求指数、对数函数的导数
log求导公式高中
log函数,也就是对数函数,它的求导公式为y=logaX,y'=1/(xlna) (a>0且a≠1,x>0)【特别地,y=lnx,y'=1/x】。
对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作
x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
对数函数实际上是指数函数的反函数。
对数函数的求导公式为为y=logaX,y'=1/(xlna) (a>0且a≠1,x>0)【特别地,y=lnx,y'=1/x】。
关于导数:
导数,是微积分中的重要基础概念。
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0)。
如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
注意:有的函数是没有导数的。
若某函数在某一点存在导数,则称其在这一点可导,否则称为不可导。
基本初等函数的求导公式
基本初等函数的求导公式
基本初等函数的求导公式包括:常数函数的导数为零,指数函数的导数为零,对数函数的导数为零,三角函数的导数如下:
- 正弦函数的导数是余弦函数,即 $(sinx)" = cosx$
- 余弦函数的导数是正弦函数,即 $(cosx)" = -sinx$
- 正切函数的导数是余切函数,即 $(tanx)" = -cscx$
- 余切函数的导数是正切函数,即 $(cotx)" = cscx$
- 自然对数的导数是自然对数,即 $(lnx)" = 1/x$
- 换底公式的导数是换底公式,即 $(ex)" = e^x$
此外,还有一些其他的基本初等函数的求导公式,例如反三角函数、双曲函数等。
这些函数的导数可以通过基本的求导法则推导出来。
指数对数函数求导
一、自然常数e1、求导xa dxd令x a y = 已知导数差商公式定义式:x x f x x f x f x ∆-∆+=→∆)()()(lim 0'由导数差商定义式得:xa a x a a x x f x x f x f xx x x x x x x ∆-•=∆-=∆-∆+=∆→∆∆+→∆→∆1)()()(limlim lim 000'(因子x a 与x ∆无关,因此我们可以将它提到极限号前面) 注意到上式中的极限是函数)(x f 的导数在0=x 处的值,即xa a f x x ∆-•=∆→∆1)0(lim 00'因此,我们已经说明了如果指数函数x a x f =)(在0=x 处是可微的,则该函数是处处可微的,并且x a f x f •=)0()('' 上述等式说明了任指数函数的变化率是和指数函数本身成正比的.令xa a f a M x x ∆-•==∆→∆1)0()(lim 00'0,因为x a 已知,要求)('x f 必须求得)(0a M ,从xa a M x x ∆-=∆→∆1)(lim 00的定义式可以猜测)(0a M 可能是一个无线不循环的数值,只能无限取小x ∆值求得)(0a M 的估算值,这种估算的过程相当繁琐且得不到)(0a M 的准确数值.在上表中,给出了2=a 和3=a 时的情况,通过数值举例,说明了)0('f 的存在.极限明显存在并且当2=a ,69.012)0(lim 0'≈∆-=∆→∆x f x x当3=a ,10.113)0(lim0'≈∆-=∆→∆xf x x 实际上,我们将在《微积分》5.6节说明它们极限存在并且精确到小数点后六位,如下:693147.0)2(0≈=x x dx d 098612.1)3(0≈=x x dx d 因此,由等式①,我们有x x dx d 2)69.0()2(•≈ x xdxd 3)10.1()3(•≈ 在等式①对于底数a 的所有可能的选择中,当1)0('=f 时,微分公式最为简单,即x e y =,x e y =',并且有11)(lim00=∆-=∆→∆xe e M xx ,则有当0→∆x 时,x e x ∆=-∆1,x e x ∆+=∆1,因此x x e ∆∆+=1,再次说明了存在x x x e ∆→∆∆+=1)1(lim使得1)(0=e M,同样e 可能是一个无限不循环小数.再来看看上表中估计2=a 和3=a 时,)0('f 的数值,结合定义式xa a M x x ∆-=∆→∆1)(lim 00可以看出)(0a M 大小决定于a 的取值,可以证明)(0a M 在实数域单调递增,由)3()()2(000M e M M <<,可知32<<e .数e 的定义:h h h e 1)1(lim+=→即e 是使11lim0=-→he h h 成立的数. 这里要注意一点,一个确定的)(00a M 确定一个具体的数0a ,即当)(0a M 值确定时,原函数x a y =也确定了一个具有确切数值的底数0a ,x y 2=与69.0)2(0≈M 和x y 3=与10.1)3(0≈M 都具有对应关系,所以e 存在且使1)(0=e M 的意义在于我们可以求得x e y =的导函数x x x e e M e e dxd y =•==)('0,当然e 是一个确定的常数,即我们只能求唯一的指数函数x e y =的导函数x e y ='.自然指数求导公式:x xe e dxd = 指数函数x a y =曲线有一个重要特点,当0=x 时,1=y 恒成立,也就是说所有的指数函数均通过)1,0(点;再来看看1)(0=e M 在x e y =图像中的几意义.0000')()(==•=x y e M e e M ,也就是说)(0e M 表示指数函数在0=x 处的切线斜率10=m ,也只有x e y =在0=x 处导函数1)('0==e M y ,注意体会底数a 与0m 的唯一对应关系.在指数函数x a y =中,a 值的大小直接影响图像的形状. a 值越大,x a y =曲线越陡峭,即变化率越大,导函数值'y 越大;a 值越小,x a y =曲线越平顺,即变化率越小,导函数'y 越小.当x 取值相等时,3232<<⇔<<e xx x a dxd e dx d dx d2. e 的含义 2.1 由定义式h h h e 1)1(lim+=→来理解e 的含义,简单地说e 就是单位时间,持续翻倍增长所能达到的极限值.假设你在银行存了1元,很不幸同时又发生了重的通货膨胀,银行存款利率达到了逆天的100%! 银行一般1年才付一次利息,满1年后银行付给你1元利息,存款余额=2元,后来银行发善心,每半余额7182817813.2≈元1元存1年,在年利率100%下,无论怎么利滚利,其余额总有一可以用这个 网上计算器算一下.2.2.1一个有关复利的例子很久以前,一个名叫伯努力的家伙回答了一个有关复利的问题.下面就是该问题。
对数函数与指数函数的导数
(3)对数求导法的优点:一是可使问题简单化(积、商 变和、差,幂、根变积式),二是可使较复杂函数求 导变为可能(无求导公式变为有求导公式).
