高考数学常考题型:不等式基本性质(含详解答案)

高考数学常考题型:不等式基本性质(含详解答案)

高考数学常考题型:不等式基本性质

1.已知14a b ≤+≤,12a b -≤-≤,则42a b -的取值范围是( ) A .[]4,10- B .[]3,6-

C .[]2,14-

D .[]2,10-

2.若2

2

π

π

αβ-

≤<≤

,则

2

αβ

+,

2

αβ

-的取值范围分别是( )

A .[,)22ππ-,(,0)2π

- B .[,]22ππ

- ,[,0]2π

-

C .(,)22ππ

-

,(,0)2

π- D .(,)22

ππ-

,[,0)2π

-

3.已知11x y -≤+≤,13x y ≤-≤,则182y

x ??? ???

的取值范围是( )

A .8

2,2????

B .8

1,22

?????

?

C .7

2,2????

D .7

1,22

?????

?

4.设,a b 是不相等的两个正数,且ln ln b a a b a b -=-,给出下列结论:①

1a b ab +->;②2a b +>;③11

2a b

+>.其中所有正确结论的序号是( )

A .①②

B .①③

C .②③

D .①②③

5.设0.231

log 0.6,log 2

0.6m n ==

,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .mn m n m n >->+

D .m n m n mn +>->

6.若关于x 的不等式2k x x >-恰好有4个整数解,则实数k 的范围为( ) A .20,5

?? ??

?

B .23,55??

???

C .32,53

?? ???

D .2,13??

???

7.已知223a b ab ++=,0a >,0b >,则2a b +的取值范围_________.

8.等差数列{a n }的前n 项和S n ,且4≤S 2≤6,15≤S 4≤21,则a 2的取值范围为_________.

9.设x ,y 为实数,满足2

38xy ≤≤,2

49x y

≤≤,则3x y 的最小值是______.

10.已知12a b -<<<,则2b a -的范围是______________.

11.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 12.已知二次函数()2

f x ax bx c =++,()411f -≤-≤-,()215f ≤≤,

高考数学全国卷选做题之不等式

2010——2016《不等式》高考真题 2010全国卷设函数f(x)=241 x-+ (Ⅰ)画出函数y=f(x)的图像; (Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围. 2011全国卷设函数()||3 =-+,其中0 f x x a x a>. (I)当a=1时,求不等式()32 ≥+的解集. f x x (II)若不等式()0 x≤-,求a的值. f x≤的解集为{x|1}

2012全国卷已知函数f (x ) = |x + a | + |x -2|. (Ⅰ)当a =-3时,求不等式f (x )≥3的解集; (Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。 2013全国卷Ⅰ 已知函数()f x =|21||2|x x a -++,()g x =3x +. (Ⅰ)当a =-2时,求不等式()f x <()g x 的解集; (Ⅱ)设a >-1,且当x ∈[2a -,12 )时,()f x ≤()g x ,求a 的取值范围.

2013全国卷Ⅱ 设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13; (2)2221a b c b c a ++≥. 2014全国卷Ⅰ 若,0,0>>b a 且ab b a =+11 (I )求33b a +的最小值; (II )是否存在b a ,,使得632=+b a ?并说明理由.

2014全国卷Ⅱ设函数() f x=1(0) ++-> x x a a a (Ⅰ)证明:() f<,求a的取值范围. f x≥2 (Ⅱ)若()35 2015全国卷Ⅰ已知函数=|x+1|-2|x-a|,a>0. (Ⅰ)当a=1时,求不等式f(x)>1的解集; (Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

七年级下册不等式及其基本性质讲义

环球雅思教育学科教师讲义 年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课复习课□习题课 授课日期及时段 教学内容? 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。 注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。 提示:注意一个数的"和","差","倍","分"的表示法以及"大于","不小于","不大于"应该用哪一个不等号来表示,另外。正数都大于0,负数都小于0,所以"是正数"可表示为">0","是负数"可表示为"<0","非负数"可表示为"≥0"。?参考答案: (1)a>0 (2)y-2≥0 (3)a+6>7 (4)≥3(5)8+3x≤1

