汽车悬架系统开发布置流程图

合集下载

悬架系统设计步骤

悬架系统设计步骤

4. 由于没有衬套,所有传递给车身的振动都是未经过滤的。 多连杆式悬架 优点:
多连杆式悬架能同时兼顾良好的乘坐舒适性和操纵稳定性,这种优点主要得益于其 结构上具有下面这些几何特性:
1. 利用多杆控制车轮的空间运动轨迹,能更好地控制车轮定位参数变化规律,得 到更为满意的汽车顺从转向特性。
2. 受到侧向力时前束具有自动回正能力; 3. 受到纵向力时前束具有自动回正能力。 4. 车轮行驶时的外倾角回复能力。 5. 通过障碍的轴距较大 6. 能兼顾后轮驱动。 7. 后轮驱动时的转向力控制。 缺点: 1. 零部件数量多,制造加工困难。 2. 试验调校工作复杂,且不便于调整,适应性较差。 3. 对悬架几何尺寸的公差和弹性元件特性的要求较高。 4. 单位质量的负荷能力较低(需要一个后副车架)。 5. 对使用条件要求比较苛刻。 6. 所占空间较大,影响后乘员舱和后底板的空间布置。 7. 制造成本较高。
若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6. 两侧车轮运转不均衡时外倾具有良好的回复作用。 7. 在车身摇摆时具有较好的前束控制能力。 8. 车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9. 通过障碍的轴距具有相当好的加大能力,通过性好。 10. 如果采用连续焊接的话,强度较好。 缺点: 1. 对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2. 不能很好地协调轮迹。 3. 整车动态性能对轴荷从空载到满载的变化比较敏感。 4. 但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允
,一般最大不超过
后,对最小质量的车型来说强度就显得过剩,带来的是成本的无谓增加。
悬架的设计总是与整车的设计紧密相连的,整车预布置通常包括动力总成的预布置 和悬架的预布置。在基本确定了整车的总体尺寸、驱动型式、相应的轮胎、最小的目标 转弯半径后就可以进行悬架的预布置了。 1. 悬架的预布置

127页PPT_汽车悬架设计(PPT127页)

127页PPT_汽车悬架设计(PPT127页)
b、c两项大的原因是: 转向行驶时,车轮与地面之间作用有侧向力FY1、 FY2 →简化作用到衬套上的力F1、F2和力矩M1、M2→在F1 和F2作用下衬套内、外侧相对移动,同时处于橡胶衬 套内径处的金属隔套突肩压紧橡胶衬套,使之纵向刚 度↑,扭转刚度↑。→减轻轴转向效应,操纵稳定性好。
第六章 悬架设计
板簧 寿命 好路 10~15万Km 坏路 1~1.5万Km 一般 4~5万Km
空气弹簧气囊寿命是板簧四倍.
第六章 悬架设计
汽车工程系
第二节 悬架结构形式分析
五、辅助元件分析
1. 横向稳定器
通过减小悬架垂直刚度,能降低车身振动固有频率, 达到改善平顺性的目的。 但因为悬架侧倾角刚度和悬架垂直刚度之间是正比 关系,所以减小垂直刚度同时会减小侧倾角刚度, 并使车厢侧倾角增加,使乘员不舒服和降低了行车 安全感。 因此设置横向稳定器,在不增大垂直刚度条件下增 大悬架侧倾角刚度。 汽车转弯行驶时前后轴车轮负荷转移大小,主要取 决于前后悬架的侧倾角刚度。当前角刚度大于后角 刚度时,前轴车轮负荷转移大于后轴,并使前轮侧 偏角大于后轮侧偏角,以保证汽车有不足转向特性。
2. 三种匹配方式
2)前轮独立、后轮非独立
(1)目前轿车前轮多采用车轮上、下跳动时, 车轮定位参数变化小的麦弗逊式悬架,因而可以 保证前轮不易发生摆振现象,使汽车有良好的操 纵稳定性。
麦弗逊式悬架优、缺点见前述。除此之外,两前 轮装上麦弗逊式悬架以后,当主销轴线的延长线 与地面的交点位于轮胎胎冠印迹中心外侧时,具 有负主销偏移距rs,有利于制动稳定性
第六章 悬架设计
汽车工程系
第二节 悬架结构形式分析
三三、、前、前后后悬悬架架方方案案的的选选择 择
1.1前. 前后悬后架悬的架匹的配匹方配案

