刚体习题和答案

合集下载

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

第三章 刚体力学习题答案

第三章     刚体力学习题答案

第三章 刚体力学习题答案3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m ,杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度.解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为2sin sin sin M mgl mgl mgl θθθ=-=系统的转动惯量为两个小球(可视为质点)的转动惯量之和22223J ml ml ml =+=应用转动定律 M J β=有:2sin 3mgl ml θβ= 解得sin 3g lθβ=3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m.解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有图3-1 图3-2β)21(212Mr r T r T =- ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示.解:以飞轮为研究对象,飞轮的转动惯量212J mR =,制动前角速度为1000260ωπ=⨯rad/s ,制动时角加速度为tωβ-=- 制动时闸瓦对飞轮的压力为N F ,闸瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 212f F R J mR ββ-== 则 2N mR F tωμ=以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有10N Fl F l -=110.50600.252100015720.500.7520.4560N l l mR F F l l t ωπμ⨯⨯⨯===⨯=+⨯⨯⨯N 图3-33-4 设有一均匀圆盘,质量为m ,半径为R ,可绕过盘中心的光滑竖直轴在水平桌面上转动. 圆盘与桌面间的滑动摩擦系数为μ,若用外力推动它使其角速度达到0ω时,撤去外力,求:(1) 此后圆盘还能继续转动多少时间? (2) 上述过程中摩擦力矩所做的功.解:(1)撤去外力后,盘在摩擦力矩f M 作用下停止转动- 设盘质量密度为2mRσπ=,则有20223Rf Mg r dr mgR μπσμ==⎰ 根据转动定律 21,2f M J mR Jα-==43g Rμα-= 034R t gωωαμ-==(2)根据动能定理有 摩擦力的功2220011024f W J mR ωω=-=-3-5 如题3-6图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度.解: (1)由转动定律,有β)31(212ml mg= ∴ lg23=β(2)由机械能守恒定律,有图3-622)31(21sin 2ωθml l mg =∴ lg θωsin 3=3-6 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如3-8图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:(1)柱体转动时的角加速度; (2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).(a)图 (b)图(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得22222222121s rad 13.68.910.0220.0210.042120.0102121.022.0-⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯-⨯=++-=gr m R m I rm Rm β(2)由①式8.208.9213.610.02222=⨯+⨯⨯=+=g m r m T βN由②式1.1713.6.2.028.92111=⨯⨯-⨯=-=βR m g m T N3-7 一风扇转速为900r/min,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力做的功为44.4J,求风扇的转动惯量和摩擦力矩.解:设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移2N θπ=,摩擦力矩所做的功为2A M M N θπ=-=-摩擦力所做的功应等于风扇转动动能的增量,即2102A J ω=-2222(44.4)0.01(9002/60)AJ ωπ⨯-=-=-=⨯kg ⋅m 2 44.40.09422275A M N ππ-=-=-=⨯N ⋅m 3-8 一质量为M 、半径为r 的圆柱体,在倾斜θ角的粗糙斜面上从距地面h 高处只滚不滑而下,试求圆柱体滚止地面时的瞬时角速度ω.解: 在滚动过程中,圆柱体受重力Mg 和斜面的摩擦力F 作用,设 圆柱体滚止地面时,质心在瞬时速率为v ,则此时质心的平动动能为212Mv ,与此同时,圆柱体以角速度ω绕几何中心轴转动,其转动动能为212J ω.将势能零点取在地面上,初始时刻圆柱体的势能为Mgh ,由于圆柱体只滚不滑而下,摩擦力为静摩擦力,对物体不做功,只有重力做功,机械能守恒,于是有221122Mgh Mv J ω=+ 式中 21,2J Mr v r ω==,代入上式得 22211()22Mgh Mr Mr ω=+即 23gh r ω=3-9 一个轻质弹簧的倔强系数 2.0k =N/m,它的一端固定,另一端通过一条细绳绕过一个定滑轮和一个质量为m =80g 的物体相连,如图所示. 定滑轮可看作均匀圆盘,它的质量为M =100g,半径r =0.05m. 