,+ 4,-4,4.5?提示:把下列各值分别代入不等式的左边计算2x+1 2.5 ,- - 1,0,3 立?? 的值,若小于5则不等式成立;若不小于5则不等式不成立。 参考答案:当x=-1,0,-2.5,-4时,不等式2x+1<5成立。 说明:因为当x=1,0,-2.5,-4时,不等式2x+1<5成立,当x=2,+4,4.5时,不等式2x+1<5不成立,所以同方程类似,我们可以说-1,0,-2.5-4是不等式2x+1<5的解,而2,+4,4.5不是不等式2x+1<5的解。 例4.指出下面变形是根据不等式的哪一条基本性质。? (1)由2a>5,得a>(2)由a-7>,得a>7 (3)由- a>0,得a<0 (4)由3a>2a-1,得a>-1。 例5.设a>b;用">"或"<"号填空: (1) (2)a-5 b-5 (3)- a- b (4)6a6b (5)-(6)- a -b 参考答案:(1)>(2)> (3)< (4)> (5)<(6)< 例5.试比较下列两个代数式值的大小: (1)5a+2与4a+2 (2)x3+3x2-7与x3+2x2-7 提示:我们知道,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b,所以要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零。 参考答案:(1)(5a+2)-(4a+2)=5a+2-4a-2=a ∵a可取正数,负数或零,∴5a+2和4a+2间的大小关系有三种可能:?①当a>0时,5a+2>4a+2 ②当a=0时,5a+2=4a+2?③当a<0时,5a+ 2<4a+2。?(2)(x3+3x2-7)-(x3+2x2-7)=x3+3x2-2x2+7=x2∵x2≥0(对任意x) ∴x3+3x2-7≥x3+2x2-7 例6.已知二数a>2,b>2,试比较a+b与ab的大小。

广东省高考数学复习专题汇编 不等式(试题)

不等式 2007 2008 2009 2010 2011 2012 2013 2014 22分 12分 10分 5分 5分 5分 (2008年高考广东卷第10小题) 设a 、b ∈R ,若a - |b | > 0,则下列不等式中正确的是(D ) A. b - a > 0 B. a 3 + b 3 < 0 C. a 2 - b 2 < 0 D. b + a > 0 (2008年高考广东卷第12小题) 若变量x 、y 满足24025000 x y x y x y +≤??+≤? ?≥??≥?,则32z x y =+的最大值是__70_____。 (2008年高考广东卷第17小题)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房。经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560 + 48x (单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用 = 平均建筑费用 + 平均购地费用,平均购地费用 = 购地总费用/建筑总面积)。 【解析】设楼房每平方米的平均综合费为f (x )元,则 ()()21601000010800 56048560482000f x x x x x ?=++=++()10,x x Z +≥∈ ()2 10800 48f x x '=- , 令 ()0f x '= 得 15x = 当 15x > 时,()0f x '> ;当 015x <<时,()0f x '< 因此 当15x =时,f (x )取最小值()152000f =; 答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。 (2010年高考广东卷第19小题) 某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C .如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐? 19.解:设应当为该儿童分别预订x 个单位的午餐,y 个单位的晚餐,所花的费用为z ,则依题意得:

不等式的性质和证明

不等式的性质和证明 一、基础知识 1.性质 对称性a>b?b<a 传递性a>b,b>c T a>c 加法单调性a>b T a+c>b+c 乘法单调性a>b,c>0 T ac>bc;a>b,c<0 T ac<bc开方法则a>b>0 T移项法则a+b >c T a>c-b 同向不等式相加a>b,c>d T a+c>b+d 同向不等式相乘a>b>0,c >d>0 T ac>bd 乘方法则a>b>0 T a n>b n倒数法则a>b,ab>0 T 2.证明方法:比较法,综合法,分析法,反证法,换元法 证明技巧:逆代,判别式,放缩,拆项,单调性 3.主要公式及解题思路 公式:a2+b2≥2ab(a,b∈R) a3+b3+c3≥3abc(a,b,c∈R+) 思路:① ② ③ ④正数x,y且x+y=1,求证:≥ 二、例题解析 1.(1)a,b∈R+且a<b,则下列不等式一定成立的是() A.B. C.D. (2)若0<x<1,0<y<1且x≠y,则x2+y2,x+y,2xy,中最大的一个是() A.x2+y2B.x+y C.2xy D.