汽车悬挂系统结构原图解

汽车悬挂系统结构原图解

汽车悬挂系统布局原理图解之袁州冬雪创作系统布局, 汽车, 原理, 图解, 悬挂汽车悬挂系统布局原理图解教程什么是悬挂系统舒适性是轿车最重要的使用性能之一.舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关.所以,汽车悬架是包管乘坐舒适性的重要部件.同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作毗连的传力机件,又是包管汽车行驶平安的重要部件.因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一. 汽车车架(或车身)若直接装置于车桥(或车轮)上,由于道路不服,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因.汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联合装置的统称.它的作用是弹性地毗连车桥和车架(或车身),缓和行驶中车辆受到的冲击力.包管货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中坚持稳定的姿势,改善把持稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以包管汽车行驶平顺;而且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用. 悬架布局形式和性能参数的选择合理与否,直接对汽车行驶平顺性、把持稳定性和舒适性有很大的影响.由此可见悬架系统在现代汽车上是重要的总成之一.一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成.弹性元件用来承受并传递垂直载荷,缓和由于路面不服引起的对车身的冲击.弹性元件种类包含钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧.减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器.导向机构用来传递车轮与车身间的力和力矩,同时坚持车轮按一定运动轨迹相对车身跳动,通常导向机构由节制摆臂式杆件组成.种类有单杆式或多连杆式的.钢板弹簧作为弹性元件时,可不另设导向机构,它自己兼起导向作用.有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目标是提高横向刚度,使汽车具有缺乏转向特性,改善汽车的把持稳定性和行驶平顺性. 悬挂系统的分类现代汽车悬架的发展十分快,不竭出现,崭新的悬架装置.按节制形式分歧分为主动式悬架和主动式悬架.今朝多数汽车上都采取主动悬架,如下图所示也就是汽车姿态(状态)只能主动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件.20世纪80年月以来主动悬架开端在一部分汽车上应用,而且今朝还在进一步研究和开辟中.主动悬架可以能动地节制垂直振动及其车身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼.1. 弹性元件;2. 纵向推力杆;3. 减振器;4. 横向稳定杆;5. 横向推力杆根据汽车导向机构分歧悬架种类又可分为独立悬架,非独立悬架.如下图所示.b. 独立悬架 a. 非独立悬架非独立悬架如上图(a)所示.其特点是两侧车轮装置于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另外一侧车轮上,当车轮上下跳动时定位参数变更小.若采取钢板弹簧作弹性元件,它可兼起导向作用,使布局大为简化,降低成本.今朝广泛应用于货车和大客车上,有些轿车后悬架也有采取的.非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差. 独立悬架是两侧车轮分别独登时与车架(或车身)弹性地毗连,当一侧车轮受冲击,其运动不直接影响到另外一侧车轮,独立悬架所采取的车桥是断开式的.这样使得发动机可放低装置,有利于降低汽车重心,并使布局紧凑.独立悬架允许前轮有大的跳动空间,有利于转向,便于选择软的弹簧元件使平顺性得到改善.同时独立悬架非簧载质量小,可提高汽车车轮的附着性.如上图(b)所示.独立悬挂系统祥解独立悬架的左右车轮不是用整体车桥相毗连,而是通过悬架分别与车架(或车身)相连,每侧车轮可独立下下运动.轿车和载重量1t以下的货车前悬架广为采取,轿车后悬架上采取也在增加.越野车、矿用车和大客车的前轮也有一些采取独立悬架. 根据导向机构分歧的布局特点,独立悬架可分为:双横臂,单横臂,纵臂式,单斜臂,多杆式及滑柱(杆)连杆(摆臂)式等等.按今朝采取较多的有以下三种形式:(1) 双横臂式,(2) 滑柱连杆式,(3)斜置单臂式.按弹性元件采取分歧分为:螺旋弹簧式,钢板弹簧式,扭杆弹簧式,气体弹簧式.采取更多的是螺旋弹簧.双横臂式(双叉式)独立悬架如图1所示为双横臂式独立悬架.上下两摆臂不等长,选择长度比例合适,可以使车轮和主销的角度及轮距变更不大.这种独立悬架被广泛应用在轿车前轮上.双横臂的臂有做成A字形或V字形,如图2所示.V形臂的上下2个V形摆臂以一定的间隔,分别装置在车轮上,另外一端装置在车架上.图1:双横臂式独立悬架不等臂双横臂上臂比下臂短.当汽车车轮上下运动时,上臂比下臂运动弧度小.这将使轮胎上部轻微地表里移动,而底部影响很小.这种布局有利于减少轮胎磨损,提高汽车行驶平顺性和方向稳定性.图2滑柱摆臂式独立悬架(麦弗逊式或叫支柱式等)这种悬架今朝在轿车中采取很多.如图3所示.滑柱摆臂式悬架将减振器作为引导车轮跳动的滑柱,螺旋弹簧与其装于一体.这种悬架将双横臂上臂去掉并以橡胶做支承,允许滑柱上端作少许角位移.内侧空间大,有利于发动机安插,并降低车子的重心.车轮上下运动时,主销轴线的角度会有变更,这是因为减振器下端支点随横摆臂摆动.以上问题可通过调整杆系设计安插合理得到处理.图3一汽奥迪100型轿车前悬架.筒式减振器装在滑柱桶内,滑柱桶与转向节刚性毗连,螺旋弹簧装置在滑柱桶及转向节总成上端的支承座内,弹簧上端通过软垫支承在车身毗连的前簧上座内,滑柱桶的下端通过球搭钮与悬架的横摆臂相连.当车轮上下运动时,滑柱桶及转向节总成沿减振器活塞运动轴线移动,同时,滑柱桶的下支点还随横摆臂摆动.斜置单臂式独立悬架这种悬架如图4所示.这种悬架是单横臂和单纵臂(如下图所示)独立悬架的折衷方案.其摆臂绕与汽车纵轴线具有一定交角的轴线摆动,选择合适的交角可以知足汽车把持稳定性要求.这种悬架适于做后悬架.图4多杆式独立悬架独立悬架中多采取螺旋弹簧,因而对于侧向力,垂直力以及纵向力需加设导向装置即采取杆件来承受和传递这些力.因而一些轿车上为减轻车重和简化布局采取多杆式悬架.如图5所示.上连杆9用支架11与车身(或车架)相连,上连杆9外端与第三连杆7相连.上杆9的两头都装有橡胶隔振套.第三连杆7的下端通过重型止推轴承与转向节毗连.下连杆5与普通的下摆臂相同,下连杆5的内端通过橡胶隔振套与前横梁相毗连.球铰将下连杆5的外端与转向节相连.多杆纱前悬架系统的主销轴线从下球铰延伸到上面的轴承,它与上连杆和第三连杆无关.多杆悬架系统具有杰出把持稳定性,可减小轮胎摩损.这种悬架减振器和螺旋弹簧不象麦弗逊悬架那样沿转向节转动.如图5所示.图5:多杆前悬架系统1-前悬架横梁 2-前稳定杆 3-拉杆支架 4-粘滞式拉杆 5-下连杆6-轮毂转向节总成 7-第三连杆 8-减振器 9-上连杆10-螺旋弹簧 11-上连杆支架 12-减振器隔振块各类横向稳定器现代轿车悬架很软,即固有频率很低,为提高悬架的侧倾角刚度,减小横向倾斜,常在悬架中添设横向稳定器(杆),包管杰出把持稳定性.如下图所示杆式横向稳定器.1. 支杆;2. 套筒;3.杆;4. 弹簧支座弹簧钢制成的横向稳定杆3呈扁平的U形,横向地装置在汽车前端或后端(也有轿车前后都装横向稳定器).杆3的中部的两头自由地支承在两个橡胶套筒内,套筒2固定于车架上.横向稳定杆的两侧纵向部分的结尾通过支杆1与悬架下摆臂上的弹簧支座4相连. 当两则悬架变形相同时,横向稳定器不起作用.当两侧悬架变形不等时,车身相对路面横向倾斜时,车架一侧移近弹簧支座,稳定杆的同侧结尾就随车架向上移动,而另外一侧车架远离弹簧座,相应横向稳定杆的结尾相对车架下移,横向稳定杆中部对于车架没有相对运动,而稳定杆双方的纵向部分向分歧方向偏转,于是稳定杆被改变.弹性的稳定杆发生改变内力矩就阻碍悬架弹簧的变形,减少了车身的横向倾斜和横向角振动. 下图是另外一种车型横向稳定器的装置下图是车身的横向的稳定扭杆装置汽车悬挂的终极方向:电控主动2010319114934302.jpg(29.67 KB)汽车悬挂系统布局原理图解论坛非独立悬挂悬挂。

