C.,2 D.,29.若关于的方程与有一个解相同,则的值为()A.1 B.1或C.D.或310.如右图是一个几何体的三视图,则该几何体的侧面积是()A.B.C.D.11.已知抛物线与轴没有交点,则函数的大致图象是()12.如图,一个半径为1的经过一个半径为的的圆心,则图中阴影部分的面积为()A.1 B.C.D.第Ⅱ卷(选择题共72分)二、填空题:(共5个小题,每小题4分,共20分)13.2017年端午节全国景区接待游客总人数8260万人,这个数用科学记数法可表示为人。
14.如图,、分别是的内接正五边形的边、上的点,,则。
15. 若与是同类项,则 。
16. 函数有意义,则的取值范围是 。
17. 如图,在中,,,,点、分别是、的中点,交的延长线于。
四川省攀枝花市中考数学专题三:3.1图形的初步
四川省攀枝花市中考数学专题三:3.1图形的初步姓名:________ 班级:________ 成绩:________一、选择题 (共19题;共38分)1. (2分)如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A .B .C .D .2. (2分)下列错误的判断是()A . 任何一条线段都能度量长度B . 因为线段有长度,所以它们之间能比较大小C . 利用圆规配合尺子,也能比较线段的大小D . 两条直线也能进行度量和比较大小3. (2分)关于直线、射线、线段的有关说法正确的有()(1)、直线AB和直线BA是同一条直线(2)、射线AB和射线BA是同一条射线(3)、线段AB和线段BA是同一条线段(4)、线段一定比直线短(5)、射线一定比直线短(6)、线段的长度能够度量,而直线、射线的长度不可能度量。
A . 2B . 3C . 4D . 54. (2分)下列命题真命题是()。
A . 同位角相等B . 底边相等的两个等腰三角形全等C . 对顶角相等D . 两个锐角的和一定是钝角5. (2分) (2017七上·十堰期末) 下列说法:①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点. 若MN=5,则线段AB=10.其中说法正确的是()A . ①②B . ②③C . ②④D . ③④6. (2分) (2018八上·宁波期中) 下列句子是命题的是()A . 画∠AOB=45ºB . 小于直角的角是锐角吗?C . 连结CDD . 相等的角是对顶角7. (2分) (2018八上·湖州期中) 如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC 的顶点都在图中的格点上,其中点A、点B的位置如图所示,则点C可能的位置共有()A . 9个B . 8个C . 7个D . 6个8. (2分)已知点C是线段AB上的一点,不能确定点C是AB中点的条件是()A . AC=CBB . AC=ABC . AB=2BCD . AC+CB=AB9. (2分)下列语句叙述正确的有()①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A . 0个B . 1个C . 2个D . 3个10. (2分)下列命题中,属于真命题的是()A . 各边相等的多边形是正多边形B . 矩形的对角线互相垂直C . 三角形的中位线把三角形分成面积相等的两部分D . 对顶角相等11. (2分) (2017七上·渭滨期末) 能用、,三种方式表示同一个角的图形是()A .B .C .D .12. (2分)(2017·博山模拟) 下列关系式正确的是()A . 35.5°=35°5′B . 35.5°=35°50′C . 35.5°<35°5′D . 35.5°>35°5′13. (2分)一个人从A点出发向北偏东60°的方向走到B点,再从B出发向南偏西15°方向走到C点,那么∠ABC等于()A . 75°B . 105°C . 45°D . 135°14. (2分)如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为()A . 100B . 80C . 70D . 6015. (2分) (2019七下·廉江期末) 如图,已知,点在直线上,且,则的度数是()A .B .C .D .16. (2分)(2016·长沙) 下列各图中,∠1与∠2互为余角的是()A .B .C .D .17. (2分)(2017·白银) 将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A . 115°B . 120°C . 135°D . 145°18. (2分) (2019七下·南通月考) 平面直角坐标系中,点A(-3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的长度最小时点C的坐标为()A .B .C .D .19. (2分)(2017·东海模拟) 如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A . 50°B . 40°C . 20°D . 10°二、填空题 (共12题;共17分)20. (2分) (2019七下·保山期中) 把命题“同位角相等,两直线平行”改写成“如果…那么…”的形式________.21. (2分)火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有________种不同的车票.22. (2分)命题“锐角与钝角互为补角”的逆命题是________ .23. (1分) (2019八下·黄冈月考) 已知命题:若|a|=|b|,则 a2=b2 ,请写出该命题的逆命题________.24. (1分)平面上有三个点,可以确定直线的条数是________25. (1分)开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为________。
2017年四川省各市中考数学试题汇总(12套)
A. B. C.2D.﹣2
2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120000000人次,将120000000用科学记数法表示为( )
A.1.2×109B.12×107C.0.12×109D.1.2×108
3.下列图形中,既是轴对称图形又是中心对称图形的是( )
2017年四川省南充市中考数学试题(含答案)
2017年四川省宜宾市中考数学试题(含答案)
2017年四川省成都市中考数学试题(含答案)
2017届四川省自贡市毕业生学业考试(中考)数学试卷(含答案)
2017年四川省达州市中考数学试题(含答案)
2017年四川省乐山市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.
四、本大题共3小题,每小题10分,共30分.
20.化简: .
21.为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
(1)在表中:m=,n=;
(2)补全频数分布直方图;
(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;
16.对于函数 ,我们定义 ( 为常数).
例如 ,则 .
已知: .
(1)若方程 有两个相等实数根,则m的值为;
(2)若方程 有两个正数根,则m的取值范围为.
三、本大题共3小题,每小题9分,共27分.
17.计算: .
18.求不等式组 的所有整数解.
19.如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.
四川省攀枝花市中考数学试题有答案(Word版)
四川省攀枝花市中考数学试题 (本试卷满分120分,考试时间l20分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017四川省攀枝花市,第1题,3分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )A .66.710⨯ B .66.710-⨯ C .56.710⨯ D .70.6710⨯ 2.(2017四川省攀枝花市,第2题,3分)下列计算正确的是( )A .239= B .222()a b a b -=- C .3412()a a = D .236a a a ⋅=3.(2017四川省攀枝花市,第3题,3分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为( )A .33°B .57°C .67°D .60°4.(2017四川省攀枝花市,第4题,3分)某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是( )A .19 ,19B .19 ,19.5C .20 ,19D .20 ,19.55.(2017四川省攀枝花市,第5题,3分)如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是 ( )A .花B .是C .攀D .家6.(2017四川省攀枝花市,第6题,3分)关于x 的一元二次方程2(1)210m x x ---=有两个实数根,则实数m 的取值范围是( )A .m ≥0B .m >0C .m ≥0且m ≠1D .m >0且m ≠1 7.(2017四川省攀枝花市,第7题,3分)下列说法正确的是 ( ) A .真命题的逆命题都是真命题B .在同圆或等圆中,同弦或等弦所对的圆周角相等C .等腰三角形的高线、中线、角平分线互相重合D .对角线相等且互相平分的四边形是矩形8.(2017四川省攀枝花市,第8题,3分)如图,△ABC 内接于⊙O ,∠A= 60°,BC=BC 的长为( )A .2πB .4πC .8πD .12π9.(2017四川省攀枝花市,第9题,3分)二次函数2y ax bx c =++(a ≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax +c 的图象不经第四象限C .m (am+b )+b <a (m 是任意实数)D .3b+2c >010.(2017四川省攀枝花市,第10题,3分)如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ·若3EGH S ∆=,则ADF S ∆=( )A .6B .4C .3D .2第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分,请把答案填在题中的横线上)11.(2017四川省攀枝花市,第11题,4分)函数y =x 的取值范围为_______. 12.(2017四川省攀枝花市,第12题,4分)一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n_______.13.(2017四川省攀枝花市,第13题,4分)计算:011(3)()12π--+=_______. 14.(2017四川省攀枝花市,第14题,4分)若关于x 的分式方程7311mx x x +=--无解,则实数m=_______. 15.(2017四川省攀枝花市,第15题,4分)如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE=_______.16.(2017四川省攀枝花市,第16题,4分)如图1,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线BE-ED-DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、点Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (2cm ),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t ≤10时,△BPQ 是等腰三角形;②ABE S ∆=482cm ;③当14<t <22时,y=110-5t ;④在运动过程中,使得△ABP 是等腰三角形的P 点一共有3个;⑤△BPQ 与△ABE 相似时,t=14.5. 