探索规律题中考复习

合集下载

中考数学专题复习:规律探索题

中考数学专题复习:规律探索题

中考链接 观察“田”字中各数之间的关系:
,…, ,则 的值为

七、学业检测
一.选择题(共4小题,每题10分,共40分) 1.教材上“阅读与思考”曾介绍“杨辉三角”(如图),
利用“杨辉三角”展开(1﹣3x)5= a0+a1x+a2x2+a3x3+a4x4+a5x5,那么a1+a2+a3+a4+a5=( )
“★”按一定规律组成的.已知第1个图形中有8个“●” 和1个“★”,第2个图形中有16个“●”和4个“★”,第 3个图形中有24个“●”和9个“★”,…,则第 个图 形中“★”的个数是“●”的个数的2倍.
类型三 图形变化类规律探索
针对训练4 4.我们将如图所示的两种排列形式的点
的个数分别称作“三角形数”(如1,3, 6,10…)和“正方形数”(如1,4,9, 16…),在小于200的数中,设最大 的“三角形数”为m,最大的“正方形数 ”为n,则m+n的值为 .
中考链接
将从1开始的连续自然数按以下规律排列:
第1行
1
第2行
234
第3行
56789
第4行
10 11 12 13 14 15 16
第5行 17 18 19 20 21 22 23 24 25
若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2) 表示6,则表示99的有序数对是 .
中考链接
如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作 B1A1⊥l , 交x轴于点A1 , 以A1B1为边,向右作正方形A1B1B2C1 , 延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2 , 延 长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3 , 延长 B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形 AnBnBn+1Cn的边长为 ________(结果用含正整数n的代数式表 示).

2024贵州中考数学二轮复习专题 题型五 规律探索题专项训练 (含答案)

2024贵州中考数学二轮复习专题 题型五 规律探索题专项训练 (含答案)