例如我们利用上面例题中的(2)可知 (xn)nnx 1(nQ ) 中的n的范围可以扩大到全体实数.
又如下面一题我们就有两种不同的解法:
y
x
(2)两边取对数,得lny=g(x)lnf(x),两边对x求导,可得:
1 yyg(x)lnf(x)g(x)ff((xx)); yy[g(x)lnf(x)g(x)ff((x x))]
y[f(x)g(]x)[g (x)ln f(x)g (x)f(x)]. f(x)
说明:(1)解法可能对lny求导不易理解,事实上,若u=lny,
解:(1) y [f(lx )n ]f(lx )n (lx )n 1f(lx )n.
x
(2) y [f(ex2)]f(e x2)(e x2)f(e x2)(e x2)( x2)
2x x e 2f(e x2). (3)y [f(ex)]ef(x)f(ex)[ef(x)]f(ex)exef(x)
f(ex)ef(x)f(x )ef(x)[f(ex)exf(ex)f(x )].
y1 21lgx e2(1 2x2)x x2l ge1.
(3) y 2 e 2 x c 3 x o e 2 x ( s 3 s3 x i ) n e 2 x ( 2 c 3 x o 3 ss 3 x i )n .
(4) y a 5 xln a (5 x ) 5 a 5 xln a .
例2:求下列函数的导数:
2.指数函数的导数:
(1) (ex)ex.
(2 )(a x ) a x la n (a 0 ,a 1 ).
人教版高中数学(理科)选修对数函数与指数函数的导数
●课题§3.5.1 对数函数与指数函数的导数(一)——对数函数的导数●教学目标(一)教学知识点对数函数的导数的两个求导公式:(ln x )′=x 1、(log a x )′=x 1log a e . (二)能力训练要求1.理解掌握对数函数的导数的两个求导公式.2.在学习了函数四那么运算的求导法那么与复合函数求导法那么的基础上,应用对数函数的求导公式,能求简单的初等函数的导数.(三)德育渗透目标1.培养学生的推理论证能力.2.培养学生灵活运用知识和综合运用知识的能力.●教学重点结合函数四那么运算的求导法那么与复合函数求导法那么,应用对数函数的求导公式.●教学难点对数函数的导数的记忆,以及运用对数函数的导数法那么.●教学方法讲、练结合.●教具准备幻灯片两X第一X :(ln x )′=x1的证明记作§3.5.1 A第二X :(log a x )′=x1log a e 的证明记作§3.5.1 B●教学过程Ⅰ.课题导入[师]我们已经学习了六种基本初等函数中的三种:常数函数,幂函数,三角函数的导数.这节课就来学习一下另一种基本初等函数的导数,对数函数的导数.Ⅱ.讲授新课[师]我们先给出以e 为底的自然对数函数的导数,然后介绍一下它的证明过程,不过要用到一个结论x x x 10)1(lim +→=e[板书](一)对数函数的导数 1.(ln x )′=x 1 (打出幻灯片§3.5.1 A ,给学生讲解)[师]下面给出一般的对数函数的导数.这里要用到对数函数的换底公式a x x b b alog log log = (b >0,b ≠1).证明过程只作了解.2.(log a x )′=x1log a e . (打出幻灯片§3.5.1 B ,给学生讲解).[师]我们运用学过的函数四那么运算的求导法那么与复合函数求导法那么,来看一下有关含有对数的一些函数的导数.(二)课本例题[例1]求y =ln(2x 2+3x +1)的导数.分析:要用到对数函数的求导法那么和复合函数的求导法那么,以及函数四那么运算的求导法那么. 解:y ′=[ln(2x 2+3x +1)]′=13212++x x (2x 2+3x +1)′ =132342+++x x x [例2]求y =lg21x -的导数. 解法一:y ′=(lg 21x -)′=211x -lg e ·(21x -)′ =21lg x e-·21·(1-x 2)21-(1-x 2)′=21lg x e -·2121x -·(-2x ) =1lg 1lg 22-=--x e x x e x 分析:对数函数,可以先把它化简,然后根据求导法那么进行求导.解法二:y =lg 2112=-x lg(1-x 2) ∴y ′=[21lg(1-x 2)]′=21121x-lg e (1-x 2)′ =)1(2lg 2x e -·(-2x )=1lg 2-x e x (三)精选例题[例1]求函数y =ln(12+x -x )的导数.分析:由复合函数求导法那么:y ′x =y ′u ·u ′x 对原函数由外向内逐个拆成几个简单的基本初等函数. [学生板演]解:)1(1122'-+⋅-+='x x x x y111111)11(11)12)1(21[112222222122+-=++-⋅-+=-+-+=-⋅+-+=-x x x x x x x x x x x x x x [例2]假设f (x )=ln(ln x ),那么f ′(x )|x =e =.(B)A.eB.e 1C.1D.以上都不对解:f ′(x )=[ln(ln x )]′=x ln 1·(ln x )′=xx ln 1 f ′(x )|x =e =e e ln 1⋅=e1 [例3]y =ln [ln(ln x )]的导数是 (C) A.)ln(ln 1x x B.)ln(ln ln 1x x C.)ln(ln ln 1x x x D.)ln(ln 1x 解:y ′=)ln(ln 1x [ln(ln x )]′=)ln(ln 1x ·xln 1 (ln x )′ =)ln(ln 1x ·x ln 1·x 1=)ln(ln ln 1x x x ⋅ [师生共议]所以用复合函数的求导法那么时,要由外向内逐层求导,直到不能求导为止.[例4]求y =ln|x |的导数.[生甲]y ′=(ln|x |)′=||1x [生乙]当x >0时,y =ln x .y ′=(ln x )′=x1 当x <0时,y =ln(-x ),y ′=[ln(-x )]′=x -1 (-1)= x 1, ∴y ′=x1 [师生共评]学生乙的做法是正确的.学生甲做的时候,|x |可以看成ln|x |的中间变量,对|x |还要求导.所以以后遇到要求含有绝对值的函数的导数时,首先要把绝对值去掉,分情况讨论.[例5]求y =n x x )(ln 的导数.[师析]这类函数是指数上也是含有x 的幂函数.这样用以前学过的幂函数的求导公式就行不通了.以前指数是常数的幂函数.像形如(u (x ))v (x )的函数的求导,它的方法可以是两边取自然对数,然后再对x 求导.解:y =n x x )(ln 两边取自然对数.ln y =ln n x x )(ln =(ln x )n ·ln x =(ln x )n +1.