先用手托住物体m ,使弹簧处于其自然长度,然后松手.求物体m 下降h =0.5m 时的速度为多大?忽略滑轮轴上的摩擦,并认为绳在滑轮边缘上不打滑.解:由于只有保守力(弹性力、重力)做功,所以由弹簧、滑轮和物体m 组成的系统机械能守恒,故有222111222mgh kh I mv ω=++21,2v r I Mr ω==所以 22 1.4812mgh kh v M m -==+m/s3-10 有一质量为1m 、长为l 的均匀细棒, 静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为2m 的小滑块, 从侧面垂直于棒与棒的另一端A 相碰撞, 设碰撞时间极短. 已知小滑块在碰撞前后的速度分别为1V 和2V ,如图示,求碰撞后从细棒开始转动到停止转动的过程所需的时间(已知棒绕O点的转动惯量2113J m l =).图3-11图3-12解:对棒和滑块组成的系统,因为碰撞时间极短,所以棒和滑块所受的摩擦力矩远小于相互间的冲量矩,故可认为合外力矩为零,所以系统的角动量守恒,且碰撞阶段棒的角位移忽略不计,由角动量守恒得22122113m v l m v l m l ω=-+碰撞后在在转动过程中棒受到的摩擦力矩为 11012tf m M gdx m gl l μμ=-=-⎰由角动量定理得转动过程中210103tfM dt m l ω=-⎰ 联立以上三式解得:12212V V t m m gμ+= 3-11 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010m 时的速率是1v =5.46×104m ·s -1,它离太阳最远时的速率是2v =9.08×102m ·s -1,这时它离太阳的距离2r 为多少?(太阳位于椭圆的一个焦点.)解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 2211mv r mv r =∴ m 1026.51008.91046.51075.81224102112⨯=⨯⨯⨯⨯==v v r r 3-12 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球做匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如3-14图.试问这时小球做匀速圆周运动的角速度ω'和半径r '为多少?图3-14解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即201ωmr g M =①挂上2M 后,则有221)(ω''=+r m g M M②重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00ωω''=⇒2020r r ③联立①、②、③得10021123011213212()M g mr M g M M mr M M M M r g r m M M ωωω=+'=+'==⋅'+3-13 如图示, 长为l 的轻杆, 两端各固定质量分别为m 和2m 的小球, 杆可绕水平光滑轴在竖直平面内转动, 转轴O 距两端的距离分别为/3l 或2/3l . 原来静止在竖直位置. 今有一质量为m 的小球, 以水平速度0v 与杆下端的小球m 做对心碰撞, 碰后以0/2v 的速度返回, 试求碰撞后轻杆所获得的角速度ω.解:将杆与两端的小球视为一刚体,水平飞来的小球m 与刚体视为一系统,在碰撞过程中,外力包括轴O 处的作用力和重力,均不产生力矩,故合外力矩为零,系统角动量守恒- 选逆时针转动为正方向,则由角动量守恒得 0022323v ll mv m J ω=-+ 222()2()33l l J m m =+图3-13解得 032v lω=3-14 圆盘形飞轮A 质量为m , 半径为r , 最初以角速度0ω转动, 与A 共轴的圆盘形飞轮B质量为4m ,半径为2r , 最初静止, 如图所示, 两飞轮啮合后, 以同一速度ω转动, 求ω及啮合过程中机械能的损失.解:以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有22201114(2)222mr mr m r ωωω=+ 得 0117ωω=初始机械能为 2222100111224W mr mr ωω==啮合后机械能为222222201111114(2)2222174W mr m r mr ωωω=+=则机械能损失为 221201611617417W W W mr W ω∆=-==3-15 如图示,一匀质圆盘半径为r ,质量为1m ,可绕过中心的垂轴O 转动.初时盘静止,一质量为2m 的子弹一速度v 沿与盘半径成160θ︒=的方向击中盘边缘后以速度/2v 沿与半径方向成230θ︒=的方向反弹,求盘获得的角速度.解:对于盘和子弹组成的系统,撞击过程中轴O 的支撑力的力臂为零,不提供力矩,其他外力矩的冲量矩可忽略不计,故系统对轴O 的角动量守恒,即12L L =,初时盘的角动量为零,只有子弹有角动量,故图3-14 图3-1512sin 60L m vr ︒=末态中盘和子弹都有角动量,设盘的角速度为ω,则22211sin 3022v L m r m r ω︒=+ 故有 22211sin 60sin 3022v m vr m r m r ω︒︒=+可解得:1ω=3-16 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略不计,人的质量为'm ,转台的质量为10'm ,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.