汽车悬挂系统结构原图解汇总

汽车悬挂系统结构原图解汇总

Part Five
悬挂系统的发展趋 势
空气悬挂系统
空气悬挂系统是一种利用空气弹簧 和减震器组成的悬挂系统,能够根 据车辆载重和行驶状态自动调整高 度和阻尼,提高行驶舒适性和稳定 性。
空气悬挂系统的优点包括提高乘坐 舒适性、提高行驶稳定性、降低油 耗等,因此受到广泛欢迎。
添加标题
添加标题
添加标题
添加标题
Part Three
悬挂系统的类型
独立悬挂
定义:独立悬挂是指每一侧的车轮通过 弹性悬挂系统单独连接在车架或车身下 方,使两侧车轮可以独立地运动而不互 相干扰。
类型:常见的独立悬挂系统包括麦弗逊悬 挂、双叉臂悬挂、多连杆悬挂等。
优点:提高汽车的操控性和舒适性,减少 车身的振动和噪音,增加轮胎的抓地力, 提高行驶安全性。
麦弗逊悬挂结构原理解析
组成:由下控制臂、弹簧、减震器和转向节等部件组成
作用:提供车辆横向和纵向支撑,吸收来自路面的震动,提高行驶稳定性 工作原理:通过下控制臂和减震器的组合作用,实现车轮的上下运动和转 向功能 特点:结构简单,占用空间较小,适合用于前驱车和横置发动机车型
多连杆悬挂结构原理解析
组成:由连杆、减震器和弹簧等部件组成 作用:通过连杆的连接,使车轮与车身保持恒定的接触状态,减少车身的 振动和侧倾 优点:能够更好地控制车轮的运动轨迹,提高车辆的操控性和舒适性
弹性元件:缓冲和减震作用
导向机构:传递车轮与车身之间的 力和扭矩
添加标题
添加标题
添加标题
添加标题
减震器:吸收震动能量,减少车身 震动
悬挂系统还包括横向稳定杆、纵向 稳定杆等辅助部件
悬挂系统的作用
连接车轮与车身,传递力矩和载荷 缓冲减震,提高乘坐舒适性 维持车身姿态稳定,保证车辆操控性能 吸收和衰减振动和冲击,提高行驶平顺性

汽车悬架系统开发布置流程图

汽车悬架系统开发布置流程图

悬架系统开发流程---布置部分目标设定BENCHMARK在此主要是分析竞争车型的底盘布置。

底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。

在此基础上,线束、管路、减振器、发动机悬置等才能继续下去悬架选择对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。

常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。

扭转梁式悬架优点:1.与车身连接简单,易于装配。

2.结构简单,部件少,易分装。

3.垂直方向尺寸紧凑。

4.底板平整,有利于油箱和后备胎的布置。

5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用,若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。

6.两侧车轮运转不均衡时外倾具有良好的回复作用。

7.在车身摇摆时具有较好的前束控制能力。

8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。

9.通过障碍的轴距具有相当好的加大能力,通过性好。

10.如果采用连续焊接的话,强度较好。

缺点:1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。

2.不能很好地协调轮迹。

3.整车动态性能对轴荷从空载到满载的变化比较敏感。

4.但这种悬架在侧向力作用时,呈过度转向趋势。

另外,扭转梁因强度关系,允许承受的载荷受到限制。

扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。

拖曳臂式悬架优点:1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大)和下底板备胎与油箱的布置。

2.与车身的连接简单,易于装配。

3.结构简单,零件少且易于分装;4.由于没有衬套,滞后作用小。

5.可考虑后驱。

缺点:1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生不利的影响。

2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善3.调校很困难,因为所有的几何参数以与相关变量都是相关联的。

汽车悬架造型流程设计

汽车悬架造型流程设计

目录序言 (1)第一章我国悬架的现状与发展趋势 (2)1.1我国悬架的现状与发展2第二章汽车悬架系统的概述52.1悬架系统的组成与功能 (5)2.1.1悬架的概念 (5)2.1.2悬架的组成 (6)2.1.3悬架的作用 (7)2.2悬架的分类 (8)2.2.1非独立悬架 (8)2.2.2独立悬架 (10)第三章悬架设计流程 (10)3.1悬架设计流程概述 (10)3.2钢板弹簧具体设计流程 (12)3.2.1 钢板弹簧式悬架种类和结构 (12)3.2.2 钢板弹簧设计的已知参数 (13)3.2.3 钢板弹簧设计步骤 (14)3.2.4 钢板弹簧的导向特性 (15)参考文献 (15)序言汽车悬架是是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。

悬架结构一般有弹性原件,导向机构和减震器组成。

弹性原件又有钢板弹簧,螺旋弹簧,扭杆弹簧,空气弹簧等形式。

悬架又分独立悬架和非独立悬架。

悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。

因此,对汽车操纵稳定性﹑平顺性的提升成为了各大汽车厂商的共识。

与此关系密切的悬架系统也被不断改进,主动半主动悬架等具有反馈的电控系统在高端车辆上的应用日趋广泛。

无论定位高端市场,还是普通家庭的经济型轿车,没有哪个厂家敢忽视悬架系统及其在整车中的作用。

这一切,都是因为悬架系统对乘员的主观感受密切联系。

悬架系统的优劣,乘员在车上可以马上感受到。

正因为悬架在现代汽车上的重要重要作用,应该重视汽车悬架的设计。

只有认真,严谨的设计才能确保其与整车的完美匹配。

目前,我国在汽车悬架系统方面,除了钢板弹簧悬架的设计及应用比较成熟以外,其他悬架技术的应用绝大部分还处于车型引进,仿制或直接购买产品阶段。

悬架产品的设计开发滞后,一方面表现在设计手段落后,计算机应力分析,动态仿真在企业中应用还较少;另一方面没有建立一套完善的设计评价体系。

汽车动力总成悬置系统优化设计PPT课件

汽车动力总成悬置系统优化设计PPT课件
1. 发动机的自由振动 (4)坐标系
O X Y Z —— 在空间不动的直角坐标系;
OXYZ —— 与发动机固联的动坐标系。
(5)A点 —— 弹性支承与发动机联接点。支承简化为三 个互相垂直的直线弹簧p,q,r。它们分别
沿着支承的刚度主轴。k p , kq , kr 分别表示其
刚度系数 ,其方向余弦(在 OXYZ 坐标系 中)为 xp , yp , zp 。这样的支承共有s个
3.1 沿气缸轴线方向的主动力 P Pj Pg
气体作用力 Pg在机内得到平衡。往复惯性力Pj 如果发动机本身不能平衡, 则将传到基座上。
3.2 旋转惯性力 Pr ,若发动机本身得不到自相平衡,Pr 必将传递到基座上。 3.3作用于活塞上的气体作用力和往复惯性力产生使曲轴旋转的主动力矩。
必有一反力矩,使发动机刚体绕曲轴轴线作反向转动,并传到机座上。综上 分析,可绘出下图所示单缸发动机缸体受力图。
汽车动力总成悬置系统设计理论与方法
汽车动力总成悬置系统概述; 汽车动力总成悬置系统激振源; 汽车动力总成在车架上的振动; 汽车动力总成刚体惯性参数的确定; 汽车动力总成悬置系统布置设计; 汽车动力总成悬置系统优化设计; 结束语 .
一、汽车动力总成悬置系统概述
1. 发动机振动的类型
1.1 整机振动 单质量多弹性支承系统
一、汽车动力总成悬置系统概述
3. 发动机振动控制途径
讨论:
a. 不论相对阻尼系数 如何变化,所有曲线 都通过点(TF =1,ω/ωn = 2 )
b. 只有当 ω> 2ωn 时,才有隔振效果。ω/ωn 愈大,TF 愈小,但当ω/ωn 5 后,隔振效 果的改善不明显。这就要求隔振装置不能 设计得过软。
两类隔振的概念虽然不同,但方法都是一样的,通过 在设备的底座安装隔振器作的弹性支承来实现的。