两边对x 求导,y1 y ′=(n +1)(ln x )n ·(ln x )′=(n +1)x x n )(ln ∴y ′=x x n n ))(ln 1(+·y =x x n n))(ln 1(+·nx x )(ln =(n +1)(ln x )n ·1)(ln -n x x .[例6]求y =log a 21x +的导数. [学生板演]解:y ′=(log a 21x +)′=211x +log a e ·(21x +)′221221log 2)1(211log x e x x x x e a a +=⋅+⋅+=-. Ⅲ.课堂练习求以下函数的导数.1.y =x ln x解:y ′=(x ln x )′=x ′ln x +x (ln x )′=ln x +x ·x1=ln x +1 2.y =ln x1 解:y ′=(ln x1)′=x11 (x 1)′ =x ·(-1)·x -2=-x -1=-x1. 3.y =log a (x 2-2). 解:y ′=[log a (x 2-2)]′=2log 2-x e a (x 2-2)′=2log 22-x e x a . 4.y =lg(sin x )解:y ′=[lg(sin x )]′=xe sin lg (sin x )′ =xe sin lg cos x =cot x lg e .5.y =ln x -1.解:y ′=(ln x -1)′)1(11'--=x x )1()1(211121---=-x x )1(21)1(21-=--=x x 6.y =ln 12+x解:y ′=(ln12+x )′)1(1122'++=x x ⋅+⋅+=-2122)1(2111x x 122+=x x x . 7.y =1ln +x x x -ln(x +1). 解:y ′=(1ln +x x x )′-[ln(x +1)]′ 2222)1(ln )1(1ln 1ln ln 11)1(ln )1)(1(ln 11)1()1(ln )1)(1(ln +=+---+++=+-+-++=+-+'+-+⋅+=x x x x x x x x x x x x x x x x x x x x x x x x x8.y =aa x x a a x x 22222ln 22++⋅++. 解:y ′=)ln 2()2(22222'+++'+aa x x a a x x22222222222222222222222222222122222222222222221222222)(22)1()(2221]2)(211[)(2221)(122)(21221a x a x a a x a x x a x a x x a a x x a x a x x a x x a a x x a x x a x a x x a a x x a x a x x aa x x a a x a x x a x +=+++=+++++++++=++⋅++++++=⋅++++++++='++⋅++⋅+⋅+⋅++=-- Ⅳ.课时小结(学生总结)本节课主要学习了对数函数的两个公式(ln x )′=x 1(log a x )′=x 1log a e .以及运用函数的四那么运算的求导法那么和复合函数的求导法那么,求一些含有对数的函数的导数.Ⅴ.课后作业(一)课本P 127、1、3(2)(4)(二)预习内容.课本P 127指数函数的导数.2.预习提纲.(1)预习(e x )′=e x 及它的应用.(2)预习(a x )′=a x ln a 及它的应用.●板书设计。
高中数学选修本(理科)对数函数与指数函数的导数
对数函数与指数函数的导数——指数函数的导数●教学目标(一)教学知识点指数函数的导数的两个求导公式:(e x )′=e x .(a x )′=a x ln a .(二)能力训练要求1.理解掌握指数函数的导数的两个求导公式.2.在学习了函数的四那么运算的求导法那么与复合函数的求导法那么的基础上,应用指数函数的求导公式,能求简单的初等函数的导数.(三)德育渗透目标培养学生灵活运用知识和综合运用知识的能力.●教学重点结合函数四那么运算的求导法那么与复合函数的求导法那么,以及四种基本初等函数的求导公式,应用指数函数的求导公式.●教学难点指数函数的求导公式的记忆,以及应用指数函数的求导公式.●教学方法讲练结合.●教学过程Ⅰ.课题导入[师]先复习一下四种基本初等函数的求导公式.常数函数,幂函数,三角函数,对数函数.[生]C ′=0(C 是常数)(x n )′=nx n -1(n ∈R )(sin x )′=cos x (cos x )′=-sin x .(ln x )′=x 1 (log a x )′=x1log a e . [师]这节课要学习第五种基本初等函数的求导公式,就是指数函数的求导公式.Ⅱ.讲授新课(一)指数函数的导数[板书]1.(1)(e x )′=e x(2)(a x )′=a x ln a[师]这两个公式的证明需要用到反函数的求导法那么,这超出了目前的学习X 围,所以这里就不再证明.只需记住它的结论,以e 为底数的指数函数的导数是它本身,以a 为底数的指数函数的导数是它的本身乘以ln a .我们利用这两个公式就可以求一些关于指数函数的导数了.(二)课本例题[例3]y =e 2x cos3x 的导数[分析] 这题先要用到两个函数乘积的求导法那么,再要用到复合函数的求导法那么.解:y ′=(e 2x )′cos3x +e 2x (cos3x )′=e 2x (2x )′cos3x +e 2x (-sin3x )(3x )′=2e 2x cos3x -3e 2x sin3x=e 2x (2cos3x -3sin3x )[例4]求y =a 5x 的导数.[分析]这题只需用复合函数的求导法那么.解:y ′=(a 5x )′=a 5x ln a ·(5x )′=5a 5x ln a .(三)精选例题[例1]求函数y =e -2x sin3x 的导数.[学生分析]先用积的求导法那么,(uv )′=u ′v +uv ′,再用复合函数的求导法那么求导,y x ′=y ′u u ′x . [学生板演]解:y ′=(e -2x )′sin3x +e -2x ·(sin3x )′=e -2x (-2x )′sin3x +e -2x cos3x (3x )′=-2e -2x sin3x +3e -2x cos3x=e -2x (3cos3x -2sin3x ).[例2]求y =xe x3sin 2-的导数. [学生分析]先用商的求导法那么2)(v v u v u v u '-'=',再用复合函数求导法那么求导.y ′x = y ′u ·u ′x .