解:以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0J mRv ω+= 人和转台的转动惯量'2'21102J m R m R =+,代入上式后得 '6mvm Rω=-人的线速度为'6mvv R mω==-其中负号表示转台角速度转向和人的线速度方向与假设方向相反-3-17 一人站在转台上,两臂平举,两手各握一个4m =kg,哑铃距转台轴00.8r =m,起初转台以02ωπ=rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r =0.2m,设人与转台的转动惯量不变,且5J =kg ⋅m 2,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?解:以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有2200(2)(2)J mr J mr ωω+=+22002225240.8212.025240.2J mr J mr ωωπ++⨯⨯==⨯=++⨯⨯rad/s 动能的增量为222200011(2)(2)22W W W J mr J mr ωω∆=-=+-+222211(5240.2)12(5240.8)(2)22π=⨯+⨯⨯⨯-⨯+⨯⨯⨯ =183J3-18 如3-20图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处.(1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒做弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=lg I Mgl ω由①式mlI v v ω-=0 ④ 由②式mI v v 2202ω-= ⑤所以22001)(2ωωmv ml I v -=-图18求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰ gl M 6)32(6--=负号说明所受冲量的方向与初速度方向相反.3-19如图示,一个转动惯量为I ,半径为R 的定滑轮上面绕有细绳,并沿水平方向拉着一个质量为M 的物体 A. 现有一质量为m 的子弹在距转轴2R 的水平方向以速度0v 射入并固定在定滑轮的边缘,使滑轮拖住A 在水平面上滑轮.求(1)子弹射入并固定在滑轮边缘后,滑轮开始转动时的角速度ω.(2)若定滑轮拖着物体A 刚好转一圈而停止,求物体A 与水平面间的摩擦系数μ(轴上摩擦力忽略不计).解:(1)子弹射入定滑轮前后,子弹、定滑轮及物体A 构成的系统角动量守恒220[]2Rmv mR I MR ω=++ 解得 0222()mv RmR I MR ω=++(2)定滑轮转动过程中物体A 受的摩擦力所做的功等于系统动能的增量 2221()22I mR MR Mg R ωμπ-++=-⨯ 解得 202216()m v RMg mR MR I μπ=++ 3-20 行星在椭圆轨道上绕太阳运动,太阳质量为1m ,行星质量为2m ,行星在近日点和远日点时离太阳中心的距离分别为1r 和2r ,求行星在轨道上运动的总能量.解:将行星和太阳视为一个系统,由于只有引力做功,系统机械能守恒,设行星在近日点图3-19和远日点时的速率分别为1v 和2v ,有2212121122121122m m m m m v G m v G r r -=- 行星在轨道上运动时,受太阳的万有引力作用,引力的方向始终指向太阳,以太阳为参考点,行星所受力矩为零,故行星对太阳的角动量守恒 111222m rv m r v =行星在轨道上运动时的总能量为2212121122121122m m m m E m v G m v G r r =-=- 联立以上三式得:1212Gm m E r r =-+3-21 半径为R 质量为'm 的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动. 圆盘边缘及/2R 处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿两轨道反向运行,相对于圆盘的线速度值同为v . 若圆盘最初静止,求两小车开始转动后圆盘的角速度.解: 设两小车和圆盘运动方向如图所示,以圆盘转动方向为正向,外轨道上小车相对于地面的角动量为()mR R v ω-,内轨道上小车相对于地面的角动量为11()22m R R v ω+,圆盘的角动量为'212J m R ωω=,由于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得 '2111()()0222mR R v m R R v m R ωωω-+++= '2(52)mvm m Rω=+ 3-22 如图示,一匀质圆盘A 作为定滑轮绕有轻绳,绳上挂两物体B 和C,轮A 的质量为1m ,半径为r ,物体B 、C 的质量分别为2m 、3m ,且2m >3m . 忽略轴的摩擦,求物体B 由静止下落到t 时刻时的速度.图3-21图3-22解:把滑轮和两个物体作为一个系统,其运动从整体上看对定轴O 是顺时针方向的,即轮A 沿顺时针方向转动物体B 向下运动物体C 向上运动,故以顺时针方向的运动作为系统运动的正方向,根据角动量定理,得00tMdt L L =-⎰(1)(1)式左边为系统受到的合外力矩对轴O 的冲量矩,由于轮A 所受重力和轴的作用力对轴O 的力矩为零,故只有两物体所受重力提供力矩,注意到两个重力矩的方向相反,故合力矩为2121()M m gr m gr m m gr =-=- (2)(1)式右边为系统对轴O 的角动量的增量- 0t =时系统静止,角动量00L = (3)到t 时刻,A 、B 、C 三个物体均沿顺时针方向运动,角动量均为正- 设此时轮A 的角速度ω,B 、C 两物体速率相同设为v ,则有212312A B C L L L L m r m vr m vr ω=++=++ (4)把(2)、(3)、(4)式代入(1)式有2211231()2m m grt m r m vr m vr ω-=++由于系统为一连接体,两物体的速率与轮边缘的速率相同,即有v r ω= 把此式代入(5)式即可求得物体下落t 时的速度 211232()23m m gtv m m m -=++。

