图形的平移练习题doc资料
图形的平移和旋转基础题(含答案解析)版
图形的平移和旋转一.选择题(共15小题)1.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°2.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.423.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°4.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣17.如图,已知?ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°8.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O 按顺时针方向旋转到△CBE的位置,则旋转角为()A.30° B.45° C.60° D.90°10.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.11.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30° B.35° C.40° D.45°12.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长13.下列图形中,是中心对称图形的为()A. B. C.D.14.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)15.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°二.填空题(共6小题)16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.17.若点(a,1)与(﹣2,b)关于原点对称,则a b= .18.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE= .19.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .20.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.21.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .三.解答题(共6小题)22.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF 相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.23.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为,点B关于x轴的对称点B′的坐标为,点C关于y轴的对称点C的坐标为.(2)求(1)中的△A′B′C′的面积.24.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.25.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).26.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.27.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.图形的平移和旋转基础题教师版参考答案与试题解析一.选择题(共15小题)1.(2015?德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.【点评】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.2.(2015?镇海区模拟)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.42【考点】平移的性质.【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC=S梯形ABEO,根据梯形的面积公式即可求解.【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=48.故选:A.【点评】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO的面积相等是解题的关键.3.(2015?哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.4.(2015?贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.【解答】解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5∴点M(m,n)在第一象限,故选A.【点评】本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.5.(2014?呼伦贝尔)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】坐标与图形变化-平移.【分析】先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.【解答】解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为(1,﹣3),故点在第四象限.故选D.【点评】本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(2015?枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣1【考点】旋转的性质.【专题】压轴题.【分析】连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.【解答】解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1O D=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD?AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:D.【点评】本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,正确的作出辅助线是解题的关键.7.(2015?天津)如图,已知?ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°【考点】旋转的性质;平行四边形的性质.【分析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.【点评】本题主要考查了平行四边形的性质,三角形内角和定理及推论,旋转的性质,此题难度不大,关键是能综合运用以上知识点求出∠DA′B和∠BA′E′.8.(2014?自贡)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.(2015?巴彦淖尔)如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为()A.30° B.45° C.60° D.90°【考点】旋转的性质.【专题】计算题.【分析】由题意得到D对应点为C,连接OC,OD,∠DOC即为旋转角,利用正方形性质求出即可.【解答】解:∵正方形ABCD,O为正方形的中心,∴OD=OC,OD⊥OC,∴∠DOC=90°,由题意得到D对应点为C,连接OC,OD,∠DOC即为旋转角,则将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,旋转角为90°,故选D.【点评】此题考查了旋转的性质,熟练掌握旋转的性质是解本题的关键.10.(2015?龙岩)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.(2015?东西湖区校级模拟)如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30° B.35° C.40° D.45°【考点】旋转的性质.【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA′+∠A′=∠B′BC=45°+25°=70°,以及∠BB′C=∠B′BC=70°,再利用三角形内角和定理得出∠ACA′=∠A′BA=40°.【解答】解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC,∴∠ACA′=∠A′BA=40°.故选:C.【点评】此题主要考查了旋转的性质以及三角形的外角的性质和三角形内角和定理等知识,根据已知得出∠ACA′=40°是解题关键.12.(2014?邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长【考点】生活中的平移现象.【专题】操作型.【分析】分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.【解答】解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.【点评】此题主要考查了生活中的平移现象,得出各图形中铁丝的长是解题关键.13.(2015?甘孜州)下列图形中,是中心对称图形的为()A. B. C.D.【考点】中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故A错误;B、不是轴对称图形,是中心对称图形.故B正确;C、是轴对称图形,不是中心对称图形.故C错误;D、是轴对称图形,不是中心对称图形.故D错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.(2015?随州)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.【解答】解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选:C.【点评】本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.15.(2014?