八年级上学期数学压轴题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期数学几何复习
1.在△ABC中,∠ACB=90°,直线MN经过点C且AD⊥MN于D,BE⊥MN于E
(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE
(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE
(3)当直线MN绕点C旋转到图③的位置时,试问DE、AD、BE具有怎样的等量关系并证明。
2、已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点. (1)直线BF垂直于直线CE于点F,交CD于点G(如图①),求证:AE=CG;
(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图②),找出图中与BE 相等的线段,并证明.
3.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.
(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF 与BD在(1)中的结论是否仍然成立?
(3)深入探究:
Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.
Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.
A B
C
D
E
M
N
4、(本小题8分)如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N,
证明:(1)BD=CE. (2)BD⊥CE.
5.操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.
(1)探究线段BM、MN、NC之间的关系,并加以证明
(2)若点M、N分别是射线AB、CA上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图
④中画出图形,并说明理由.
(3)求证:CN-BM=MN
\
图①图②图③
图④
6.(10分)如图,△ABC的∠B,∠C的外角的平分线交于点P.
(1)若∠ABC=50°,∠A=70°,则∠P= _________ °.
(2)若∠ABC=48°,∠A=70°,则∠P=_________ °.
(3)若∠A=68°,则∠P= _________°.
(4)根据以上计算,试写出∠P与∠A的数量关系:_________.
7.(11分)如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD 于E,交直线AC于F.
(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;
(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.