其中正确结论的序号是_______.三、解答题(本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(2017四川省攀枝花市,第17题,6分)先化简,再求值:2221(1)1x x x x--÷++,其中x=2. 18.(2017四川省攀枝花市,第18题,6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有____名;(2)在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(2017四川省攀枝花市,第19题,6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE =2,求CF的长;(2)求证:BG=DH.20.(2017四川省攀枝花市,第20题,8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A 品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(2017四川省攀枝花市,第21题,8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,-2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(2017四川省攀枝花市,第22题,8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC ,求DF CF 的值.23.(2017四川省攀枝花市,第23题,12分)如图1,在平面直角坐标系中,,直线MN 分别与x 轴、y 轴交于点M (6,0),N (0,,等边△ABC 的顶点B 与原点O 重合,BC 边落在x 轴正半轴上,点A 恰好落在线段MN 上,将等边△ABC 从图l 的位置沿x 轴正方向以每秒l 个单位长度的速度平移,边AB ,AC 分别与线段MN 交于点E ,F (如图2所示),设△ABC 平移的时间为t (s ). (1)等边△ABC 的边长为_______;(2)在运动过程中,当t=_______时,MN 垂直平分AB ;(3)若在△ABC 开始平移的同时.点P 从△ABC 的顶点B 出发.以每秒2个单位长度的速度沿折线BA —AC 运动.当点P 运动到C 时即停止运动.△ABC 也随之停止平移. ①当点P 在线段BA 上运动时,若△PEF 与△MNO 相似.求t 的值;②当点P 在线段AC 上运动时,设PEF S S ∆=,求S 与t 的函数关系式,并求出S 的最大值及此时点P 的坐标.24.(2017四川省攀枝花市,第24题,12分)如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,B 点坐标为(3,0).与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y=x+m 与直线BC 交于点E ,与y 轴交于点F ,求PE+EF 的最大值;(3)点D 为抛物线对称轴上一点.①当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标; ②若△BCD 是锐角三角形,求点D 的纵坐标的取值范围.答案。
2017年中考数学试卷含答案解析(Word版).docx
2017 年中考数学试卷一、选择题:本大题共12 小题,每小题 3 分,共 36 分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得 3 分,选错、不选或多选,均不得分.1.从新华网获悉:商务部5 月 27 日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币, 16553 亿用科学记数法表示为()A. 1.6553×108 B. 1.6553× 1011C.1.6553×1012D. 1.6553× 1013【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤a< 10,n 为整数.确||定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:将16553 亿用科学记数法表示为: 1.6553× 1012.故选: C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤| a| <10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.2.某校排球队 10 名队员的身高(厘米)如下:195, 186,182,188,188, 182,186,188, 186,188.这组数据的众数和中位数分别是()A. 186, 188 B. 188,187 C.187,188 D.188,186【分析】根据众数和中位数的定义求解可得.【解答】解:将数据重新排列为:182、182、 186、186、186、188、 188、188、188、 195,∴众数为 188,中位数为=187,故选: B.【点评】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.3.下列运算正确的是()A. 3x2+4x2=7x4 B. 2x33x3=6x3C. a÷a﹣2=a3D.(﹣a2b)3=﹣a6b3【分析】原式各项计算得到结果,即可作出判断.【解答】解: A、原式 =7x2,不符合题意;B、原式 =6x6,不符合题意;C、原式 =aa2=a3,符合题意;D、原式 =﹣a6 b3,不符合题意,故选 C【点评】此题考查了整式的混合运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.2π 0+(﹣)﹣2的结果是()4.计算﹣()+(+ )A.1 B.2 C.D.3【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣()2+(+π)0+(﹣)﹣2=﹣2+1+4=3故选: D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣>1,得:x<﹣2,解不等式 3﹣x≥ 2,得: x≤1,∴不等式组的解集为x<﹣ 2,故选: B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.为了方便行人推车过某天桥,市政府在 10m 高的天桥一侧修建了40m 长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D.【分析】先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠ A .【解答】解: sinA===0.25,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选 A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.若 1﹣22x c=0的一个根,则 c 的值为()是方程 x ﹣+A.﹣ 2 B.4﹣2 C.3﹣D.1+【分析】把 x=1﹣代入已知方程,可以列出关于 c 的新方程,通过解新方程即可求得 c 的值.【解答】解:∵关于x 的方程 x2﹣2x c=0的一个根是 1﹣,+∴( 1﹣)2﹣2(1﹣) +c=0,解得, c=﹣2.故选: A.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.8.一个几何体由n 个大小相同的小正方体搭成,其左视图、俯视图如图所示,则 n 的最小值是()A.5 B.7 C.9 D.10【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层和第三层的个数,从而算出总的个数.【解答】解:由题中所给出的左视图知物体共三层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少1+2+4=7.故选 B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.甲、乙两人用如图所示的两个转盘(每个转盘别分成面积相等的 3 个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是()A.B.C.D.5 种,进而可得【分析】首先画出树状图,然后计算出数字之和为偶数的情况有答案.【解答】解:如图所示:数字之和为偶数的情况有 5 种,因此加获胜的概率为,故选: C.【点评】此题主要考查了画树状图和概率,关键是掌握概率 =所求情况数与总情况数之比.10.如图,在 ? ABCD 中,∠ DAB 的平分线交 CD 于点 E,交 BC 的延长线于点G,∠ABC 的平分线交 CD 于点 F,交 AD 的延长线于点 H,AG 与 BH 交于点 O,连接 BE,下列结论错误的是()A. BO=OH B.DF=CE C.DH=CG D.AB=AE【分析】根据平行四边形的性质、等腰三角形的判定和性质一一判断即可.【解答】解:∵四边形 ABCD 是平行四边形,∴AH∥ BG,AD=BC ,∴∠ H=∠HBG,∵∠ HBG=∠ HBA ,∴∠ H=∠HBA ,∴AH=AB ,同理可证 BG=AB ,∴AH=BG ,∵ AD=BC ,∴DH=CG,故③正确,∵AH=AB ,∠ OAH= ∠ OAB ,∴OH=OB,故①正确,∵DF∥AB,∴∠DFH=∠ABH ,∵∠ H=∠ABH ,∴∠ H=∠DFH,∴DF=DH ,同理可证 EC=CG,∵ DH=CG,∴DF=CE,故②正确,无法证明 AE=AB ,故选 D.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数 y=(b+c)x 与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【分析】先根据二次函数的图象,确定a、 b、c 的符号,再根据 a、b、c 的符号判断反比例函数y=与一次函数y=( b+c) x的图象经过的象限即可.【解答】解:由二次函数图象可知a>0,c>0,由对称轴 x=﹣>0,可知b<0,当 x=1 时, a+b+c<0,即 b+c<0,所以正比例函数 y=(b+c) x 经过二四象限,反比例函数 y=图象经过一三象限,故选 C.【点评】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出 a、b、c 的取值范围.12.如图,正方形上,若反比例函数ABCD 的边长为 5,点y= ( k≠ 0)的图象过点A 的坐标为(﹣4,0),点B C,则该反比例函数的表达式为(在 y 轴)A. y=B.y=C.y=D.y=【分析】过点 C 作 CE⊥ y 轴于 E,根据正方形的性质可得 AB=BC ,∠ABC=90°,再根据同角的余角相等求出∠ OAB= ∠CBE,然后利用“角角边”证明△ ABO 和△ BCE 全等,根据全等三角形对应边相等可得 OA=BE=4 ,CE=OB=3,再求出 OE,然后写出点 C 的坐标,再把点 C 的坐标代入反比例函数解析式计算即可求出 k 的值.【解答】解:如图,过点 C 作 CE⊥ y 轴于 E,在正方形 ABCD 中, AB=BC ,∠ABC=90°,∴∠ ABO +∠ CBE=90°,∵∠ OAB +∠ ABO=90°,∴∠ OAB= ∠ CBE,∵点 A 的坐标为(﹣ 4,0),∴OA=4,∵ AB=5,∴ OB==3,在△ ABO 和△ BCE 中,,∴△ ABO ≌△ BCE(AAS ),∴OA=BE=4 , CE=OB=3,∴OE=BE﹣OB=4﹣ 3=1,∴点 C 的坐标为( 3,1),∵反比例函数 y= (k≠0)的图象过点 C,∴k=xy=3 ×1=3,∴反比例函数的表达式为y=.