运筹学-第16章-决策分析
运筹学知识点
运筹学知识点运筹学是一门综合运用数学、逻辑、计算机科学等方法与技巧来解决现实世界中最优化问题的学科。
它涉及决策分析、优化模型、算法设计等多个方面的知识点。
在本文中,我将介绍一些运筹学的重要知识点,并探讨其在实际生活和工作中的应用。
首先,决策分析是运筹学的核心方向之一。
决策分析旨在帮助决策者做出理性和最佳的决策。
它涉及问题定义、信息收集、模型构建、方案评估等多个步骤。
决策分析的一个重要工具是决策树,它通过图形化地表示决策的各个阶段和可能的结果,帮助决策者清晰地分析决策过程中的风险和潜在回报。
举个例子,假设我们要决定是乘坐公共交通还是开车去上班。
我们可以构建一个决策树,考虑到可能的交通状况、费用、时间等因素,帮助我们做出最佳的选择。
其次,优化模型是运筹学的另一个重要知识点。
优化模型通过数学公式和约束条件来描述一个问题,并寻找满足目标的最优解。
常见的优化模型包括线性规划、整数规划、非线性规划等。
线性规划是一种最常用的优化模型,它适用于一些具有线性关系的问题。
整数规划则适用于需要整数解的问题。
非线性规划则考虑了更为复杂的问题情况,可以通过各种算法进行求解。
优化模型在很多领域有着广泛的应用,如生产调度、物流运输、资源分配等。
举个例子,假设我们是一家制造商,我们希望通过优化生产调度来最大化利润。
我们可以使用线性规划模型来考虑各个产品的生产时间、产能、销售量、成本等因素,并寻找到一个最优的生产计划。
此外,算法设计也是运筹学的重要内容之一。
算法是为解决特定问题而设计的一系列步骤和操作。
在运筹学中,算法设计通常与优化模型紧密相关。
例如,针对某个优化模型,我们可以设计一种有效的求解算法,以找到最优解。
常见的算法包括贪心算法、动态规划、启发式算法等。
这些算法都有各自的特点和适用范围。
举个例子,假设我们需要在一个迷宫中找到一条最短的路径。
我们可以使用动态规划算法来计算每个位置到终点的最短距离,并依次进行路径选择,直到找到一条最短路径。
运筹学中的决策分析与风险管理
运筹学中的决策分析与风险管理运筹学是一门综合应用数学的学科,通过运用数学模型和方法来解决实际问题。
在这个领域中,决策分析和风险管理是非常重要的内容。
本文将介绍运筹学中的决策分析和风险管理,并探讨它们在实际中的应用和重要性。
一、决策分析决策分析是一种科学的方法,旨在帮助决策者在面对复杂问题时做出最佳决策。
在决策分析中,决策者需要收集和分析相关数据,应用数学模型和技术来评估各种不同决策方案的风险和回报。
通过这种方法,决策者可以更好地理解决策问题的各种潜在结果,并选择最优的决策方案。
决策分析通常包括以下几个步骤:1. 问题定义:明确问题的目标和约束条件,并确定决策的范围。
2. 数据收集与分析:收集相关数据,并利用数学模型和统计方法对数据进行分析。
3. 模型建立:根据问题的特点和决策者的需求,选择合适的数学模型,并将问题转化为数学模型。
4. 解决方案评估:评估各种决策方案的风险和回报,并对它们进行比较和优化。
5. 决策实施:根据评估结果选择最佳决策方案,并付诸实施。
在实际应用中,决策分析可以帮助企业管理者制定营销策略、生产计划和供应链管理方案等,从而提高业绩和效益。
二、风险管理风险管理是指通过识别、分析和评估风险,并采取相应的措施来降低和控制风险,并在必要时应对可能出现的风险事件。
在运筹学中,风险管理可以帮助决策者更好地处理不确定性,并最大程度地保护企业的利益。
风险管理通常包括以下几个方面:1. 风险识别:根据问题的特点和环境的变化,识别可能出现的各种风险。
2. 风险分析和评估:对已识别的风险进行定量或定性的分析和评估,确定其发生的概率和影响程度。
3. 风险应对:根据分析和评估的结果,制定相应的风险应对策略,并制定相应的预案和措施。
4. 风险监控与控制:建立有效的监控和控制体系,及时发现和处理风险,并防止风险事件的扩散和蔓延。
通过风险管理,企业可以更好地预测和应对不确定性,减少潜在的损失,并提高业务的可持续发展能力。
运筹学2013年复习
0.1
0.14
0.12
0.26
0.14
0.4
0.16
0.56
0.2
0.76
0.14
0.9
0.1
1
0.04
运筹学:库存决策
E ( y ) (60 * 0.15 110 * 0.25) * 0.04 + (100 * 0.15 70 * 0.25) * 0.1 + (140 * 0.15 30 * 0.25) * 0.12 + 170 * 0.15 * 0.74 19.5 售报员每天的收益期望 为19.5元,一个月的收益期望 为585 元
可以开发
0.9 0.5 0.1
不可开发
0.1 0.5 0.9
运筹学:决策分析
解:
(1)先验分析,由设,利润与概率表为
P( )
i
d
i
j
d1d
1
d2
2
0.2 0.6 0.2
1
80
30 -20
20
20 20
2
3
E (d1 )=80×0.2+30×0.6+(-20) ×0.2=30万元;
E (d2 )=20万元。
运筹学:库存决策
Q
*
2C 3 R P ( ) C1 P R
2 * 1350* 260000* 600000 33868 45 * 0.24 * 340000
运筹学:库存决策
<习题4>
某报社为了扩大销售量,招聘了一大批固定零售售报员,为 了鼓励他们多卖报纸,报社采取的销售策略是:售报员每天 早上从报社设置的售报点以现金买进,每份0.35元,零售价 每份0.5元,利润归售报人所有,如果当天没有售完第二天早 上退还报社,报社按每份报纸0.1元退款,如果某人一个月 (按30天计算)累计订购了7000份,将获得150元的奖金。 某人应聘为售报员,开始他不知道每天应买进多少份报纸, 更不知道能否拿到奖金,报社发行部告诉他一个售报员以前 500天的售报统计数据如表: 问:(1)售报员每天应准备多少份报纸最佳,一个月的收益 的期望值多少? (2)他能否得到奖金,如果一定要得到奖金,一个月的收益 期望值是多少?
