浅析变压器油温升高原因

合集下载

变压器过热故障原因分析及处理对策

变压器过热故障原因分析及处理对策

变压器过热故障原因分析及处理对策一、变压器绕组过热分析近十几年来,为降低变压器损耗,各制造厂先后采用了带有统包绝缘的换位导线绕制变压器绕组。

由于早期国内对换位导线生产技术尚未全面掌握,使之采用换位导线的变压器在运行十年左右出现了统包绝缘膨胀。

段间油道堵塞、油流不畅,匝绝缘得不到充分冷却,使之严重老化,以致发糊、变脆,在长期电磁振动下,绝缘脱落,局部露铜,形成匝间(段间)短路,导致变压器烧损事故。

另外,绕组本身的质量不良也会导致过热现象。

二、分接开关动、静触头接触不良引起的过热在有载调压变压器中,特别是调压频繁、负荷电流较大的变压器,在频繁的调动中会造成触头之间的机械磨损、电腐蚀和触头污染,电流的热效应会使弹簧的弹性变弱,从而使动、静触头之间的接触压力下降。

接触压力减小,会使触头之间的接触电阻增大,从而导致触头之间的发热量增大,由于发热又加速触头表面的氧化腐蚀和机械变形,形成恶行循环,如不及时处理,往往会使变压器发生损坏事故。

在无载调压变压器中,分接开关接触不良,也会使其表面腐蚀、氧化,或触头之间的接触压力下降使接触电阻增大,而形成变压器的过热性故障。

三、引线故障引起的过热故障(1)引线接头过热:引线接头(将军冒)过热也是多发性故障。

例如,东北电网某局的一台主变压器,总烃为455.9ppm乙炔为4.23ppm。

吊检发现66KVA 相套管穿缆引线过热,焊锡流出到夹件和压件上;有如,某台主变压器,B 相套管头部发热,经检查,将军冒螺扣匹配不良,将螺扣烧坏5~6扣,造成过热。

(2)引线断股某台DFL-6000/220型单相变压器,1990年5月开始发现色谱分析结果异常,热点温度可能高压1000C,直到1993年5月进行大修时才发现,该变压器中性点套管内的引线有两股烧断、三股烧伤(共35股,240mm2),其原因是在1989年5月检修中,更新该中性点套管时引线(铜辫子)向上拉比较别劲,使引线外层半迭绕白布带脱落,裸辫子引线与套管内的铜管内壁相碰,发生分流、放电、过热。

某220kV主变油温高报警原因分析及处理方法

某220kV主变油温高报警原因分析及处理方法

某220kV主变油温高报警原因分析及处理方法针对某220kV变压器发油温高报警信号,通过红外测温、分析负荷曲线等手段,逐步排除主变发热的可能原因,最终得出结论是由于冷却系统效率下降导致主变发热。

为减小在带电运行主变上工作的风险,采用高压气体清洗冷却器油管,经过清洗,冷却系统效率恢复明显,主变油温逐步恢复正常。

标签:变压器;油温高;冷却器;高压气体清理0 引言变压器在运行过程中,铁芯、绕组中会产生损耗,同时伴随着发热现象的存在,而一般油浸变压器绕组采用A级绝缘,绕组允许温度可达105℃,过高的温升会使变压器绕组发热,绝缘下降。

温升超过限值一定时间将导致变压器绝缘受损,甚至缩短寿命。

因此在变电运行过程中,快速查找到变压器异常发热原因,能有效避免变压器温度过高造成更严重的电网安全事故的发生。

1 某220kV变压器油温高案例情况简介220kV某变电站2号主变投运时间为1997年8月20日,累计运行21年。

2018年04月09日19:58分,220kV某变电站发出“2号主变油温高报警的信号”。

后台显示油温77℃,现场测温冷却器上层连接管温度78℃,下层80℃。

经现场检查,油阀正常,油流继电器正常,风扇全启运行正常。

实时有功76.9MV A,负载率为42.7%。

2号主变潜油泵正常开启,上下油管温差2度左右,2号主变油位为刻度9处,符合温度-油位曲线。

各散热片温度均匀油温表1,2均读数在78℃左右,后台无绕温遥测量。

1号主变为自然风冷,型号厂家均不一样,2017年投产,无法进行横向对比。

2 某220kV变压器油温高原因分析2.1 负荷变化分析针对“2号主变油温高报警的信号”运行人员通过后台监控调取了近一周的监控数据,近一周油温最大值在75℃-81℃之间,并且时间油温最大值发生时间集中在23:00-00:00之间。

分析后台的温度变化曲线可知,当日温度变化趋势与负荷变化基本一致,且近一周主变负载率都在50%左右波动,可以排除是因为负荷过大导致主变油温升高。

韶山7E型机车主变压器油温高的原因分析及措施

韶山7E型机车主变压器油温高的原因分析及措施

变压器风机对板翅式 散热器进行强制对流散热冷却 ,以便达到
控 制主 变 压器 温 度的 目的 。 2 . 2板 翅 式冷 却 器的 冷却 及技 术 参数
该 板 翅 式 冷 却器 采 用全 铝 合 金 材 质 ,散 热 趔 片 在 结 构 上 采
用叉排方式 ,以便提高散热效率 。板翅式冷却器的热量传递途 径为 :高温变压器油将热 量传递给散热器壳体 ,然后散热 器壳 体将热量传递给 散热 器翅 片 ,最后通过高速流过翅片表面的冷
定 范 围以 内 。
其次 ,在 确认了主变压器内部没有异常之后 ,又通过对变 压器油泵线路和主变风机线路检查后确认线路没有异常 ,然后 对油泵和风机 的输 入电压和稳定运行 后的电流 ,油流方向和风
机 风 向进行 观 察 ,也未 发 现异 常 。
S S 7 E 型 电 力机 车 主 变 压 器 型 号 为 J D F P 3 — 9 1 8 ( ) / 2 5 ,内装 1 台 主 变 压 器 ,6 6牵 引 电机 平波 电抗 器 ,2 6供 电 电抗 器 ,4 台辅 助
2 主 变压 器 油温 高 的故 障 查找
2 . 1 S S 7 E 机 车主 变压 器及散 热 系统 简介
放 阀以及泄油管进 行初步检查并未发现压 力释放阀存在动作现
象 ,然 后 通 过 对 变 压器 油样 进 行 化验 ,确 认主 变 内部 没 有 发 生 放 电 ,最 后 对 变压 器 的空 载 电流 进行 测量 ,发 现 空 载 电 流 在 规
2 . 3轴 流通 风机 技 术参 数
电动 机 型号 风量
风压 转速
限 ( 9 0℃ )时亮灯并发 出断开机车主断路器指令分开主断起到 保护作用 。正是 由于这套油温保护装置作用 ,西 安机 务段配属