2024贵州中考数学二轮复习专题题型五规律探索题专项训练类型一数式规律(黔西南州3考,黔东南州2考)考向1数字累加型基础小练(1)若一列正整数:1,2,3,4,5,…,依照此规律,则第n (n ≥1)个数是________,这n (n ≥1)个数的和为________;(2)若一列数:1,3,5,7,9,…,依照此规律,则第n (n ≥1)个数是________,这n (n ≥1)个数的和为________;(3)若一列数:2,4,6,8,10,…,依照此规律,则第n (n ≥1)个数是________,这n (n ≥1)个数的和为________;(4)若一列数:-1,1,-1,1,-1,…,依照此规律,则第n (n ≥1)个数是________;(5)若一列数:1,-1,1,-1,1,…,依照此规律,则第n (n ≥1)个数是________;(6)若一列数:1,4,9,16,25,…,依照此规律,则第n (n ≥1)个数是________;(7)若一列数:2,5,10,17,…,依照此规律,则第n (n ≥1)个数是________;(8)若一列数:0,3,8,15,…,依照此规律,则第n (n ≥1)个数是________;(9)若一列数:4,7,10,13,…,依照此规律,则第n (n ≥1)个数是________;(10)若一列数:12,1,54,75,…,依照此规律,则第n (n ≥1)个数表示为________.典例精讲例1(2023云南)按一定规律排列的单项式:a 2,4a 3,9a 4,16a 5,25a 6,…,第n 个单项式是()A.n 2a n +1B.n 2a n -1C.n n a n +1D.(n +1)2a n 针对演练1.按规律排列的一列数:-12,25,-38,411,-514,…,则第n 个数是________.考向2数字/数式循环规律典例精讲例2(万唯原创)根据如图所示的流程图计算,若x =3,则a 2023=________.例2题图满分技法对于循环型的数字规律探索题求第n 个数的值:(1)先找出循环周期n ;(2)用N (设问中给出的第N 次变化)除以n ,当商b 余m (0≤m <n )时,第N 次变化对应的数即为一个循环变化中第m 次变化后所对应的数.针对演练2.若2022个数a 1、a 2、a 3、…、a 2022满足下列条件:a 1=2,a 2=-|a 1+5|,a 3=-|a 2+5|,…,a 2022=-|a 2021+5|,则a 1+a 2+a 3+…+a 2022=()A.-5047B.-5050C.-5055D.-5067考向3拆项类典例精讲例3观察下列等式:a 1=11×4=13×(1-14);a 2=14×7=13×(14-17);a 3=17×10=13×(17-110);a 4=110×13=13×(110-113);…;则a n =________;按照上述规律,a 1+a 2+a 3+a 4+…+a 2022=________.满分技法在求多个分数的和时,常考虑拆项相消法:(1)1n (n +1)=1n -1n +1;(2)k n (n +k )=1n -1n +k ;(3)1n (n +k )=(1n -1n +k )×1k.针对演练3.(2023眉山)观察下列等式:x1=1+112+122=32=1+11×2;x2=1+122+132=76=1+12×3;x3=1+132+142=1312=1+13×4;…根据以上规律,计算x1+x2+x3+…+x2022-2023=____________.考向4数阵规律典例精讲例4(2023十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2023D.2020例4题图满分技法(1)数阵规律探究求某个数字的位置或者某个位置的数字时需分析数阵中的数字排列方式:①每行、列的个数;②相邻数据的变化特点,并且观察某行或列具有的某些特别的性质(如完全平方数,正整数)等;(2)对于“杨辉三角”型规律探究,常涉及到以下规律:①每个数等于它上方两数之和;②第n行数字之和为2n-1;③(a+b)n的展开式中的各项系数依次对应杨辉三角形的第(n+1)行中的每一项.针对演练4.(2023荆门)如图,将正整数按此规律排列成数表,则2023是表中第________行第________列.第4题图类型二图形规律(黔西南州5考,黔东南州2考)考向1图形累加型典例精讲例5(2023凉山州)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第n个图形需要______根火柴棍.例5题图例6(2023贵州模拟)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆,…,按此规律排列下去,第10个图形中圆的个数是________个.例6题图满分技法对于图形个数累加型规律探索题具体步骤如下:(1)数图形个数:在图形数量变化时,要标记出每组图形的个数;(2)寻找图形数量与序数n的关系;①相邻图形个数的差值相同,则第n个图形的个数是最高次项为一次的整式an+b,然后代入2组数据即可求出a,b的值;②相邻图形个数的差值不同,则第n个图形的个数是最高次项为二次的整式an2+bn+c,然后代入3组数据即可求出a,b,c的值.针对演练5.如图,把同样大小的黑色棋子摆放在正多边形上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为________.第5题图考向2图形递变规律典例精讲例7如图,在边长为2的菱形ABCD中,∠DAB=60°,连接AC,以AC为边作第二个菱形ACC1D1,使得∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使得∠D2AC1=60°,连接AC2,再以AC2为边作第四个菱形AC2C3D3,使得∠D3AC2=60°,…,按照此规律继续作下去,则第n(n≥2)个菱形的面积是________.例7题图满分技法已知一个几何图形的边长(周长或面积),通过一定变换确定第M次变换后的图形的边长(周长或面积),解题步骤是:第一步:根据题意可得出第一次变换前图形的边长(周长或面积);第二步:通过计算得到第一次变换后、第二次变换后、第三次变换后、第四次变换后图形的边长(周长或面积),归纳出每次变换后的图形的边长(周长或面积)与序数n之间的关系式,并验证;第三步:根据第二步中的关系式,得到第M次变换后的图形的边长(周长或面积).针对演练6.(2023烟台)由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC =…=∠LOM=30°.若OA=16,则OG的长为()A.27 4B.1 4C.932D.2738第6题图考向3图形循环规律典例精讲例8(2020三州联考17题3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2020个图案与第1个至第4个中的第_______________________________个箭头方向相同(填序号).例8题图针对演练7.(2022赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2020的中点A2022,则点A2022表示的数为________.第7题图类型三图形坐标规律(黔东南州2021.16)典例精讲例9(2021黔东南州16题4分)把多块大小不同的30°直角三角板如图所示,摆在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…;按此规律继续下去,则点B2021的坐标为________.例9题图满分技法对于图形规律中求第n个点的坐标,有两种考查形式:一种是点坐标变换在同一象限内递推变化;另一种是点坐标变换在坐标轴上或象限内循环变化.解决方法如下:(1)定类型:根据图形中点坐标的变换特点判断出属于哪一个类型(递推型或循环型);(2)找规律:根据图形的递变规律分别求出第1、2、3、4个点的横坐标和纵坐标,用含n的代数式表示出第n个点的坐标.参考答案【基础小练】(1)n ,n (n +1)2;(2)2n -1,n 2;(3)2n ,n 2+n ;(4)(-1)n ;(5)(-1)n +1;(6)n 2;(7)n 2+1;(8)n 2-1;(9)3n +1;(10)2n -1n +1.【解析】观察这列数,可将1写成33.则这列数为12,33,54,75,…,从中得到规律:分子是连续奇数1,3,5,7,…,则第n 个数的分子是2n -1,分母比其序号大1,则第n个数的分母是n +1,∴第n 个数为2n -1n +1.典例精讲例1A 【解析】单项式的系数规律为1=12,4=22,9=32,16=42,…,第n 个单项式的系数为n 2;a 的指数规律为2=1+1,3=2+1,4=3+1,5=4+1,…,第n 个单项式字母a 的指数为n +1,故第n 个单项式为n 2a n +1.针对演练1.(-1)n n 3n -1【解析】∵-12=(-1)1×13×1-1,25=(-1)2×23×2-1,-38=(-1)3×33×3-1,411=(-1)4×43×4-1,-514=(-1)5×53×5-1,…,∴第n 个数是(-1)n n 3n -1.典例精讲例2-12【解析】将x =3代入,得a 1=1-13=23,a 2=1-32=-12,a 3=1-(-2)=3,a 4=1-13=23.…,依次类推,∴循环周期为3,∵2023÷3=673……2,∴a 2023=a 2=-12.针对演练1.C 【解析】根据题意可得,a 1=2,a 2=-|2+5|=-7,a 3=-|-7+5|=-2,a 4=-|-2+5|=-3,a 5=-|-3+5|=-2,a 6=-|-2+5|=-3,…,由上可知,这2022个数a 1、a 2、a 3、…、a 2022从第三个数开始按-2,-3依次循环,故这2022个数中有1个2,1个-7,1010个-2,1010个-3,∴a 1+a 2+a 3+…+a 2022=2-7-2×1010-3×1010=-5055.典例精讲例313×(13n -2-13n +1),20226067【解析】由题意得,a n =13×(13n -2-13n +1),当n =2022时,a 2022=13×(16064-16067),∴a 1+a 2+a 3+a 4+…+a 2022=13×(1-14+13(14-17+…+13×(16064-16067)=13×(1-14+14-17+…+16064-16067)=13×(1-16067)=20226067.针对演练2.-12021【解析】x 1=1+11×2=1+1-12,x 2=1+12×3=1+12-13,x 3=1+13×4=1+13-14,…,x n =1+1n (n +1)=1+1n -1n +1,∴x 1+x 2+x 3+…+x n =1+1-12+1+12-13+1+13-14+…+1+1n -1n +1=n +1-1n +1,∴x 1+x 2+x 3+…+x 2022-2023=2023-12021-2023=-12021.典例精讲例4B 【解析】观察数字的变化,发现规律:第n 行,第n 列的数据为:2n (n -1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第2n 行从右往左的数据依次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023.针对演练2.64,5【解析】由图可知,第一行1个数字,第二行2个数字,第三行3个数字,…,则第n 行n 个数字,前n 行一共有n (n +1)2个数字,∵63(63+1)2<2023<64(64+1)2,2023-63(63+1)2=2023-2016=5,∴2023是表中第64行第5列.典例精讲例52n +1【解析】由题图可知,拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,…,拼成第n 个图形共需要3+2×(n -1)=2n +1根火柴棍.例6112【解析】因为第1个图形中一共有1×(1+1)+2=4(个)圆,第2个图形中一共有2×(2+1)+2=8(个)圆,第3个图形中一共有3×(3+1)+2=14(个)圆,第4个图形中一共有4×(4+1)+2=22(个)圆;可得第n 个图形中圆的个数是[n (n +1)+2](个);所以第10个图形中圆的个数10×(10+1)+2=112(个).针对演练1.440【解析】第1个图形,正三角形上的黑色棋子共3×1=3(个);第2个图形,正方形上的黑色棋子共4×2=8(个);第3个图形,正五边形上的黑色棋子共5×3=15(个);第4个图形,正六边形上的黑色棋子共6×4=24(个);…;第n 个图形,正(n +2)边形上的黑色棋子共n (n +2)(个),∴第20个图需要黑色棋子的个数为20×22=440(个).典例精讲例72×(3)2n -1【解析】如解图,连接BD 交AC 于点O ,连接CD 1交AC 1于点E ,∵四边形ABCD 是菱形,∠DAB =60°,∴AC ⊥BD ,∠BAO =12∠DAB =30°,OA =12AC ,∴OA =AB ·cos30°=2×32=3,OB =AB ·sin30°=2×12=1,∴AC =2OA =23,BD =2OB =2.同理AE =AC ·cos30°=23×32=3,CE =AC ·sin30°=3,AC 1=2AE =6=2(3)2,CD 1=2CE =23,…,∴第n (n ≥2)个菱形的对角线AC n -1=2×(3)n ,C n -2D n -1=2×(3)n-1,∴第n (n ≥2)个菱形的面积为12AC n -1·C n -2D n -1=2×(3)2n -1.例7题解图针对演练3.A 【解析】∵∠ABO =90°,∠AOB =30°,OA =16,∴OB =OA ·cos30°=16×32理可得OC =OB ·cos30°=16×32×32=16×(32)2,OD =OC ·cos30°=16×(32)2×32=16×(32)3,…,OG =16×(32)6=274.典例精讲例83【解析】根据题意可知图案是每4个一循环,∵2020÷4=504……3,∴是第3个图形.针对演练2.122019【解析】第一次落点为A 1处,点A 1表示的数为1;第二次落点为OA 1的中点A 2,点A 2表示的数为12;第三次落点为OA 2的中点A 3,点A 3表示的数为(12)2;…,则点A 2022表示的数为(12)2020,即点A 2022表示的数为122019.典例精讲例9(0,-(3)2018)【解析】由题意知,线段长依次为:OA =1,OB =OA ·tan60°=3=(3)1,OB 1=OB ·tan60°=3×3=(3)2;OB 2=OB 1·tan60°=3×3×3=(3)3,…,OB n =OB n -1×tan60°=(3)n +1,坐标依次为A (0,1),B (-3,0),B 1(0,-(3)2),B 2((3)3,0),B 3(0,(3)4),B 4(-(3)5,0),B 5(0,-(3)6),…,观察坐标发现B n 坐标中,当n 为奇数时,横坐标x =0,当n 为偶数时,纵坐标y =0,且不为0的坐标值从n =0开始,每4个数进行一次-,-,+,+循环,而2021是奇数且2021÷4=504……1,∴B 2021的坐标为(0,-(3)2018).。