故选 A.【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点 D 的坐标是解题的关键.二、填空题:本大题共 6 小题,每小题 3 分,共 18 分,只要求填写最后结果.13.如图,直线 l1∥l2,∠ 1=20°,则∠ 2+∠3=200° .【分析】过∠ 2 的顶点作 l2的平行线 l,则 l ∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC +∠3=180°,即可得出∠2+∠3=200°.【解答】解:过∠2 的顶点作l 2的平行线 l,如图所示:则 l∥ l1∥ l2,∴∠ 4=∠ 1=20°,∠ BAC +∠3=180°,∴∠ 2+∠ 3=180°+20°=200°;故答案为: 200°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.方程+=1 的解是x=3.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:由原方程,得3﹣x﹣1=x﹣ 4,﹣2x=﹣6,x=3,经检验 x=3 是原方程的解.故答案是: x=3.【点评】本题考查了解分式方程,把分式方程转化为整式方程求解.最后注意需验根.15.阅读理解:如图1,⊙ O 与直线 a、b 都相切,不论⊙ O 如何转动,直线a、b 之间的距离始终保持不变(等于⊙ O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2 是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图 3 所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线 c,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线 c,d 之间的距离等于2cm,则莱洛三角形的周长为2π cm.【分析】由等宽曲线的定义知AB=BC=AC=2cm ,即可得∠ BAC= ∠ ABC= ∠ACB=60°,根据弧长公式分别求得三段弧的长即可得其周长.【解答】解:如图 3,由题意知 AB=BC=AC=2cm ,∴∠ BAC= ∠ ABC= ∠ACB=60°,∴在以点 C 为圆心、 2 为半径的圆上,∴的长为=,则莱洛三角形的周长为×3=2π,故答案为: 2π.【点评】本题主要考查新定义下弧长的计算,理解“等宽曲线”得出等边三角形是解题的关键.16.某广场用同一种如图所示的地砖拼图案,第一次拼成形如图 1 所示的图案,第二拼成形如图 2 所示的图案,第三次拼成形如图 3 所示的图案,第四次拼成形如图 4 所示的图案按照这样的规律进行下去,第n 次拼成的图案共有地砖2n2+2n.块.【分析】首先求出第一个、第二个、第三个、第四个图案中的地砖的数量,探究规律后即可解决问题.【解答】解:第一次拼成形如图 1 所示的图案共有 4 块地砖, 4=2×( 1×2),第二拼成形如图 2 所示的图案共有 12 块地砖, 12=2×( 2×3),第三次拼成形如图 3 所示的图案共有 24 块地砖, 24=2×( 3× 4),第四次拼成形如图 4 所示的图案共有 40 块地砖, 40=2×( 4× 5),第 n 次拼成形如图 1 所示的图案共有 2× n( n+1) =2n2+2n 块地砖,故答案为 2n2+2n.【点评】本题考查规律题目、解题的关键是学会从特殊到一般的探究方法,属于中考填空题中的压轴题.17.如图,A 点的坐标为(﹣1,5),B 点的坐标为(3,3),C 点的坐标为(5,3), D 点的坐标为( 3,﹣ 1),小明发现:线段 AB 与线段 CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是(1,1)或( 4,4).【分析】分点 A 的对应点为 C 或 D 两种情况考虑:①当点 A 的对应点为点 C 时,连接 AC 、BD ,分别作线段 AC、 BD 的垂直平分线交于点 E,点 E 即为旋转中心;②当点 A 的对应点为点 D 时,连接 AD 、 BC,分别作线段 AD 、 BC 的垂直平分线交于点 M ,点 M 即为旋转中心.此题得解.【解答】解:①当点 A 的对应点为点 C 时,连接 AC 、BD ,分别作线段AC、BD 的垂直平分线交于点E,如图 1 所示,∵A 点的坐标为(﹣ 1,5), B 点的坐标为( 3,3),∴ E 点的坐标为( 1, 1);②当点 A 的对应点为点 D 时,连接 AD 、BC,分别作线段 AD 、BC 的垂直平分线交于点 M ,如图 2 所示,∵A 点的坐标为(﹣ 1,5), B 点的坐标为( 3,3),∴ M 点的坐标为( 4,4).综上所述:这个旋转中心的坐标为( 1,1)或( 4,4).故答案为:( 1,1)或( 4, 4).【点评】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.18.如图,△ ABC 为等边三角形, AB=2 .若 P 为△ ABC 内一动点,且满足∠PAB= ∠ACP,则线段 PB 长度的最小值为.【分析】由等边三角形的性质得出∠ABC= ∠ BAC=60°, AC=AB=2 ,求出∠APC=120°,当 PB⊥AC 时, PB 长度最小,设垂足为D,此时 PA=PC,由等边三角形的性质得出AD=CD= AC=1 ,∠ PAC=∠ACP=30°,∠ABD=∠ABC=30° ,求出 PD=ADtan30°=AD=,BD=AD=,即可得出答案.【解答】解:∵△ ABC 是等边三角形,∴∠ ABC= ∠ BAC=60°,AC=AB=2 ,∵∠ PAB=∠ ACP,∴∠ PAC+∠ACP=60°,∴∠ APC=120°,当 PB⊥AC 时, PB 长度最小,设垂足为 D,如图所示:此时 PA=PC,则 AD=CD= AC=1 ,∠ PAC=∠ ACP=30°,∠ ABD= ∠ ABC=30°,∴ PD=ADtan30°=AD=,BD=AD=,∴ PB=BD﹣PD=﹣=;故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.三、解答题:本大题共7 小题,共 66 分.19.先化简÷(﹣ x+1),然后从﹣<x<的范围内选取一个合适的整数作为x 的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:x 1)÷(﹣+====,∵﹣<x<且 x 1≠ 0,x﹣ 1≠ 0,x≠ 0,x 是整数,+∴ x=﹣2 时,原式 =﹣.【点评】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法,注意取得的 x 的值必须使得原分式有意义.20.某农场去年计划生产玉米和小麦共200 吨,采用新技术后,实际产量为225 吨,其中玉米超产 5%,小麦超产 15%,该农产去年实际生产玉米、小麦各多少吨?【分析】设农场去年计划生产小麦x 吨,玉米 y 吨,利用去年计划生产小麦和玉米 200 吨,则 x+y=200,再利用小麦超产15%,玉米超产 5%,则实际生产了225吨,得出等式( 1+5%)x+(1+15%) y=225,进而组成方程组求出答案.【解答】解:设农场去年计划生产小麦x 吨,玉米 y 吨,根据题意可得:,解得:,则 50×( 1+5%)=52.5(吨),150×( 1+15%)=172.5(吨),答:农场去年实际生产小麦52.5 吨,玉米 172.5 吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.21.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 200 名学生;(2)将条形统计图补充完整;( 3)图 2 中“小说类”所在扇形的圆心角为126 度;(4)若该校共有学生2500 人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:( 1)∵喜欢文史类的人数为 76 人,占总人数的 38%,∴此次调查的总人数为: 76÷38%=200 人,(2)∵喜欢生活类书籍的人数占总人数的 15%,∴喜欢生活类书籍的人数为: 200× 15%=30 人,∴喜欢小说类书籍的人数为:200﹣ 24﹣76﹣30=70 人,如图所示;( 3)∵喜欢社科类书籍的人数为:24 人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°× 35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的 12%,∴该校共有学生 2500 人,估计该校喜欢“社科类”书籍的学生人数: 2500×12%=300 人故答案为:( 1)200;( 3) 126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.22.图 1 是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图 2,AB ⊥BC,垂足为点 B,EA ⊥AB ,垂足为点 A ,CD∥AB ,CD=10cm,DE=120cm, FG⊥ DE,垂足为点 G.( 1)若∠θ=37°50,′则 AB 的长约为83.2 cm;(参考数据: sin37 °50≈′0.61,cos37°50≈′0.79,tan37 °50≈′0.78)(2)若 FG=30cm,∠θ=60°求, CF 的长.【分析】(1)作 EP⊥BC、DQ⊥EP,知 CD=PQ=10,∠2+∠3=90°,由∠ 1+∠θ=90°且∠1=∠ 2知∠ 3=∠θ=37°50,根′据 EQ=DEsin∠3 和 AB=EP=EQ PQ 可得答案;+( 2)延长 ED、BC 交于点 K ,结合( 1)知∠θ=∠3=∠K=60°,从而由 CK=、KF=可得答案.【解答】解:( 1)如图,作 EP⊥BC 于点 P,作 DQ⊥ EP 于点 Q,则 CD=PQ=10,∠ 2+∠3=90°,∵∠ 1+∠ θ=90,°且∠ 1=∠2,∴∠ 3=∠ θ=37°50,′则 EQ=DEsin∠3=120× sin37 °50,′∴AB=EP=EQ+PQ=120sin37°50+10=83′.2,故答案为: 83.2;(2)如图,延长 ED、 BC 交于点 K ,由( 1)知∠θ=∠3=∠ K=60°,在 Rt△CDK 中, CK==,在 Rt△KGF 中, KF===,则 CF=KF﹣KC=﹣==.【点评】本题主要考查解直角三角形的应用,根据题意构建所需直角三角形和熟练掌握三角函数是解题的关键.23.已知: AB 为⊙ O 的直径, AB=2 ,弦 DE=1,直线 AD 与 BE 相交于点 C,弦 DE 在⊙ O 上运动且保持长度不变,⊙ O 的切线 DF 交 BC 于点F.( 1)如图 1,若 DE∥AB ,求证: CF=EF;( 2)如图 2,当点 E 运动至与点 B 重合时,试判断 CF 与 BF 是否相等,并说明理由.【分析】(1)如图 1,连接 OD、OE,证得△ OAD 、△ ODE、△ OEB、△ CDE 是等边三角形,进一步证得DF⊥CE 即可证得结论;(2)根据切线的性质以及等腰三角形的性质即可证得结论.【解答】证明:如图 1,连接 OD、OE,∵ AB=2,∴OA=OD=OE=OB=1 ,∵ DE=1,∴OD=OE=DE,∴△ ODE 是等边三角形,∴∠ ODE=∠ OED=60°,∵DE∥ AB ,∴∠ AOD=∠ ODE=60°,∠ EOB=∠OED=60°,∴△ AOD 和△△ OE 是等边三角形,∴∠ OAD=∠ OBE=60°,∴∠ CDE=∠ OAD=60°,∠ CED=∠OBE=60°,∴△ CDE 是等边三角形,∵DF 是⊙O 的切线,∴OD⊥DF,∴∠ EDF=90°﹣60°=30°,∴∠ DFE=90°,∴ DF⊥ CE,∴ CF=EF;( 2)相等;如图 2,点 E 运动至与点 B 重合时, BC 是⊙ O 的切线,∵⊙O的切线 DF 交 BC 于点 F,∴BF=DF,∴∠ BDF=∠ DBF,∵ AB 是直径,∴∠ ADB= ∠ BDC=90°,∴∠ FDC=∠ C,∴DF=CF,∴BF=CF.