汽车设计悬架设计PPT课件

汽车设计悬架设计PPT课件
2、分类
悬架的弹性特性有线性弹性特性和非线性弹性特性两种
1)线性弹性特性
定义:当悬架变形f与所受垂直外力F之间呈固定比例变化时,弹 性特性为一直线,此时悬架刚度为常数 。
特点:随载荷的变化,平顺性变化
2)非线性弹性特性
对§高6-2级悬轿架车结满构载形的式情分况析,前悬架偏频要求在0.
悬橡架胶的 制弹造性,特通性过有硫线化性将弹橡性胶特与性钢和板非连线接性为弹一性体特,性再两经种焊在钢板上的螺钉将缓冲块固定到车架(车身)或其它部位上,起到限制悬架最
许AB用线应与力各[σ叶]取片为上3侧50边N的/m交m点2。即为各片长度,如果存在与主片等长的重叠片,就从B点到最后一个重叠片的上侧边端交刚点度即,为能各降片低长车度身。振动固有频率n
,达到改善汽车平顺性的目的。
控左制、带 右宽车一轮般用应一至根少整覆体盖轴连0~接1,5H再z,经有过的悬执架行与元车件架响(应或带车宽身甚)至连高接达100Hz。
占用的空间小
其它
结构复杂 结构简单、成 前悬架用 本低,前悬架 得较多 上用得少
结构简单、成本低
结构简单、 结构简单,用于 紧凑,轿车 发动机前置前轮 上用得较多 驱动轿车后悬架
三、前、后悬架方案的选择
可切换阻尼系统与前面介绍的阻尼可调自适应悬架的区别在于阻尼值停留在特定设置的时间长短不同。
1 前轮和后轮均采用非独立悬架 σ=[3Fx(D+h1)]/bh12+Fx/bh1 5,挠性夹紧,取k=0);
n 15/ fc1 n25/ fc2
2、n1与n2的匹配要合适
❖要求:
希望fc1与fc2要接近,单不能相等(防止共振) 希望fc1>fc2 (从加速性考虑,若fc2大,车身的振动大)

悬架系统设计课件

悬架系统设计课件
悬架侧倾中心高度的方法
1) 定义转向系统的几何尺寸
在转向系统的设计过程中,首先要确定转向梯形,以保证车轮能绕一个 转向中心在不同的圆周上作无滑动的纯滚动。对轿车来说,通常采用断开式 转向梯型机构,有时为了提高车辆的灵活性,减小转弯半径而改变转向梯型。 采用齿轮齿条式转向器时,转向横拉杆内端接头T的运动轨迹与地面平行, 相反外接头U的运动轨迹是一条圆弧线,当没有主销后倾时,U点的运动轨 迹于转向节轴线EG垂直。
汽车悬架系统设计
悬架系统设计
1
汽车悬架的主要功用
汽车悬架是将车架(或车身)与车轴(或直接与车 轮)弹性联接的部件。其主要功用如下: (1)缓和,抑制由于不平路面所引起的振动或冲击以保 证汽车具有良好的平顺性。 (2)迅速衰减车身和车桥(或车轮)的振动。 (3)传递作用在车轮和车架(车身)之间的各种力(垂 直力,纵向力,横向力)和力矩(制动力矩和反作用力 矩)。 (4)保证汽车行驶所必要的稳定性。
转向轴线 B
减振器轴线
下摆臂旋转轴线
E D
C
D
Z
F
A
Z
Y
Y A
悬架系统设计
X
27
与动力总成边界相关
B
得到足够的轮胎上下跳过程中外倾角的回正性
这可以通过将B点向内移,或抬高D点或向外移动A点, 但是所有这些都要同悬架的其他特性综合考虑。
与轮胎尺寸相关
C
与转动中心相关
A
Z
D
Y
悬架系统设计
车轮外倾角 (o)
悬架系统设计
2
悬架设计的基本概念
㈠悬架设计的矛盾 悬架是研究悬架系统的振动特性,讨论悬架设计对
平顺性,稳定性和通过性等性能的影响,从而做出妥善 设计。 ⑴柔与刚 悬架的发展趋势是弹簧越来越软(既由刚变柔)。 ⑵减振与激振 ⑶悬架特性与路面特性 ⑷坚固与笨重

悬架系统框图

悬架系统框图
摆臂总成 右上摆臂总成 左下摆臂总成 右下摆臂总成 推力杆组件 导向杆齿套 导向杆橡胶套 导向杆橡胶套档圈 前横向稳定杆总成 前悬上缓冲块 前悬下缓冲块 左上摆臂总成 右上摆臂总成 左下摆臂总成 右下摆臂总成 推力杆组件 导向杆齿套 导向杆橡胶套 导向杆橡胶套档圈 前横向稳定杆总成 前横向稳定杆橡胶衬 套 前横向稳定杆安装固 定夹左 前横向稳定杆安装固 定夹右 前横向稳定杆安装固 定板左 前横向稳定杆安装固 定板右 前横向稳定杆连接杆 左扭杆弹簧 右扭杆弹簧 扭杆调整螺栓上垫块 扭杆调整螺栓下垫块 右扭杆弹簧调整臂 左扭杆弹簧调整臂 扭杆固定臂 扭杆调整螺栓 扭杆防尘塞 前减震器总成 钢板弹簧总成 板簧吊耳销套 吊耳板 后板簧托板 板簧吊耳橡胶套 后限位缓冲块 U型螺栓 后桥总成 后减震器总成 ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ / / / / / / ③ / ⑤ ⑤ ⑤ / ⑤ / / / 过盈