[学生板演]解:y ′=(x e x 3sin 2-)′=222)3(sin )3(sin 3sin )(x x e x e x x '-'-- xx x e x x e x e x x x 3sin )3cos 33sin 2(3sin 33cos 3sin )2(22222+-=⋅--=--- [例3]求y =x sin x 的导数.y =ln x sin x =sin x ·ln x两边对x 求导y y '=cos x ·ln x +sin x ·x1 ∴y ′=(cos x ln x +x x sin )y =(cos x ·ln x +xx sin )·x sin x . y =f (x )都可以用指数函数的形式表示出来y =)(log x f a a,为了方便起见,我们取a =e .∴y =)(ln x f e .这道题转化成指数函数的形式怎么做呢?[学生板演]解:由所给函数知x >0∵x x x x e e x y x ln sin ln sin sin ⋅===∴y ′=)ln (sin )(ln sin ln sin '⋅⋅='⋅⋅x x e e x x x x)sin ln (cos )sin ln (cos sin ln sin xx x x x x x x x e x x x +⋅=+⋅=⋅ [师]当用第二种方法求导的时候,要说明一下x >0,∵x sin x 是幂函数的形式,所以x >0,否那么x n (xx sin x >0,所以在用第一种方法求导时,等于默认了y >0.[师生共同总结]形如(u (x ))v (x )的幂指函数,可以用两种方法求导,其一,是两边取对数后再对x 求导;其二,是把它化成指数函数与其他函数复合.[例4]求y =32x lg(1-cos2x )的导数.方法一:y =32x lg(1-cos2x )=9x lg(1-cos2x )y ′=9x ln9·lg(1-cos2x )+9xx e2cos 1lg -·(1-cos2x )′ =9x ln9·lg(1-cos2x )+9xx e2cos 1lg -sin2x ·2. =9x ·ln9·lg(1-cos2x )+29x ·lg e ·xx x 2sin 2cos sin 2 =9x ·2ln3·lg(1-cos2x )+29x ·lg e ·cot x=2·9x [ln3·lg(1-cos2x )+lg e ·cot x ]方法二:y ′=(32x )′lg(1-cos2x )+32x ·[lg(1-cos2x )]′=32x ·ln3·2lg(1-cos2x )+32x ·x e 2cos 1lg -·sin2x ·2=2·32x ln3·lg(1-cos2x )+2·32x lg e ·cot x=2·32x [ln3·lg(1-cos2x )+lg e ·cot x ][例5]求y =f (e x )e f (x )的导数,其中f (x )为可导函数.解:y ′=[f (e x )]′e f (x )+f (e x )·(e f (x ))′=f ′(e x )·e x e f (x )+f (e x )·e f (x )·f ′(x )=e f (x )[f ′(e x )e x +f (e x )·f ′(x )].[例6]求y =2x x 的导数.(请两位同学用两种不同的方法做)(方法一)解:两边取对数,得ln y =ln2+x ln x .两边对x 求导y 1y ′=(x )′ln x +x (ln x )′=21x 21-ln x +x ·x 1 )2(ln 21ln 21212121+=+=---x x x x x ∴y ′=)2(ln 2)2(ln 212121+=⋅+--x x x x x x x (方法二)解:x x x x e e xy x ln 2ln 2ln 2+===. (方法二)解:x x x x e e xy x ln 2ln 2ln 2+=== y ′=)1ln 21()ln (21ln 2ln ln 2ln xx x x e x x e x x x x ⋅+='⋅-++)2(ln )2(ln 2122121+=+⋅=--x x x x x x x [师]比较这两种方法,是不是难易程度差不多,都只要对x ln x 求导就可以了.所以碰到这类题目,两种方法可以任选其一.Ⅲ.课堂练习.求以下函数的导数.1.y =x 2e x .解:y ′=(x 2e x )′=2xe x +x 2e x =(2+x )xe x2.y =e 3x解:y ′=(e 3x )′=e 3x ·3=3e 3x3.y =x 3+3x解:y ′=3x 2+3x ·ln3.4.y =x n e -x解:y ′=nx n -1e -x +x n e -x ·(-1)=(n -x )x n -1e -x .5.y =e x sin x解:y ′=e x sin x +e x cos x =e x (sin x +cos x )6.y =e x ln x 解:y ′=e x ln x +e x ·x 1=e x (ln x +x 1)7.y =a 2x +1解:y ′=a 2x +1ln a ·2=2a 2x +1·ln a8.y =2〔22x xe e -+〕解:y ′=22222)2121(x x x xe e e e ---=-⋅.f (x )=2x e +1那么f ′(x )=(C )A.(x 2+1)2x e B.(x 2+1)12+x e x 12+x e xe 2x解:(2x e +1)′=12+x e ·2x =2x 12+x e .10.假设f (x )=e cos x .求f ′(x ).解:f ′(x )=(e cos x )′=e cos x ·(cos x )′=-sin x ·e cos x .y =xe 1-cos x 的导数. 解:y ′=(xe 1-cos x )′=e 1-cos x +xe 1-cos x ·(1-cos x )′ =e 1-cos x +xe 1-cos x ·sin x =(1+x sin x )e 1-cos xy =2x e +ax 导数.解:y′=(2x e+ax)′=2x e·2x+a=2x2x e+a.Ⅳ.课时小结这节课主要学习了指数函数的两个求导公式.(e x)′=e x,(a x)′=a x ln a,以及它们的应用.还有形如(u(x))v(x)的函数求导有两种方法:其一,两边取对数,再两边对x求导,其二是把它化成指数函数与其他函数复合,再进行求导.Ⅴ.课后作业(一)课本P127~128.习题3.5 2、3(1)(3).近似计算.128~129131~1322.预习提纲.(1)自变量的微分概念、表示.(2)函数的微分概念、表示.(3)Δy与y的微分的关系.(4)导数用微分如何表示.(5)求微分的方法.(6)微分的四那么运算法那么.●板书设计。
3.3复合函数,商的导数,指数,对数的导数
u( x x ) u( x ) v ( x x ) v ( x ) v ( x ) u( x ) y x x x v ( x x )v ( x )
因为v ( x )在点x处可导,所以它在点 x处连续,于是当 x 0时, v ( x x ) v ( x ),
2x
例10.求y a 的导数.