大学物理习题及解答(刚体力学)

大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。

先使小球以速度0v 。

绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。

(2)由r D 缩到r 1过程中,力F 所作的功。

解 (1)绳子作用在小球上的力始终通过中心O ,是有心力,以小球为研究对象,此力对O 的力矩在小球运动过程中始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即10L L =小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 100r r v v =(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 21)(21 21212102020210202021r r mv mv r r mv mv mv W2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。

物体置于倾角为θ的光滑斜面上。

开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下滑,求物体下滑距离l 时,物体速度的大小。

解 把物体、滑轮、弹簧、轻绳和地球为研究系统。

在物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。

设物体下滑l 时,速度为v ,此时滑轮的角速度为ω则 θωsin 2121210222mgl mv J kl -++= (1)又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22sin 2θ本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。

3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。

第四章刚体运动习题详解

第四章刚体运动习题详解
例1.一根长为L、质量为m的均匀细直棒, 其一端 有一固定的光滑水平轴,因而可以在竖直平 面内转动。 最初棒静止在水平位置, 求它由此下摆角时的角加速度和角速度。
解:棒下摆为加速过程, 外力矩为重力对O 的力矩。
棒上取质元dm,当棒处在 下摆角时,重力矩为:
x
O
X
C
dm
dM xgdm
合力矩
mg
gdm
解:
因摩擦力产生的力矩是恒定的,故角速度均匀 减小。
0
0
t
0
0 t
dt t
0
f dS
r
σ
m πR2
R
dθ o
r
M J 1 mR2
2
dr
t 0mR2 / (2M ) (1) M ?
考虑面元dS对轴的摩擦力矩dM :
dM r0gdm r0g dS
26
t0mR2/(2M ) (1) dM r0g dS
mg 由(3)(4)(5)得
mgR sin
1 2
J02
1 2
J2
(5)
gh 2R2
cos2
g R
sin
1 2R
.
g 2
(h
4
3R)
M J
mgR 2mR2
g 2R
( 60 )
44
dt
O
X
C
即 d d
3g cos d d
mg
2L
θ
0
3gcos
2L
d
0
d
3g 2L
sin
1 2
2
3g sin
L
22
m 例2.质量为 、长为L的匀质细杆水平放置,一端

刚体习题和答案

刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。

刚体的平面运动习题答案

刚体的平面运动习题答案

刚体的平面运动习题答案刚体的平面运动习题答案刚体的平面运动是力学中的一个重要课题,它涉及到物体在平面上的运动规律和力的作用方式。

在学习这一课题时,我们常常会遇到一些习题,下面我将为大家提供一些关于刚体平面运动的习题答案,希望能够帮助大家更好地理解和掌握这一知识点。

1. 习题一:一个质量为m的刚体在水平地面上受到一个水平力F的作用,求刚体受力情况下的加速度。

解答:根据牛顿第二定律,刚体的加速度与作用在其上的合外力成正比,与刚体的质量成反比。

因此,刚体的加速度可以表示为a = F/m。

2. 习题二:一个质量为m的刚体以速度v沿x轴正方向运动,受到一个大小为F的力沿y轴正方向作用,求刚体的加速度和运动轨迹。

解答:由于刚体受到的力只有在y轴上的F,所以刚体在x轴方向上不受力,即不会有加速度。

而在y轴方向上,刚体受到的力F会引起加速度的产生。

根据牛顿第二定律,我们可以得到刚体在y轴方向上的加速度为a = F/m。

至于刚体的运动轨迹,由于在x轴方向上没有加速度,刚体将以匀速直线运动,而在y轴方向上有加速度,刚体将在y轴上做匀加速运动。

3. 习题三:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向相同,求刚体在力作用下的加速度。

解答:由于力的方向与速度方向相同,所以刚体受到的力将会增加其速度。

根据牛顿第二定律,刚体的加速度可以表示为a = F/m。

4. 习题四:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向相反,求刚体在力作用下的加速度。

解答:由于力的方向与速度方向相反,所以刚体受到的力将会减小其速度。

根据牛顿第二定律,刚体的加速度可以表示为a = -F/m。

5. 习题五:一个质量为m的刚体受到一个大小为F的力作用,该力的方向与刚体的速度方向成一定的夹角θ,求刚体在力作用下的加速度。

解答:对于这个习题,我们可以将力F分解为两个分力F1和F2,其中F1与刚体的速度方向相同,F2与刚体的速度方向垂直。

第03章(刚体力学)习题答案

第03章(刚体力学)习题答案

内力做功,机械能守恒,动量守恒的条件为合外力为零,转轴不属于系统,转轴与盘之间有
作用力,动量不守恒。
3-2 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑
O
固定轴 O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打
击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆
与小球这一系统的哪种物理量守恒? 答:在碰撞时,小球重力过转轴,杆的重力也过轴,外力矩为
思考题 3­2 图
零,所以角动量守恒。因碰撞时转轴与杆之间有作用力,所以动量不守恒。碰撞是非弹性的,
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
解:(1)设在任意时刻定滑轮的角速度为w,物体的速度大小为 v,则有 v=Rw.
则物体与定滑轮的总角动量为: L = Jw + mvR = Jw + mR2w
根据角动量定理,刚体系统所受的合外力矩等于系统角动量对时间的变化率:
M = dL ,该系统所受的合外力矩即物体的重力矩:M=mgR dt
所以: b