汽车各类悬架标准系统图解

汽车各类悬架标准系统图解

汽车各类悬架系统图解说明独立悬架与非独立悬架示意图13-4所示独立悬架如图4-57(a)所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。

非独立悬架如图4-57(b)所示。

其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。

钢板弹簧13-5钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。

钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车架的振动衰减,起到减振器的作用扭杆弹簧扭杆弹簧一般用铬钒合金弹簧钢制成。

一端固定在车架上,另一端上的摆臂2与车轮相连。

当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。

扭杆的断面形式断面常为圆形,少数是矩形或管形空气弹簧空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种(如图4-61所示),工作气压为0.5~1Mpa。

这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。

油气弹簧简图油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。

简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。

目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防尘罩11-油封双向作用筒式减振器示意图p314 -4-51横向稳定器的安装13-7copy.gif横向稳定杆由弹簧钢制成,呈扁平的U形,横向安装在汽车前端或后端(有的轿车在前后都装横向稳定器)。

弹性的稳定杆产生扭转内力矩会阻碍悬架弹簧的变形,减少了车身的横向倾斜和横向角振动。

汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计

汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计

汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计悬置系统:发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。

引起零部件的损坏和乘坐的不舒适等。

所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。

成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。

确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。

一般来讲对发动机悬置系统有如下要求。

①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。

同时在发动机大修前,不出现零部件损坏。

②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。

③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。

④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。

悬置系统的激振源:作用于发动机悬置系统的激振源主要如下:①发动机起动及熄火停转时的摇动;②怠速运转时的抖动;③发动机高速运转时的振动;④路面冲击所引起的车体振动;⑤大转矩时的摇动;⑥汽车起步或变速时转矩变化所引起的冲击;⑦过大错位所引起的干涉和破损。

作用在发动机悬置上的振动频率十分广泛。

按振动频率可以把振动分为高频振动和低频振动。

频率低于30Hz的低频振动源如下:①发动机低速运转时的转矩波动;②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振动;③轮胎旋转时由于轮胎动平衡不好使车身产生的振动;④路面不平使车身产生的振动;⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。

频率高于30Hz的高频振动源如下:①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;②变速时产生的振动;③燃烧压力脉动使机体产生的振动;④发动机配气机构产生的振动;⑤曲轴的弯曲振动和扭振;⑥动力总成的弯曲振动和扭振;⑦传动轴不平衡产生的振动。