韩伯棠管理运筹学(第三版)第十六章层次分析法课件
层次分析法(Analytic Hierarchy Process,AHP):一种定性与定量相结合 的多准则决策方法,主要用于解决结构较为复杂、决策准则较多且不易量化的 决策问题。
02
它通过建立递阶层次结构,将决策问题分解为不同的组成因素,并根据因素间 的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次 的分析结构模型。
无法处理因素间的交互作用
层次分析法在处理因素间的交互作用方面存在局限性,难以全面考虑 复杂因素之间的相互影响。
对数据要求较高
层次分析法需要较为准确和全面的数据和信息作为决策依据,但在某 些情况下可能难以获取足够的数据和信息。
01
层次分析法的改进 与发展
对判断矩阵一致性的改进
判断矩阵一致性的概念
在层次分析法中,判断矩阵的一致性是指各 因素之间的相对重要性比较是否符合逻辑。 如果判断矩阵偏离一致性,就需要对其进行 调整。
在递阶层次结构中,根据因素间的相互关联影响以及隶属 关系将因素按不同的层次聚集组合,形成一个多层次的分 析结构模型。
层次分析法的应用场景
多目标决策
当决策问题包含多个相互矛盾的 目标时,层次分析法可以帮助决 策者确定各目标的优先级或对不 同目标进行权衡。
资源分配
在资源有限的情况下,层次分析 法可以用于确定不同任务或项目 的优先级,以实现资源的合理分 配。
灵活性高
层次分析法可以根据实际情况调整因素层次和权 重,具有较强的灵活性,能够适应不同的决策问 题。
缺点
主观性强
层次分析法中的权重赋值和判断矩阵的构造主要基于决策者的主观判 断,这可能导致结果受到决策者个人经验和知识水平的限制。
一致性检验繁琐
为了保证判断矩阵的一致性,需要进行繁琐的计算和检验,增加了决 策过程的复杂性和工作量。
运筹学优化问题和决策分析的方法
运筹学优化问题和决策分析的方法运筹学是一门应用数学学科,旨在通过建立数学模型来解决决策问题,并运用优化算法寻找最优解。
在现代社会中,运筹学的应用已经渗透到各个领域,包括供应链管理、物流规划、生产调度等。
本文将介绍运筹学中的优化问题和决策分析的方法。
一、优化问题的基本概念在运筹学中,优化问题是指在一定的约束条件下,寻找某个指标的最优解。
优化问题可以分为线性优化问题和非线性优化问题。
线性优化问题的目标函数和约束条件都是线性的,而非线性优化问题的目标函数和约束条件涉及非线性关系。
在解决优化问题时,通常会使用数学建模的方法。
首先,将实际问题抽象为数学模型,然后建立数学模型的目标函数和约束条件。
接下来,运用优化算法求解模型,得到最优解。
二、常用的优化算法1. 线性规划线性规划是指优化问题的目标函数和约束条件都是线性的情况。
线性规划常常可以用单纯形法来求解,该方法通过迭代计算,逐步逼近最优解。
2. 非线性规划非线性规划是指优化问题的目标函数和约束条件涉及非线性关系的情况。
在求解非线性规划问题时,可以使用梯度下降法、牛顿法等方法。
3. 整数规划整数规划是指优化问题的变量需要取整数值的情况。
整数规划问题通常更加复杂,可以使用分支定界法、割平面法等算法求解。
三、决策分析的方法决策分析是指运用数学建模和分析方法来帮助决策者做出最佳决策。
决策分析的方法包括多属性决策分析、决策树分析、动态规划等。
1. 多属性决策分析多属性决策分析是指在考虑多个决策指标的情况下,综合分析各个指标的权重和价值,从而做出最佳决策。
常用的多属性决策分析方法包括层次分析法、模糊综合评判法等。
2. 决策树分析决策树分析是一种通过构建决策树来辅助决策的方法。
决策树是一种具有树状结构的决策模型,通过分析各个决策路径上的概率和收益来进行决策。
3. 动态规划动态规划是一种递推和状态转移的方法,常用于求解多阶段决策问题。
动态规划将决策问题分解为一系列子问题,并通过逐步求解子问题来求解原问题的最优解。