大学物理 刚体力学基础习题思考题及答案

大学物理 刚体力学基础习题思考题及答案
┄① ┄② ┄③ ┄④ ,┄⑤ 联立,解得:, 。 5-2.如图所示,一均匀细杆长为,质量为,平放在摩擦系数为的水平 桌面上,设开始时杆以角速度绕过中心且垂直与桌面的轴转动,试求: (1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
解:(1)设杆的线密度为:,在杆上取一小质元,有微元摩擦力: , 微元摩擦力矩:, 考虑对称性,有摩擦力矩: ; (2)根据转动定律,有:,
解:根据角动量守恒,有:
有: ∴
5-9.一质量均匀分布的圆盘,质量为,半径为,放在一粗糙水平面上 (圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心的竖直固定光 滑轴转动。开始时,圆盘静止,一质量为的子弹以水平速度垂直于圆盘 半径打入圆盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘所获 得的角速度;(2)经过多少时间后,圆盘停止转动。(圆盘绕通过的竖 直轴的转动惯量为,忽略子弹重力造成的摩擦阻力矩。) 解:(1)利用角动量守恒: 得:; (2)选微分,其中:面密度, ∴由有:, 知:
得: 。
5-13.如图所示,物体放在粗糙的水平面上,与水平桌面之间的摩擦系 数为,细绳的一端系住物体,另一端缠绕在半径为的圆柱形转轮上,物 体与转轮的质量相同。开始时,物体与转轮皆静止,细绳松弛,若转轮 以绕其转轴转动。试问:细绳刚绷紧的瞬时,物体的速度多大?物体运 动后,细绳的张力多大? 解:(1)细绳刚绷紧的瞬时前后,把物体和转轮、绳看成一个系统, 系统对转轴圆柱形中心角动量守恒,
(1) (2) (3)
(4) 联立方程可得 、, 。
5-2.一圆盘绕过盘心且与盘面垂直的轴以角速度按图示方向转动,若 如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力 沿盘面方向同时作用到盘上,则盘的角速度怎样变化? 答:增大 5-3.个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑 铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台 组成的系统的: (A)机械能守恒,角动量守恒;(B)机械能守恒,角动量不守恒; (C)机械能不守恒,角动量守恒;(D)机械能不守恒,角动量不守 恒。 答:(C)

刚体的简单运动习题及答案

刚体的简单运动习题及答案

刚体的简单运动习题及答案刚体的简单运动习题及答案刚体是物理学中的一个基本概念,它指的是在运动过程中形状和大小不发生改变的物体。

在学习刚体的运动时,我们可以通过一些简单的习题来加深对刚体运动的理解。

下面,我将为大家提供一些常见的刚体运动习题及答案。

习题一:平抛运动小明站在一个高处,手中拿着一个小球,以一定的初速度将球水平抛出。

假设空气阻力可以忽略不计,请问球的运动轨迹是什么形状?答案:球的运动轨迹是一个抛物线。

在平抛运动中,刚体在水平方向上做匀速直线运动,在竖直方向上受到重力的作用,所以球的轨迹是一个抛物线。

习题二:滚动运动一个圆柱体沿着水平面滚动,它的质心速度和边缘速度哪个更大?答案:质心速度和边缘速度相等。

在滚动运动中,刚体的质心沿着运动方向做匀速直线运动,而刚体的边缘点则具有线速度和角速度的叠加效果。

由于圆柱体的每个点都有相同的角速度,所以质心速度和边缘速度相等。

习题三:转动惯量一个均匀的圆盘和一个均匀的长方体,它们的质量和半径(或边长)相同,哪个的转动惯量更大?答案:圆盘的转动惯量更大。

转动惯量是刚体旋转时惯性的量度,它与刚体的质量分布有关。

由于圆盘的质量分布更加均匀,所以它的转动惯量更大。

习题四:平衡条件一个悬挂在绳子上的物体处于平衡状态,绳子与竖直方向的夹角是多少?答案:绳子与竖直方向的夹角等于物体所受的重力与绳子张力的夹角。

在平衡状态下,物体所受的重力与绳子张力必须保持平衡,即两者的合力为零。

因此,绳子与竖直方向的夹角取决于物体所受的重力与绳子张力的大小关系。

习题五:平移运动和转动运动一个刚体在平面上做平移运动时,它的转动惯量是多少?答案:在平移运动时,刚体的转动惯量为零。

平移运动是指刚体的质心沿直线运动,此时刚体没有绕任何轴心旋转,所以转动惯量为零。

通过以上习题的解答,我们可以更好地理解刚体的运动特性。

刚体的运动涉及到平抛运动、滚动运动、转动惯量和平衡条件等方面的知识,通过解答这些习题,我们可以加深对刚体运动的理解,提高解题能力。

第七章 刚体力学习题及解答

第七章 刚体力学习题及解答

第七章刚体力学习题及解答7。

1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度。

估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。

解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min。

(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0。

1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上。

x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影。

解:( 1)( 2) 时,由( 3)当时,由7。

1。

5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同.所以:7。

1.6 收割机拔禾轮上面通常装4到6个压板。

拔禾轮一边旋转,一边随收割机前进。

压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1。

2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。

取收割机前进的方向为坐标系正方向7。

1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min。

(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹。

002刚体力学习题汇总(答案)