汽车悬挂系统结构原图解

汽车悬挂系统结构原图解

汽车悬挂系统结构本理图解之阳早格格创做系统结构, 汽车, 本理, 图解, 悬挂汽车悬挂系统结构本理图解教程什么是悬挂系统恬静性是轿车最要害的使用本能之一.恬静性与车身的固有振荡个性有闭,而车身的固有振荡个性又与悬架的个性相闭.所以,汽车悬架是包管乘坐恬静性的要害部件.共时,汽车悬架干为车架(或者车身)与车轴(或者车轮)之间做对接的传力机件,又是包管汽车止驶仄安的要害部件.果此,汽车悬架往往列为要害部件编进轿车的技能规格表,动做衡量轿车品量的指标之一. 汽车车架(或者车身)若间接拆置于车桥(或者车轮)上,由于讲路不仄,由于大天冲打使货品战人会感触格中不惬意,那是果为不悬架拆置的本果.汽车悬架是车架(或者车身)与车轴(或者车轮)之间的弹性联结拆置的统称.它的效率是弹性天对接车桥战车架(或者车身),慢战止驶中车辆受到的冲打力.包管货品完佳战人员恬静;衰减由于弹性系统引进的振荡,使汽车止驶中脆持宁静的姿势,革新把持宁静性;共时悬架系统负担着传播笔曲反力,纵背反力(牵引力战制能源)战侧背反力以及那些力所制成的力矩效率到车架(或者车身)上,以包管汽车止驶仄逆;而且当车轮相对付车架跳动时,特天正在转背时,车轮疏通轨迹要切合一定的央供,果此悬架还起使车轮按一定轨迹相对付车身跳动的导背效率. 悬架结构形式战本能参数的采用合理与可,间接对付汽车止驶仄逆性、把持宁静性战恬静性有很大的效率.由此可睹悬架系统正在新颖汽车上是要害的总成之一.普遍悬架由弹性元件、导背机构、减振器战横背宁静杆组成.弹性元件用去启受并传播笔曲载荷,慢战由于路里不仄引起的对付车身的冲打.弹性元件种类包罗钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、气氛弹簧战橡胶弹簧.减振器用去衰减由于弹性系统引起的振,减振器的典型有筒式减振器,阻力可调式新式减振器,充气式减振器.导背机构用去传播车轮与车身间的力战力矩,共时脆持车轮按一定疏通轨迹相对付车身跳动,常常导背机构由统制晃臂式杆件组成.种类有单杆式或者多连杆式的.钢板弹簧动做弹性元件时,可不另设导背机构,它自己兼起导背效率.有些轿车战客车上,为预防车身正在转背等情况下爆收过大的横背倾斜,正在悬架系统中加设横背宁静杆,手段是普及横背刚刚度,使汽车具备缺累转背个性,革新汽车的把持宁静性战止驶仄逆性. 悬挂系统的分类新颖汽车悬架的死少格中快,不竭出现,崭新的悬架拆置.按统制形式分歧分为主动式悬架战主动式悬架.暂时普遍汽车上皆采与主动悬架,如下图所示也便是汽车姿态(状态)只可主动天与决于路里及止驶情景战汽车的弹性元件,导背机构以及减振器那些板滞整件.20世纪80年代此后主动悬架启初正在一部分汽车上应用,而且暂时还正在进一步钻研战启垦中.主动悬架不妨能动天统制笔曲振荡及其车身姿态,根据路里战止驶工况自动安排悬架刚刚度战阻僧.1. 弹性元件;2. 纵背推力杆;3. 减振器;4. 横背宁静杆;5. 横背推力杆根据汽车导背机构分歧悬架种类又可分为独力悬架,非独力悬架.如下图所示.b. 独力悬架 a. 非独力悬架非独力悬架如上图(a)所示.其个性是二侧车轮拆置于一完全式车桥上,当一侧车轮受冲打力时会间接效率到另一侧车轮上,当车轮上下跳动时定位参数变更小.若采与钢板弹簧做弹性元件,它可兼起导背效率,使结构大为简化,落矮成本.暂时广大应用于货车战大客车上,有些轿车后悬架也有采与的.非独力悬架由于非簧载品量比较大,下速止驶时悬架受到冲打载荷比较大,仄逆性较好. 独力悬架是二侧车轮分别独力天与车架(或者车身)弹性天对接,当一侧车轮受冲打,其疏通不间接效率到另一侧车轮,独力悬架所采与的车桥是断启式的.那样使得收效果可搁矮拆置,有好处落矮汽车沉心,并使结构紧密.独力悬架允许前轮有大的跳动空间,有好处转背,便于采用硬的弹簧元件使仄逆性得到革新.共时独力悬架非簧载品量小,可普及汽车车轮的附着性.如上图(b)所示.独力悬挂系统祥解独力悬架的安排车轮不是用完全车桥相对接,而是通过悬架分别与车架(或者车身)贯串,每侧车轮可独力下下疏通.轿车战载沉量1t以下的货车前悬架广为采与,轿车后悬架上采与也正在减少.越家车、矿用车战大客车的前轮也有一些采与独力悬架. 根据导背机构分歧的结构个性,独力悬架可分为:单横臂,单横臂,纵臂式,单斜臂,多杆式及滑柱(杆)连杆(晃臂)式等等.按暂时采与较多的有以下三种形式:(1) 单横臂式,(2) 滑柱连杆式,(3)斜置单臂式.按弹性元件采与分歧分为:螺旋弹簧式,钢板弹簧式,扭杆弹簧式,气体弹簧式.采与更多的是螺旋弹簧.单横臂式(单叉式)独力悬架如图1所示为单横臂式独力悬架.上下二晃臂不等少,采用少度比率符合,可使车轮战主销的角度及轮距变更不大.那种独力悬架被广大应用正在轿车前轮上.单横臂的臂有干成A字形或者V字形,如图2所示.V形臂的上下2个V形晃臂以一定的距离,分别拆置正在车轮上,另一端拆置正在车架上.图1:单横臂式独力悬架不等臂单横臂上臂比下臂短.当汽车车轮上下疏通时,上臂比下臂疏通弧度小.那将使轮胎上部沉微天内中移动,而底部效率很小.那种结构有好处缩小轮胎磨益,普及汽车止驶仄逆性战目标宁静性.图2滑柱晃臂式独力悬架(麦弗逊式或者喊维持式等)那种悬架暂时正在轿车中采与很多.如图3所示.滑柱晃臂式悬架将减振器动做带领车轮跳动的滑柱,螺旋弹簧与其拆于一体.那种悬架将单横臂上臂去掉并以橡胶干收启,允许滑柱上端做少许角位移.内侧空间大,有好处收效果安插,并落矮车子的沉心.车轮上下疏通时,主销轴线的角度会有变更,那是果为减振器下端收面随横晃臂晃动.以上问题可通过安排杆系安排安插合理得到办理.图3一汽奥迪100型轿车前悬架.筒式减振器拆正在滑柱桶内,滑柱桶与转背节刚刚性对接,螺旋弹簧拆置正在滑柱桶及转背节总成上端的收启座内,弹簧上端通过硬垫收启正在车身对接的前簧上座内,滑柱桶的下端通过球铰链与悬架的横晃臂贯串.当车轮上下疏通时,滑柱桶及转背节总成沿减振器活塞疏通轴线移动,共时,滑柱桶的下收面还随横晃臂晃动.斜置单臂式独力悬架那种悬架如图4所示.那种悬架是单横臂战单纵臂(如下图所示)独力悬架的合衷规划.其晃臂绕与汽车纵轴线具备一定接角的轴线晃动,采用符合的接角不妨谦脚汽车把持宁静性央供.那种悬架适于干后悬架.图4多杆式独力悬架独力悬架中多采与螺旋弹簧,果而对付于侧背力,笔曲力以及纵背力需加设导背拆置即采与杆件去启受战传播那些力.果而一些轿车上为减少车沉战简化结构采与多杆式悬架.如图5所示.上连杆9用收架11与车身(或者车架)贯串,上连杆9中端与第三连杆7贯串.上杆9的二端皆拆有橡胶隔振套.第三连杆7的下端通过沉型止推轴启与转背节对接.下连杆5与一般的下晃臂相共,下连杆5的内端通过橡胶隔振套与前横梁相对接.球铰将下连杆5的中端与转背节贯串.多杆纱前悬架系统的主销轴线从下球铰蔓延到上头的轴启,它与上连杆战第三连杆无闭.多杆悬架系统具备良佳把持宁静性,可减小轮胎摩益.那种悬架减振器战螺旋弹簧不象麦弗逊悬架那样沿转背节转化.如图5所示.图5:多杆前悬架系统1-前悬架横梁 2-前宁静杆 3-推杆收架 4-粘滞式推杆 5-下连杆6-轮毂转背节总成 7-第三连杆 8-减振器 9-上连杆10-螺旋弹簧 11-上连杆收架 12-减振器隔振块百般横背宁静器新颖轿车悬架很硬,即固有频次很矮,为普及悬架的侧倾角刚刚度,减小横背倾斜,常正在悬架中加设横背宁静器(杆),包管良佳把持宁静性.如下图所示杆式横背宁静器.1. 收杆;2. 套筒;3.杆;4. 弹簧收座弹簧钢制成的横背宁静杆3呈扁仄的U形,横背天拆置正在汽车前端或者后端(也有轿车前后皆拆横背宁静器).杆3的中部的二端自由天收启正在二个橡胶套筒内,套筒2牢固于车架上.横背宁静杆的二侧纵背部分的终端通过收杆1与悬架下晃臂上的弹簧收座4贯串. 当二则悬架变形相共时,横背宁静器不起效率.当二侧悬架变形不等时,车身相对付路里横背倾斜时,车架一侧移近弹簧收座,宁静杆的共侧终端便随车架进与移动,而另一侧车架近离弹簧座,相映横背宁静杆的终端相对付车架下移,横背宁静杆中部对付于车架不相对付疏通,而宁静杆二边的纵背部分背分歧目标偏偏转,于是宁静杆被扭转.弹性的宁静杆爆收扭转内力矩便阻拦悬架弹簧的变形,缩小了车身的横背倾斜战横背角振荡.下图是另一种车型横背宁静器的拆置下图是车身的横背的宁静扭杆拆置汽车悬挂的终极目标:电控主动2010319114934302.jpg(29.67 KB)汽车悬挂系统结构本理图解论坛非独力悬挂悬挂。

独立悬架设计流程

独立悬架设计流程

前独立悬架设计主讲人:罗训强)一.什么是独立悬架?)二.什么样的车型适合用独立悬架?)三.独立悬架相对于非独立悬架有什么优点?)四.独立悬架的结构型式以及在不同车型中的应用情况)五.针对某一种双横臂独立悬架设计流程的介绍)六. 结束语一、什么是独立悬架?独立悬架(Individual wheel suspension)是车轮通过各自独立的悬架与车架(或车身)相连。