电力变压器温升试验现状及超标原因分析

电力变压器温升试验现状及超标原因分析

验不合格的 33 台,其他试验项目不合格的 13 台 ( 温 升试验不合格台数 + 其他试验项目不合格台数>不 合格总台数,表明有产品不仅温升试验不合格,还 有其他试验项目也不合格 ),占抽检中不合格试验 项目的比例高达 77%。在过去的 2015 年全年进行 的电力变压器的委托试验中,在所有不合格产品中, 温升试验不合格的产品占比超过三分之一,不合格 率仅次于短路承受能力试验。
表1 国家监督抽查电力变压器数量及不合格情况 台
年份
2012 2013 2014 2015
抽检变压器
液浸式 变压器
42
干式电力 变压器
16
27
12
28
12
25
5
不合格 总数
14 6 13 10
不合格试验项目
温升试验
其他项目 试验
10
5
5
2
9
4
9
2
在近几年的国家监督抽查的 167 台电力变压器 中,统计结果表明,不合格品 43 台,其中温升试
电工电气 (2016 No.9)
电力变压器温升试验现状及超标原因分析
信息与交流
电力变压器温升试验现状及超标原因分析
朱瑞华1,杨孝志2
(1 苏州电器科学研究院股份有限公司,江苏 苏州 215104; 2 国网安徽省电力公司电力科学研究院,安徽 合肥 230601)
变压器绝缘的热老化与变压器油及绕组的热点 温度有关,GB/T 1094.7—2008 标准规定油浸式变 压器的热点温度基准值 98 ℃,在此温度下的相对 老化率为 1,当温度每增加 6 K,老化率增加 1 倍, 使变压器的寿命大为缩短,甚至酿成变压器短路烧 毁的重大事故。目前变压器温升超标现象比较严重, 不容忽视,也是电力变压器生产企业应予关注和改 进的问题。电力变压器的温升试验是型式试验项目, 主要是检验变压器是否能将运行时所产生的总损耗 所产生的热量散发出去。目前电力变压器的温升试 验已经列入国家电网公司招投标的一项必做的试验 项目。

浅析主变压器油及绕组温度偏高的原因 刘芳

浅析主变压器油及绕组温度偏高的原因 刘芳

浅析主变压器油及绕组温度偏高的原因刘芳摘要:探询了某厂运行中的1台主变压器油和绕组温度比与之型号、容量、参数完全相同,且负荷也一样的另1台主变压器偏高的原因,并根据该厂实际情况进行了分析,提出了防范措施。

关键词:变压器油及绕组温度高防范措施0 概述某厂4号主变压器自从2004年6月30日受电成功,到4号发电机的初次并网,2号高压厂用变压器的投运,及负荷逐渐地上升到基本负荷,其运行情况基本正常。

但自从4号发电机并网带满负荷运行后就发现4 号主变压器油及绕组温度较与之同型号、同容量,同参数,同负荷情况下的2号主变压器高出6~8 ℃。

若长此下去,可能会加快该变压器的绝缘老化,降低其绝缘性能,缩短其使用寿命。

因此,有必要对4号主变压器存在的油温及绕组温度高的问题进行探究,找出原因提出解决办法,很有必要。

4号主变压器的基本参数见表1。

电厂电气主接线图见图1。

如图1所示,该4号主变压器10.5 kV侧通过5040隔离开关和504断路器与4号发电机出线母排相连接,另有一分支则通过524隔离开关供2号高压厂用变压器带第二套联合循环机组的厂用电。

4号主变压器通过其高压侧104断路器挂在110 kVⅡ母上运行,中性点采用直接接地的运行方式。

1 变压器油及绕组温度偏高的分析1.1外部原因4号主变压器的冷却方式为油浸风冷,共有4组冷却风扇及散热片,油浸风冷是在油浸自冷的基础上,在散热器上加装了冷却风扇,风扇将周围的空气吹向散热器,加速散热器中油的冷却,使主变压器的油温迅速降低。

由于不同温度的变压器油其比重会有所不同,变压器内的上下层油温又存在着差异,因此在重力的作用下就形成了自然循环,使得主变压器内绕组及铁心得以循环冷却。

(1)散热器连接在主变压器底部和上部之间,底部出口和上部入口分别有蝶阀和每一组散热器相连接。

若冷却风扇电气回路中的热继电器动作了导致冷却风扇失电,或冷却风扇的自动启停条件执行不到位,或冷却风扇的吸入口被杂物堵塞,都会影响冷却风扇的出力,减少了散热器的进风量,这些都将使散热器就得不到有效的冷却,这是影响主变压器油温及绕组温度高的一个重要的因素。

论变电站主变压器油温偏高成因及控制措施

论变电站主变压器油温偏高成因及控制措施

论变电站主变压器油温偏高成因及控制措施1 现状某变电站现配置两台常州变压器厂生产的三相双绕组油浸风冷式有载调压主变压器,主变型号为SFZ9-50000/110,每台容量50MVA。

油顶层温升55℃,绕组温升65℃。

通过长期跟踪观察发现,两台主变压器的油温在负荷高峰期都维持在较高水平。

由于两台变压器是线串变接线方式,并且10kV母线处于分列运行状态,而两台主变压器的负荷分配极不平衡,#2主变压器负荷比#1主变压器明显偏高(2011年#2主变压器有功功率平均值约为#1主变压器的1.7倍),#2主变压器的油温长期超过70℃运行。