002刚体力学习题汇总(答案)
2
(3) v l
3 gl sin
10、如图所示,长为 l 的轻杆,两端各固定质量分
别为 m 和 2m 的小球,杆可绕 水平光滑固定轴 O 在竖直面 内转动, 转轴 O 距两端分别为
解:受力分析如图,可建立方程:
2mg T2 2ma ┄① T1 mg ma ┄②
1 2 l和 l. 轻杆原来静止在竖 3 3
2、对于一根质量分布均匀的木棒,质量 m,长度为 L,以木棒端点为轴旋转的转动惯量为 J1=
1 2 ml , 3
以 木 棒 中 点 为 轴 旋 转 的 转 动 惯 量 为 J2=
1 2 ml ,则 J1 是 J2 的 12
3、如图 1 所示的圆锥摆,绳长为 l ,绳子一端固定 在 O 点,另一端系一质量为 m 的质点,以匀角速 度 绕竖直轴线作圆周运动, 绳子与轴线的夹角为
得: t
(2)相碰时小球受到的冲量为
2m2 (v1 v2 ) 。 m1 g
Fdt (mv) mv mv
0
由①式求得
Fdt mv mv
0
J 1 Ml 3 l
-3-
Mr Lee 制作,内部交流
a r , J mr / 2 ┄⑤
2
联立,解得: a
1 11 g , T mg 。 4 8
9、如图所示,一匀质细杆质量为 m ,长为 l ,可绕
杆于水平位置由静止 过一端 O 的水平轴自由转动, 开始摆下.求:
2 2 2l l mv0 l m v l m( ) 2 2m ( ) 2 3 3 3 3
以逆时针为正向,有:
v0
J v ml

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。

2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。

4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。

因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。

5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。

6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。

刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。

大学物理第四章-刚体的转动-习题及答案

大学物理第四章-刚体的转动-习题及答案
第 4 章 刚体的定轴转动 习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I

I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24

大学物理-刚体的定轴转动-习题和答案

大学物理-刚体的定轴转动-习题和答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。

()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。

既 z M I β=。

所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

(完整版)刚体定轴转动习题

(完整版)刚体定轴转动习题

刚体定轴转动一、选择题(每题3分)1、个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的( )(A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒,(C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量不守恒.2、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定3、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作用在定轴转动刚体上的力越大,刚体转动的角加速度越大。

(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。

(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大。

(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零。

5、一质量为m的均质杆长为l,绕铅直轴o o'成θ角转动,其转动惯量为()6、一物体正在绕固定光滑轴自由转动()(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变小,它遇冷时角速度变大.(C)它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小.O7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为J A 和J B ,则( )(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个大,不能确定9、某转轮直径d =40cm ,以角量表示的运动方程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均角加速度为( )(A)212-⋅srad (B)26-⋅s rad(C)218-⋅s rad (C)212-⋅s m10、 轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。

力学习题-第7章刚体(下含答案)

力学习题-第7章刚体(下含答案)

第七章刚体单元测验题一、选择题1.如图,一个高为h 、底面半径为R 的圆锥体可绕其固定的铅垂轴自由旋转,转动惯量为J 0.在其表面沿母线刻有一条光滑的斜槽.开始时,锥体以角速度ω0旋转,此时,将质量为m 的小滑块从槽顶无初速释放,设在滑块沿槽滑下的过程中始终不脱离斜槽,则当滑块到达底边时,圆锥体的角速度为A.02000+=mR J J ωω;C.2000-=mR J J ωω;D.0=ω答案:B 解:以滑块和圆锥体为研究对象,在转轴方向的外力矩为零,转轴方向角动量守恒:00J ω=20()J mR ω+解得:0020J J mR ωω=+2.如图,质量为m 0、半径为R 的圆盘静止在光滑水平桌面上,一质量为m 的子弹以速度v 0射入圆盘的边缘并留在该处,v 0的方向与入射处的半径垂直.则子弹射入后圆盘系统总动能为A.2=0E K ;B.)+(2=0202m m v m E K ;C.)3+(23=0202m m v m E K ;D.)5+(23=0202m m v m E K 答案:C 解:子弹入射后,子弹和圆盘组成的系统质心与圆盘中心的距离:0c mRr m m=+入射过程动量守恒:()00cmv m m v =+系统对圆盘质心所在的空间固定点角动量守恒:00()c c mv R m m v r J ω=++,其中,222001()2c c J m R m r m R r =++-动能:22021+)+(21=ωJ v m m E c K 联立解得:)3+(23=0202m m v m E K 3.如图,两光滑墙面互相垂直,在墙B 上离墙面A 距离s 处,有一光滑钉子,将一长度为2l 、质量为m 0的均匀杆的一端抵在墙上,杆身斜置在钉子上,使杆位于垂直于墙面A 的竖直平面内,则平衡时杆与水平所成的角θ满足A.l cos θl s =cos 2θ; C.l s =sin 2θ; D.ls=cos 3θ答案:D解:设墙面B 平行于纸面,墙面A 垂直于纸面,以杆为研究对象,静力学平衡。

力学习题-第7章刚体(上含答案)

力学习题-第7章刚体(上含答案)