(3)若a,b为非零实数,则在①a2+b2≥2ab ②≤ ③≥ ④≥2中恒成立的个数为() A.4B.3C.2D.1 (4)下列函数中,y的最小值是4的是() A.B.C.y= D.y=lgx+4log x10 (5)若a2+b2+c2=1,则下列不等式成立的是() A. a2+b2+c2>1 B.ab+bc+ca≥ C.|abc|≤ D a3+b3+c3≥ 2.(1)已知x,y∈R+且2x+y=1,则的最小值为 (2)已知x,y∈R 且x2+y2=1,则3x+4y的最大值为 (3)在等比数列{a n}和等差数列{b n}中,a1=b1>0,a3=b3>0,a1≠a3,试比较大小:a5b5 (4)已知a>0,b>0,a + b=1,则的最小值为 (5)已知:x+2y=1,则的最小值为 (6)已知:x>0,y>0且x+2y=4,则lg x + lg y的最大值为 (7)若x>0,则,若x<0,则 (8)建造一个容积为8 m3,深为2m的长方体无盖水池,如果池底和池壁造价分别为120元和80元,那么水池的最低总造价为元。 (9)某工厂生产机器的产量,第二年比第一年增长的百分率为a,第三年比第二年增长的百分率为b,第四年比第三年增长的百分率为c,设年平均增长的百分率为P,且a+b+c 为定值,则P的最大值为 3.求证:a2+b2≥ab+a+b-1 4.已知a>0,b>0,c>0,求证:≥ 5.已知:a,b,c∈R+且a+b+c=1,求证:

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

不等式的基本性质知识点

不等式的基本性质知识点 不等式的基本性质知识点 1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。 ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 如证明y=x3为单增函数, 设x1, x2∈(-∞,+∞), x1<x2, f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2+x22)=(x1-x2)[( x1+)2 +x22] 再由(x1+)2+x22>0, x1-x2<0,可得f(x1)<f(x2), ∴ f(x)为单增。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a>bb<a (对称性)

(2) a>b, b>ca>c (传递性) (3) a>ba+c>b+c (c∈R) (4) c>0时,a>bac>bc c<0时,a>bac<bc。 运算性质有: (1) a>b, c>da+c>b+d。 (2) a>b>0, c>d>0ac>bd。 (3) a>b>0an>bn(n∈N, n>1)。 (4) a>b>0>(n∈N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

七年级下册不等式及其基本性质讲义

环球雅思教育学科教师讲义年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课□复习课□习题课 授课日期及时段 教学内容 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。 注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。 提示:注意一个数的"和","差","倍","分"的表示法以及"大于","不小于","不大于"应该用哪一个不等号来表示,另外。正数都大于0,负数都小于0,所以"是正数"可表示为">0","是负数"可表示为"<0","非负数"可表示为"≥0"。 参考答案:

(1)a >0 (2)y-2≥0 (3)a+6>7 (4) ≥3 (5)8+3x ≤1 注意:列不等式时应注意两点: ①"是正数"表示为>0","是负数"表示为<0";"非正数"表示为"≥0"。 ②"不大于"用"≤"表示,"不小于"用"≥"表示。 2.不等式的基本性质 (1)不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 用式子表示:如果a>b ,那a+c>b+c (或a –c>b –c ) (2)不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 用式子表示:如果a>b ,且c>0,那么ac>bc , c b c a >。 (3)不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 用式子表示:如果a>b ,且c<0,那么acb ,那么bb ,b>c 那么a>c 。 注意:不等式的基本性质是对不等式变形的重要依据。不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。 说明:常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ; ⑤若ab >0或0a b >,则a 、b 同号; ⑥若ab <0或0a b <,则a 、b 异号。 任意两个实数a 、b 的大小关系: ①a-b>O ?a>b ; ②a-b=O ?a=b ; ③a-b

高考数学压轴专题专题备战高考《不等式》真题汇编附答案

【高中数学】数学《不等式》复习资料 一、选择题 1.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r 恒 成立,则实数t 的取值范围是( ). A .33 ,,????-∞- ?+∞ ? ? ? ????? B .2323 ,,????-∞- ?+∞ ? ? ? ????? C .23,3?? +∞ ? ??? D .3,3?? +∞ ? ??? 【答案】B 【解析】 【分析】 根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0u u u r u u u r 两边平方得2 222 ()2()1k AB kt AB BC t BC +?+>u u u r u u u r u u u r u u u r , 即2210k kt t -+->,构造函数2 2 ()1f k k tk t =-+-, 由题意,( ) 2 2 410t t ?--<=, 解得23t <-或23 t > . 故选:B. 【点睛】 本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题. 2.若直线过点 ,则 的最小值等于( ) A .5 B . C .6 D . 【答案】C 【解析】∵直线过点 ,∴ ,∴ , ∵ ,∴ , , ,