2 原因分析2.1 变压器内因2.1.1 损耗过大。

变压器的发热主要来自损耗,其损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。

#1、#2主变压器于1995年10月投运,两台主变的冷却器运行均已超过16年,随着变压器的老化,变压器性能也会随着下降,其绕组的电阻以及其铁芯漏磁通增加,导致变压器损耗增大,造成变压器正常运行时的温度异常。

2.1.2 冷却装置故障。

对于油浸风冷式变压器,绕组、铁心以及其他结构件中产生的热量是通过变压器油传给油箱和冷却器,再由周围空气进行冷却。

变压器在运行时,当变压器的负荷达到额定容量的四分之三或变压器上层油温达到65℃时,冷却器自动投入。

如果冷却装置发生故障(比如二次回路故障),那么当油温达到启动温度时冷却装置不能正常投入,从而造成油温升高。

通过对两台主变冷却装置的多次测试,发现无论是自动还是手动方式,冷却器都能够正常投入,因此,冷却系统故障不是造成主变升温的原因。

2.1.3 冷却器散热性能不佳。

主变压器的安全可靠运行和使用寿命,在很大程度上取决于主变压器冷却器的散热性能。

如果冷却器运行时间比较长,各部分均可能出现不同程度的磨损和老化,在夏季环境气温相对较高,冷却器散热片间如稍有风沙后积灰,就会导致冷却器换热效果恶化,散热性能不佳。

试述变压器故障原因分析及解决措施

试述变压器故障原因分析及解决措施

试述变压器故障原因分析及解决措施摘要:变压器在电力系统和供电系统中占有十分重要的地位。

本文对变压器运行中的异常现象及故障原因进行了分析,并对这些故障提出了解决的方法。

关键词:变压器异常运行故障分析变压器是一种静止的电气设备,一般由铁芯、绕组、油箱、绝缘套管和冷却系统等5个主要部分构成。

为了保证变压器的安全运行,电气运行人员必须掌握有关变压器运行的基本知识,加强运行过程中的巡视和检查,做好经常性的维护和检修以及按期进行预防性试验,以便及时发现和消除绝缘缺陷。

对变压器运行过程中发生的异常现象,应及时判断其原因和性质,迅速果断地进行处理,以防止事故扩大而影响正常供电。

一、变压器出故障的异常运行1、声音异常①当有大容量的动力设备起动时,由于负荷变化较大,使变压器声音增大。

如变压器带有电弧炉、可控硅整流器等负荷时,由于有谐波分量,变压器的声音会变大。

②过负荷会使变压器发出声音很高而且沉重的“嗡嗡”声。

③个别零件松动使变压器发出强烈而不均匀的噪声,如铁芯的穿芯螺丝夹得不紧使铁芯松动等。

④内部接触不良或绝缘有击穿,变压器发出“劈啪”声。

⑤系统短路或接地,因通过很大的短路电流,使变压器发出很大的噪声。

⑥系统发生铁磁谐振时,变压器发出粗细不均的噪声。

2、正常负荷和正常冷却方式下,变压器油温不断升高由于涡流或夹紧铁芯用的穿芯螺丝绝缘损坏,均会使变压器的油温升高。

涡流使铁芯长期过热而引起硅钢片间的绝缘破坏,这时铁损增大油温升高。

而穿芯螺丝绝缘破坏后,使穿芯螺丝与硅钢片短接,这时有很大的电流通过使螺丝发热,也会使变压器的油温升高。

3、继电保护动作继电保护动作一般说明变压器内部有故障。

瓦斯保护是变压器的主要保护,它能监视变压器内部发生的大部分故障,经常是先轻瓦斯动作发出信号,然后重瓦斯动作跳闸。

轻瓦斯动作的原因有以下几个方面:①因滤油、加油和冷却系统不严密,致使空气进入变压器。

②温度下降和漏油使油位缓慢降低。

③变压器内部故障,产生少量气体。

500KV主变压器油温异常升高的剖析与对策

500KV主变压器油温异常升高的剖析与对策

500KV 主变压器油温异常升高的剖析与对策发布时间:2022-11-07T11:34:36.550Z 来源:《当代电力文化》2022年13期作者:王子刚[导读] 油浸式变压器系统中王子刚贵州乌江水电开发电有限责任公司构皮滩发电厂贵州遵义563000摘要:油浸式变压器系统中,绝缘油主要起灭弧、绝缘、散热的作用,当绝缘油的温度发生异常升高现象时,势必会对变压器的安全运行造成一定的影响。

本文主要介绍了构皮滩发电厂500kV 5号主变C相发生油温异常升高的现象,对发现的问题逐条剖析、制定对策及对策实施,最终解决油温异常升高的问题。

关键字:变压器绝缘油温升1 概述构皮滩发电厂主变压器型号为DSP-223000/500,由保定天威保变电气股份有限公司生产制造,于2009年7月投入使用。

主变为单相变压器,三相连接组别为YNd11,主变冷却方式为强迫油循环水冷,单台主变压器充绝缘油约28吨,绝缘油牌号为DB-25。

主变冷却器由长沙东屋机电制造有限公司生产,型号为YSPG-250(Y-强迫油循环、S-水冷却器、PG-双重管防堵排沙型、250-单台冷却器额定冷却容量为250kW),额定水流量28m3/h,设计运行水压0.02~0.3MPa。

单台主变配置4台冷却器。

2 5号主变C相油温异常升高的剖析2.1 5号主变C相油温异常升高情况2019年7月机组持续高负荷运行,7月1日巡检时发现5号主变C相油温温升异常,机组负荷554MW,通过对异常前后48天的油温进行分析,形成趋势图如下:根据《变压器油中溶解气体分析和判断导则》DL/T 722-2014的要求,运行中的变压器油色谱要求氢≤150μL/L,总烃≤150μL/L;与历年试验数据对比没有异常升高的现象。

通过试验数据可以得出以下分析:1、氢气和甲烷均无异常上升现象,说明变压器内部未发生局部放电;2、乙烷和乙烯并未成为主要气体,说明变压器内部并无故障温度升高;3、乙炔含量为0,说明变压器内部无放电电弧;4、一氧化碳和二氧化碳无异常升高,说明变压器内部固体绝缘材料正常。