【点评】本题考查了切线的性质、平行线的性质、等边三角形的判定、等腰三角形的判定和性质,作出辅助线构建等边三角形是解题的关键.24.如图,四边形ABCD 为一个矩形纸片, AB=3 ,BC=2,动点 P 自 D 点出发沿 DC 方向运动至 C 点后停止,△ ADP 以直线 AP 为轴翻折,点 D 落在点 D1的位置,设 DP=x ,△ AD 1P 与原纸片重叠部分的面积为y.(1)当 x 为何值时,直线 AD 1过点 C?(2)当 x 为何值时,直线 AD 1过 BC 的中点 E?(3)求出 y 与 x 的函数表达式.【分析】(1)根据折叠得出AD=AD 1=2, PD=PD1=x ,∠ D= ∠AD 1P=90°,在Rt△ABC 中,根据勾股定理求出AC ,在 Rt△ PCD1中,根据勾股定理得出方程,求出即可;( 2)连接 PE,求出 BE=CE=1,在 Rt△ABE 中,根据勾股定理求出AE ,求出AD 1 =AD=2 ,PD=PD1=x,D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;( 3)分为两种情况:当0<x ≤2 时, y=x;当 2<x≤3 时,点 D1在矩形 ABCD 的外部, PD1交 AB 于 F,求出 AF=PF,作 PG⊥AB 于 G,设 PF=AF=a,在 Rt △PFG 中,由勾股定理得出方程( x﹣a)2+22=a2,求出 a 即可.【解答】解:( 1)如图 1,∵由题意得:△ ADP ≌△ AD 1P,∴AD=AD 1 =2,PD=PD1=x,∠ D=∠ AD1P=90°,∵直线 AD1过 C,∴PD1⊥AC,在Rt△ABC 中, AC==,CD1=﹣2,222在 Rt△PCD1中, PC =PD1+CD1,即( 3﹣x)2=x2+(﹣2)2,解得: x=,∴当x=时,直线AD1过点C;( 2)如图 2,连接 PE,∵E 为BC 的中点,∴ BE=CE=1,在 Rt△ABE 中, AE==,∵AD1 =AD=2 ,PD=PD1=x,∴D1E=﹣2,PC=3﹣x,在 Rt△PD1E 和 Rt△PCE 中,x2+(﹣2)2=(3﹣x)2+12,解得: x=,∴当 x=时,直线 AD 1过BC 的中点;E( 3)如图 3,当 0<x≤2 时, y=x,如图 4,当 2<x≤3 时,点 D1在矩形 ABCD 的外部, PD1交 AB 于 F,∵AB∥CD,∴∠ 1=∠ 2,∵∠1=∠3(根据折叠),∴∠ 2=∠ 3,∴ AF=PF,作 PG⊥AB 于 G,设 PF=AF=a,由题意得: AG=DP=x ,FG=x﹣a,在 Rt△PFG 中,由勾股定理得:( x﹣a)2+22=a2,解得: a=,所以y==,综合上述,当 0<x≤2 时, y=x;当 2<x≤3 时, y=.【点评】本题考查了勾股定理,折叠的性质,矩形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键,用了分类推理思想.25.如图,已知抛物线y=ax2+bx+c 过点 A (﹣ 1,0), B(3,0), C( 0, 3)点 M 、N 为抛物线上的动点,过点 M 作 MD ∥ y 轴,交直线 BC 于点 D,交 x 轴于点 E.( 1)求二次函数 y=ax2+bx+c 的表达式;( 2)过点 N 作 NF⊥x 轴,垂足为点 F,若四边形 MNFE 为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠ DMN=90°,MD=MN ,求点 M 的横坐标.【分析】(1)待定系数法求解可得;(2)设点 M 坐标为( m,﹣m2+2m+3),分别表示出 ME=| ﹣m2+2m+3| 、MN=2m﹣2,由四边形 MNFE 为正方形知 ME=MN ,据此列出方程,分类讨论求解可得;( 3)先求出直线 BC 解析式,设点 M 的坐标为( a,﹣ a2+2a+3),则点 N(2﹣a,﹣ a2+2a+3)、点 D( a,﹣ a+3),由 MD=MN 列出方程,根据点 M 的位置分类讨论求解可得.【解答】解:( 1)∵抛物线 y=ax2+bx+c 过点 A(﹣ 1,0), B( 3,0),∴设抛物线的函数解析式为 y=a( x+1)( x﹣3),将点 C(0,3)代入上式,得: 3=a( 0+1)( 0﹣3),解得: a=﹣1,∴所求抛物线解析式为 y=﹣( x+1)( x﹣3)=﹣x2+2x+3;( 2)由( 1)知,抛物线的对称轴为 x=﹣=1,如图 1,设点 M 坐标为( m,﹣ m2+2m+3),∴ME=| ﹣m2+2m+3| ,∵M 、N 关于 x=1 对称,且点 M 在对称轴右侧,∴点 N 的横坐标为 2﹣m,∴ MN=2m ﹣2,∵四边形 MNFE 为正方形,∴ME=MN ,∴| ﹣ m2+2m+3| =2m﹣2,分两种情况:①当﹣m2 2m 3=2m﹣2 时,解得: m12(不符合题意,舍去),+ +=、m =﹣当 m=时,正方形的面积为( 2﹣2)2=24﹣8;②当﹣ m2+2m+3=2﹣2m 时,解得:m3, 4 ﹣(不符合题意,舍去),=2+m =2当 m=2+时,正方形的面积为 [ 2(2+)﹣ 2] 2=24+8 ;综上所述,正方形的面积为 24+8或 24﹣8 .(3)设 BC 所在直线解析式为 y=kx +b,把点 B(3,0)、 C(0,3)代入表达式,得:,解得:,∴直线 BC 的函数表达式为y=﹣x+3,设点 M 的坐标为( a,﹣ a2 +2a+3),则点 N( 2﹣ a,﹣ a2+2a+3),点 D(a,﹣a+3),①点 M 在对称轴右侧,即a>1,则 | ﹣ a+3﹣(﹣ a2+2a+3)| =a﹣( 2﹣ a),即 | a2﹣3a| =2a﹣2,若 a2﹣3a≥ 0,即 a≤0 或 a≥3,a2﹣3a=2a﹣ 2,解得: a=或a=<1(舍去);若 a2﹣3a< 0,即 0≤ a≤3,a2﹣ 3a=2﹣ 2a,解得: a=﹣1(舍去)或 a=2;②点 M 在对称轴右侧,即a<1,则 | ﹣ a+3﹣(﹣ a2+2a+3)| =2﹣a﹣a,即 | a2﹣3a| =2﹣2a,若 a2﹣3a≥ 0,即 a≤0 或 a≥3,a2﹣3a=2﹣2a,解得: a=﹣1 或 a=2(舍);若 a2﹣3a< 0,即 0≤ a≤3,a2﹣ 3a=2a﹣2,解得: a=(舍去)或a=;综上,点M 的横坐标为、2、﹣ 1、.【点评】本题主要考查二次函数的综合问题,熟练掌握待定系数法求函数解析式及两点间的距离公式、解方程是解题的关键.。
2016年四川省攀枝花市中考数学试卷(含详细答案及解析)
2016年四川省攀枝花市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各数中,不是负数的是()A.﹣2 2 B B.3 C.﹣ D.﹣0.102.(3分)计算(ab2)3的结果,正确的是()A.a3b6 B.a3b5 C.ab6D.ab53.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查5.(3分)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n6.(3分)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分7.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 4 D D.1或48.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()第1页(共32页)A.B.C.D.9.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴,则下列结论正确的是( )的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是(A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形10.(3分)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE 分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正,其中正确的结论个数为( )方形ABCD的面积是6+4,其中正确的结论个数为(A.2 B.3 C.4 D.5二、填空题(共6小题,每小题4分,满分24分)11.(4分)月球的半径约为1738000米,1738000这个数用科学记数法表示为这个数用科学记数法表示为 .12.(4分)对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:年龄13 14 15 16 17 18 人数45 6 6 7 2 则这些学生年龄的众数是 .则这些学生年龄的众数是13.(4分)如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为.14.(4分)设x1、x2是方程5x2﹣3x﹣2=0的两个实数根,则+的值为的值为 .15.(4分)已知关于x的分式方程+=1的解为负数,则k的取值范围是的取值范围是 .16.(4分)如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD的半径为 .上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为三、解答题(共8小题,满分66分)17.(6分)计算;+20160﹣|﹣2|+1.18.(6分)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.19.(6分)中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为的部分所对应的圆心角为 度;月饼的学生有 人;条形统计图中,喜欢“豆沙”月饼的学生有(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”月饼的共有 人.和“比较喜欢”月饼的共有(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼,现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法,求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.20.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB 相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.21.(8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?22.(8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E(1)求证:DE=AB;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)23.(12分)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,P A长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.24.(12分)如图,抛物线y=x 2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.2016年四川省攀枝花市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•攀枝花)下列各数中,不是负数的是(攀枝花)下列各数中,不是负数的是( )A.