中考规律探索题归纳总结

中考规律探索题归纳总结

中考规律探索题归纳总结中考作为我国学生升入高中的重要考试,一直备受关注。

在备考过程中,除了掌握基础知识和解题技巧外,了解中考命题的规律也十分重要。

本文将对中考规律中的探索题进行归纳总结,帮助同学们更好地备考。

一、探索题的定义与特点探索题是中考题目中较为特殊的一类题型,与传统的选择题和填空题不同,它更注重考察学生的观察、分析、推理和实践能力。

在探索题中,通常会给出一定的背景信息、实验现象或问题,要求学生通过思考和实践,解答或解决问题。

探索题的特点主要有以下几个方面:1. 强调学生的动手能力:探索题往往需要学生进行实验、观察等操作,培养学生的实践能力和科学精神。

2. 强调学生的分析能力:通常会提出一些问题,要求学生根据给定的条件进行分析,得出结论或解决方法。

3. 培养学生的探索精神:探索题更多考察学生解决问题的思路和方法,培养学生的探索精神和创新意识。

二、探索题的常见形式和解题思路1. 实验探索题:要求学生根据实验现象分析,并进行实验加以验证,推理出结论。

解题思路:根据实验描述了解实验现象和背景,分析实验的目的、方法,进行实验操作,推理结果并写出结论。

2. 问题探索题:给出一些问题,要求学生思考并找出解决办法。

解题思路:仔细阅读问题,分析问题的关键点,积极思考并提出合理解决方案,给出解答。

3. 材料探索题:根据给定的材料或文段,分析问题并作出相关推理。

解题思路:认真阅读材料,理解材料提供的信息和背景,分析问题并进行相关推理,给出结论。

4. 实践探索题:要求学生通过实践操作解决问题,注重学生的动手能力和实践能力。

解题思路:认真阅读问题和给定条件,根据问题和条件进行实践操作,解决问题。

三、中考探索题的复习策略1. 熟悉题型和解题思路:通过大量练习,熟悉不同形式的探索题,掌握常见的解题思路和方法。

2. 注重实践能力培养:针对实验探索题和实践探索题,要多进行实践操作,培养学生的实践能力和动手能力。

3. 提高分析能力:通过解析常见的材料探索题和问题探索题,培养学生的分析能力和推理能力,提高解题技巧。

探索规律列代数式(初中数学)

探索规律列代数式(初中数学)

探索规律列代数式探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数、式或图形关系分析,探索规律,并能用代数式反映这个规律.现以近年各地的中考题为例说明如下.1. 探索单项式中的规律例1 (2021年云南)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n解析:观察单项式中a的系数、次数与单项式的序数的关系,有如下规律:第1个单项式a2=12·a1+1;第2个单项式4a3=22·a2+1;第3个单项式9a4=32·a3+1;第4个单项式16a5=42·a4+1;……所以第n(n为正整数)个单项式为n2a n+1.故选A.2. 探索等式中的规律例2 (2021年嘉兴)观察下列等式:1=12-02,3=22-12,5=32-22,…,按此规律,则第n个等式为2n﹣1=___________.解析:观察等式中的数字与等式的序数的关系,有如下规律:第1个等式:2×1-1=12-02;第2个等式:2×2-1=22-12;第3个等式:2×3-1=32-22;……所以第n个等式为2n﹣1=n2-(n-1)2.故填n2-(n-1)2.3. 探索图形中的规律例3 (2021年绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_________.解析:观察图中三角形的个数与图形的序数的关系,有如下规律:第1个图形中三角形的个数为1=12+0;第2个图形中三角形的个数为5=22+1;第3个图形中三角形的个数为11=32+2;第4个图形中三角形的个数为19=42+3;……所以第n个图形中三角形的个数为n2+n﹣1.故填n2+n﹣1.第1 页共1 页。