运筹学决策分析
运筹学决策分析
决策分析的过程有以下3个阶段。 1. 画决策树 2. 网络计算 3. 检查最优路径与风险特征
PPT文档演模板
运筹学决策分析
1. 画决策树
E1
推出
D1
有利
推出
A 试验 C 0.5
放弃
20
0.5 D2
放弃
不利
推出
E2
PPT文档演模板
0.4 需求大 200 B 0.4 需求小 50
0.2 无需求 -150 0.72 需求大 200 0.24 需求小 50 0.04 无需求 -150
PPT文档演模板
运筹学决策分析
(决策) (事件) 需求数量
订购量
6 7 8 9 10 max
6 * 300 350 3100 1305 2300 20 7 * 2100 305 355 1350 1355 20
8
-4100 2150 400 450 1400 40
9
-6300 4-05 2200 405 455 60
PPT文档演模板
运筹学决策分析
与该产品相关的财务和概率数据显示在下表 中:
需求
损益
概率
(数量) 需求大 需求小 无市场
(万元) 200 50
-150
不试验 有利 不利 0.40 0.72 0.08 0.40 0.24 0.56 0.20 0.04 0.36
市场试验成本 = 20万元
PPT文档演模板
放弃 推出
E2
0
0 0.08 需求大 200 0.56 需求小 50 0.36 无需求
-150
0
运筹学决策分析
3. 检查最优路径与风险特征
风险特征可以汇总为表, 列出可能发生的全 部结果, 指出盈利与亏损的各种可能性, 检 查在EMV值后面是否隐藏着较大的亏损值:
运筹学课件决策分析
决策者从最不利的角度考虑问题,再从中选择其中最好的。
先选出每个方案在不同自然状态的最小收益值; 从最小收益值中选取一个最大值,对应方案为最优方案。
例1:P371 例2:某决策相关的决策收益表如下,用最大最小准则进行决策。
例1:某公司现需对某新产品生产批量作出决策,现有三种备选方案。S1:大批量生产;S2:中批量生产;S3:小批量生产。未来市场对这种产品的需求情况有两种可能发生的自然状态:N1:需求量大;N2:需求量小。经估计,采用某一行动方案而实际发生某一自然状态时,公司的收益如下表所示,请用最大最小准则作出决策。
S1
4 5 6 7
S2
2 4 6 9
S3
5 7 3 5
S4
3 5 6 8
S5
3 5 5 5
举例:
01
例1:P373 例2:某决策相关的决策收益表如下,用乐观系数准则进行决策。
01
Nj SijSi
自然状态
max
N1 N2 N3 N4
S1
4 5 6 7
6.4
S2
2 4 6 9
Nj SijSi
自然状态
期望值
N1 N2 N3 N4
S1
4 5 6 7
5.50
S2
2 4 6 9
5.25
S3
5 7 3 5
S5
3 5 5 5
Nj SijSi
自然状态
min
N1 N2 N3 N4
S1
4 5 6 7
S2
2 4 6 9
S3
OK
7
9
7
8
5
3.等可能性准则
决策者认为各自然状态发生的概率相等。
运筹学多属性决策分析
极大-极大型(maximax)
• 该方法只考虑每个方案中最好的属性值 ,然后选出好中之好者对应的方案作为 决策的结果,它反映了某些特定的决策 情形,譬如运动员的选拔问题在许多情 况下只关注运动员成绩最好的某个单项 技能而不在乎运动员在其它项目中的表 现和水准。为了体现这一思想,乐观型 决策的优先解由以下公式确定:
nw
m m
m
n
n
1 2
n
• 如果判断矩阵见是相容矩阵,由矩阵理 论可知,n是R的惟一非零的也是最大的 特征根,记为 ,而w是n所对应的特征 向量。如果判断矩阵正不完全具有相容 性,则上面的等式并不成立.但矩阵R 元素的微小变动则意味着根的微小变动 .故可先求解R最大特怔根 ,即求解以 下用行列式形式表示的方程组的最大解 且;
j
1, 2.....n?