﹣2 2 B B.3 C.﹣ D.﹣0.10【分析】利用负数的定义判断即可得到结果.【解答】解:A、﹣2是负数,故本选项不符合题意;B、3是正数,不是负数,故本选项符合题意;C、﹣是负数,故本选项不符合题意;D、﹣0.10是负数,故本选项不符合题意;故选:B.【点评】此题考查了正数与负数,分清正数与负数是解本题的关键.2.(3分)(2016•攀枝花)计算(ab2)3的结果,正确的是(的结果,正确的是( )A.a3b6 B.a3b5 C.ab6D.ab5【分析】直接利用积的乘方运算法则再结合幂的乘方运算法则化简求出答案.【解答】解:(ab 2)3=a3b6.故选:A.【点评】此题主要考查了积的乘方运算以及幂的乘方运算,正确掌握运算法则是解题关键.3.(3分)(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.4.(3分)(2016•攀枝花)下列说法中正确的是(攀枝花)下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查【分析】根据选项中的事件可以分别判断是否正确,从而可以解答本题.【解答】解:选项A中的事件是随机事件,故选项A错误;选项B中的事件是不可能事件,故选项B错误;选项C中的事件是随机事件,故选项C正确;选项D中的事件应采取抽样调查,普查不合理,故选D错误;故选C.【点评】本题考查概率的意义、全面调查与抽样调查、随机事件,解题的关键是明确概率的意义,根据实际情况选择合适的调查方式.5.(3分)(2016•攀枝花)化简+的结果是(的结果是( )A.m+n B.n﹣m C.m﹣n D.﹣m﹣n【分析】首先进行通分运算,进而分解因式化简求出答案.【解答】解:+=﹣==m+n.故选:A .【点评】此题主要考查了分式的加减运算,正确分解因式是解题关键.6.(3分)(2016•攀枝花)下列关于矩形的说法中正确的是(攀枝花)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A 、对角线相等的平行四边形才是矩形,故本选项错误; B 、矩形的对角线相等且互相平分,故本选项正确;C 、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D 、矩形的对角线互相平分且相等,不一定垂直,故本选项错误; 故选B .【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.7.(3分)(2016•攀枝花)若x=﹣2是关于x 的一元二次方程x 2+ax ﹣a 2=0的一个根,则a 的值为(的值为( )A .﹣1或4 B .﹣1或﹣4 C .1或﹣4 4 DD .1或4 【分析】把x=﹣2代入已知方程,列出关于a 的新方程,通过解新方程可以求得a 的值.【解答】解:根据题意,将x=﹣2代入方程x 2+ax ﹣a 2=0,得: 4﹣3a ﹣a 2=0,即a 2+3a ﹣4=0, 左边因式分解得:(a ﹣1)(a +4)=0, ∴a ﹣1=0,或a +4=0, 解得:a=1或﹣4, 故选:C .【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.8.(3分)(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.9.(3分)(2016•攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C 错误;由a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a ﹣b +c=0,而b=﹣2a , ∴a +2a +c=0, ∴3a +c=0, ∴选项C 错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x 轴的交点为E ,如图, ∴抛物线的解析式为y=x 2﹣x ﹣,把x=1代入得y=﹣1﹣=﹣2,∴D 点坐标为(1,﹣2), ∴AE=2,BE=2,DE=2,∴△ADE 和△BDE 都为等腰直角三角形, ∴△ADB 为等腰直角三角形, ∴选项D 正确. 故选D .【点评】本题考查了二次函数y=ax 2+bx +c 的图象与系数的关系:当a >0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y 轴的交点坐标为(0,c ).10.(3分)(2016•攀枝花)如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF =1,则正方形ABCD 的面积是6+4,其中正确的结论个数为(,其中正确的结论个数为( )A.2 B.3 C.4 D.5【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE 的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG 2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2016•攀枝花)月球的半径约为1738000米,1738000这个数用科学记数法表示为学记数法表示为 1.738×106 .【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1738000用科学记数法表示为1.738×106. 故答案为:1.738×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.(4分)(2016•攀枝花)对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表: 年龄 13 14 15 16 17 18 人数45 6 6 7 2 则这些学生年龄的众数是则这些学生年龄的众数是 17岁 .【分析】根据众数是出现次数最多的数就可以求解.【解答】解:∵在这一组数据中17是出现次数最多的,出现了7次, ∴这些学生年龄的众数是17岁; 故答案为:17岁.【点评】此题考查了众数,此题考查了众数,众数是一组数据中出现次数最多的数.众数是一组数据中出现次数最多的数.众数是一组数据中出现次数最多的数.解题的关键是解题的关键是理解众数的意义,正确认识表格.13.(4分)(2016•攀枝花)如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为边形的内角和为 1800° .【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数,然后利用多边形的内角和公式计算内角和即可.【解答】解:∵一个多边形的每个外角都是30°, ∴n=360°÷30°30°=12=12, 则内角和为:(12﹣2)•180°=180•180°=1800°0°. 故答案为:1800°.【点评】本题主要考查了利用外角求正多边形的边数的方法以及多边形的内角和公式,解题的关键是掌握任意多边形的外角和都等于360度.14.(4分)(2016•攀枝花)设x 1、x 2是方程5x 2﹣3x ﹣2=0的两个实数根,则+的值为的值为 ﹣ .【分析】根据根与系数的关系得到x 1+x 2、x 1•x 2的值,然后将所求的代数式进行变形并代入计算即可. 【解答】解:∵方程x 1、x 2是方程5x 2﹣3x ﹣2=0的两个实数根,∴x 1+x 2=,x 1x 2=﹣,∴+===﹣.故答案为:﹣.【点评】本题考查了一元二次方程ax 2+bx +c=0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.15.(4分)(2016•攀枝花)已知关于x 的分式方程+=1的解为负数,则k 的取值范围是的取值范围是 k >﹣且k ≠0 .【分析】先去分母得到整式方程(2k +1)x=﹣1,再由整式方程的解为负数得到2k +1>0,由整式方程的解不能使分式方程的分母为0得到x ≠±1,即2k +1≠1且2k +1≠﹣1,然后求出几个不等式的公共部分得到k 的取值范围. 【解答】解:去分母得k (x ﹣1)+(x +k )(x +1)=(x +1)(x ﹣1),整理得(2k +1)x=﹣1, 因为方程+=1的解为负数,所以2k +1>0且x ≠±1, 即2k +1≠1且2k +1≠﹣1, 解得k >﹣且k ≠0,即k 的取值范围为k >﹣且k ≠0. 故答案为k >﹣且k ≠0.【点评】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,方程化为整式方程的过程中,可能产生增根,可能产生增根,可能产生增根,增根是令分母等于增根是令分母等于0的值,的值,不是原不是原分式方程的解.16.(4分)(2016•攀枝花)如图,△ABC 中,∠C=90°,AC=3,AB=5,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB 、BC 均相切,则⊙O 的半径为的半径为.【分析】过点0作OE ⊥AB 于点E ,OF ⊥BC 于点F .根据切线的性质,知OE 、OF 是⊙O 的半径;然后由三角形的面积间的关系(S △ABO +S △BOD =S △ABD =S △ACD )列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点0作OE ⊥AB 于点E ,OF ⊥BC 于点F . ∵AB 、BC 是⊙O 的切线, ∴点E 、F 是切点,∴OE 、OF 是⊙O 的半径; ∴OE=OF ;在△ABC 中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4; 又∵D 是BC 边的中点, ∴S △ABD =S △ACD ,又∵S △ABD =S△ABO +S △BOD ,∴AB•OE +BD•OF=CD•AC ,即5×OE +2×0E=2×3, 解得OE=,∴⊙O 的半径是.故答案为:.【点评】本题考查了切线的性质与三角形的面积.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.三、解答题(共8小题,满分66分)17.(6分)(2016•攀枝花)计算;+20160﹣|﹣2|+1.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式+20160﹣|﹣2|+1的值是多少即可.【解答】解:+20160﹣|﹣2|+1=2+1﹣(2﹣)+1=3﹣2++1=2+.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a ≠0);②00≠1.18.(6分)(2016•攀枝花)如图,在平面直角坐标系中,直角△ABC 的三个顶点分别是A (﹣3,1),B (0,3),C (0,1) (1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1; (2)分别连结AB 1、BA 1后,求四边形AB 1A 1B 的面积.【分析】(1)利用网格特点,延长AC 到A 1使A 1C=AC ,延长BC 到B 1使B 1C=BC ,C 点的对应点C 1与C 点重合,则△A 1B 1C 1满足条件;(2)四边形AB 1A 1B 的对角线互相垂直平分,则四边形AB 1A 1B 为菱形,然后利用菱形的面积公式计算即可.【解答】解:(1)如图,△A 1B 1C 1为所作,(2)四边形AB 1A 1B 的面积=×6×4=12.【点评】本题考查了作图﹣旋转变换:本题考查了作图﹣旋转变换:根据旋转的性质可知,根据旋转的性质可知,根据旋转的性质可知,对应角都相等都等对应角都相等都等于旋转角,于旋转角,对应线段也相等,对应线段也相等,对应线段也相等,由此可以通过作相等的角,由此可以通过作相等的角,由此可以通过作相等的角,在角的边上截取相等的在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.