中考一轮复习--专题五 规律探索题

中考一轮复习--专题五 规律探索题
(2)图形的结构观察.
(3)通过对简单、特殊情况的观察,再推广到一般情况.
2.规律探究的基本原则:
(1)遵循类推原则,项找项的规律,和找和的规律,差找差的规律,积
找积的规律.
(2)遵循有序原则,从特殊开始,从简单开始,先找3个,发现规律,再
验证运用规律.
类型一
类型二
类型三
类型一 数式的变化规律
例1(2019·安徽)观察以下等式:
∴S5= =-1-a,
4
∴S6=-S5-1=a.
1
1
∴S7= = =S1,
6
故此规律为 6 个一循环,
∵2 018÷6=336 余 2,
1+
∴S2 018=- .
1
2
3
4
5
6
7
4.(2018·黑龙江龙东区)如图,已知等边△ABC的边长是2,以BC边上
的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边
(2)∵2 020÷3=673…1,∴需要小正方形674个,大正方形673个.
1
2
3
4
5
6
7
7.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上
面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.
将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有
n(n + 1)
圆圈的个数为1+2+3+…+n= 2 .如果图3和图4中的圆圈各有13

.
类型一
类型二
类型三
分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一
次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进

中考数学二轮复习专题2 规律探索问题课件

中考数学二轮复习专题2 规律探索问题课件

B.(-1,-2) D.(3,-2)
9.(2021·阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓 形沿 x 轴正方向无滑动滚动,当圆心经过的路径长为 2021π 时,圆心的横 坐标是( D )
A.2020π C.2021π
B.1010π+2020 D.1011π+2020
10.(2021·毕节)如图,在平面直角坐标系中,点 N1(1,1)在直线 l:y=x 上,
[点评] 本题考查了规律型中的数式变化规律,解题的关键是找出等式左右 两边的数的变化规律,熟练掌握二次根式的运算.
1.(2021·济宁)按规律排列的一组数据:12,35,□,177,296,3171,…,其中□
内应填的数是( D )
A.23
B.151
C.59
D.12
2.(2021·十堰)将从 1 开始的连续奇数按如图所示的规律排列,例如,位于 第 4 行第 3 列的数为 27,则位于第 32 行第 13 列的数是( B )
图形规律型 ☞示例 2 (2016·益阳)小李用围棋子排成下列一组有规律的图案,其中第 1 个图案有 1 枚棋子,第 2 个图案有 3 枚棋子,第 3 个图案有 4 枚棋子,第 4 个图案有 6 枚棋子,…,那么第 9 个图案的棋子数是 13 枚.
[解析] 设第 n 个图形有 an 个棋子, 观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6, a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n 为自然数). 当 n=4 时,a9=3×4+1=13. 故第 9 个图案的棋子数是 13 枚.
[点评] 本题考查了规律型中的图形的变化类,解题的关键是找出变化规律 “a2n+1=3n+1,a2n+2=3(n+1)(n 为自然数)”.本题属于基础题,难度不 大,解决该题型题目时,找出部分图形的棋子数目 ,根据数的变化找出变 化规律是关键.