5x
解:y a 5 x ln a(5 x ) 5a 5 x ln a.
3.4复合函数的导数
提问:
1、常用的函数的导数:
(C ) 0
/
( x n ) / nx n1 ( n N * )
公式一
公式二
/ (sin x) cos x
/ (cos x) sin x
公式三
公式四
(1)和或差的导数 [u v ]
/
2、导数的运算法则:
/
u v ;
则复合函数 y f ( (( x )) 在点x处也有导数,且
y x yu ux
或写作 f x ( ( x )) f (u) ( x ).
这就是复合函数的求导法则,即复合 函数对自变量的导数,等于已知函数对中 间变量的导数,乘中间变量对自变量的导 数。
例4.求y (2 x 1) 的导数。
例3.求y ( 3 x 2) 的导数。 2 2 解:y ( 3 x 2) 9 x 12 x 4 2 y (9 x 12 x 4) 18 x 12
2
函数y ( 3 x 2) 2 可以看成由 y u 2 , u 3 x 2复合而成
设y u , u 1 3 x , 则
4 y x y u u x ( u ) u (1 3) x
高三数学对数函数与指数函数的导数1
1 (1) (ln x ) . x
1 x
y 1 x 1 x x 1 x x ln( 1 ) ln( 1 ) ln( 1 ) , x x x x x x x x x x y 1 x x 1 x x y lim lim ln ( 1 ) ln [lim(1 ) ] x 0 x x x 0 x x x 0 x 1 1 ln e . x x
3.5对数函数 与指数函数 的导数
一、复习与引入:
1. 函数的导数的定义与几何意义. 2.常见函数的导数公式. 3.导数的四则运算法则. 4.复合函数的导数公式. 5.由前面几节课的知识,我们已经掌握了初等函数中的 幂函数、三角函数的导数,但还缺少指数函数、对数 函数的导数,而这就是我们今天要新学的内容. 有了指数函数、对数函数的导数,也就解决了初等函 数的可导性.
1 x
.
例3:已知f(x)为可导函数,试求下列函数的导数: f ( x) x2 x e (1)y=f(lnx); (2)y=f( e ); (3)y=f(e ) . 1 解:(1) y [ f (ln x )] f (ln x ) (ln x ) f (ln x ). (2) y [ f (e
1 f ( x ) y g( x ) ln f ( x ) g( x ) ; y y[ g( x ) ln f ( x ) g( x ) f ( x ) ] y f ( x) f ( x)
g( x )
f ( x ) y [ f ( x )] [ g( x ) ln f ( x ) g( x ) ]. f ( x) 说明:(1)解法可能对lny求导不易理解,事实上,若u=lny, 1 y=f(x),则 ux uy yx f ( x ). y
高三数学对数函数与指数函数的导数1
2
lge
lge
x
1 2 y lg 1 x lg( 1 x ); (2)法2: 2
2
1 lge x lge 2 y (1 x ) 2 . 2 2 1 x x 1 2x 2x 2x (3) y 2e cos3 x e (3 sin3 x) e (2 cos3 x 3 sin3 x). (4) y a 5 x lna (5 x) 5a 5 x lna.
2
例6:求下列函数的导数:(1)y=xx(x>0);(2)y=[f(x)]g(x). 解:(1)两边取对数,得lny=xlnx. 由于y是x的函数,由复合函数的求导法则对上式 两边对x求导,可得: 1 1 y ln x x , y y(ln x 1), y x x (ln x 1). y x (2)两边取对数,得lny=g(x)lnf(x),两边对x求导,可得:
1 (1) (ln x ) . x
1 x
y 1 x 1 x x 1 x x ln( 1 ) ln( 1 ) ln( 1 ) , x x x x x x x x x x y 1 x x 1 x x y lim lim ln ( 1 ) ln [lim(1 ) ] x 0 x x x 0 x x x 0 x 1 1 ln e . x x
1 x
log3 x
(3) y 1 lnx
(4) y sin(ln x) sinx lnx
答案:
ln 2 (1) y 2 2 . x
(3) y 1 . 2x 1 ln x
16个基本导数公式详解
16个基本导数公式详解在微积分中,导数是指函数在其中一点的切线斜率或变化率。
它在计算斜率、切线和极值时起着重要作用。
以下是16个基本导数公式的详解。
1. 常数函数导数:对于常数函数y=c,导数为dy/dx = 0。
这是因为常数函数在任何点的斜率都是零。
2. 幂函数导数:对于幂函数y=x^n(这里n是常数),其导数为dy/dx = nx^(n-1)。
这个公式可以通过使用极限定义导数来证明。
例如,对于y=x^2,导数为dy/dx = 2x。
3. 指数函数导数:对于指数函数y=a^x(这里a是常数且a>0),其导数为dy/dx = a^x * ln(a)。
这个公式可以通过使用极限定义导数和对数函数的导数来证明。
4. 对数函数导数:对于自然对数函数y=ln(x),其导数为dy/dx =1/x。
对数函数的导数是指数函数导数的倒数。
这个公式也可以通过使用极限定义导数来证明。
5. 正弦函数导数:对于正弦函数y=sin(x),其导数为dy/dx =cos(x)。
这个公式可以通过使用极限定义导数和三角函数的定义来证明。
6. 余弦函数导数:对于余弦函数y=cos(x),其导数为dy/dx = -sin(x)。