(6分)(2016•攀枝花)中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:的部分所对应的圆心角为 126°度;(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为月饼的学生有 4人;条形统计图中,喜欢“豆沙”月饼的学生有(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有月饼的共有 675人.(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼,现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法,求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.【分析】(1)根据“很喜欢”的部分占的百分比,计算所对应的圆心角;(2)用样本估计总体的思想即可解决问题.(3)画出树状图,根据概率的定义即可解决.【解答】解:(1)∵“很喜欢”的部分占的百分比为:1﹣25%﹣40%=35%,∴扇形统计图中,“很喜欢”的部分所对应的圆心角为:360°×35%=126°;∵“很喜欢”月饼的同学数:60×35%=21,∴条形统计图中,喜欢“豆沙”月饼的学生数:21﹣6﹣3﹣8=4,故答案分别为126°,4.(2)900名学生中“很喜欢”的有900×35%=315人,900名学生中“比较喜欢”的有900×40%=360人,∴估计该校学生中“很喜欢”和“比较喜欢”月饼的共有675人.故答案为675.(3)为了表示方便,记云腿、豆沙、莲蓉、蛋黄四种月饼分别为A、B、C、D.画出的树状图如图所示,∴甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率==【点评】此题考查了列表法或树状图法求概率.此题考查了列表法或树状图法求概率.注意理解题意,注意理解题意,注意理解题意,利用图中信息是利用图中信息是解题的关键,记住概率=所求情况数与总情况数之比.20.(8分)(2016•攀枝花)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直与x 轴,垂足为点B ,反比例函数y=(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos ∠OAB 的值;(3)求经过C 、D 两点的一次函数解析式.【分析】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),由点A 的坐标表示出点C 的坐标,根据C 、D 点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k 、m 的二元一次方程,解方程即可得出结论;(2)由m 的值,可找出点A 的坐标,由此即可得出线段OB 、AB 的长度,通过解直角三角形即可得出结论;(3)由m 的值,可找出点C 、D 的坐标,设出过点C 、D 的一次函数的解析式为y=ax +b ,由点C 、D 的坐标利用待定系数法即可得出结论.【解答】解:(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,解得:.∴反比例函数的解析式为y=.(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.∴经过C、D两点的一次函数解析式为y=﹣x+3.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、解直角三角形以及待定系数法求函数解析式,解题的关键是:(1)由反比例函数图象上点的坐标特征找出关于k、m的二元一次方程组;(2)求出点A的坐标;(2)求出点C、D的坐标.本题属于基础题,难度不大,但考查的知识点较多,解决该题型题目时,利用反比例函数图象上点的坐标特征找出方程组,通过解方程组得出点的坐标,再利用待定系数法求出函数解析式即可.21.(8分)(2016•攀枝花)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,请写出y 与x 之间的函数关系式; (3)小明家5月份用水26吨,则他家应交水费多少元?【分析】(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y 与x 之间的函数关系,注意自变量的取值范围;(3)根据小明家5月份用水26吨,判断其在哪个范围内,判断其在哪个范围内,代入相应的函数关系代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元.元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当0≤x ≤14时,y=2x ;当x >14时,y=14×2+(x ﹣14)×3.5=3.5x ﹣21,故所求函数关系式为:y=;(3)∵26>14,∴小明家5月份水费为3.5×26﹣21=70元,答:小明家5月份水费70元.【点评】本题考查了一次函数的应用、本题考查了一次函数的应用、二元一次方程组的解法,二元一次方程组的解法,二元一次方程组的解法,特别是在求一次特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围.22.(8分)(2016•攀枝花)如图,在矩形ABCD 中,点F 在边BC 上,且AF=AD ,过点D 作DE ⊥AF ,垂足为点E(1)求证:DE=AB ;(2)以A 为圆心,AB 长为半径作圆弧交AF 于点G ,若BF=FC=1,求扇形ABG。
2023年四川省攀枝花市中考数学真题(含答案解析)
2023年四川省攀枝花市中考数学真题学校:___________姓名:___________班级:___________考号:___________.....每次监测考试完后,老师要对每道试题难度作分析.已知:题目难度系数=考人数得分的平均分÷该题的满分.上期全市八年级期末质量监测,有11623名学生参数学选择题共设置了12道单选题,分.最后一道单选题的难度系数约为学生答题情况统计如表:选项留空多选B C D人数1122393420571390占参考人数比(%)0.090.1933.8517.711.96根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为().A B.B C D.D如图,已知正方形ABCD的边长为是对角线BD上的一点,PF AD⊥于点AB于点E,连接PC,当:PE PF时,则PC=()A.3B.12.我们可以利用图形中的面积关系来解释很多代数恒等式.的代数恒等式:①()2222a b a ab b +=++②()2222a b a ab b -=-+③22()()a b a b a b +-=-④22()()4a b a b ab-=+-其中,图形的面积关系能正确解释相应的代数恒等式的有()A .1个B .2个C .3个D .4个二、填空题13.2420x x --=的两根分别为m 、n ,则11m n+=.14.如图,在ABC 中,40A ∠=︒,90C ∠=︒,线段AB 的垂直平分线交AB 于点D ,交AC 于点E ,则EBC ∠=.16.如图,在直角A B O ''△的位置,点为.三、解答题17.解不等式组:21521x x +<⎧⎨-≤⎩18.已知2x y y -=,求11x y x y ⎛⎫+÷ ⎪-+⎝⎭19.如图,点(),6A n 和()3,2B 是一次函数的图象的两个交点.(1)求一次函数与反比例函数的表达式;21.2022年卡塔尔世界杯共有赛和复赛.32支球队通过抽签被分成分组积分赛采取单循环比赛(同组内每前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,球队按照既定的规则确定赛程,不再抽签,然后进行球队进行半决赛,半决赛胜出的(1)本届世界杯分在C组的组分组积分赛对阵表(不要求写对阵时间)(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯22.拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,测量东塔的高度.东塔的高度为分别垂直地面竖立两根高为AB、标杆EF和GH在同一竖直平面内.从标杆23.如图,抛物线2(0)y ax bx c a =++≠经过坐标原点O ,且顶点为()2,4A -.(1)求抛物线的表达式;(2)设抛物线与x 轴正半轴的交点为B ,点P 位于抛物线上且在x 轴下方,连接OA 、PB ,若90AOB PBO ∠+∠=︒,求点P 的坐标.24.如图1,在ABC 中,28AB BC AC ===,ABC 沿BC 方向向左平移得到DCE △,A 、C 对应点分别是D 、E .点F 是线段BE 上的一个动点,连接AF ,将线段AF 绕点A 逆时针旋转至线段AG ,使得BAD FAG ∠=∠,连接FG .(1)当点F 与点C 重合时,求FG 的长;(2)如图2,连接BG 、DF .在点F 的运动过程中:①BG 和DF 是否总是相等?若是,请你证明;若不是,请说明理由;②当BF 的长为多少时,ABG 能构成等腰三角形?参考答案:AB 切O 于E ,OE AB ∴⊥,OE r =,1122AOB S AB OE AB ∴=⨯=⨯连接AP ,四边形ABCD 是正方形,3AB AD ∴==,45ADB ∠=PF AD ⊥ ,PE AB ⊥,∠∴四边形AEPF 是矩形,PE AF ∴=,90PFD ∠=︒,PFD ∴ 是等腰直角三角形,PF DF ∴=,:1:2PE PF = ,:1:2AF DF ∴=,1AF ∴=,2DF PF ==,2214AP AF PF ∴=+=+=AB BC = ,ABD CBD ∠=∠(SAS)ABP CBP ∴△≌△,5AP PC ∴==,故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.12.D【分析】观察各个图形及相应的代数恒等式即可得到答案.【详解】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,由题意,在Rt BAO △中,3AO =,AB 222BO AB AO ∴=+=.12AB BO ∴=.30AOB ∴∠=︒.又ABO 绕点O 顺时针旋转105︒至A △105BOB '∴∠=︒.45B OH '∴∠=︒.又点E 是OB '的中点,11122OE BO B O '∴===.在Rt EOH △中,45B OH '∠=︒ ,2222EH OH OE ∴===.2(2E ∴,2)2.又E 在k y x=上,【点睛】本题考查了切线的判定、圆周角定理、直角三角形的性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.21.(1)C组分组积分赛对阵表见解答过程;(2)本届世界杯冠军阿根廷队在决赛阶段一共踢了(3)本届世界杯32支球队在决赛阶段一共踢了【分析】(1)根据同组内每(2)冠军阿根廷队分组积分赛踢了可得到答案;(3)分组积分赛48场,三、四名决赛各1场,相加即可.【详解】(1)C组分组积分赛对阵表:阿根廷阿根廷设2(,4)P m m m -,在24y x x =-中,令0y =得x =(4,0)B ∴;90AOB AOT ∠+∠=︒ ,AOB ∠+AOT PBO ∴∠=∠,90ATO PKB ∠=︒=∠ ,AOT PBK ∴△∽△,∴AT OT PK BK=,28AB BC AC === ,2AH ∴=,215BH ∴=,12152sin 84CG BAC ∴∠==,215CG FG ∴==;(2)解:①DF BG =,理由如下:如图2,AG AF = ,DAF ∠=(SAS)ABG ADF ∴△≌△,DF BG ∴=;②如图2,过点A 作AN BC ⊥交于由①可知114215822AN ⨯⨯=⨯,15AN ∴=,当AG AB =时,8AB BC == ,。