中考数学专题复习探索规律问题

中考数学专题复习探索规律问题

专题探索规律问题解读考点考点归纳归纳 1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.例1一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为归纳 2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.例2有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn= 用含字母x和n的代数式表示.归纳 3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.例3如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.例4如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014= .归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.例5如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.2年中考2015年题组1.2015绵阳将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=A.14 B.15 C.16 D.17考点:1.规律型:图形的变化类;2.综合题.2.2015十堰如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是A.222 B.280 C.286 D.2923.2015荆州把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现有等式Am=i,j表示正奇数m 是第i组第j个数从左往右数,如A7=2,3,则A2015=A.31,50 B.32,47 C.33,46 D.34,424.2015包头观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为A.2531 B.3635 C.47 D.6263考点:1.规律型:数字的变化类;2.综合题.5.2015重庆市下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A.21 B.24 C.27 D.306.2015泰安下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为A.135 B.170 C.209 D.252考点:1.规律型:数字的变化类;2.综合题.7.2015重庆市下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是A.32 B.29 C.28 D.26考点:1.规律型:图形的变化类;2.综合题.8.2015崇左下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有A.160 B.161 C.162 D.1639.2015贺州观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是A.0 B.3 C.4 D.8考点:1.尾数特征;2.规律型;3.综合题.10.2015宜宾如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为A .231π B.210π C.190π D.171π11.2015鄂州在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是A .201421)(B .201521)(C .201533)(D .201433)(答案D .考点:1.正方形的性质;2.规律型;3.综合题.12.2015庆阳在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1n 是正整数的顶点A2n+1的坐标是A .4n ﹣3.2n ﹣3.3 D .313.2015宁德如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是A .20142,20142B .20152,20152C .20142,20152D .20152,20142考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.14.2015河南省如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是A .2014,0B .2015,﹣1C .2015,1D .2016,0考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.2015张家界任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是A .46B .45C .44D .4316.2015邵阳如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是A .2015π B.π C .3018π D.3024π17.2015威海如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为A .92432B .98132C .9812 D .88132考点:1.正多边形和圆;2.规律型;3.综合题.18.2015日照观察下列各式及其展开式:222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是A .36B .45C .55D .66考点:1.完全平方公式;2.规律型;3.综合题.19.2015宁波如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为A .201521B .201421C .2015211- D .2014212-考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换折叠问题;4.规律型;5.综合题.20.2015常州数学家歌德巴赫通过研究下面一系列等式,作出了一个着名的猜想. 4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 请用文字语言表达.21.2015淮安将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b= .22.2015雅安若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.2015桂林如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.2015梧州如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.2015百色观察下列砌钢管的横截面图:则第n 个图的钢管数是 用含n 的式子表示26.2015北海如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= .考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.2015南宁如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An 与原点的距离不小于20,那么n 的最小值是 .28.2015常德取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m 最少经过7步运算可得到1,则所有符合条件的m 的值为 .29.2015株洲“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上含顶点的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形如图1进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .30.2015内江填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .2猜想:1221()(...)n n n n a b a a b ab b -----++++= 其中n 为正整数,且2n ≥.3利用2猜想的结论计算:98732222...222-+-+-+. 31.2015南平定义:底与腰的比是51-的等腰三角形叫做黄金等腰三角形.如图,已知△ABC 中,AB=BC,∠C=36°,BA1平分∠ABC 交AC 于A1.AB=AA1A C;122探究:△ABC是否为黄金等腰三角形请说明理由;提示:此处不妨设AC=13应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB 交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.n为大于1的整数,直接回答,不必说明理由考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型.33.2015重庆市如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.1请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除并说明理由;2已知一个能被11整除的三位“和谐数”,设其个位上的数字x1≤x≤4,x为自然数,十位上的数字为y,求y与x的函数关系式.2014年题组1.2014年南平中考如图,将1,若规定a,b表示第a排第b列的数,则8,2与2014,2014表示的两个数的积是A.B.C. D.12.2014年株洲中考在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是A.66,34 B.67,33 C.100,33 D.99,343.2014年宜宾中考如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,……An分别是正方形的中心,则这n个正方形重叠部分的面积之和是A.n B.n-1 C.n11()4D.n1()4考点:1.正方形的性质;2.全等三角形的判定与性质.4.2014年崇左中考如图,在平面直角坐标系中,A1,1,B﹣1,1,C﹣1,﹣2,D1,﹣2.把一条长为2014个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是A.﹣1,0 B.1,﹣2 C.1,1 D.﹣1,﹣15.2014年百色中考观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n个等式为.6.2014年衡阳中考 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .答案2014.7.2014年抚顺中考如图,已知CO1是△ABC 的中线,过点O1作O1E1∥AC 交BC 于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC 交BC 于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC 交BC 于点E3,……,如此继续,可以依次得到点O4,O5,……,On 和点E4,E5,……,En .则OnEn= AC .用含n 的代数式表示考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.2014年资阳中考如图,以O0,0、A2,0为顶点作正△OAP1,以点P1和线段P1A 的中点B 为顶点作正△P1BP2,再以点P2和线段P2B 的中点C 为顶点作△P2CP3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是9.2014年宜宾中考在平面直角坐标系中,若点Px,y 的坐标x 、y 均为整数,则称点P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.1求出图中格点四边形DEFG 对应的S,N,L 的值.2已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.考点:1.规律型:图形的变化类; 2.二元一次方程组的应用.10.2014年凉山中考实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+n﹣2+n﹣1+n,可以发现.2×1+2+3+……+n﹣2+n﹣1+n=1+2+3+……+n﹣2+n﹣1+n+n+n﹣1+n﹣2+……3+2+1把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于nn+1,于是得到1+2+3+……+n﹣2+n﹣1+n=12nn+1这就是说,三角点阵中前n项的点数的和是12nn+1下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12nn+1整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:1三角点阵中前n行的点数的和能是600吗如果能,求出n;如果不能,试用一元二次方程说明道理.2如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗这个三角点阵中前n行的点数的和能使600吗如果能,求出n;如果不能,试用一元二次方程说明道理.1年模拟1.2015届山东省济南市平阴县中考二模在平面直角坐标系xOy中,对于点Px,y,我们把点P-y+1,x+1叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为3,1,则点A2的坐标为0,4,…;若点A1的坐标为a,b,则点A2015的坐标为A.-b+1,a+1 B.-a,-b+2 C.b-1,-a+1 D.a,b2.2015届山东省潍坊市昌乐县中考一模如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图 A2多出“树枝”A.32 B.56 C.60 D.643.2015届山西省晋中市平遥县九年级下学期4月中考模拟如图,四边形ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形AnBnCnDn面积为.A.①②③ B.②③④ C.①③④ D.①②③④4.2015届广东省深圳市龙华新区中考二模如图,已知直线y=-12x+2与x轴交于点B,与y轴交于点A.过线段AB的中点A1做A1B1⊥x轴于点B1,过线段A1B的中点A2作A2B2⊥x轴于点B2,过线段A2B的中点A3作A3B3⊥x轴于点B3…,以此类推,则△AnBnBn-1的面积为A .112n -B .12nC .114n -D .14n5.2014-2015学年山东省潍坊市诸城市实验中学中考三模如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线y=33x 上,则A2015的坐标是 .考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型.6.2015届北京市平谷区中考二模在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;.…照此规律重复下去.则点P3的坐标为 ;点Pn 在y 轴上,则点Pn 的坐标为 .7.2015届北京市门头沟区中考二模在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从0,3出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2次碰到矩形的边时,点P 的坐标为 ;当点P 第6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.答案7,4, 0,3 ,1,4.8.2015届安徽省安庆市中考二模一组按规律排列的式子:,,,,…则第n 个式子是 n为正整数.9.2015届山东省威海市乳山市中考一模在直角坐标系xOy中,对于点Px,y,我们把点P′y+1,-x+1叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为a,b,对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是.10.2015届山东省日照市中考模拟如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A1,3,A12,3,A24,3,A38,3,B2,0,B14,0,B28,0,B316,0.1观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是.2若按1题找到的规律将△OAB进行了n次变换,得到的△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推出Bn的坐标是.11.2015届广东省佛山市初中毕业班综合测试如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为6和8,则第n个菱形的周长为.12.2015届湖北省黄石市6月中考模拟如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.13.2015届广东省佛山市初中毕业班综合测试若a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.1分别求出a2,a3,a4的值;2求a1+a2+a3+…+a2160的值.。