这个公式可以通过使用极限定义导数和三角函数的定义来证明。
7. 正切函数导数:对于正切函数y=tan(x),其导数为dy/dx =sec^2(x)。
这个公式可以通过使用sin(x)和cos(x)的导数公式来证明。
8. 反正弦函数导数:对于反正弦函数y=arcsin(x),其导数为dy/dx = 1/√(1 - x^2)。
这个公式可以通过使用反三角函数的定义和导数的链式法则来证明。
9. 反余弦函数导数:对于反余弦函数y=arccos(x),其导数为dy/dx = -1/√(1 - x^2)。
这个公式可以通过使用反三角函数的定义和导数的链式法则来证明。
10. 反正切函数导数:对于反正切函数y=arctan(x),其导数为dy/dx = 1/(1 + x^2)。
基本的导数和积分公式
基本的导数和积分公式基本的导数和积分公式是微积分的基础,它们是在求解导数和积分时经常使用的公式集合。
这些公式涉及到各种函数的导数和积分,如常数函数、幂函数、指数函数、对数函数、三角函数等。
下面我将介绍一些常见的基本导数和积分公式。
1.常数函数:f(x)=C,其导数为f'(x)=0,其中C为常数;积分:∫f(x)dx= Cx + K,其中K为积分常数。
1.幂函数:f(x)=x^n,其中n为常数;导数:f'(x) = nx^(n-1);积分(n ≠ -1):∫x^n dx = (1/(n+1))x^(n+1) + K;积分(n = -1):∫x^(-1) dx = ln,x, + K。
1.指数函数:f(x)=a^x,其中a为常数且a>0;导数:f'(x) = a^x * ln(a);积分:∫a^xdx = (1/ln(a)) * a^x + K。
1. 自然对数函数:ln(x),其中x>0;导数:(ln(x))' = 1/x;积分:∫(1/x) dx = ln,x, + K。
2. 一般对数函数:log_a(x),其中x>0且a>0且a≠1;导数:(log_a(x))' = (1/(xln(a)));积分:∫(1/(xln(a))) dx = log_a,x, + K。
1. 正弦函数:sin(x);导数:(sin(x))' = cos(x);积分:∫cos(x) dx = sin(x) + K。
2. 余弦函数:cos(x);导数:(cos(x))' = -sin(x);积分:∫sin(x) dx = -cos(x) + K。
3. 正切函数:tan(x);导数:(tan(x))' = sec^2(x);积分:∫sec^2(x) dx = tan(x) + K。
4. 余切函数:cot(x);导数:(cot(x))' = -csc^2(x);积分:∫csc^2(x) dx = -cot(x) + K。
5对数函数与指数函数的导数精品PPT课件
1 x2 x 2 1 x2
1
.
1 x2
x 1 x2 (4) y ln
x
解:函数的定义域为 (0,), y ln( x 1 x2 ) ln x.
y
1
( x 1 x2 ) 1
x 1 x2
x
1
[1 1 1 (1 x2 )] 1
x 1 x2
2 1 x2
x
1
(1 2x ) 1 1 1 .
e2t (2t ) sin(t ) e2t cos(t ) (t )
2e 2t sin(t ) e 2t cos(t ).
故当t=1/2时,质点运动速度v0为:
v0
s
|
t
1
2
1
[2
sin(
e
2
)
cos( 2
)].
例5:求曲线y=xlnx的平行于直线x-y+1=0的切线方程.
二、新课: 指、对函数的导数:
1.对数函数的导数:
(1) (ln x) 1 .
x
1
下面给出公式的证明,中间用到重要极限 lim(1 x) x e.
x0
证: y f ( x) ln x,
y ln( x x) ln x ln x x ln(1 x );
x
x
y
1
ln(1 x ) 1
x
ln(1
x )
1
ln(1
x
)
x x
,
x x
x x x
xx
x
y
lim
y
1
lim
ln(1
x
)
x x
1
ln[ lim (1
高三数学对数函数与指数函数的导数1
x ln x
1 2 x
(ln x 2).
四、小结:
(1)对数函数、指数函数的导数是常用的导数公式中较 难的两类函数的导数,要熟记公式,会用公式,用活公 式. (2)解决指、对数函数的导数问题,应充分重视指数、对 数的运算性质的准确使用,以保证变换过程的等价性. (3)在求指、对数函数的导数过程中,要遵循先化简,再 求导的原则;要结合导数的四则运算法则和复合函数 的求导法则进行求导.
1 x
log3 x
(3) y 1 lnx
(4) y sin(ln x) sinx lnx
答案:
ln 2 (1) y 2 2 . x
(3) y 1 . 2x 1 ln x
1 x
2log3 x ln 2 ( 2) y . x ln3
( 4) y sin x cos(ln x) cos x ln x. x
1 (1) (ln x ) . x
1 x
y 1 x 1 x x 1 x x ln( 1 ) ln( 1 ) ln( 1 ) , x x x x x x x x x x y 1 x x 1 x x y lim lim ln ( 1 ) ln [lim(1 ) ] x 0 x x x 0 x x x 0 x 1 1 ln e . x x
f (e ) e
x
f ( x)
f ( x) x x x f ( x ) e [ f (e )e f (e ) f ( x )].
解此类题应注意: (1)分清是由哪些函数复合而成的. (2)用逐步的方法来进行求导.