• 折衷解(Compromise Solution):距离 理想解最近或距离反理想解最远或以某 种方式将二者结合在一起的可行解被称 为折衷解。
属性指标的量化与转换
1 语言类属性指标的量化 在多属性决策问题中,方案的属性值通常有定量和定性两种不同的表示形式。 为了便于对属性值进行必要的数学处理,普遍采用 MacCrimimon 提出的双向比例标 尺(Bipolar Scaling)将定性指标转换为定量指标。其标尺形式见 10-1
1 3 5 7 9 2,4,6,8 倒数
含义
属性 i 与属性 j 具有相等的重要程度 属性 i 比属性 j 略重要一些 属性 i 比属性 j 明显重要 属性 i 比属性 j 重要的多 属性 i 的重要性完全压倒属性 j 的重要性
介于以上比较之间 相反方向的比较值
运筹学第16章 决策分析
用 E(Si )表示第I方案的收益期望值
自然状态
行动方案
S1(大批量生产) S2(中批量生产) S3(小批量生产)
N1
(需求量大)
p = 1/2
30
20
10
N2
(需求量小)
p = 1/2
-6
-2
5
收益期望值 E (Si)
12(max) 9 7.5
8
§1 不确定情况下的决策
四、乐观系数(折衷)准则
• 决策者取乐观准则和悲观准则的折衷:
20
10
§1 不确定情况下的决策
• 某企业要投资一种新产品,投资方案有三个:S1、 S2、S3,不同经济形势下的利润如下表所示。请分 别用以下三种方法求最优决策方案:
• (1)最大最小准则; • (2)后悔值准则; • (3)乐观系数准则(取α=0.6)。
投资方案
不同经济形势
好
一般
差
S1
10
0
-1
第十六章 决策分析
第一节 不确定情况下的决策 第二节 风险型情况下的决策 第三节 效用理论在决策中的应用 第四节 层次分析法
1
第十六章 决策分析
“决策” 一词来源于英语 Decision making,直译为“做出决定”。所谓 决策,就是为了实现预定的目标在若 干可供选择的方案中,选出一个最佳 行动方案的过程,它是一门帮助人们 科学地决策的理论。
例:某公司需要对某新产品生产批量作出决策,各种批量在不同的自然状 态下的收益情况如下表(收益矩阵):
自然状态 N1(需求量大) N2(需求量小)
行动方案
S1(大批量生产)
30
-6
S2(中批量生产)
管理运筹学(决策分析)
34
期望值准则决策
投保情况下期望值=500*100%=500元
不投保情况下期望值=200万*0.0001=200元 根据期望值准则应该选择“不投保”
35
生存风险度计算公式
决策可能带来的最大损失 SD 致命损失
36
生存风险度决策方法
投保情况下:SD1=500元*20/200万=0.5% 不投保情况下:SD2=200万/200万=100% 根据生存风险度自然应该选择“投保”
(3)益损值:这是指决策活动中决策者可以采取不 同的策略,在不同的自然状态下所获得的收益或损失 值. 它是策略和状态的函数,也是决策活动的目标和 基础.
5
决策的分类
战略决策(高层决策)、战术决策(中层
决策)、操作决策(基本决策)
单目标决策、多目标决策
单阶段决策(一次决策)、多阶段决策 确定型决策、非确定型决策或风险型决策
(随机决策、模糊决策)
6
决策问题举例
我国是否需要计划生育?
7
决策问题举例(续)
时装的最佳产量决策问题:需求高则多
生产,需求低则少生产,但需求高低是
不确定的,到底是多产还是少产呢?
8
决策问题举例(续)
是否投保险、买彩票?
9
决策问题分类
确 定 型 风 险 型
不确定型
10
确定型决策
决策环境和决策结果都完全确
15
例 子 : 套 绳 问 题
16
套绳问题的启示
决策需尽可能多的了解决策环境,力争将 不确定型决策问题转化为风险型决策问题
,最好是能转化成确定型决策问题。
17
例子:套绳问题
三种选择: 1 2 不选
决策分析与运筹学
决策分析与运筹学一、引言决策是人们在生活中经常面临的问题,无论是个人还是组织,都要进行决策。
然而,由于信息的不对称、不确定性和复杂性,决策往往会带来巨大的风险。
因此,需要一种科学的方法来辅助我们进行决策,决策分析和运筹学应运而生。
二、决策分析决策分析是以信息、模型和计算为基础的一种决策方法。
它采用定量方法对决策进行分析和评估,从而使决策者获得更清晰的认识和更准确的预测。
常用的决策分析方法包括多属性决策分析、层次分析法和决策树等。
多属性决策分析指的是当决策对象存在多个属性时,通过对多个属性的评估,进行权重的确定,从而综合比较各选项的利弊。
它可以用于复杂的决策问题,如选址、投资决策等。
层次分析法是一种基于分级权重的决策分析方法,它通过构建决策层次结构和定量化各因素之间的重要性关系,实现了对决策对象的逐层分析和权重确定。
层次分析法常用于复杂的决策问题,如市场调研、供应链优化等。
决策树是一种决策分析的可视化方法,它通过构建一棵树形结构,使决策问题变得直观而易于理解。
决策树可以应用于分类、预测和优化等问题,如客户流失预测、电商平台推荐算法等。
三、运筹学运筹学是应用数学、统计学和计算机科学等工具和技术解决实际问题的一门学科。
它以最大化或最小化目标函数为目标,通过构建数学模型和优化算法,寻求最优解。
常用的运筹学方法包括线性规划、整数规划和蒙特卡罗模拟等。
线性规划是一种通过线性模型来寻找最优解的方法,在经济、管理和运输等领域得到广泛应用。
例如,用线性规划模型可以实现最小成本配送、最佳产量分配等。
整数规划是线性规划的扩展,它在目标函数、决策变量或限制条件上增加了整数条件。
整数规划可以用于很多特殊问题,如最佳固定资产重复购置决策、生产调度等。
蒙特卡罗模拟是一种通过模拟随机事件来获得概率分布的方法。
它可以应用于很多领域,如金融风险评估、自然灾害预测等。
四、应用案例决策分析和运筹学在实践中得到广泛的应用。