中考数学规律探索题(整理全,含答案).doc

中考数学规律探索题(整理全,含答案).doc

A. M=mnD.M=m(n+1)规律探索7选择题1. 观察下列等式:31=3, 32=9, 33=27, 34=81, 3—243, 36=729, 37=2187...解答下列问题:3 + 32 + 33 + 34...+32013的末位数字是( )A. 0B. 1C. 3D. 72. 把所有正奇数从小到大排列,并按如下规律分组:(1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27,29, 31),…,现用等式A M = (i, j)表示正奇数M 是第i 组第j 个数(从左往右数),如A7= (2, 3),则A 20I 3=() A. (45, 77) B. (45, 39) C. (32, 46) D. (32, 23)3. 下表中的数字是按一定规律填写的,表中a 的值应是 ________ . 12 3 5 813a・2 358 13 21 34・4. 下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2“?,第(2)个图形的面积为8 cm 2,5. 如图,动点P 从(0, 3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为()A 、(1, 4)B 、(5, 0)C 、(6, 4)D 、(8, 3) 6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是7. 我们知道,一元二次方程x 2 =-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为(B.M=n(m+1) C.M=mn+1i + Z 2 + Z 3 + 广 + ..严12 + /2013 的值为A. 0B. 1C. -1 D .•• • •• • •• • • •• •• • •图①图②图③(第8题图)A. 51 C.76 D. 81厂= -1(即方程X 2 =-1有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则 仍然成立,于是有z 1 = z, i 2= -1 , z 3 = i 2-i = (-1).1 = -i, i 4 = (z 2)2 = (-1)2 = 1.从而对任意正整数n,我们可得到 严”+1 = j4” j =(严)” j = i,同理可得严”+2 = _1,严”+3 = =1,那么,&下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③ 个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()填空题1. ________________________________________________________________________________ 观察下列图形中点的个数,若按其规律再画下去,可以得到第"个图形中所有的个数为 _________________________________ (用含"的代数式表(第11题)2. 如图,在直角坐标系中,已知点A (-3, 0)、B (0, 4),对△OAB 连续作旋转变换,依次得到△】、△?、△?、A 4...,则△2013的直角顶点的坐标为 ___________________ .3. 如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形AiBiCiD”由顺次连接正方形AjBiCiDi 四边的中点得到第二个正方形A2B2C2D2...,以此类推,则第六个正方形A6B 6C 6D6周长是 ________ •B. 70& 1 图2 图3 D4. _________________________________________________________________________________________________ 直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ________________ 个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1, 5, 12, 22...为五边形数,则第6个五边形数是 __________将C1绕点山旋转180。

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。

中考数学复习指导:探索规律型问题归类解析

中考数学复习指导:探索规律型问题归类解析

探索规律型问题归类解析探索规律型问题是历年中考数学试题中的重要题型之一,其特点是给出一组变化了的数字、式子、表格、图形等,要求学生通过观察、归纳、猜想、验证、类比,探求其内在规律.1.通用的解题策略解答规律型问题一般要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.这种“特殊——一般——特殊”的解题模式,体现了总结归纳的数学思想,也正是人们认识新事物的一般过程.具体来说,就是先写出开头几个数式的基本结构,然后通过横比或纵比找出各部分的特征,写出符合要求的结果.例1 如图1,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“L”形由3个正方形组成,第2个黑色“L”形由7个正方形组成,…那么组成第6个黑色“L”形的正方形个数是( )(A)22 (B)23 (C)24 (D)25解析从特例入手:如图1.纵比正方形的个数3,7,11,15中,后一个数比前一个大4(即相邻两数的差为4),猜想与4有关.横比3与1,7与2,11与3,15与4之间有何关系?联想到与4有关,故改写为:3=4×1-1,7=4×2-1.11=4×3-1,15=4×4-1.猜想组成第6个黑色L形的正方形个数是4 ×6-1=23个.故选B.点评考察相邻两数的差(或商)是探究数字规律的常用手段.常见的类型有:相邻两数的差(或商)相等或成倍数关系,相邻两数的差相等与商相等交替出现等.2.关注特殊数列(1)斐波那契数列:1,1,2,3,5,8,13,21…(其规律为:从第三项开始,每一项都等于前两项之和);(2)平方数数列:1,4,9,16,25,36…(其规律为:n2,即每一项都等于项数的平方).例2 有一组数:1,2,5,10,17,26…请观察这组数的构成规律,用你发现的规律确定第8个数为_______.解析规律为:n2+1(n=0,1,2…).答案:50.点评此类题要注意n2,n2+1,n2-1等(3)三角形数列:1,3,6,10,15,21,…(其规律为1+2+3+…+n)例3 世界上著名的莱布尼茨三角形如图2所示,则排在第10行从左边数第3个位置上的数是:( )(A)(B)(C)(D)解析从第3行起,从左边数第3位置上的数分别为,,,,…它们的分母可分别改写为:1×3,3×4,6×5,10×6,15×7,21×8,…,而1,3,6,10,15,21,…,正是三角形数,故答案为:.选B.(4)杨辉三角形,杨辉三角形斜边上1以外的各数,都等于它“肩上”的两数之和,如图3.(5)与等差等比数列有关的数列.如例1中3,7,11,15…就是一个等差数列.例4 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数应是_______.解析第二个加数1,2,4,8…规律为2n(为一等比数列,也要关注这一数列),第一个加数2,3,5,9…比第二个加数大1.所以第六个数为(25+1)+25=65.例5 一组按规律排列的数:…请你推断第9个数是________.解析这列数的分母为2,3,4,5,6…的平方数,分子形成二阶等差数列,依次相差2,4,6,8…故第9个数分子为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为.(6)与循环有关的问题例6 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a3;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;……依此类推,则a2008=_______.解析根据题意可算出a1=26,a2=65,a3=122,a4=26,a5=65,a6=122,…发现每3个数就出现一次循环.所以由2008=669×3+1,可得a2008=a1=26.点评一列数由某m个数循环出现组成,可依据同余等值(由n=p·m+r得a n=a r)实施转换.(7)分奇数项偶数项的问题例7 一组按规律排列的式子:,…(a b≠0),其中第7个式子是________,第n个式子是_(n为正整数).解析6的指数2,5,8,11…,相邻两数差为3,是等差数列,其规律为3n-1;再注意到奇数项为负,偶数项为正,则第n个式子为第七个式子为3.特殊数列的迁移例8 把数字按如图4所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围的一列,从上至下依次为1.5.13.25.…,则第10个数为_______.解析1 中间框出的一列数的规律为:第n个数为1+4+8+12+…+4(n-1).所以第10个数为1+4+8+12+…+36=.解析2 用虚线圈出的一列数1,5,13,25可改写为:02+12,12+22,22+32,32+42,猜想第10个数为92+102=181.点评此列数可看成是平方数数列的迁移.例9 图5中是与杨辉三角有类似性质的三角形数垒.a,b,c,d是相邻两行的前四个数,那么当a=8时,c=_______,d=_______.解析除两边外,中间的每个数等于肩上两数的和.答案:9;32.点评此列数可看成是杨辉三角形的迁移.4.关注中考新题型例10 观察图6所示表格,依据表格数据排列的规律,数2008在表格中出现的次数共有_______次.解析从特例入手,通过扩充表格可得:数1,2,3,4,5,6,7,8,9,10出现次数分别为1,2,2,3,2,4,2,4,3,4.出现的次数恰为给定数的所有因数的个数,而2008的因数为1,2,4,8,251,502,1004,2008等8个.故答案为8.点评本例中新产生的数为自然数的倍数,因此,其出现的次数与其因数的多少有关,仔细观察便会发现,其出现次数就是给定数所有因数的个数,本题规律的隐蔽性较强,因而有一定的难度.。