第七章刚体单元测验题一、选择题1.长为l 的不均匀细杆的线密度λ=bx ,x 为离杆的一端O 的距离,b 为常数.该杆对过O 端并垂直于杆的轴的转动惯量是A.22bl ; B.32bl ; C.33bl ; D.44bl 答案:D解:转动惯量:2J dJ x dm==⎰⎰其中,bxdxdx dm ==λ积分得:4==420∫bl bxdx x J l2.半径为R 、质量为m 的均质圆盘可绕过其中心且与盘面垂直的铅垂轴转动,圆盘对此转轴的转动惯量为A.2mR ;B.221mR ;C.232mR ;D.3mR 答案:B解:距离转轴r 、宽度为dr 的小圆环的转动惯量为222)2(==r dr r Rm dmr dJ ππ整个圆盘的转动惯量为2=)2(==22200∫∫mR r dr r R m dJ J RR ππ3.半径为R 、质量为m 的均质圆盘可绕过其中心且与盘面垂直的铅垂轴转动,圆盘与水平面间的摩擦系数为μ,则圆盘受到的摩擦力矩大小为A.μmgR μ21;C.mgR μ32;D.2mgR μ答案:C解:距离转轴r 、宽度为dr 的小圆环所受摩擦力对转轴的力矩为:r g dr r RmdM )2(=2ππμ总的摩擦力对转轴的力矩:32=)2(==2200∫∫mgR gr dr r R m dM M R Rμππμ4.一块边长为a 、质量为m 0的正三角形薄板对过其一边的轴的转动惯量为A.20=a m J ;B.2021=a m J ;C.2031=a m J ;D.2081=a m J 答案:D 解:如图建立坐标系在x dx 、平行于y 轴的细条质元,其质量为:23dm ydx xdx ρρ==该细条质元绕一边的转动惯量为:2)2dJ a x dm =-积分得所求转动惯量:3222001)238J dJ x xdx m a ρ ==-=⎰⎰.5.下列关于定轴转动刚体的运动特点,正确的是A.刚体(非转轴)上的任一质点都作平面圆周运动.B.刚体(非转轴)上的不同质点转动速度大小相等.C.刚体上距离转轴近的质点转动角速度小、距离转轴远的质点转动角速度大.D.质量小的刚体转动得快、质量大的刚体转动得慢.答案:A二、填空题1.如图,质量分别为m 1=200g 、m 2=250g 的两个物体用不可伸长的轻绳相连,绳子套在质量m 0=100g ,半径r =10cm 的质量均匀的圆盘形滑轮上,绳的质量及滑轮轴承处、物体与桌面间的摩擦均可忽略不计,绳与滑轮之间无滑动.m 1的加速度a =m/s2.(结果保留一位小数).3.8~4.0)解:设滑轮转动的角加速度为α对1m 应用牛顿第二定律:111T m g F m a-=对2m 应用牛顿第二定律:am F T 22=对0m 应用转动定律:12T T F r F r J α-=其中,定滑轮的转动惯量:2012J m r =绳与滑轮无滑动条件:a r α=联立解得:210122 3.9m s 22m g a m m m ==++三、判断题1.刚体转动有限大的角位移可以看做矢量答案:错2.刚体转动无限小的角位移可以看做矢量答案:对3.定轴转动刚体的转动动能等于其质心运动的动能答案:错4.定轴转动刚体的转动动能与其转动角速度的平方成正比答案:对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=21ttdtdtdωθθθω角速度⎰=-⇒=21ttdtdtdβωωωβ角加速度1、基础训练(8)绕定轴转动的飞轮均匀地减速,t=0时角速度为5rad sω=,t=20s时角速度为0.8ωω=,则飞轮的角加速度β=-0.05 rad/s2 ,t=0到t=100 s时间内飞轮所转过的角度θ=250rad.【解答】飞轮作匀变速转动,据tωωβ=+,可得出:200.05rad stωωβ-==-据212t tθωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJM=质点运动与刚体定轴转动对照[C] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等.(B) 左边大于右边.(C) 右边大于左边.(D) 哪边大无法判断.【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m1<m2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R Jβ-=可得:21T T>[ C] 2、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度为.如果以拉力2mg代替重物拉绳时,飞轮的角加速度m2m1O将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2.【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T ma TR J a R ββ-===所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比较二者可得出结论。

3、基础训练(9)一长为l 面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图5-12所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0= g/l ,杆与水平方向夹角为60°时的角加速度β= g/2l .【解答】由转动定律:M J β=(1)开始时杆处于水平位置: 0mgl J β=其中 2J ml =为小球相对于转轴的转动惯量,得:0g lβ= (2) cos mgl J θβ=, 2glβ=C 的质量分别为m A 、m B 和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J =21m C R 2.滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块A 的加速度CB A B m m m gm a ++=)(22【解答】由转动定律得:B A T R T R J β-= (1) B B B G T m a -= (2) A A T m a = (3) a R β= (4)4个方程,共有4个未知量: A T 、B T 、a 和β。