例如,智能制造领域中的生产调度问题,通过运筹学的方法,可以实现对机器和物料的优化排产,从而提高生产效率和减少成本。
管理科学与工程考研必备运筹学与决策分析题型解析
管理科学与工程考研必备运筹学与决策分析题型解析管理科学与工程考研必备:运筹学与决策分析题型解析运筹学与决策分析作为管理科学与工程领域中的重要学科,广泛应用于各种实际问题的分析与解决。
考研中,这一学科的题型也是必考内容之一。
在本文中,我们将对运筹学与决策分析的题型进行详细解析,帮助考生更好地应对考试。
一、线性规划题型线性规划是运筹学与决策分析中最基础的内容之一。
在考研中,常见的线性规划题型包括最大化问题、最小化问题和求解最优解等。
解决这类题目的关键在于建立数学模型和运用线性规划的相关理论与方法。
例如,某企业要决定生产两种产品A和B,其单价分别为10元/件和8元/件。
已知每天生产产品A需要人工2小时,材料1件,而生产产品B需要人工3小时,材料1件。
每日可用的人工总量为20小时,材料总量为15件。
企业的目标是最大化每日的总利润。
如何确定生产各种产品的数量以实现最大利润?请给出详细解答。
解析:首先,我们定义变量x和y分别表示产品A和产品B的数量。
目标函数可以表示为:最大化利润=10x + 8y。
约束条件为:2x + 3y ≤20和x + y ≤ 15。
在满足约束条件的前提下,求取目标函数的最大值。
二、整数规划题型整数规划是线性规划的一种扩展形式,要求变量的取值必须为整数。
在实际问题中,往往存在许多限制条件,这就需要考生在解题过程中综合运用线性规划和整数规划的方法。
例如,某工厂需要生产一种产品,并有3条生产线可供选择。
第一条生产线每天生产产品的数量不得多于100件;第二条生产线每天生产产品的数量不得多于200件;第三条生产线每天生产产品的数量不得多于150件。
工厂希望最大化每天的总产量。
请问该如何进行决策?解析:我们定义变量x1、x2和x3分别表示选择第一、二和三条生产线生产产品的数量。
目标函数可以表示为:最大化总产量=x1 + x2 +x3。
约束条件为:x1 ≤ 100、x2 ≤ 200和x3 ≤ 150。
决策分析(含答案)
精心整理决策分析复习题(请和本学期的大纲对照,答案供参考)第一章一、 选择题(单项选)1.1966年,R.A.Howard 在第四届国际运筹学会议上发表(C )一文,首次提出“决策分析”这一名词,用它来反映决策理论的应用。
A .C .2 A.C.3ABCD 4A.B.C.D.5A C.6A 7.A .决策8.管理的首要职能是(D )。
A .组织B.控制C.监督D.决策 9.管理者工作的实质是(C )。
A .计划B.组织C.决策D.控制 10.决策分析的基本特点是(C )。
A .系统性B.优选性C.未来性D.动态性二、判断题1.管理者工作的实质就是决策,管理者也常称为“决策者”。
(√)2.1944年,VonNeumann 和Morgenstern 从决策角度来研究统计分析方法,建立了贝叶斯(统计)决策理论。
(×) 3. 1960年美国着名管理学家西蒙(H.A.Simon )在他的着作《管理决策新科学》中,明确提出“管理就是决策”。
(√) 4. 决策的制定者就是决策的分析者。
(×)5.所谓定性分析是这样一种分析方式,它基于能刻画问题本质的数据和数量关系,建立能描述问题的目标、约束及其关系的数学模型,通过一种或多种数量方法,求出最好的解决方案。
(×)6.在随机型决策问题中,决策人无法控制的所有因素,即凡是能够引起决策问题的不确定性的因素,统称作自然状态。
(√)7.决策准则或选择标准,是决策者用来比较和选择方案衡量标准,是选择方案、作出最后决定、评价决策结果时的原则。
√8.1954年L.J.Savage出版了《对策理论与经济行为》一书,建立了现代效用理论。
现代效用理论已成为理性决策的基础理论。
(×)9.目前,世界上比较趋于一致的看法有两种,一种是由西蒙提出的“决策就是作决定”;另一种是由中国学者于光远提出的“管理就是决策”。
这两种截然不同的定义从不同角度深刻揭示了决策的基本内容。
运筹学中的优化问题与决策分析
运筹学中的优化问题与决策分析优化问题和决策分析是运筹学的核心内容之一。
通过运筹学的方法,可以在复杂的决策情境中找到最优解或最优策略,以达到最大利益或最小成本的目标。
本文将介绍运筹学中的优化问题和决策分析的基本概念、方法和应用。
一、优化问题的基本概念优化问题是指在给定的一组限制条件下,寻找使目标函数取得最大值或最小值的变量取值。
在运筹学中,通常将优化问题分为线性优化问题和非线性优化问题两种。
1. 线性优化问题线性优化问题的目标函数和约束条件都是线性的,即可以表示为一次函数的形式。
线性优化问题有着广泛的应用,如生产计划、资源分配等。
常见的线性优化问题包括线性规划、整数规划和网络流问题等。
2. 非线性优化问题非线性优化问题的目标函数和约束条件中存在非线性项,求解非线性优化问题通常比较复杂。
非线性优化问题的应用领域包括经济学、工程学、生物学等。
常见的非线性优化问题有最优化、最优控制等。
二、决策分析的基本概念决策分析是指通过对问题的分析和评估,选择出符合实际需要且最有利于实现目标的决策方案。
决策分析的核心在于确定决策变量、评估目标和制定约束条件。
1. 决策变量决策变量是指在决策分析中可以被调整的变量,通过调整决策变量可以影响决策方案的结果。
决策变量的选择对于决策分析的准确性和有效性至关重要。
2. 评估目标评估目标是对决策方案进行衡量和比较的标准。
在决策分析中,常常会涉及到多个评估目标,需要通过综合考虑来确定最终的决策方案。
3. 约束条件约束条件是指决策方案在实施过程中要满足的限制条件。
约束条件可以是资源的限制、技术的要求等,根据具体情况来确定。
三、优化问题与决策分析的关系优化问题和决策分析有着密切的联系。