变压器温度过高的原因分析

变压器温度过高的原因分析

变压器温度过高的原因分析变压器温度过高的原因有很多,可能是变压器本身故障的原因,也可能是变压器外部的原因。

一、变压器本身故障的原因变压器运行中当发热与散热达到平衡状态时,各部分的温度趋于稳定。

若在同样条件下,油温比平时高出10℃以上,或负荷不变,但温度不断上升,则可认为变压器内部发生了故障。

1、分接开关接触不良由于分接开关在运行中其接触点压力不够或接触处污秽等原因,使接触电阻增大。

接触电阻增大又会使接点的温度升高而发热。

尤其是在倒换分接头后和变压器过负荷运行时,更容易使分接开关接触不良而发热。

分接开关接触不良可以从轻瓦斯频繁动作来判断,并通过取油样进行化验,可以发现分接开关接触不良使油闪点迅速下降;此外还可以通过测量线圈的直流电阻值来确定分接开关的接触情况。

2、绕组线圈匝间短路由于线圈相邻几个线匝之间的绝缘损坏,将会出现一个闭合的短路环流。

同时该相的线圈减少了匝数,短路环流产生高热使变压器的温升过高,严重时将会烧毁变压器。

造成线圈匝间短路的原因很多,如线圈制造时工艺粗糙使绝缘受到机械损伤;高温使绝缘老化;在电动力作用下使线匝发生轴向位移,将绝缘磨损等,但发展成匝间短路的主要原因是过电压和过电流。

严重的匝间短路使油温上升,短路匝处的油像沸腾似的,能听到“咕噜咕噜”的声音。

取油样化验时油质变坏,并由轻瓦斯动作发展到重瓦斯动作。

此时用测量直流电阻的方法测试也能发现匝间短路。

3、铁芯硅钢片间短路由于外力损伤或绝缘老化等原因,使硅钢片间绝缘损坏,涡流增大,造成局部过热。

此外穿心螺杆绝缘损坏也是造成涡流的原因,轻者造成局部发热,一般观察不出变压器油温的上升;严重时使铁芯过热,油温上升,轻瓦斯频繁动作,油的闪点下降,严重时重瓦斯动作。

4、缺油或散热管内阻塞变压器油是变压器内部的主绝缘,起绝缘、冷却和灭弧的作用,如果缺油或散热管内部阻塞,油的循环冷却速度下降,导致变压器运行中温度升高。

二、变压器温度过高的外部原因1、严重过负荷变压器在运行中由于铁芯的磁滞损耗、涡流损耗和线圈的铜损耗都转化为热量,使温度升高。

变压器油温 变压器油

变压器油温 变压器油

变压器油温变压器油运行中的变压器,有时其油温升高,超过许可限度,在此浅析其原因,供检修参考。

当发现变压器油温过高时,应检查变压器的负荷大小以及冷却油的温度。

同时与以往的同样的负荷时的温度相比较,检查温度计本身是否失灵。

若以上检查均正常,但是油温比以往条件下高,且温升继续加大,则有可能是变压器内部故障.一般油浸式变压器内部故障有以下几种情况:1.分接开关接触不良.运行中分接开关的接触点压力不够或接触处污秽等原因,使接触电阻增大,从而导致接触点的温升而发热,非凡是在倒换分接头后和变压器过负荷运行时,更易使分接开关接触不良而发热,引起变压器油温过高。

分接开关是否接触不良可以通过测量线圈直流电阻来确定。

2.线圈匝间短路。

当几个相邻线圈匝间的绝缘损坏,它们之间将会出现短路电流.此短路电流使油温迅速上升.造成线圈绝缘损伤的原因很多,包括:外力、高温、制造工艺等多方面的原因。

引起匝间短路的主要原因是过电流和过电压。

测量线圈匝间是否短路,可以通过测量线圈的直流电阻和取油样化验来确定。

3.铁心硅钢片片间短路。

由于外力损伤或绝缘老化等原因,使片间发生短路,造成铁心涡流损耗增加而局部过热。

此外,穿心螺杆绝缘损坏也是造成涡流的原因。

以上几点关于油浸或变压器油温过高的主要原因,仅供参考,但是主要由哪个部位引起的,需要结合变压器油温、声音等情况具体分析摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。

本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。

关键词:变压器原理结构参数异常处理引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。

而实际中由于发电机结构上的限制,通常只能发出10kv的电压,因此,必须经过变压器的升压才可以完成电能的输送。

变压器也理所应当成为电力系统中核心设备之一。

变压器油温高现象及处理

变压器油温高现象及处理

变压器油温高现象及处理变压器在我们日常生活中可真是个“大英雄”,不过英雄也有脆弱的时候,尤其是它的“油温”问题。

油温一高,事情可就有点棘手了。

今天,我们就来聊聊变压器油温高的那些事儿,看看该怎么处理,让我们的“英雄”恢复风采!1. 油温高的现象1.1 现象一:发热得像煮水变压器工作的时候,难免会产生一些热量,这个是正常的。

不过,当油温高到快煮沸的地步,那可就不太妙了。

你想想,变压器就像在发热的炉子上做煮饭,它得能承受这种高温,但如果你把锅放在明火上,饭可就烧糊了。

这种情况下,变压器的绝缘性能可能就会受到影响,甚至造成短路,这可不是开玩笑的。

1.2 现象二:嗡嗡作响有时候,变压器在高温状态下还会发出嗡嗡的声音,就像一只烦人的蜜蜂在你耳边嗡嗡叫。

这个时候,你得留个心眼儿,别让它把你吓着。

其实,声音的增大往往是因为温度升高导致的线圈振动或者油流动不畅,这都是高温的“副作用”。

听到这种声音,心里总会咯噔一下,感觉不太妙。

2. 油温高的原因2.1 原因一:负载过重首先,咱们得从负载说起。

变压器就像人一样,干活儿干得多了,自然就累了。

如果给它施加的负载超出了它的承受能力,那就像让一只小狗拉动一辆重重的车子,结果可想而知。

长期超负荷运行,不仅油温高,变压器的寿命也会大大缩短,简直是得不偿失。

2.2 原因二:散热不良再来就是散热的问题,变压器可不是什么“超人”,它也需要适当的休息和降温。

如果变压器周围的环境温度高,或者散热设施不够给力,就像在沙漠里徒步,根本没法降温,油温自然就高得离谱。

通风不良、油污堵塞都是导致散热不良的罪魁祸首,所以说,环境很重要,得给变压器创造个良好的工作环境。

3. 油温高的处理方法3.1 方法一:减负荷遇到变压器油温高的情况,首先得考虑的是减负荷,别让它那么累!你可以根据实际情况,暂时降低负载,等温度回落后再逐步恢复。