2017年四川省攀枝花市中考数学试卷(含答案)
2017年四川省攀枝花市中考数学试卷一.选择题(共10小题)1.(2017攀枝花)﹣3的倒数是()A.﹣3 B.C. 3 D.考点:倒数。
分析:直接根据倒数的定义进行解答即可.解答:解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选D.点评:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.(2017攀枝花)下列运算正确的是()A.B.C.(ab)2=ab2D.(﹣a2)3=a6考点:幂的乘方与积的乘方;算术平方根;立方根。
分析:根据幂的乘方的性质,积的乘方的性质,立方根、平方根的知识,对各选项分析判断后利用排除法求解,即可求得答案.解答:解:A.=﹣2,故本选项正确;B.=3,故本选项错误;C.(ab)2=a2b2,故本选项错误;D.(﹣a2)3=﹣a6,故本选项错误.故选A.点评:此题考查了幂的乘方,积的乘方,立方根,平方根的知识.此题比较简单,注意理清指数的变化是解题的关键,注意掌握立方根与平方根的定义.3.(2017攀枝花)下列说法中,错误的是()A.不等式x<2的正整数解中有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3 D.不等式x<10的整数解有无数个考点:不等式的解集。
分析:解不等式求得B,C即可选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.解答:解:A.不等式x<2的正整数只有1,故本选项正确,不符合题意;B.2x﹣1<0的解集为x<,所以﹣2是不等式2x﹣1<0的一个解,故本选项正确,不符合题意;C.不等式﹣3x>9的解集是x<﹣3,故本选项错误,符合题意;D.不等式x<10的整数解有无数个,故本选项正确,不符合题意.故选C.点评:此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.4.(2017攀枝花)为了了解攀枝花市2017年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A. 150B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2017年中考数学成绩考点:总体、个体、样本、样本容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省攀枝花市2017年中考数学试卷一、选择题(每小题3分,共30分)1.(3分)(2017•攀枝花)2的绝对值是()A.±2 B.2C.D.﹣2考点:绝对值.分析:根据绝对值实数轴上的点到原点的距离,可得答案.解答:解:2的绝对值是2.故选:B.点评:本题考查了绝对值,正的绝对值等于它本身.2.(3分)(2017•攀枝花)为促进义务教育办学条件均衡,某市投入480万元资金为部分学校添置实验仪器及音、体、美器材,480万元用科学记数法表示为()A.480×104元B.48×105元C.4.8×106元D.0.48×107元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将480万用科学记数法表示为:4.8×106.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•攀枝花)下列运算中,计算结果正确的是()A.m﹣(m+1)=﹣1 B.(2m)2=2m2 C.m3•m2=m6D.m3+m2=m5考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的乘法.分析:根据合并同类项的法则,同底数幂的乘法与积的乘方的知识求解即可求得答案.解答:解:A、m﹣(m+1)=﹣1,故A选项正确;B、(2m)2=4m2,故B选项错误;C、m3•m2=m5,故C选项错误;D、m3+m2,不是同类项,故D选项错误.故选:A.点评:此题考查了合并同类项的法则,同底数幂的乘法与积的乘方的知识,解题要注意细心.4.(3分)(2017•攀枝花)下列说法正确的是()A.“打开电视机,它正在播广告”是必然事件B.“一个不透明的袋中装有8个红球,从中摸出一个球是红球”是随机事件C.为了了解我市今年夏季家电市场中空调的质量,不宜采用普查的调查方式进行D.销售某种品牌的凉鞋,销售商最感兴趣的是该品牌凉鞋的尺码的平均数考点:随机事件;全面调查与抽样调查;统计量的选择.分析:根据随机事件、必然事件,可判断A、B,根据调查方式,可判断C,根据数据的集中趋势,可判断D.解答:解:A、是随机事件,故A错误;B、是必然事件,故B错误;C、调查对象大,适宜于抽查,故C正确;D、销售商最感兴趣的是众数,故D错误;故选:C.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5.(3分)(2017•攀枝花)因式分解a2b﹣b的正确结果是()A.b(a+1)(a﹣1)B.a(b+1)(b﹣1)C.b(a2﹣1)D.b(a﹣1)2考点:提公因式法与公式法的综合运用.分析:先提取公因式b,再对余下的多项式利用平方差公式继续分解.解答:解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故选A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6.(3分)(2017•攀枝花)当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限考点:一次函数图象与系数的关系.分析:根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.解答:解:∵kb<0,∴k、b异号.①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限.故选B.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.(3分)(2017•攀枝花)下列说法正确的是()A.多边形的外角和与边数有关B.平行四边形既是轴对称图形,又是中心对称图形C.当两圆相切时,圆心距等于两圆的半径之和D.三角形的任何两边的和大于第三边考点:多边形内角与外角;三角形三边关系;圆与圆的位置关系;中心对称图形.分析:根据多边形的外角和是360°,可以确定答案A;平行四边形只是中心对称图形,可以确定答案B;当两圆相切时,可分两种情况讨论,确定答案C;三角形的两边之和大于第三遍,可以确定答案D.解答:解:A、多边形的外角和是360°,所以多边形的外角和与边数无关,所以答案A错误;B、平行四边形只是中心对称图形,不是轴对称图形,所以答案B错误;C、当两圆相切时,分两种情况:两圆内切和两圆外切,结果有两种,所以答案C错误;D、答案正确.故选:D.点评:本题考查了基本定义的应用,解答此类问题的关键在于熟练记住基本定理、性质以及公式的运用.8.(3分)(2017•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3D.+=﹣1考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到(α+β)2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3;+===1.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.9.(3分)(2017•攀枝花)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫,从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2017cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C考点:菱形的性质;规律型:图形的变化类.分析:观察图形不难发现,每移动8cm为一个循环组依次循环,用2017除以8,根据商和余数的情况确定最后停的位置所在的点即可.解答:解:∵两个菱形的边长都为1cm,∴从A开始移动8cm后回到点A,∵2017÷8=251余6,∴移动2017cm为第252个循环组的第6cm,在点F处.故选A.点评:本题是对图形变化规律的考查,观察图形得到每移动8cm为一个循环组依次循环是解题的关键.10.(3分)(2017•攀枝花)如图,正方形ABCD的边CD与正方形CGEF的边CE重合,O是EG的中点,∠EGC的评分项GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有()A.1个B.2个C.3个D.4个考点:四边形综合题.分析:(1)由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出GH⊥BE;(2)由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,得出==,即HO=BG;(3)△EHG是直角三角形,因为O为FG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上;(4)连接CF,由点H在正方形CGFE的外接圆上,得到∠HFC=∠CGH,由∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,得出∠FMG=∠GBE,所以△GBE∽△GMF.解答:解:(1)如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确,(2)∵GH是∠EGC的平分线,∴∠BGH=∠EGH,在△BGH和△EGH中∴△BGH≌△EGH(ASA),∴BH=EH,∵O是EG的中点,∴==,∴HO=BG,故②正确.(3)由(1)得△EHG是直角三角形,∵O为FG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,故③错误,(4)如图2,连接CF,由(3)可得点H在正方形CGFE的外接圆上,∴∠HFC=∠CGH,∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,∴∠FMG=∠GBE,又∵∠EGB=∠FGM=45°,∴△GBE∽△GMF.故④正确,故选:C.点评:本题主要考查了四边形的综合题,解题的关键是能灵活利用三角形全等的判定和性质来解题.二、填空(每小题4分,共24分)11.(4分)(2017•攀枝花)函数中,自变量x的取值范围是x≥2.考点:函数自变量的取值范围.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.(4分)(2017•攀枝花)如图,是八年级(3)班学生参加课外活动人数的扇形统计图,如果参加艺术类的人数是16人,那么参加其它活动的人数是4人.考点:扇形统计图.分析:先求出参加课外活动人数,再求出参加其它活动的人数即可.解答:解:∵参加艺术类的学生占的比例为32%,∴参加课外活动人数为:16÷32%=50人,则其它活动的人数50×(1﹣20%﹣32%﹣40%)=4人.故答案为:4.点评:本题主要考查了扇形统计图,扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.13.(4分)(2017•攀枝花)已知x,y满足方程组,则x﹣y的值是﹣1.考点:解二元一次方程组.专题:计算题.分析:将方程组两方程相减即可求出x﹣y的值.解答:解:,②﹣①得:x﹣y=﹣1.故答案为:﹣1.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.(4分)(2017•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.分析:先根据△ABC中,tanA=1,cosB=,求出∠A及∠B的度数,进而可得出结论.