优化问题可以作为决策分析的一种方法,通过求解优化问题来得到最优的决策方案。
1. 决策变量与优化变量在决策分析中,决策变量是决策方案中可以调整的变量。
而在优化问题中,优化变量即为优化问题中需要确定的变量。
决策变量可以作为优化变量,通过求解优化问题得到最优解,从而得到最优的决策方案。
管理运筹学 第3版 韩伯棠 高教社 课后答案
第四章 线性规划在工商管理中的应用 作业:P57-58,Q2,Q3 Q2:某快餐店座落在一个旅游景点中。该景点远离市区,平时顾客不多,而在每个周六顾客猛增。该店主要为顾客 提供低价位的快餐服务。该店雇佣 2 名正式工,每天工作 8 小时。其余工作由临时工担任,临时工每天工作 4 小时。 周六营业时间 11:00a.m-22:00p.m。根据就餐情况,在周六每个营业小时所需的职工数如表(包括正式工和临时工) 。 已知一名正式工从 11 点上班,工作 4 小时后休息 1 小时,而后在工作 4 小时。另外一名正式工 13 点上班,工作 4 小时后,休息 1 小时,在工作 4 小时。又知临时工每小时工资 4 元。 时间 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 所需职工数 9 9 9 3 3 3 时间 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 所需职工数 6 12 12 7 7
(1) 、满足对职工需求的条件下,如何安排临时工的班次,使得临时工成本最小。 (2) 、这时付给临时工的工资总额是多少,一共需要安排多少临时工班次。请用剩余变量来说明应该安排一些临时
6
工的 3 小时工作时间的班次,可使得总成本更小。 (3) 、如果临时工每班工作时间可以是 3 小时,也可以是 4 小时,那么如何安排临时工的班次,使得临时工总成本 最小。这样比(1)节省多少费用,这时要安排多少临时工班次。 解题如下: (1)临时工的工作时间为 4 小时,正式工的工作时间也是 4 小时,则第五个小时需要新招人员,临时工只要招用,无 论工作多长时间,都按照 4 小时给予工资。每位临时工招用以后,就需要支付 16 元工资。从上午 11 时到晚上 10 时共计 11 个班次,则设 Xi(i =1,2,…,11)个班次招用的临时工数量,如下为最小成本: minf=16(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11) 两位正式工一个在 11-15 点上班,在 15-16 点休息,然后在 16-20 点上班。另外一个在 13-17 点上班,在 17 -18 点休息,18-22 点上班。则各项约束条件如下: X1+1>=9 X1+X2+1>=9 X1+X2+X3+2>=9 X1+X2+X3+X4+2>=3 X2+X3+X4+X5+1>=3 X3+X4+X5+X6+2>=3 X4+X5+X6+X7+2>=6 X5+X6+X7+X8+1>=12 X6+X7+X8+X9+2>=12 X7+X8+X9+X10+1>=7 X8+X9+X10+X11+1>=7 Xi>=0(i=1,2,…,11) 运用计算机解题,结果输出如下; **********************最优解如下************************* 目标函数最优值为 : 320 变量 最优解 -------------x1 8 x2 0 x3 1 x4 0 x5 1 x6 4 x7 0 x8 6 x9 0 x10 0 x11 0 目标函数最优值为 : 320 这时候临时工的安排为: 变量 班次 临时工班次 -------------x1 8 x2 0 x3 1 x4 0
运筹学课后习题答案第六版
运筹学课后习题答案第六版运筹学是一门应用数学学科,旨在研究如何在有限资源和约束条件下做出最佳决策。
它涉及到决策分析、优化理论、线性规划、整数规划、动态规划等多个领域。
在学习运筹学的过程中,课后习题是巩固知识和提高能力的重要途径。
本文将为大家提供《运筹学课后习题答案第六版》的相关内容。
第一章:决策分析决策分析是运筹学的基础,它主要涉及到决策的目标、决策的环境、决策的准则等方面。
在第一章的习题中,我们需要运用决策树、决策表、决策矩阵等方法来解决实际问题。
比如,一个公司需要决策是否要进军某个新市场,我们可以通过绘制决策树来分析各种可能的结果和概率,从而选择最佳的决策。
第二章:线性规划线性规划是运筹学中的重要工具,它主要涉及到线性目标函数和线性约束条件的最优化问题。
在第二章的习题中,我们需要运用单纯形法、对偶理论等方法来求解线性规划问题。
比如,一个工厂需要决策如何分配有限的资源以最大化利润,我们可以建立一个线性规划模型,然后通过单纯形法来求解最优解。
第三章:整数规划整数规划是线性规划的扩展,它主要涉及到目标函数和约束条件都是整数的最优化问题。
在第三章的习题中,我们需要运用分支定界法、割平面法等方法来求解整数规划问题。
比如,一个物流公司需要决策如何安排货物的配送路线以最小化成本,我们可以建立一个整数规划模型,然后通过分支定界法来求解最优解。
第四章:动态规划动态规划是一种用来解决多阶段决策问题的方法,它主要涉及到状态转移方程和最优子结构的求解。
在第四章的习题中,我们需要运用贝尔曼方程、最短路径算法等方法来求解动态规划问题。
比如,一个投资者需要决策在不同时间点买入和卖出股票以最大化收益,我们可以建立一个动态规划模型,然后通过贝尔曼方程来求解最优解。
第五章:网络优化网络优化是一种用来解决网络流问题的方法,它主要涉及到网络的建模和最大流最小割定理的求解。
在第五章的习题中,我们需要运用最大流算法、最小割算法等方法来求解网络优化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j 1
k 1 , 2 (, ).