就像给一位工作太累的朋友请个假,让他放松一下,休息好了才能继续打拼嘛。

变压器过热的危害及原因分析

变压器过热的危害及原因分析

变压器过热的危害及原因分析变压器过热的危害和影响过热对变压器是极其有害的。

变压器绝缘损坏大多是由过热引起,温度的升高降低了绝缘材料的耐压能力和机械强度。

IEC354《变压器运行负载导则》指出变压器最热点温度达到140℃时油中就会产生气泡,气泡会降低绝缘或引发闪络,造成变压器损坏。

变压器的过热也对变压器的使用寿命影响极大。

国际电工委员会(IEC)认为在:80—140℃的温度范围内,温度每增加6℃,变压器绝缘有效使用寿命降低的速度会增加一倍,这就是变压器运行的6℃法则。

国标GB1094中规定:油浸变压器绕组平均温升限值是65℃,顶部油温升是55℃,铁芯和油箱是80℃。

IEC还规定线圈热点温度任何时候不得超过140℃,一般取130℃作为设计值;变压器油温异常升高的原因可能有:①变压器过负荷;②冷却装置故障(或冷却装置末完全投入);③变压器内部故障;④温度指示装置误指示。

发现变压器油温异常升高,应对以上可能的原因逐一进行检查,作出准确判断检查并及时处理:(1) 若运行仪表指示变压器已过负荷,单相变压器组三相各温度计指示基本一致(可能有几度偏差),变压器及冷却装置无故障迹象,则油温升高由过负荷引起,则按过负荷处理。

(2) 若冷却装置未完全投入或有故障,应立即处理,排除故障;若故障不能立即排除,则必须降低变压器运行负荷,按相应冷却装置冷却性能与负荷的对应值运行。

(3) 若远方测温装置发出温度告警信号,且指示温度值很高,而现场温度计指示并不高,变压器又没有其它故障现象,可能是远方测温回路故障误告警,这类故障可在适宜的时候予以排除。

(4) 如果三相变压器组中某一相油温升高,明显高于该相在过去同一负荷,且同样冷却条件下的运行油温,而冷却装置、温度计均正常,则过热可能是由变压器内部的某种故障引起,应通知专业人员立即取油样作色谱分析,进一步查明故障。

若色谱分析表明变压器存在内部故障,或变压器在负荷及冷却条件不变的情况下,油温不断上升,则应按现场规程规定将变压器退出运行。

浅析变压器油温升高原因

浅析变压器油温升高原因

浅析变压器油温升高原因第一篇:浅析变压器油温升高原因变压器油温过高原因浅析变压器油温是衡量变压器是否正常运行的重要条件。

运行中的变压器,有时其油温升高,超过许可限度,在此浅析其原因,供检修参考。

当发现变压器油温过高时,首先应检查变压器的负荷大小、冷却油的温度以及检查温度计本身是否失灵,若以上检查均正常,则要与以往的同负荷时的温度相比较。

若油温比以往条件下高,且温升继续加大,则有可能是变压器内部故障原因导致的。

一般油浸式变压器内部故障导致油温过高的有以下几种情况,下面作简要分析。

导致变压器油温过高最常见的故障是线圈匝间短路。

当几个相邻线圈匝间的绝缘被损坏时,它们之间将会出现短路电流,此短路电流使变压器油温迅速上升。

造成线圈匝间短路的第一个原因是物理损伤线圈绝缘层。

造成物理损伤线圈绝缘层引起匝间短路的原因有很多,包括外力作用、绝缘老化、制造工艺等几个方面,而其中引起线圈绝缘损伤的最常见的原因是变压器内部某绝缘层的绝缘较薄弱,线圈固定不好,线圈中的各别匝数随电流频率震动,磨坏绝缘层导致短路。

引起变压器匝间短路的另一个重要原因是设备过载运行。

过载运行中的变压器中,会导致设备过电流和过电压,变压器过载发热会击穿此处的绝缘使线圈匝间短路。

测量线圈匝间是否短路,可以通过测量线圈的直流电阻的平衡率来确定。

可以用电桥测量三相绕组的直流电阻的平衡率,若线圈匝间短路则有可能测不出电阻或测出的直流电阻的平衡率偏差很大。

导致变压器油温过高的另一个常见故障是变压器分接开关接触不良。

运行中分接开关的接触点压力不够或接触处污秽等原因,会使接触不良点电阻变大,发热加巨,导致变压器整体的温度上升,引起变压器损耗增大。

一般情况下,在倒换分接头后和变压器过负荷运行时,更易使分接开关接触不良而发热,引起变压器油温过高。

在常用的油浸式变压器中,导致变压器分接开关接触不良的一般原因为产品质量有问题,设计不合理。

由于产品设计不合理,选用材料不当,加上长时间运行,橡胶密封圈易老化,以及分接开关固定在油箱大盖上的塑料帽老化、变形等原因,易使分接开关和变压器油箱大盖接缝处和分接开关中心轴、铁箍和防渗螺丝等各缝隙间渗油。

浅析变电站主变压器油温偏高的原因及控制措施

浅析变电站主变压器油温偏高的原因及控制措施

浅析变电站主变压器油温偏高的原因及控制措施摘要:本文分析了110kV油浸变压器在运行过程中油温及绕组温度高的原因,阐述了对110kV变压器油温升高采取的应对措施,从而保证110kV变压器的安全稳定运行。

关键词:110kV油浸变压器;油温;绕组温度;措施前言随着电力系统的日益发展,大容量变压器的变电及传输电力能源过程中起到重要的作用,油浸变压器被广泛地应用在发电厂、变电站,成为不可缺少的核心设备,它的稳定运行对系统的安全稳定具有重要影响,而油温和绕组温度是其重要的参数。