解答:解:∵△ABC中,tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.15.(4分)(2017•攀枝花)如图是一个几何体的三视图,这个几何体是圆锥,它的侧面积是2π(结果不取近似值).考点:圆锥的计算;由三视图判断几何体.分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.解答:解:此几何体为圆锥;∵半径为:r=1,高为:h=,∴圆锥母线长为:l=2,∴侧面积=πrl=2π;故答案为:圆锥,2π.点评:本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.16.(4分)(2017•攀枝花)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是.考点:相似三角形的判定与性质;等腰三角形的判定与性质;梯形.分析:首先延长BA,CD交于点F,易证得△BEF≌△BEC,则可得DF:FC=1:4,又由△ADF ∽△BCF,根据相似三角形的面积比等于相似比的平方,可求得△ADF的面积,继而求得答案.解答:解:延长BA,CD交于点F,∵BE平分∠ABC,∴∠EBF=∠EBC,∵BE⊥CD,∴∠BEF=∠BEC=90°,在△BEF和△BEC中,,∴△BEF≌△BEC(ASA),∴EC=EF,S△BEF=S△BEC=2,∴S△BCF=S△BEF+S△BEC=4,∵CE:ED=2:1∴DF:FC=1:4,∵AD∥BC,∴△ADF∽△BCF,∴=()2=,∴S△ADF=×4=,∴S四边形ABCD=S△BEF﹣S△ADF=2﹣=.故答案为:.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.三、解答题(共66分)17.(6分)(2017•攀枝花)计算:(﹣1)2017+()﹣1+()0+.考点:实数的运算;零指数幂;负整数指数幂.分析:根据零指数幂、乘方、负整数指数幂、立方根化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+2+1﹣1=3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、立方根等考点的运算.18.(6分)(2017•攀枝花)解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+1)(x﹣1),得x(x+1)+1=x2﹣1,解得x=﹣2.检验:把x=﹣2代入(x+1)(x﹣1)=3≠0.∴原方程的解为:x=﹣2.点评:本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(6分)(2017•攀枝花)如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2).(1)求过点B的双曲线的解析式;(2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由.考点:等腰梯形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.分析:(1)过点C作CD⊥AB于D,根据等腰梯形的性质和点A的坐标求出CD、BD,然后求出点B的坐标,设双曲线的解析式为y=(k≠0),然后利用待定系数法求反比例函数解析式解答;(2)根据向右平移横坐标加求出平移后的点C的坐标,再根据反比例函数图象上点的坐标特征判断.解答:解:(1)如图,过点C作CD⊥AB于D,∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3),∴CD=2,BD=3,∵C(0,2),∴点B的坐标为(2,5),设双曲线的解析式为y=(k≠0),则=5,解得k=10,∴双曲线的解析式为y=;(2)平移后的点C落在(1)中的双曲线上.理由如下:点C(0,2)向右平移5个单位后的坐标为(5,2),当x=5时,y==2,∴平移后的点C落在(1)中的双曲线上.点评:本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,坐标与图形变化﹣平移,熟练掌握等腰梯形的性质并求出点B的坐标是解题的关键.20.(8分)(2017•攀枝花)在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.考点:列表法与树状图法;根的判别式;点的坐标;概率公式.专题:计算题.分析:(1)四个数字中正数有一个,求出所求概率即可;(2)表示出已知方程根的判别式,根据方程有实数根求出a的范围,即可求出所求概率;(3)列表得出所有等可能的情况数,找出点(x,y)落在第二象限内的情况数,即可求出所求的概率.解答:解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=;(2)方程ax2﹣2ax+a+3=0,△=4a2﹣4a(a+3)=﹣12a≥0,即a≤0,则方程ax2﹣2ax+a+3=0有实数根的概率为;(3)列表如下:﹣3 ﹣1 0 2 ﹣3 ﹣﹣﹣(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1 (﹣3,﹣1)﹣﹣﹣(0,﹣1)(2,﹣1)0 (﹣3,0)(﹣1,0)﹣﹣﹣(2,0)2 (﹣3,2)(﹣1,2)(0,2)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2017•攀枝花)如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若AB=13,sinB=,求CE的长.考点:切线的判定;圆周角定理;相似三角形的判定与性质分析:(1)连接AD,利用直径所对的圆周角是直角和等腰三角形的三线合一可以得到AB=AC;(2)连接OD,利用平行线的判定定理可以得到∠ODE=∠DEC=90°,从而判断DE是圆的切线;(3)根据AB=13,sinB=,可求得AD和BD,再由∠B=∠C,即可得出DE,根据勾股定理得出CE.解答:(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°∴AD⊥BC,又D是BC的中点,∴AB=AC;(2)证明:连接OD,∵O、D分别是AB、BC的中点,∴OD∥AC,∴∠ODE=∠DEC=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)解:∵AB=13,sinB=,∴=,∴AD=12,∴由勾股定理得BD=5,∴CD=5,∵∠B=∠C,∴=,∴DE=,∴根据勾股定理得CE=.点评:本题目考查了切线的判定以及等腰三角形的判定及性质、圆周角定理及切线的性质,涉及的知识点比较多且碎,解题时候应该注意.22.(8分)(2017•攀枝花)为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机100 60乙型挖掘机120 80(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设甲、乙两种型号的挖掘机各需x台、y台.等量关系:甲、乙两种型号的挖掘机共8台;每小时挖掘土石方540m3;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.解答:解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣n,∴方程的解为,.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和3辆乙型挖掘机.点评:本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.23.(12分)(2017•攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B 在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l 与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.考点:圆的综合题.分析:(1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MH⊥BC,垂足为H,易证△MHP≌△AOP,从而求出MH、OH的长,进而得到点M的坐标.(3)易证点E、M、B、G在以点Q为圆心,QB为半径的圆上,从而得到∠MQG=2∠MBG.易得∠OCA=60°,从而得到∠MBG=60°,进而得到∠MQG=120°,所以∠MQG 是定值.解答:解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.点评:本题考查了垂径定理、勾股定理、全等三角形的判定与性质、矩形的判定与性质、圆周角定理、特殊角的三角函数、图形的旋转等知识,综合性比较强.证明点E、M、B、G在以点Q为圆心,QB为半径的圆上是解决第三小题的关键.24.(12分)(2017•攀枝花)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.考点:二次函数综合题.分析:(1)令y=ax2﹣8ax+12a=0,解一元二次方程,求出点A、B的坐标;(2)由∠ACD=90°可知△ACD为直角三角形,利用勾股定理,列出方程求出a的值,进而求出抛物线的解析式;(3)△PAC的周长=AC+PA+PC,AC为定值,则当PA+PC取得最小值时,△PAC的周长最小.设点C关于对称轴的对称点为C′,连接AC′与对称轴交于点P,由轴对称的性质可知点P即为所求;(4)直线m运动过程中,有两种情形,需要分类讨论并计算,避免漏解.解答:解:(1)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),令y=0,即ax2﹣8ax+12a=0,解得x1=2,x2=6,∴A(2,0),B(6,0).(2)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),令x=0,得y=12a,∴C(0,12a),OC=12a.在Rt△COD中,由勾股定理得:CD2=OC2+OD2=(12a)2+62=144a2+36;在Rt△COD中,由勾股定理得:AC2=OC2+OA2=(12a)2+22=144a2+4;在Rt△COD中,由勾股定理得:DC2+AC2=AD2;即:(144a2+36)+(144a2+4)=82,解得:a=或a=﹣(舍去),∴抛物线的解析式为:y=x2﹣x+.(3)存在.对称轴为直线:x=﹣=4.由(2)知C(0,),则点C关于对称轴x=4的对称点为C′(8,),连接AC′,与对称轴交于点P,则点P为所求.此时△PAC周长最小,最小值为AC+AC′.设直线AC′的解析式为y=kx+b,则有:,解得,∴y=x﹣.当x=4时,y=,∴P(4,).过点C′作C′E⊥x轴于点E,则C′E=,AE=6,在Rt△AC′E中,由勾股定理得:AC′==4;在Rt△AOC中,由勾股定理得:AC==4.∴AC+AC′=4+4.∴存在满足条件的点P,点P坐标为(4,),△PAC周长的最小值为4+4.(4)①当﹣6≤t≤0时,如答图4﹣1所示.∵直线m平行于y轴,∴,即,解得:GH=(6+t)∴S=S△DGH=DH•GH=(6+t)•(6+t)=t2+2t+6;②当0<t≤2时,如答图4﹣2所示.∵直线m平行于y轴,∴,即,解得:GH=﹣t+2.∴S=S△COD+S梯形OCGH=OD•OC+(GH+OC)•OH=×6×2+(﹣t+2+2)•t=﹣t2+2t+6.∴S=.点评:本题是典型的二次函数压轴题,综合考查二次函数与一次函数的图象与性质、待定系数法、解一元二次方程、相似、勾股定理等知识点,难度不大.第(3)考查最值问题,注意利用轴对称的性质;第(4)问是动线型问题,考查分类讨论的数学思想,注意图形面积的计算.。