再用贝叶斯公式计算
P ( N I ) j k P ( N I ) j 1 , 2 , m , k 1 , 2 . j k P ( I ) k P (AB ) 乘法公式 条件概率的定义: P (BA ) P ( AB ) P ( A ) P ( B A ) P (A )
N 2
-6 -2 5
p = 1/2
p = 1/2
收 益 期 望 值 E(Si)
12(m ax) 9 7.5
8
§1 不确定情况下的决策
四、乐观系数(折衷)准则(Hurwicz胡魏兹准则)
决策者取乐观准则和悲观准则的折衷:
先确定一个乐观系数 (01),然后计算: CVi = 案。 max [(Si, Nj)] 取 = 0.7 +(1- )min [(Si, Nj)]
自然状态 行动方案
N1(需求量大) N2(需求量小)
S1(大批量生产) S2(中批量生产) S3(小批量生产)
30 20 10
-6 -2 5
5
§1 不确定情况下的决策
一、最大最小准则(悲观准则)
• 决策者从最不利的角度去考虑问题:
先选出每个方案在不同自然状态下的最小收益值(最保险), 然后从这些最小收益值中取最大的,从而确定行动方案。 用(Si, Nj)表示收益值
从这些折衷标准收益值CVi中选取最大的,从而确定行动方
自 然 状态 行 动 方 案
S ( 大 批 量 生 产 ) 1 S ( 中 批 量 生 产 ) 2 S ( 小 批 量 生 产 ) 3
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
3 0 2 0 1 0
N 2
-6 -2 5
C V i
1 9 .2 (m a x ) 1 3 .4 8 .5
自 然 状态 行 动 方 案
S ( 大 批 量 生 产 ) 1 S ( 中 批 量 生 产 ) 2 S ( 小 批 量 生 产 ) 3
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
3 0 2 0 1 0
N 2
-6 -2 5
1j 2
M in[ (S i,N j)]
-6 -2 5 (m a x )
EVWPI = 0.3*30 + 0.7*5 = 12.5万
那么, EVPI = EVWPI - EVW0PI = 12.5 - 6.5 = 6万 即这个全情报价值为6万。当获得这个全情报需要的成本小于6
万时,决策者应该对取得全情报投资,否则不应投资。
注:一般“全”情报仍然存在可靠性问题。 17
§2 风险型情况下的决策
二、期望值准则 • 根据各自然状态发生的概率,求不同方案的期望收益值,取其 中最大者为选择的方案。 E(Si) = P(Nj) (Si,Nj)
自 然 状态 行 动 方 案
S1( 大 批 量 生 产 ) S2( 中 批 量 生 产 ) S3( 小 批 量 生 产 )
( 需 求 量 大 ) ( 需 求 量 小 )
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
3 0 2 0 1 0
N 2
-6 -2 5
M a x[ (S i,N j)]
1j 2
3 0 (m a x ) 2 0 1 0
7
§1 不确定情况下的决策
三、等可能性准则 ( Laplace准则 ) 决策者把各自然状态发生的机会看成是等可能的:
16
§2 风险型情况下的决策
五、全情报的价值(EVPI)
•全情报:关于自然状况的确切消息。
在前例,当我们不掌握全情报时得到 S3 是最优方案,数学期 望最大值为 0.3*10 + 0.7*5 = 6.5万 记为 EVW0PI。
若得到全情报:当知道自然状态为N1时,决策者必采取方案S1,
可获得收益30万,概率0.3;当知道自然状态为N2时,决策者必采 取方案S3,可获得收益5万, 概率0.7。于是,全情报的期望收益为
自 然 状态 行 动 方 案
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
N 2
1j 2
M a x a ij'
1 1 1 0(m in ) 2 0
10
想 值 ) S ( 大 批 量 生 产 ) 0(30,理 1 0(30-20) S ( 中 批 量 生 产 ) 1 2 0(30-10) S ( 小 批 量 生 产 ) 2 3
设每个自然状态发生的概率为 1/事件数 ,然后计算各行动方
案的收益期望值。 用 E(Si )表示第I方案的收益期望值
自 然 状态 行 动 方 案
S 大 批 量 生 产 ) 1( S 中 批 量 生 产 ) 2( S 小 批 量 生 产 ) 3(
( 需 求 量 大 ) ( 需 求 量 小 )
N 1
30 20 10