1变压器油的作用变压器油是石油的一种分馏产物,它的主要成分是烷烃,环烷族饱和烃,芳香族不饱和烃等化合物。

俗称方棚油,浅黄色透明液体,相对密度0.895,凝固点<-45℃。

变压器油的主要作用:(1)绝缘作用:变压器油具有比空气高得多的绝缘强度。

绝缘材料浸在油中,不仅可提高绝缘强度,而且还可免受潮气的侵蚀。

(2)散热作用:变压器油的比热大,常用作冷却剂。

变压器运行时产生的热量使靠近铁芯和绕组的油受热膨胀上升,通过油的上下对流,热量通过散热器散出,保证变压器正常运行。

(3)消弧作用:在油断路器和变压器的有载调压开关上,触头切换时会产生电弧。

由于变压器油导热性能好,且在电弧的高温作用下能分触了大量气体,产生较大压力,从而提高了介质的灭弧性能,使电弧很快熄灭。

2变压器油温、绕组温度某主变压器是型号为SFPS10-150000/110型三绕组大型户外变压器,额定容量是150000KVA,高压侧、中压侧、低压侧额定电压为110kV、35kV、13.8kV,三侧额定电流为715.7、2249、6276A,冷却方式为强迫油循环风冷,共有4组冷却器,每组冷却器有2个冷却风扇和1个油泵。

变压器运行时,产生的热量最多的是绕组,控制变压器的运行温度首要的是控制绕组温度,由于目前油浸变压器普遍采用A类绝缘材料,绕组耐热温度的限制为105℃,一般情况下绕组平均温度比顶层油温至少约高10℃,所以顶层油温限制为95℃[1]。

变压器油温高的原因

变压器油温高的原因

1.过负荷运行:当变压器负荷过大时,其内部产生的铁损和铜损会增加热量,
这些热量需要通过辐射和传导方式向外扩散。

如果散热和发热达到新的平衡点,油温可能会暂时稳定,但随后会因为过负荷再次升高。

2.冷却装置异常:散热器和风扇的正常运作对于维持变压器油温和防止过热至
关重要。

任何影响散热效率的因素,如潜水泵停止运转或风扇损坏,都可能导致油温上升。

3.变压器内部故障:变压器内部可能出现的问题包括绕组之间或匝间的短路、
内部引线接头接触不良导致的发热、铁芯多点接地导致的过流增大会过热以及零序不平衡电流等问题。

这些问题会引起变压器温度异常升高。

4.通风受阻、表面积灰、油路阻塞:这些因素会阻碍空气流通,降低散热能力,
导致油温升高。

5.输入电压、电流波形畸变:不稳定的电源条件可能会导致变压器内部损耗增
加,进而引起油温升高。

6.局部放电和环流:局部放电可能会引起变压器局部温度升高,影响散热效果,
甚至导致气体产生和对绝缘油造成损害。

7.外部环境温度:高温环境会直接影响变压器油的散热效果,导致油温升高。

8.绝缘材料老化:随着时间的推移,绝缘材料可能会逐渐失去性能,影响散热
效果,导致油温升高。

9.温度计故障:如果温度计本身出现故障,无法准确反映油温的真实状况,也
会导致误判。

关于变压器运行过程中温升和通风情况的分析

关于变压器运行过程中温升和通风情况的分析

关于变压器运行过程中温升和通风情况的分析摘要:近年来,随着国民经济不断发展,社会用电量激增,电气设备用电负荷明显增大。

夏季用电高峰期,部分变压器等电气设备长期满负荷运行。

变压器室设计的过于细小、密闭,易造成变压器室通风不良,加之环境温度高于设计温度,变压器室散热能力下降,主变超温现象较多,严重影响变压器的稳定安全运行。

在正常负荷情况下,变压器间的温度变化直接影响着变压器的运行,影响对用户供电的可靠性。

为了更好地保障变压器正常运行,需要对变压器温升、通气问题进行分析。

关键词:变压器运行过程;温升;通风情况;分析1、前言变电站的设计、建设考虑到对周边噪声污染的控制,多采用室内形式的变电站。

夏季用电高峰期间,室内变压器基本处于满负荷运行状态,主变超温情况频发,影响了城市居民的正常生活用电,威胁电网设备的安全运行,同时也会造成了局部供电紧张的局面;在此情况下,如何改善变压器室的运行环境,提高通风散热能力,降低设备故障率,保障电网安全可靠供电,成为一个重点关注的课题。

2、变电站室内散热不良的原因分析2.1控制环境噪声的原因变电站的变压器在运行中会产生低频噪声,同时进风风机和抽风机的运行也产生噪音,两种噪声的叠加使变电站周边的噪音超标,在设计和改造中,注重噪声的隔绝,在进出风口、进口大门、窗户等处加装了隔音设施,而忽视了通风不畅造成的变压器散热不足的问题。

2.2周边环境的原因变电站处于市区和居民区容易造成变压器室散热不良,该区域内人员密度大,车流密集,产生城市热岛效应,环境温度偏高;此外高楼林立,对空气流动有一定的阻挡作用,对噪声要求的标准高。

2.3设计原因在国家标准图中,变压器室通风的面积为有效面积,通风的有效面积系数小于1。

但在部分设计中,由于没有注意到面积与有效面积之间的差异,设计时未按照国家标准图中要求的有效面积向土建设计提出条件。

使实际变压器室的通风面积不足,不能满足变压器运行的要求。

随着城市化进程加快,部分近郊变电站进行设计改造,改造过程中存在户外变电器室内使用的状况,而通风设计过程中又没有充分注意户外变电器与室内变压器的差距,仍按照普通室内变压器通风标准进行通风设计,造成通风量与发热量不匹配,发生变压器超温等故障。

变压器油温升高

变压器油温升高

变压器油温升高
1.变压器油温
由于变电站主变压器一般采用A级绝缘,其不耐老化的最高运行温度为105℃,因此,一般主变压器运行时规定的上层油温允许超过95℃,而采用强迫油循环风冷却装置的主变压器上层油温一般规定不超过85℃。