可求:()22B A B c a m g m m m =++⎡⎤⎣⎦ 5、基础训练(18)如图5-17所示、质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2/2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,求盘的角加速度的大小. 【解答】l mCABG BT BT A受力情况如图5-17,'11T T =,'22T T =11mg T ma -= (1) 22T mg ma -= (2) 122T r T r J β-= (3)12a r β= (4) 2a r β= (5)联立以上几式解得: 219g r6、自测提高(15)如图5-23所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)【解答】根据转动定律 A A A A f r J β= (1) B B B B f r J r = (2)其中212A A AJ m r =212B B B J m r = 要使A 、B 轮边缘处的切向加速度相同,应有: A A B B a r r ββ== (3) 由(1)、(2)式有A AB A A A AB B A B B B Bf J r m r f J r m r ββββ== (4) 由(3)式有A AB Br r ββ= 将上式代入(4),得 12A AB B f m f m == ♫转动惯量:质量非连续分布:22222112j j j j r m rm r m r m J +++=∆=∑Λ质量连续分布:m r r m J jjj d 22⎰∑=∆=1、基础训练(10)如图5-13所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为 50ml 2 。

【解答】 据 2i iJ m r=∑有:22224(3)3(2)2050J m l m l ml ml =+++=♫摩擦力矩:⎰=-=-=-=dMM gdmr dN r rdf dM μμf B A f Ar Br ARPS R Q ROO ′1、自测提高(12)一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为,则杆转动时受的摩擦力矩的大小为=μmgl /2 【解答】在细杆长x 处取线元dx ,所受到的摩擦力矩dM=μ(m/l)gxdx ,则2lm mgl M gxdx l μμ==⎰♫定轴转动的动能定理:21222121d 21ωωθθθJ J M A -==⎰ ♫定轴转动的角动量定理:1221d d d ωωJ J t M tL M t t -=⇒=⎰ϖϖ 角动量守恒:合外力矩为零。

ωJ L =为常量[ B ] 1、基础训练(5)如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) ML m 23v . (C) MLm 35v. (D) ML m 47v .【解答】把质点与子弹看作一个系统,该系统所受合外力矩为零,系统角动量守恒有: 21123L mv L mv ML ω⋅=⋅+⋅ 由此可得出答案。

[ C ] 2、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变.(C) 减小. (D) 不能确定.【解答】 把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。

设L 为每一子弹相对与O 点的角动量大小,据角动量守恒定律有:00()J L L J J J J J ωωωωω+-=+=<+子弹子弹[ A ] 3、自测提高(7)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. 【解答】O Mm m图5-11 v ϖ21v ϖ俯视图视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:0Rmv J ω=- 可得 2()Rmv mR vJ J R ω==。

,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. 4、基础训练(16)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω,设它所受阻力矩与转动角速度成正比,即M k ω=- (k 为正的常数),求圆盘的角速度从0ω变为021ω时所需时间.ωk M -=根据dtd JJ M ωβ== ωJd Mdt = ωκωJd dt =-⎰⎰=-t d J dt 02100ωωωωκ 所以得 kJ t 2ln =5、自测提高(16)如图5-24所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为31l 和32l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0v ϖ与杆下端小球m 作对心碰撞,碰后以021v ϖ的速度返回,试求碰撞后轻杆所获得的角速度.【解答】系统所受的合外力矩为零,角动量守恒:碰前的角动量为:碰后的角动量为: 所以得6、自测提高(17)如图5-25所示,一质量均匀分布的圆盘,质量为0m ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,如图5-25所示。

求:(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量mRO0v ϖl mv 320ω])31(2)32([3221220l m l m l v m ++-ω])31(2)32([3221322200l m l m l v m l mv ++-=lv230=ω为221MR ,忽略子弹重力造成的摩擦阻力矩) 【解答】解:(1)设0ω为碰撞后瞬间的角加速度,由角动量守恒定律得:(2)圆盘的质量面密度02mRσπ=在圆盘上取一半径为r ,宽为dr 的小环带,rdr dM πσ2= 此环带受到的摩擦阻力矩 dr r g r gdm r dM 22πσμμ==则所以0032mv t m gμ=1.基础训练(17)在半径为R 的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为R 21处,人的质量是圆盘质量的1/10.开始时盘载人对地以角速度0匀速转动,现在此人垂直圆盘半径相对于盘以速率v 沿与盘转动相反方向作圆周运动,如图5-16所示. 已知圆盘对中心轴的转动惯量为221MR .求:(1) 圆盘对地的角速度.(2) 欲使圆盘对地静止,人应沿着R 21圆周 图5-16v ϖ解:(1)设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对地的绕轴角速度为212v vR R ωωω'=-=- (1) 视人与盘为系统,所受对转轴合外力矩为零,系统的角动量守恒,设盘的质量为M ,则人的质量为M/10,有:222201121022102M R M R MR MR ωωω⎡⎤⎛⎫⎛⎫'+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(2)将(1)式代入(2)有:0221vRωω=+(3) Rv ϖωR /22020)21(ωR m mR R mv +=R m m mv )21(000+=ω⎰-=-=R R g dr r g M 032322σπμσπμdt d J M ω=⎰⎰⎰⎪⎭⎫ ⎝⎛+==t d mR R m Jd Mdt 0002200021ωωωω(2)欲使盘对地静止,则式(3)必为零,即02021vR ω+=。

相关文档
最新文档