练习:求下列函数的导数:
(1) y 2 ; (2) y 2
基本初等函数的导数
基本初等函数的导数
把所有基本初等函数(常用的6种)的导数说清楚
高等数学中,初等函数是指一般性数学函数,它们的构造过程就和多项式的构造过程是一样的,常用的初等函数有常数函数,幂函数,指数函数,对数函数,三角函数和反三角函数等等。
关于这些函数的一个很重要的概念就是它们的导数。
这些基本初等函数的导数依次如下:
1. 常数函数的导数是 0。
即 f' (x) = 0。
2. 幂函数的导数记作 y'= a*x^(a-1) 。
3. 指数函数的导数记作 y' = a^x*ln(a) 。
4. 对数函数的导数记作 y' = 1/x 。
5. 三角函数的导数分别是:sin(x)' = cos(x),cos(x)' = -sin(x),tan(x)' = 1/cos^2(x) 。
6. 反三角函数的导数分别是:arcsin(x)' =1/√(1-x^2),arccos(x)' = -1/√(1-x^2),arctan(x)' = 1/(1+x^2) 。
以上就是基本初等函数的导数,熟悉了这些导数的求法对数学的学习有很大的帮助,希望大家能够把这些导数记熟,提高自己的数学水平。
导数与函数的对数与指数
导数与函数的对数与指数在微积分学中,导数是一项非常重要的概念。
它与函数的对数与指数有密切的联系。
本文将探讨导数与函数的对数与指数之间的关系,并展示它们在实际问题求解中的应用。
1. 导数的概念导数是用来描述函数在某一点上的变化率的概念。
对于给定的函数f(x),在某一点x处的导数可以通过求取函数在该点处的切线的斜率来计算。
记作f'(x),表示函数f(x)在x处的导数。
2. 对数函数与导数对数函数是指以某个正数为底数的函数,常用的对数函数有以e为底数的自然对数函数(ln x)和以10为底数的常用对数函数(log x)。
这两种对数函数与导数之间有着密切的联系。
2.1 自然对数函数的导数自然对数函数ln x的导数可以通过求极限得到。
具体而言,ln x的导数等于1/x,即:(ln x)' = 1/x。
2.2 常用对数函数的导数常用对数函数log x的导数也可以通过求极限得到。
具体而言,log x的导数等于1/(x ln 10),即:(log x)' = 1/(x ln 10)。
3. 指数函数与导数指数函数是以某个正数为底数的幂函数,常见的指数函数有以e为底数的指数函数(e^x)以及以常数a为底数的指数函数(a^x)。
指数函数与导数之间也存在紧密的联系。
3.1 自然指数函数的导数自然指数函数e^x的导数等于自身,即:(e^x)' = e^x。
3.2 一般指数函数的导数一般指数函数a^x的导数可以通过连锁法则来求解。
具体而言,(a^x)' = ln a * a^x,其中ln a为常数。
4. 应用举例导数与函数的对数与指数在实际问题求解中有广泛的应用。
以下是一些应用举例:4.1 金融领域在金融领域,复利计算是非常重要的概念。
复利计算涉及到指数函数和导数的应用。
通过对复利计算公式的导数求解,可以确定最优投资策略,以获得最大的利润。
4.2 物理学在物理学中,研究物体的运动是一项重要的任务。
高三数学对数函数与指数函数的导数1
好的一次创作”深感满意。再次感谢您,并致以诚挚的祝福!? ?马克斯/苏萨克 2007年7月27日 ? 【背景概览】 5.《致中国读者的信》放在《偷书贼》(孙张静/译,代谢联合出版公司2014年版)正文之前。你认为作者写这封信有哪些用意?(3分) 答: 6.阅读《致中国读者的信》,从下列选
项中,选出最符合作者本意的一项( )(2分) A.作者使用客观公正的态度来评价自己这部小说的。 B.《偷书贼》这本书对作者与读者的意义,已经远远超过了作者当初的想象。 C.作者十分在乎别人对《偷书贼》这本书的评价。 D.作者认为《偷书贼》是他生命的全部,是自己最好的一次
着他们走远。她只能希望他们能够读懂她脸上深藏的怜悯,并且能意识到这是真切的悲伤,不会消失的无影无踪。 ? 前进的队伍里,有个人的年纪比其他人都大。 ? 他留着胡子,衣衫褴褛。 ? 他的眼睛里流露出极度的痛苦。虽然他的身体轻飘飘的,但他的双腿还是承担不了这一点点重量。 ? 有
好几次,他都倒了下去。 ? 她的半边脸贴在地面上。 ? 每次都有一个士兵站在他身边。“站起来,”他冲着老人吼道,“站起来。” ? 老人跪着站起身,艰难地向前走去。 ? 每次,他刚刚赶上队伍的尾巴,就会失去动力,再次摔倒在地。他后面还有很多人﹣﹣足足有一卡车的人﹣﹣威胁着要超
面包就倒在地上,他双膝跪地,抱着爸爸的小腿,把脸埋在中间,感谢爸爸。 ? 莉赛尔注视着眼前的这一幕。?她的眼里满含着泪水,她看到老人又向前滑了一点,把爸爸向后推,伏在爸爸的脚踝边哭起来。 ? 其他犹太人从他们身边走时,看着这桩不可思议的小事。他们鱼贯而行,如同一片人潮
。 ? 一个士兵走过来,发现了这起罪行。他审视了跪着的老人和爸爸一番,又把目光投向围观的人群,然后稍加思索,就从腰间取下鞭子,开始鞭打。 ? 犹太老人被打了六下,鞭子落在他的背上、头上、还有腿上。“你这头肮脏的猪!”鲜血从他耳边滴下来。 接着,轮到了爸爸。 ? 又有一只手
导数的基本公式表
导数的基本公式表导数是微积分中的重要概念之一。
它衡量的是函数在某一点处的变化率。
导数具有许多重要的应用,例如求解函数的最大值和最小值、确定函数的凸性和凹性、求出曲线的切线和法线等。
下面将介绍导数的基本公式表。
1. 一次函数的导数一次函数的一般式为y=ax+b。
其中a和b为常数,x为自变量。
对于一次函数来说,它的导数是一个常数a。
这意味着,一次函数的导数在所有的点上都是相同的。
2. 幂函数的导数幂函数的一般式为y=x^n。
其中n为自然数,x为自变量。
幂函数的导数为dy/dx=nx^(n-1)。
这个公式可以用极限的定义来证明。
3. 指数函数和对数函数的导数指数函数和对数函数是互为反函数的函数。
指数函数的一般式为y=a^x,其中a>0且a≠1,x为自变量。
对数函数的一般式为y=log_a x,其中a>0且a≠1,x为自变量。
这两个函数的导数分别为dy/dx=a^xlna和dy/dx=1/(xlna)。
4. 三角函数的导数三角函数的一般式为y=sin x、y=cos x、y=tan x。
其中x为自变量。
这三个函数的导数分别为dy/dx=cos x、dy/dx=-sin x、dy/dx=sec^2 x。
5. 常数函数、绝对值函数和符号函数的导数常数函数的导数为零。
绝对值函数在x=0处的导数不存在,而在x≠0处的导数为dy/dx=±1,取决于x的符号。
符号函数的导数在x=0处不存在,而在x≠0处的导数恒为零。