运行中变压器油温不正常升高,上层油温达75℃及以上时,应及时处理,以防止温度过高,损坏变压器。

2.变压器油温升高的可能原因
1)变压器过负载。

2)冷却设备运行不正常。

3)油位过低。

4)变压器内部故障。

3.变压器油温升高的处理
当发现主变压器油温异常升高时,运行人员应立即判明原因并设法降低油温,具体内容如下。

1)检查各个温度计的工作情况,判明温度是否确实升高。

2)检查各组冷却器工作是否正常。

3)检查变压器的负载情况和环境温度,并与以往同等温度情况相比较。

4)检查冷却器各部位阀门开、闭是否正确。

5)当判明温度升高的原因后,应立即采取措施降低温度或申请减负载运行,如果未查出原因则怀疑是内部故障,应马上汇报调度,申请将变压器退出运行,进行检查。

1000kV变电站变压器油温高异常分析与处理

1000kV变电站变压器油温高异常分析与处理

1000kV变电站变压器油温高异常分析与处理[摘要]本文依据1000kV变电站变压器长期巡视数据、运行巡视以及检修记录,以1000kV特高压邢台站为例对1000kV变电站变压器油温高异常情况进行了全面分析,讨论了变压器油温高异常情况的处理措施,为变电运维人员对1000kV变压器油温高等情况的异常处理工作提供了借鉴及参考。

[关键词]变压器油温高异常情况处理措施1、1000kV特高压邢台站变压器情况简介邢台站装设1000kV主变2组,共7台(其中1台备用),均为单相三绕组强迫油循环风冷自耦无励磁调压变压器,产品型号为ODFPS-1000000/1000。

变压器由主体变和调压补偿变两部分组成,主体变和调压补偿变通过管母连接,在调压补偿变退出运行时,主体变可以独立运行。

特高压变压器采用中性点变磁通调压,在调压变中设置补偿绕组。

主体变采用强迫油循环风冷冷却方式(OFAF),调压补偿变采用油浸自冷冷却方式(ONAN)。

2、1000kV变压器温度计原理及配置情况1000kV变压器温度计是用来测量变压器油顶层温度和变压器绕组热点温度的测量和保护装置。

1000kV变压器温度计主要分为油面温度计、绕组温度计。

主体变装设2只油温表,分别位于主变东侧与西侧,测量两侧油面温度;1只绕组温度表。

调补变装设1只油温表,1只绕组温度表。

油面温度计是用来测量变压器油箱顶层油温的。

它主要由温包、毛细管、表头组成;温度计温包插入油箱箱盖上的温度计座内,温度计表头则安装在油箱侧壁适当高度上,以便于接线和读数。

当变压器内部油温升高时,油面温度计的温包内的感温介质体积随之增大,这个体积增量通过毛细管传递到仪表头内弹性元件上,使之产生一个相对应的位移,这个位移经机构放大后便可驱动指针指示被测油面温度,并驱动微动开关,开关信号用于控制冷却系统和变压器二次保护(报警和跳闸)。

绕组温度计是用来测量变压器绕组热点温度的。

它主要由温包、毛细管、电流匹配器(分内置式和外置式)、表头组成;温度计温包插入油箱箱盖上的温度计座内,内置式电流匹配器安装在绕组温度计内部,外置式电流匹配器安装在油箱上绕组温度计附近,温度计表头安装在油箱侧壁适当高度上,以便于接线和读数。

电力变压器温度高的原因分析及处理

电力变压器温度高的原因分析及处理

电力变压器温度高的原因分析及处理摘要:在电力系统中,变压器是比较主要的一种电气设备,变压器的运行状态和电力系统运行的稳定性、安全性及其电力供应的可靠性之间具有密切的关联。

因此,发电厂、变电站运行的相关工作人员需要在第一时间内找到变压器存在的故障问题,以及异常的工作状况。

而温度是对变压器实际工作状况作出描述最关键的技术参数,同时也是判断变压器相应工作状况较为直观的方法。

所以,发电厂、变电站工作人员应对变压器运行中的温度升高加以充分掌握,并具有一定的处理能力。

本文分析了变压器温度高的原因,并提出相关处理措施,以供参考。

关键词:电力变压器;温度高;原因;处理措施引言:在变压器实际工作中,因线圈电流的流动和电磁场的产生会形成相应的能量消耗,并且还会转化为热量向外进行传播,从而使得变压器各组成部分间的温度发生了程度不同的升温情况。

温升的高与低,同变压器的结构特征、工作电流、采用的冷却散热方式之间都具有高度的关联性。

变压器具体运行过程中,其设计制造质量、运输、安装及运行维护等多方面因素都对其异常性的温度升高造成一定影响,不但会促使变压器能量的损耗有所加大,也会导致其内部绝缘出现损坏,使其安全运行受到相应影响。

因此,应对变压器的运行温升加以控制,使其保持在合理的范围中,以有效降低温度异常给变压器绝缘材料造成影响,从而维持变压器的平稳工作,并延长了变压器的使用寿命。

一、电力变压器概述能通分公司现有主变为SFZ11-63000/121油浸风冷ONAF,主要为白涛化工园区各企业提供电能服务,随着夏季环境温度的变化,主变上层油温时常超过85℃,如不降低发电机的输出功率,最高可达95℃以上,严重影响变压器安全运行,缩短使用寿命,而降低发电机输出功率严重影响能通分公司经济效益。

因此对主变油温高的原因查找和分析,提出解决问题的方法,对提高变压器使用寿命,降低故障,确保装置安全、长满优运行具有十分重要的意义。

二、变压器温度高的原因分析(一)存在一定内部损耗变压器在实际工作过程中,由于铁芯内部相应的磁滞损耗、涡流损耗以及输入线圈的铜损,都会转变成为热能,从而导致其工作温度有所增加,同时热能通过向周围进行传输和辐射等多种不同方法加以传播,在发热和散热无法形成平衡的状况下,变压器的工作温度便会有所增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器油温过高原因浅析
变压器油温是衡量变压器是否正常运行的重要条件。