风 险 型 决 策 问 题
• 在决策环境不确定的条件下进行,决策者对各自然状态发生的概率 可以预先估计或计算出来。
3
第十六章 决策分析
构成决策问题的四个要素: 决策目标、行动方案、自然状态、效益值 行动方案集: A = { s1, s2, 自然状态集: N = { n1, n2, 效益(函数)值:v = ( si, 自然状态发生的概率P=P(sj) …, sm } …, nk } nj ) j =1, 2, …, m
9
§1 不确定情况下的决策
五、后悔值准则(Savage 沙万奇准则) • 决策者从后悔的角度去考虑问题:
把在不同自然状态下的最大收益值作为理想目标,把各方案的
收益值与这个最大收益值的差称为未达到理想目标的后悔值,然后 从各方案最大后悔值中取最小者,从而确定行动方案。 用aij’表示后悔值,构造后悔值矩阵:
S1( 大 批 量 生 产 ) S2( 中 批 量 生 产 ) S3( 小 批 量 生 产 )
( 需 求 量 大 ) ( 需 求 量 小 )
N1
30 20 10
N2
-6 -2 5
概 率 最 大 的 自 然 状 态N 2
-6 -2 5 (m ax)
11
p(N1) = 0.3 p(N2) = 0.7
§2 风险型情况下的决策
6
§1 不确定情况下的决策
二、最大最大准则(乐观准则) • 决策者从最有利的角度去考虑问题:
先选出每个方案在不同自然状态下的最大收益值(最乐观),
然后从这些最大收益值中取最大的,从而确定行动方案。 用(Si, Nj)表示收益值
自 然 状态 行 动 方 案
S ( 大 批 量 生 产 ) 1 S ( 中 批 量 生 产 ) 2 S ( 小 批 量 生 产 ) 3
13
§2 风险型情况下的决策
前例 根据下图说明S3是最优方案,收益期望值为6.5。
4.8
大批量生产 N1( 需求量大 );P(N1) = 0.3 N2( 需求量小 );P(N2) = 0.7 N1( 需求量大 );P(N1) = 0.3 N2( 需求量小 );P(N2) = 0.7 N1( 需求量大 );P(N1) = 0.3 N2( 需求量小 );P(N2) = 0.7
1 1[5-(-6)] 7[5-(-2)] 0(5,理 想 值 )
§2 风险型情况下的决策
特征:1、自然状态已知;2、各方案在不同自然状态下的收益 值已知;3、自然状态发生的概率分布已知。
一、最大可能准则
在一次或极少数几次的决策中,取概率最大的自然状态,按照 确定型问题进行讨论。
自 然 状态 行 动 方 案
取 S3 取 S1
E(S1) E(S2) E(S3)
0
0.35
1
p
15
§2 风险型情况下的决策
在实际工作中,如果状态概率、收益值在其可
能发生的变化的范围内变化时,最优方案保持不变,
则这个方案是比较稳定的。反之如果参数稍有变化 时,最优方案就有变化,则这个方案就不稳定的, 需要我们作进一步的分析。就自然状态N1的概率而 言,当其概率值越远离转折概率,则其相应的最优 方案就越稳定;反之,就越不稳定。
N2 -6 -2 5
I2 P(I2 /N1)=0.2 P(I2 /N2)=0.9
我们该如何用样本情报进行决策呢? 如果样本情报要价3万元,决策是否要使 用这样的情报呢?
19
§2 风险型情况下的决策
N1:市场需求大;P(N1/I1)
S1:大批量
△ 30 △ -6 △ 20 △ -2 △ 10 △ 5
18
§2 风险型情况下的决策
现在该公司欲委托一个咨询公司作 某公司现有三种备选行动方案。S1: 市场调查。咨询公司调查的结果也有两 大批量生产; S2 :中批量生产; S3 : 种, I1 :需求量大; I2 :需求量小。并 小批量生产。未来市场对这种产品需求 且根据该咨询公司积累的资料统计得知, 情况有两种可能发生的自然状态。N1 : 当市场需求量已知时,咨询公司调查结 需求量大; N :需求量小,且N 的发 论的条件概率如下表所示:
2
第十六章 决策分析
决策的分类:
• • • • 按决策问题的重要性分类 按决策问题出现的重复程度分类 按决策问题的定量分析和定性分析分类 按决策问题的自然状态发生分类:
确 定 型 决 策 问 题
• 在决策环境完全确定的条件下进行。
不 确 定 型 决 策 问 题
• 在决策环境不确定的条件下进行,决策者对各自然状态发生的概率 一无所知。
4
N2:市场需求小;P(N2/I1) N1:市场需求大;P(N1/I1)
当用决策树求解该 问题时,首先将该问题 的决策树绘制出来,如 图16-3。 为了利用决策树求 解,由决策树可知,我 们需要知道咨询公司调 查结论的概率和在咨询 公司调查结论已知时,作 为自然状态的市场需求 量的条件概率。