6. 复合函数的导数如果f(x)和g(x)都是可导函数,那么它们的复合函数f(g(x))的导数是f'(g(x))g'(x)。
7. 和、差、积和商的导数和、差、积和商的导数规则分别为:(1)和、差的导数:(f±g)'=f'+g';(2)积的导数:(fg)'=f'g+fg';(3)商的导数:(f/g)'=(f'g-fg')/g^2。
高中数学 幂函数、指数函数、对数函数、三角函数求导公式以及积与商的函数导数求法
高中数学幂函数、指数函数、对数函数、三角函数求导公式以及积与商的函数导数求法1、常见函数的导数公式:常数函数的导数:;幂函数的导数:;如下:;三角函数的导数:;对数函数的导数:指数函数的导数:2、求导数的法则(1)和与差函数的导数:.由此得多项式函数导数(2)积的函数的导数:,特例[C·f(x)]'=Cf'(x)。
如①已知函数的导数为,则_____(答:);②函数的导数为__________(答:);③若对任意,,则是______(答:)(3)商的函数的导数:例1、求下列导数(1)y =;(2)y =x · sin x · ln x;(3)y =;(4)y =.(1)解析:∵y ==∴(2)y'=(x ·sin x ·ln x) '=(x ·sin x) ' · ln x+(x · sin x )( ln x) '=[x'sinx+x(sinx) ']·lnx+(x · sin x )=[sinx+xcosx]lnx+sinx总结:如遇求多个积的导数,可以逐层分组进行;求导数前的变形,目的在于简化运算;求导数后应对结果进行整理化简.(3)y'=(4)∵y ==∴y'=例2、求函数的导数①y=(2 x2-5 x +1)e x②y=解析:①y'=(2 x2-5 x +1)′e x+(2 x2-5 x +1)(e x)′=(2x2-x-4)e x②∴y'总结:①求导数是在定义域内进行的.②求较复杂的函数积、商的导数,必须细心、耐心.例3、已知曲线C:y =3 x 4-2 x3-9 x2+4(1)求曲线C上横坐标为1的点的切线方程;(2)第(1)小题中切线与曲线C是否还有其他公共点?解析:(1)把x =1代入C的方程,求得y =-4.∴切点为(1,-4).Y'=12 x3-6 x2-18 x,∴切线斜率为k =12-6-18=-12.∴切线方程为y +4=-12(x-1),即y=-12 x +8.由得3 x 4-2 x3 -9 x2+12 x -4=0(x -1) 2 (x +2) (3 x -2)=0x =1,-2,.代入y =3 x 4-2 x 3 -9 x 2 +4,求得y =-4,32,0,即公共点为(1,-4)(切点),(-2,32),(,0).除切点外,还有两个交点(-2,32)、(,0).总结:直线和圆,直线和椭圆相切,可以用只有一个公共点来判定.一般曲线却要用割线的极限位置来定义切线.因此,曲线的切线可以和曲线有非切点的公共点.例4、曲线S :y =x 3-6 x 2-x +6哪一点切线的斜率最小? 设此点为P (x 0,y 0).证明:曲线S 关于P 中心对称. 解析:y'=3 x 2-12 x -1当x ==2时,y ′有最小值,故x 0=2,由P ∈S 知:y 0=23-6 · 22-2+6=-12 即在P (2,-12)处切线斜率最小. 设Q (x ,y )∈S ,即y =x 3-6 x 2-x +6则与Q 关于P 对称的点为R (4-x ,-24-y ),只需证R 的坐标满足S 的方程即可. (4-x)3-6(4-x)2-(4-x)+6 =64-48 x +12 x 2-x 3-6(16-8 x +x 2)+x +2=-x 3+6 x2+x -30=-x3+6 x 2 +x -6-24=-y -24故R ∈S ,由Q 点的任意性,S 关于点P 中心对称.总结:本题考查导数的几何意义.求切点时,要将取最小值的x 值代回原方程.例5、一质点的运动方程为s(t)=asint+bcost(a>0),若速度v(t)的最大值为,且对任意的t 0∈R,在t =t 0与t = -t 0时速度相同,求a 、b 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求指数、对数函数的导数
例 求下列函数的导数:
1.{ EMBED Equation.3 |1ln 2+=x y ;2.;
3.; 4.
分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数.
解:1.解法一:可看成复合而成.
解法二:
解法三:,
2.解法一:设,则
解法二:
3.解法一:设,则
解法二:
4.
说明:深刻理解,掌握指数函数和对数函数的求导公式的结构规律,是解决问题的关键,解答本题所使用的知识,方法都是最基本的,但解法的构思是灵魂,有了它才能运用知识为解题服务,在求导过程中,学生易犯漏掉符合或混淆系数的错误,使解题走入困境.
解题时,能认真观察函数的结构特征,积极地进行联想化归,才能抓住问题的本质,把解题思路放开.
变形函数解析式求导
例 求下列函数的导数:
(1); (2);
(3); (4).
分析:先将函数适当变形,化为更易于求导的形式,可减少计算量.
解:(1)
.
(2),
(3)
(4)
当时不存在.
说明:求(其中为多项式)的导数时,若的次数不小于的次数,则由多项式除法可知,存在,使.从而,这里均为多项式,且的次数小于的次数.再求导可减少计算量.对函数变形要注意定义域.如,则定义域变为,所以虽然的导数与的导数结果相同,但我们还是应避免这种解法.
函数求导法则的综合运用
例求下列函数的导数:
1.;2.;
3.;4.
分析:式中所给函数是几个因式积、商、幂、开方的关系.对于这种结构形式的函数,可通过两边取对数后再求导,就可以使问题简单化或使无法求导的问题得以解决.但必须注意取寻数时需要满足的条件是真数为正实数,否则将会出现运算失误.
解:1.取y的绝对值,得,两边取寻数,得
根据导数的运算法则及复合函数的求导法则,两端对x求导,得
,
∴
2.注意到,两端取对数,得
∴
∴
3.两端取对数,得
,
两端对x求导,得
4.两端取对数,得
,
两边对x求导,得
∴
说明:对数求导法则实质上是复合函数求导法则的应用.从多角度分析和探索解决问题的途径,能运用恰当合理的思维视力,把问题的隐含挖掘出来加以利用,会使问题的解答避
繁就简,化难为易,收到出奇制胜的效果.解决这类问题常见的错误是不注意是关于x的复合函数.
指对数函数的概念揭示了各自存在的条件、基本性质及其几何特征,恰当地引入对数求导的方法,从不同的侧面分析转化,往往可避免繁琐的推理与运算,使问题得以解决.。