当且仅当 时,等号成立,故选C. 点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. 3.若33 log (2)1log a b ab +=+42a b +的最小值为( ) A .6 B .83 C . 163 D . 173 【答案】C 【解析】 【分析】 由33 log (2)1log a b ab +=+21 3b a +=,且0,0a b >>,又由 12142(42)3a b a b b a ?? +=++ ??? ,展开之后利用基本不等式,即可得到本题答案. 【详解】 因为33 log (2)1log a b ab +=+()()3333log 2log 3log log 3a b ab ab +=+=, 所以,23a b ab +=,等式两边同时除以ab 得21 3b a +=,且0,0a b >>, 所以12118211642(42)()(8)(8216)3333 a b a b a b b a b a +=++=++≥+=, 当且仅当82a b b a =,即2b a =时取等号,所以42a b +的最小值为163. 故选:C. 【点睛】 本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题. 4.设x ,y 满足约束条件21210 x y x y x y +≤??+≥-??-≤? ,若32z x y =-+的最大值为n ,则2n x x ? ?的展开式中2x 项的系数为( ) A .60 B .80 C .90 D .120 【答案】B 【解析】 【分析】 画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案.

高中数学知识点总结不等式的性质与证明

要点重温之不等式的性质与证明 1.在不等式两边非负的条件下能同时平方或开方,具体的:当a>0,b>0时,a>b ?a n >b n ; 当a<0,b<0时,a>b ?a 2b 2?|a|>|b|。在不等式两边同号的条件下能同时取倒数,但不等号的方向要改变,如:由 x 1<2推得的应该是:x>21或x<0,而由x 1>2推得的应该是: 00即可。以下用“取倒数”求:3-f(x)<3,分两段取倒数即0<3-f(x)<3得)(31x f ->31或3-f(x)<0得)(31x f -<0, ∴g(x )∈(-∞,0)∪(31,+∞);f(x)+3>3?0<3)(1+x f <31?1③b a <;④2>+b a a b 中,正确的不等式有 ( ) A .1个 B .2个 C .3个 D .4个 [巩固2] 下列命题:①若a>b,则ac 2>bc 2;②若ac 2>bc 2,则a>b ;③若a>b,c>d 则a -d>b -c ; ④若a>b,则a 3>b 3;⑤若a>b,则),1lg()1lg(22+>+b a ⑥若aab>b 2; ⑦若a|b|;⑧若a;⑨若a>b 且b a 11>,则a>0,b<0; ⑩若c>a>b>0,则b c b a c a ->-;其中正确的命题是 。 [迁移]若a>b>c 且a+b+c=0,则:①a 2>ab ,②b 2>bc ,③bc

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

不等式及其基本性质测试题

不等式及其基本性质测试题 7.1不等式及其基本性质测试卷 一、填空 1.在式子① ② ③ ④ ⑤ ⑥ 中属于不等式的有.(只填序号)2.如果,那么. 3.若,用<>填空. ⑴ ⑴ ⑴ ⑴ ⑴ 二、选择 4.的倍减的差不大于,那么列出不等式正确的是()A.B. C.D. 5.已知,则下列不等式正确的是() A.B. C. D. 6.下列说法正确的是() A.若,则 B.若,则 C.若,则D.若,则 7.已知,a为任意有理数,下列式子正确的是( )

A. B. C. D. 8.已知4 3,则下列结论正确的() ① ② ③ A. ①② B. ①③ C. ②③ D. ①②③ 9.某种品牌奶粉合上标明蛋白质,它所表达的意思是() A.蛋白质的含量是20%. B.蛋白质的含量不能是20%. C.蛋白质大含量高于20%. D.蛋白质的含量不低于20%. 10.如图7-1-1天平右边托盘里的每个砝码的质量都是1千克,那么图中显示物体的质量范围是() A.大于2千克B.小于3千克 C.大于2千克小于3千克 D.大于2千克或小于3千克 11.如果a<b<0,下列不等式中错误的是() A. B. C. D. 12. 下列判断正确的是()

A.<<2 B.2<+<3 C.1<-<2 D.4<<5 13. 用a,b,c 表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为() A.B. C.D. 三、解答题 14.用不等式表示下列句子的含义. ⑴ 是非负数. ⑴ 老师的年龄比赵刚的年龄的倍还大. ⑴ 的相反数是正数. ⑴ 的倍与的差不小于. 15.用不等式表示下列关系. ⑴ 与3的和的2倍不大于-5. ⑴ 除以2的商加上4至多为6. ⑴ 与两数的平方和为非负数. 16.(1)用两根长度均为㎝的绳子,分别围成正方形和圆,如图7-1-2

(完整版)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

相关文档
最新文档