每个车轮单独通过一套悬挂安装于车身或者车桥上,车桥采用断开式,中间一段固定于车架或者车身上;此种悬挂两边车轮受冲击时互不影响,而且由于非悬挂质量较轻;缓冲与减震能力很强,乘坐舒适。

二、什么样的车型适合用独立悬架采用独立悬架的有下面两大类车辆。

1.轿车、客车及载人车辆。

可明显提高乘坐舒适性,并且在高速行驶时提高汽车的行驶稳定性。

2.越野车辆、军用车辆和矿山车辆。

在坏路和无路的情况下,可保证全部车轮与地面的接触,提高汽车的行驶稳定性和附着性。

二、独立悬架相对于非独立悬架有什么优点独立悬架的优点:1)非簧载质量小,有利于行驶平顺性。

同时,车轮接地性良好,有利于操纵稳定性。

2)当用于转向轮时,左、右前轮由于不是连在一根轴上,通过合理的布置,可使悬架和转向杆系的运动干涉减小,因此不易发生跳摆(N点的布置)3)可用较软的弹簧,改善汽车平顺性。

4)由于有效弹簧距等于轮距,有利于提高横向角刚度,减少侧倾。

5)在不平路面上行驶时,容易获得较大的动行程,减少悬架“击穿”概率。

6)由于没有连接左右轮的车轴,能够降低发动机和驾驶室的高度,从而降低质心,同时也能扩大车身和行李仓的面积独立悬架的缺点:1)结构复杂、制造成本高2)车轮上下跳时,因为车轮外倾角和轮距变化较大,轮胎磨损比较大。

重点麦弗逊式独立悬架双横臂式独立悬架主要用于前独立悬架三、独立悬架的不同结构型式以及在不同车型中的应用情况1、麦弗逊式独立悬架-主流家轿悬挂z减振器作为引导车轮跳动的滑柱(主销),螺旋弹簧与其装于一体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

悬架系统开发流程---布置部分目标设定BENCHMARK在此主要是分析竞争车型的底盘布置。

底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。

在此基础上,线束、管路、减振器、发动机悬置等才能继续下去悬架选择对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。

常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。

扭转梁式悬架优点:1.与车身连接简单,易于装配。

2.结构简单,部件少,易分装。

3.垂直方向尺寸紧凑。

4.底板平整,有利于油箱和后备胎的布置。

5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用,若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。

6.两侧车轮运转不均衡时外倾具有良好的回复作用。

7.在车身摇摆时具有较好的前束控制能力。

8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。

9.通过障碍的轴距具有相当好的加大能力,通过性好。

10.如果采用连续焊接的话,强度较好。

缺点:1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。

2.不能很好地协调轮迹。

3.整车动态性能对轴荷从空载到满载的变化比较敏感。

4.但这种悬架在侧向力作用时,呈过度转向趋势。

另外,扭转梁因强度关系,允许承受的载荷受到限制。

扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。

拖曳臂式悬架优点:1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大)和下底板备胎及油箱的布置。

2.与车身的连接简单,易于装配。

3.结构简单,零件少且易于分装;4.由于没有衬套,滞后作用小。

5.可考虑后驱。

缺点:1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生不利的影响。

2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外倾的回复能力,但这导致轮罩间宽度尺寸的减小。

)3.调校很困难,因为所有的几何参数以及相关变量都是相关联的。

4.由于没有衬套,所有传递给车身的振动都是未经过滤的。

多连杆式悬架优点:多连杆式悬架能同时兼顾良好的乘坐舒适性和操纵稳定性,这种优点主要得益于其结构上具有下面这些几何特性:1.利用多杆控制车轮的空间运动轨迹,能更好地控制车轮定位参数变化规律,得到更为满意的汽车顺从转向特性。

2.受到侧向力时前束具有自动回正能力;3.受到纵向力时前束具有自动回正能力。

4.车轮行驶时的外倾角回复能力。

5.通过障碍的轴距较大6.能兼顾后轮驱动。

7.后轮驱动时的转向力控制。

缺点:1.零部件数量多,制造加工困难。

2.试验调校工作复杂,且不便于调整,适应性较差。

3.对悬架几何尺寸的公差和弹性元件特性的要求较高。

4.单位质量的负荷能力较低(需要一个后副车架)。

5.对使用条件要求比较苛刻。

6.所占空间较大,影响后乘员舱和后底板的空间布置。

7.制造成本较高。

考虑到后悬架载荷的变化较前悬架大,一般的,前悬架结构选择时性能不优于后悬架。

簧上质量的值按大小顺序为:1)Beam Axle(刚性轴);2)Twisted Axle(扭梁);簧下质量3)Multilink Axle在此引入“过强度系数”的概念:同一平台车的最大质量,一般最大不超过1.35;否则在满足了最大质量的车型过强度系数=同一平台车的最小质量后,对最小质量的车型来说强度就显得过剩,带来的是成本的无谓增加。

悬架的设计总是与整车的设计紧密相连的,整车预布置通常包括动力总成的预布置和悬架的预布置。

在基本确定了整车的总体尺寸、驱动型式、相应的轮胎、最小的目标转弯半径后就可以进行悬架的预布置了。

1.悬架的预布置在悬架的预布置过程中主要考虑以下几点:1.整车姿态一般来说,整车姿态是通过悬架的布置来设定的,可以说悬架的布置决定了整车姿态。

一旦整车姿态确定后,在以后更改就比较困难了。

通常整车在满载状态下的整车姿态是0~0.5°之间。

如下图所示:整车姿态示意图2.轮胎的跳动行程轮胎行程根据车型的不同略有不同。

通常在悬架的预布置过程中前后轮胎的行程按上跳、下跳各100mm考虑;越野车要大一些。

在后期的调整中,由于后轴载荷变化较大,为了提高后排乘客的舒适性后悬架的行程取值要比前悬架的大。

还要考虑轮胎加装防滑链的要求。

3.驱动型式驱动型式对悬架的影响主要在四驱的保护上。

一般来说如果一款轿车后悬架采用了扭转梁结构,要保护四驱在总布置上就很困难了。

四驱布置的对比4.导向杆的布置对于导向杆的布置,纵向导向杆(或拖曳臂)设计布置时尽可能水平布置,以保证轮胎上跳或者回弹轴距变化尽可能的小;而横向推力杆(或横向摆臂)尽可能与后轴平行且左右对称布置。