中考数学《规律探索》专题复习试题含解析

中考数学《规律探索》专题复习试题含解析

中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。

2024年中考数学二轮复习课件:专题一 规律探索题

2024年中考数学二轮复习课件:专题一 规律探索题
纸片按图2所示的方法拼接,那么可以得到外轮廓的图案是( C )
图1
A.正十二边形
图2
B.正十边形
C.正九边形
D.正八边形
10.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如
果搭建正三角形和正六边形共用了172根火柴棍,并且正三角形的个数比正六边形
30
的个数多8个,那么连续搭建正三角形的个数是____.
综与语文之间,得到如图3,称为2次整理;…若从如图1开始,经过 n 次整理后,
得到的顺序与如图1相同,则 n 的值可以是( B )
A.11
B.12
C.13
D.14
9.(2ቤተ መጻሕፍቲ ባይዱ23石家庄裕华区模拟)小明同学用一些完全相同的 △ ABC 纸片,已知六个
△ ABC 纸片按照图1所示的方法拼接可得外轮廓是正六边形图案,若用 n 个 △ ABC
再证明结论的正确性;
解:由题意规律,得 +

= + + .
证明:等式左边 = + + ,
等式右边 = + + ,
∴ 左边 = 右边,故等式成立.
【迁移】 思考“ 152 = 15 × 15 , 252 = 25 × 25 , ⋯ ”的特征:两个乘数十位上
上分别取点 A2 , B2 ,使 B1 A2 = B1 B2 ,
连接 A2 B2 ⋯ 按此规律下去,记
∠A2 B1 B2 = θ1 , ∠A3 B2 B3 = θ2 , ⋯ , ∠An+1 Bn Bn+1 = θn ,则:
180∘ +α
(1) θ1 = _______;
2

中考数学找规律练习题(20道-后附答案)

中考数学找规律练习题(20道-后附答案)

中考数学找规律练习题(20道,后附答案)一:数式问题1.已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a ab b+=⨯(a 、b 为正整数)则a b +=.2.有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于()A.2010B.2009C.401D.3343.有一组单项式:a 2,-a 32,a 43,-a 54,….观察它们构成规律,用你发现的规律写出第10个单项式为.4.有一列数1234251017--,,,…,那么第7个数是.5.观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.6.将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第行第列.第1列第2列第3列第4列第1行123第2行654第3行789第4行121110……7.将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n=;②第i行第j列的数为(用i,j表示).第1列第2列第3列…第n列第1行123…n第2行1+n2+n3+n…n2第3行12+n22+n32+n…n3………………二:定义运算问题8、有一列数1a,2a,3a, ,n a,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a=,则2007a为()A.2007B.2C.12D.1-三:剪纸问题9.如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是()10题图四:数形结合问题10、已知,A、B、C、D、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)11、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为.12、如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为.四:图形问题13.如图所示,已知:点(00)A ,,3B ,,(01)C ,在ABC △内依次作yxO P 1P 2P 3P4P 5A 1A 2A 3A 4A 5(第12题图)2y x=第14题图C 2D 2C 1D 1CD AB等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于()14.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为.15.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).16.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角O yx(A )A 1C112B A 2A 3B 3B 2B 1第13题图BCAE 1E 2E 3D 4D 1D 2D 3(第15题)(第16题)形,则第n个图案中正三角形的个数为(用含n 的代数式表示).17.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.18.观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有个.19.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有个★.五:对称问题20.在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A ,.一只电子蛙位于坐标原点处,第1次电子蛙由原点第1个图第2个图第3个图第4个图(第18题图)第17题图图案1图案2图案3……跳到以A为对称中心的对称点1P,第2次电子蛙由1P点跳到以2A为对1称中心的对称点P,第3次电子蛙由2P点跳到以3A为对称中心的对称2点P,…,按此规律,电子蛙分别以1A、2A、3A为对称中心继续跳下3去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P(_______,2009_______).参考答案1、8+63=712、D3、-a11104、-7505、(1)n×=n-;(2)证明见解析.【解析】试题分析:(1)等号左边第一个因数为整数,与第二个因数的分子相同,第二个因数的分母比分子多1;等号右边为等号左边的第一个数式-第二个因数,即n×=n-;(2)把左边进行整式乘法,右边进行通分.试题解析:(1)猜想:n×=n-;(2)证:右边==左边,即n×=n-考点:规律型:数字的变化类.6、670,第三列7、1010(i-1)+j8、D 9、C 10、13π-2611、1012、1/513、14、15、16、2n+217、30218、19、4920、(2,2)。

中考数学复习《探索规律问题》经典题型及测试题(含答案)

中考数学复习《探索规律问题》经典题型及测试题(含答案)