运行中的变压器,有时其油温升高,超过许可限度,在此浅析其原因,供检修参考。

当发现变压器油温过高时,首先应检查变压器的负荷大小、冷却油的温度以及检查温度计本身是否失灵,若以上检查均正常,则要与以往的同负荷时的温度相比较。

若油温比以往条件下高,且温升继续加大,则有可能是变压器内部故障原因导致的。

一般油浸式变压器内部故障导致油温过高的有以下几种情况,下面作简要分析。

导致变压器油温过高最常见的故障是线圈匝间短路。

当几个相邻线圈匝间的绝缘被损坏时,它们之间将会出现短路电流,此短路电流使变压器油温迅速上升。

造成线圈匝间短路的第一个原因是物理损伤线圈绝缘层。

造成物理损伤线圈绝缘层引起匝间短路的原因有很多,包括外力作用、绝缘老化、制造工艺等几个方面,而其中引起线圈绝缘损伤的最常见的原因是变压器内部某绝缘层的绝缘较薄弱,线圈固定不好,线圈中的各别匝数随电流频率震动,磨坏绝缘层导致短路。

引起变压器匝间短路的另一个重要原因是设备过载运行。

过载运行中的变压器中,会导致设备过电流和过电压,变压器过载发热会击穿此处的绝缘使线圈匝间短路。

测量线圈匝间是否短路,可以通过测量线圈的直流电阻的平衡率来确定。

可以用电桥测量三相绕组的直流电阻的平衡率,若线圈匝间短路则有可能测不出电阻或测出的直流电阻的平衡率偏差很大。

导致变压器油温过高的另一个常见故障是变压器分接开关接触不良。

运行中分接开关的接触点压力不够或接触处污秽等原因,会使接触不良点电阻变大,发热加巨,导致变压器整体的温度上升,引起变压器损耗增大。

一般情况下,在倒换分接头后和变压器过负荷运行时,更易使分接开关接触不良而发热,引起变压器油温过高。

在常用的油浸式变压器中,导致变压器分接开关接触不良的一般原因为产品质量有问题,设计不合理。

由于产品设计不合理,选用材料不当,加上长时间运行,橡胶密封圈易老化,以及分接开关固定在油箱大盖上的塑料帽老化、变形等原因,易使分接开关和变压器油箱大盖接缝处和分接开关中心轴、铁箍和防渗螺丝等各缝隙间渗油。

由于静触点座固定在长螺杆卡在油箱大盖上的定位档
中不可能转动,即静触点对变压器大盖不会发生相对位置的改变,这样静触点座对铁箍的相对位置改变导致了动触点相对位置的变化,引起错位现象,从而导致了开关触点接触不良。

确定分接开关是否接触不良可以通过测量线圈直流电阻来实现。

一般在中、小型变压器的实际测量中,大多采用直流电桥法,当被测线圈的电阻值在1欧以上的多用单臂电桥测量,1欧以下的则用双臂电桥测量。

根据规范要求,三相变压器应测出线间电阻,有中性点引出的变压器,要测出相电阻。

由于变压器制造质量、运行单位维修水平、测试人员使用的仪器精度及测量接线方式的不同,测出的三相电阻值也不相同,通常引入如下误差公式进行判别△R%=[(Rmax-Rmin)/RP]×100%
RP=(Rab +Rbc +Rac)/3
式中△R%――――误差百分数
Rmax――――实测中的最大值(Ω)
Rmin――――实测中的最小值(Ω)
RP――――三相中实测的平均值(Ω)
规范要求,1600KV A以上的变压器,各相线圈的直流电阻值相互间的差别不应大于三相平均值的2%,1600KV A以下的变压器,各相线圈的直流电阻值相互间的差别不应大于三相平均值的4%,线间差别不应大于三相平均值的2%;本次测量值与上次测量值相比较,其变化也不应大于上次测量值的2%。

对测量值进行比较分析,如一个线圈阻值不变,另外两个线圈阻值降为正常值的0.5倍左右,或者两个线圈阻值增值正常值的2倍左右,另一个线圈降至正常值的0.5倍时,可基本判断为变压器分接开关接触不良。

同样,变压器铁心短路也会造成变压器油温过高故障。

变压器铁芯短路会造成铁心涡流损耗增加而局部过热,从而导致变压器油温过高故障。

一般造成油浸式变压器铁芯短路的原因有以下几点:
1、铁心加工工艺不合理。

如毛刺超标,剪切中放的不平,夹有细小的金属
颗粒或硬质非金属微粒,将叠片压出一个个小坑,另一面则成小凸点,
叠装后也将破坏绝缘层造成片间短路。

2、制造变压器或更换铁心大修时,选用的硅钢片质量有问题。

如硅钢片表
面粗糙不光滑;热轧硅钢片涂的绝缘漆膜脱落,冷轧硅钢片的绝缘氧化膜
附着力差也会脱落,都会造成铁心片间短路,形成多点接地。

3、变压器油箱和散热器在制造过程中,焊渣等清理不彻底,在长期的强油
循过程中,逐渐被油流带出,将铁心和油箱壁短接。

4、变压器内存在导电悬浮物,在电磁场的作用下形成导电小桥,使铁心与
油箱壁或油箱底部短接。

5、叠压不当。

叠压系数取得过大,使压力过大,破坏了片间绝缘。

6、运行维护不当。

变压器长期超铭牌容量运行使片间绝缘老化;平时巡视和
检测不够,使铁心局部过热严重,片间绝缘遭破坏造成多点接地。

还有,变压器在制造或大修过程中,钢刷丝、起重用的钢丝绳的断股及微小金
属丝在电磁场的作用下被竖起,造成铁心与油箱底部短接。

7、变压器进水,使铁心底部绝缘垫块受潮或穿芯螺杆绝缘损坏,引起铁心
绝缘急剧下降,造成铁心多点接地。

现总结以上几点关于油浸式变压器油温过高的常见原因,仅供参考,但是主要由哪个部位引起的,需要结合变压器油温、声音等具体情况现场分析,必要时需对变压器停电进行高压试验,以确定具体的故障原因。

赛罕坝风场杨景明刘明昭。

相关文档
最新文档