2. 前悬架的布置前悬架的型式主要有非独立钢板弹簧悬架、麦弗逊独立悬架、双横臂独立悬架、多连杆独立悬架和双横臂独立悬架的一些变形。

悬架在目前的轿车和部份的轻型客车、轻型货车的前悬架大多采用独立悬架,一般在整车设计之初就已确定了悬架的型式。

下面以麦弗逊为例来说明一下前悬架的设计过程。

在前悬架的布置过程中主要从以下几点来考虑:转向系统几何尺寸的确定在转向系统的设计过程中,首先要确定转向梯形,以保证车轮能绕一个转向中心在不同的圆周上作无滑动的纯滚动。

对轿车来说,通常采用断开式转向梯型机构,有时为了提高车辆的灵活性,减小转弯半径而改变转向梯型;当然,初步确定的时候可以不这样考虑。

根据初步设定的最小转弯半径和相应的计算公式及阿克曼转角的关系可以初步确定左右车轮转角的关系,同时结合相应的前纵梁布置产生的几何约束就可以确定左右车轮的转角。

同时可以初步选定轿车转向系统角传动比,一般为15-17。

q o Ackermann errortt t p q 1 2 q dD定义转向半径,转向角和阿克曼角阿克曼角关系:Ctg α1- Ctg α2 = q/p最小转弯半径公式:()222222w f C t l t a l R R ++⎪⎪⎭⎫ ⎝⎛+--=●主销尺寸的定义主销几何尺寸的定义主要包括,主销后倾角、主销内倾角和它们的偏置距。

主销后倾角和主销相对轮心的偏置距一起保证轮胎的侧向力回正力距以利于汽车的直线行驶;主销内倾角保证车辆低速行驶条件下的自动回正性。

同样,对主销的初步取值也是通过经验来选取或者通过对参考样车的测量来获得。

一般对轿车的前独立悬架来说主销后倾角在3°~4°左右,主销内倾角在10°~15°左右;主销内倾后倾角确定后相应的主销偏置距和拖距也就确定了。

主销后倾角示意图主销内倾角示意图●前悬架几何尺寸的定义在主销的几何尺寸确定以后,结合轮胎、副车架、轮胎转角的几何约束就可以开始确定前悬架的设计硬点。

首先定义主销上的A点,A点在轮辋和等速万向节中间,位置越低越好。

(越低则地面的激励对球头销的侧向力偏小)如下图所示:A点示意图A点即下球头销的中心,A点与B点的连线即是主销在整车坐标中XZ平面的投影。

图中清晰的显示了定义设计硬点A要考虑的边界条件。

定义主销上控制点B时,在一般的悬架中尽可能的将位置设计的低一些;这样有利于获得更大的主销内倾角,提高车辆低速行驶时的转向回正力矩。

但是要考虑轮胎上跳下跳目标和B点的支撑的功能性;特别对于麦弗逊前悬架来说B点的位置越高越好,有利于平衡掉滑柱的横向分力,减小滑柱导杆的摩檫。

(公式验证)A、B两点示在XY平面投影意图减振器的布置在X-Z平面内定义减震器时通常让减振器轴线跟主销轴线重合,这是最简单和最有效的解决方案。

(但如此无法减小减振器活塞杆对油封的横向力)如下图所示:在X-Z平面内定义减震器车轮外倾角的变化示意图在双横臂前悬架(或双叉臂前悬架)中,由于空间的原因通常减振器和弹簧做成总成件;在Y-Z平面内定义减震器(包括弹簧)时主要考虑的是杠杆比。

在麦弗逊悬架中通常根据轮胎尺寸定义C点(需要的话要考虑防滑链)。

D点是控制臂旋转轴线和通过A点的Y-Z平面的交点。

A,、B、D点的相互位置决定了轮胎上下跳过程中的轮距的变化和外倾角的回正性。

为了得到足够的轮胎上下跳过程中外倾角的回正性,可以通过将B点向内移,但是所有这些都要同悬架的其他特性综合考虑;具体可以在悬架几何运动分析中考虑。

在Y-Z平面内定义减震器控制臂旋转轴线的定义控制臂轴线的主要根据抗制动点头来角定义,如果增加在X-Z平面内的倾角(即E 点比F点低),抗点头能力就能提高;当然这需要和后悬架匹配。

在横向上如果布置允许的话总是希望尽量的长一些(S12目前较长,力臂变长,受力变小);在相同的A点行程下,摆臂越长横向摆角越小,有利于提高橡胶衬套的寿命。

同时在Y-Z平面内应保证前悬架的侧倾中心高在0~120mm的范围内。

下摆臂定义示意图转向系统设计硬点的布置H和I点示意图转向杆系与悬架导向杆系在轮胎上下跳动的运动学上会产生运动干涉,这个干涉主要引起轮胎前束的变化。

在转向系统几何尺寸的所有点的定义中,对于点H主要通过考虑阿克曼角和轮胎几何约束来确定。

定义I点的位置时主要考虑轮胎上下跳过程中的前束变化最小化。

根据悬架杆系的几何运动关系确定I点;将I点放在轮胎上下跳过程中H点所形成的圆弧的中心。

I点确定示意图依据上述步骤在三维制图软件中可以确定各个设计硬点的坐标。

获得了这些前悬架设计硬点的空间坐标后,可以通过相应的公式得出前悬架的运动学分析;目前更多的是运用ADMAS软件进行分析。

3.后悬架的设计步骤目前公司车型的后悬架主要是扭转梁和拖曳臂的非独立悬架,这些类型的后悬架结构简单,成本较低,悬架参数也教容易控制;但是后排乘客的舒适性也较低。

目前轿车用的后悬架选用多连杆的趋势越来越明显。

缺点是:零件数增加,公差要求更严格,加工成本增加;试验测试复杂;承载能力相对较弱。

在后悬架的设计时需要基本确定汽车断面尺寸、轮胎上跳和下跳行程、是否要驱动保护、轮胎规格、承载能力、整车操纵目标、前悬架特征和零部件采用的工艺。

有了以上的●选择连杆数目和梯形结构,对于一款中级轿车一般采用两连杆或者三连杆的居多。

通常把具有两根横向连杆的独立悬架叫着两连杆独立悬架,具有三根横向连杆的独立悬架叫着三连杆独立悬架(如下图所示)。

连杆越多意味着橡胶衬套应用的也越多,过多的使用橡胶衬套意味着需要冒更多的可能出现的问题。

两连杆独立悬架外倾角能够通过横向拉杆的几何运动来控制。

两联杆后独立悬架三联杆后独立悬架三连杆的车轮外倾和前束的控制可以分别通过各自的调节杆完成。

因此三连杆的独立悬架调节车轮外倾和前束对拖曳臂橡胶衬套的变形影响要小。

●后悬架各控制点的安装位置在布置之出首先要明确哪些悬架的控制硬点连接在车身上,哪些点悬架的控制硬点连高对前束和车轮外倾的控制精度,提高过滤震动噪音的能力。

相关文档
最新文档