中考数学复习《探索规律问题》经典题型及测试题(含答案)阅读与理解探索规律问题是中考数学中的常考问题,往往以选择题或填空题中的压轴题形式出现,主要命题方向有数式规律、图形变化规律、点的坐标规律等.基本解题思路为:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中的规律,进而归纳或猜想出一般性的结论,最后验证结论的正确性.即“从特殊情形入手→探索发现规律→猜想结论→验证”.类型一数式规律这类问题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.例1 (2016·绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an ,计算a1+a2,a2+a3,a3+a4,…,由此推算a399+a400=.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律根据规律得出结论,进而求出a399+a400的值.【自主解答】∵a1+a2=1+3=4=22,a2+a3=3+6=9=32,a3+a4=6+10=16=42,…,∴an +an+1=(n+1)2.∴a399+a400=4002=160 000.故答案为160 000.变式训练:1.(2017·遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.2.(2017年黄石)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)类型二图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.例2 (2016·重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.【自主解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15 …,所以第n个图形为:+n2,当n=7时,+72=85,故选D.变式训练:3.(2017·随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )A.84株 B.88株 C.92株 D.121株4.(2015·德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形An BCnDn的面积为_______类型三点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.例3 (2017·东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.21433an【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到An的横坐标为,据此可得点A2017的横坐标.【自主解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,An的横坐标为,∴点A2017的横坐标是,故答案为:.变式训练5.(2016·德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2 017的坐标为__6.(2017·安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn顶点Bn的横坐标为___。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(最新)中考复习——探索规律题(一)分类:1、反复循环。

2、等差数列。

3、二次等差数列。

4、等比数列。

5、其它规律。

(二)等差数列:
公差为d
(1)项数公式:第n 项n = + 1
(2)第n项公式:= +(n1)d
(3)前n项和公式:
n (4)求第n项时,可以设一次函数y=kn+b 再带入两个点坐标,确定一次函数表达式。

(三)二次等差数列:
求第n项时,可以设一次函数y=+bn+c
再带入三个点坐标,确定二次函数表达
式。

(四)等比数列:
比为q
(1)第n 项公式:=
(2)前n项和公式:
1.(2017•赤峰)在平面直角坐标系中,点P(x,y)经
过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣
y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结
点为P2,点P2的终结点为P3,点P3的终结点为P4,这
样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标
为(2,0),则点P2017的坐标为.
2.(2017•潍坊)如图,自左至右,第1个图由1个正六
边形、6个正方形和6个等边三角形组成;第2个图由2
个正六边形、11个正方形和10个等边三角形组成;第3
个图由3个正六边形、16个正方形和14个等边三角形组
成;…按照此规律,第n个图中正方形和等边三角形的
个数之和为个.
3.(2017•宁波)如图,用同样大小的黑色棋子按如图所
示的规律摆放:则第⑦个图案有个黑色棋子.
4.(2017•贺州)将一组数,2,,2,,…,
2,按下列方式进行排列:
,2,,2,;
2,,4,3,2;…
若2的位置记为(1,2),2的位置记为(2,1),则
这个数的位置记为()
A.(5,4)B.(4,4)C.(4,5)D.(3,5)
5.(2017•铜仁市)观察下列关于自然数的式子:
4×12﹣12①
4×22﹣32②
4×32﹣52③

根据上述规律,则第2017个式子的值是()
A.8064 B.8065 C.8066 D.8067
6.(2017•丹东)如图,观察各图中小圆点的摆放规律,
并按这样的规律继续摆放下去,则第10个图形中小圆点
的个数为.
7.(2017•鄂尔多斯)如图,由一些点组成形如正多边形
的图案,按照这样的规律摆下去,则第n(n>0)个图案
需要点的个数是.
8.(2017•凉山州)古希腊数学家把1、3、6、10、15、21、…
叫做三角形数,其中1是第一个三角形数,3是第二个三
角形数,6是第三个三角形数,…,依此类推,第100个
三角形数是.
9.(2017•衡阳)正方形A1B1C1O,A2B2C2C1,A3B 3C3C2,…
按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别
在直线y=x+1和x轴上,则点B2018的纵坐标是.
10.(2017•黑龙江)如图,四条直线l1:y1=x,l2:y2=x,
l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2
⊥x轴,交l1于点A2,再过点A2作A2A3⊥l1交l2于点A3,
再过点A3作A3A4⊥l2交y轴于点A4…,则点A2017坐标
为.
第10题图第11题图
11.(2017•齐齐哈尔)如图,在平面直角坐标系中,等腰
直角三角形OA1A2的直角边OA1在y轴的正半轴上,且
OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形
OA2A3,以OA3为直角边作第三个等腰直角三角形
OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,
则点A2017的坐标为.
第12题图第19题图
12.(2017•温州)我们把1,1,2,3,5,8,13,21,…
这组数称为斐波那契数列,为了进一步研究,依次以这
列数为半径作90°圆弧,,,…得到
斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得
到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),
P3(0,﹣1),则该折线上的点P9的坐标为()
A.(﹣6,24)B.(﹣6,25)
C.(﹣5,24)D.(﹣5,25)
13.(2017•黔南州)杨辉三角,又称贾宪三角,是二项式
系数在三角形中的一种几何排列,如图,观察下面的杨
辉三角:
按照前面的规律,则(a+b)5= .
14.(2017•桂林)如图,第一个图形中有1个点,第二个
图形中有4个点,第三个图形中有13个点,…,按此规
律,第n个图形中有个点.
15.(2017•黑龙江)观察下列图形,第一个图形中有一个
三角形;第二个图形中有5个三角形;第三个图形中有9
个三角形;….则第2017个图形中有个三角形.
16.(2017•辽阳)如图,△OAB中,∠OAB=90°,
OA=AB=1.以OB为直角边向外作等腰直角三角形
OBB1,以OB1为直角边向外作等腰直角三角形OB1B2,
以OB2为直角边向外作等腰直角三角形OB2B3,…,连
接AB1,BB2,B1B3,…,分别与OB,OB1,OB2,…交
于点C1,C2,C3,…,按此规律继续下去,△ABC1的面
积记为S1,△BB1C2的面积记为S2,△B1B2C3的面积记为
S3,…,则S2017= .
第16题图第17题图
17.(2017•营口)如图,点A1(1,)在直线l1:y=x
上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,以
A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点
C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2
为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律
进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)1318.(2017•常德)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.
19.(2017•盘锦)如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y=x于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y=x于点B3,…,按照此规律进行下去,则点A n的横坐标为.。

相关文档
最新文档