南昌)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【考点】旋转的性质;平移的性质.【分析】利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.【解答】解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选:B.【点评】此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.二.填空题(共6小题)16.(2015?福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1 .【考点】旋转的性质;全等三角形的判定与性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM?sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM?sin60°=,∴BM=BO+OM=1+,故答案为:1+.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.17.(2015?西宁)若点(a,1)与(﹣2,b)关于原点对称,则a b= .【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.18.(2015?湘潭)如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE= 3 .【考点】旋转的性质.【分析】根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=3即可.【解答】解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=3.故答案为:3.【点评】本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.19.(2015?扬州)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= 5 .【考点】旋转的性质.【分析】根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,由点F是DE的中点,可求出EG、GF,因为AE=AC﹣EC=2,可求出AG,然后运用勾股定理求出AF.【解答】解:作FG⊥AC,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F是DE的中点,∴FG∥CD∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.【点评】本题主要考查了旋转的性质、三角形中位线性质、勾股定理的综合运用,作垂线构造直角三角形是解决问题的关键.20.(2015?吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为42 cm.【考点】旋转的性质.【专题】压轴题.【分析】根据将△ABC绕点B顺时针旋转60°,得到△BDE,可得△ABC≌△BDE,∠CBD=60°,BD=BC=12cm,从而得到△BCD为等边三角形,得到CD=BC=CD=12cm,在Rt△ACB中,利用勾股定理得到AB=13,所以△ACF与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD,即可解答.【解答】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.【点评】本题考查了旋转的性质,解决本题的关键是由旋转得到相等的边.21.(2015?沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA 交GF于点K.若正方形ABCD边长为,则AK= 2﹣3 .【考点】旋转的性质.【专题】压轴题.【分析】连接BH,由正方形的性质得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL证明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH=∠ABE=30°,AH=EH,由三角函数求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.【解答】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB?tan∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.【点评】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、三角函数;熟练掌握旋转的性质和正方形的性质,并能进行推理计算是解决问题的关键.三.解答题(共6小题)22.(2015?湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【考点】旋转的性质;勾股定理;菱形的性质.【专题】计算题;证明题.【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=A B=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.23.(2013?南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.【考点】关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标.【分析】(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.【解答】解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C′的坐标为(1,0).故答案为:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=A′C′?B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.【点评】本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.24.(2015?新泰市校级模拟)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点 A ,旋转角度是90 度;(2)若连结EF,则△AEF是等腰直角三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.【考点】旋转的性质.【分析】(1)根据旋转变换的定义,即可解决问题.(2))根据旋转变换的定义,即可解决问题.(3)根据旋转变换的定义得到△ADE≌△ABF,进而得到S四边形AECF=S正方形ABCD=25,求出AD的长度,即可解决问题.【解答】解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.故答案为A、90.(2)由题意得:AF=AE,∠EAF=90°,∴△AEF为等腰直角三角形.故答案为等腰直角.(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,而∠D=90°,DE=2,∴.【点评】该题主要考查了旋转变换的性质、正方形的性质、勾股定理等几何知识点及其应用问题;解题的关键是牢固掌握旋转变换的性质、正方形的性质、勾股定理等几何知识,这是灵活运用、解题的基础和关键.25.(2015?昆明)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).【考点】作图-旋转变换;弧长的计算;作图-轴对称变换.【专题】作图题.【分析】(1)利用关于x轴对称点的横坐标相等,纵坐标化为相反数可先找出点A1、B1、C1的坐标,然后画出图形即可;(2)利用旋转的性质可确定出点A2、C2的坐标;(3)利用弧长公式进行计算即可.【解答】解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),如图下图:连接A1、B1、C1即可得到△A1B1C1.(2)如图:(3)由两点间的距离公式可知:BC=,∴点C旋转到C2点的路径长=.【点评】本题主要考查的是图形的对称、图形的旋转以及扇形的弧长公式,掌握相关性质是解题的关键.26.(2015?桂林)如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)如图,画出△ABC向左平移3个单位后的△A1B1C1;(2)如图,画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC扫过的面积即为扇形AOA2的面积减去扇形COC2的面积,求出即可.【解答】解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C2为所求的三角形;(3)在(2)的条件下,AC边扫过的面积S=﹣=5π﹣=.故答案为:.【点评】此题考查了作图﹣旋转变换,平移变换,以及扇形面积公式,作出正确的图形是解本题的关键.27.(2015?贵港)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.【考点】作图-旋转变换;两条直线相交或平行问题;作图-平移变换.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据旋转角度,旋转方向,分别找到A、B、C的对应点,顺次连接可得△A2B2C2;(3)由图形可知交点坐标;【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由图形可知:交点坐标为(﹣1,﹣4).【点评】此题主要考查了平移变换以及旋转变换,得出对应点位置是解题关键.。
平移与旋转练习题
平移与旋转练习题一、选择题1. 平移变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置2. 旋转变换不改变图形的:A. 形状B. 大小C. 方向D. 颜色3. 平移后的图形与原图形:A. 形状不同B. 大小不同C. 位置相同D. 位置不同4. 旋转后的图形与原图形:A. 方向相同B. 方向不同C. 形状相同D. 形状不同5. 一个图形进行平移后,下列说法正确的是:A. 图形的面积不变B. 图形的周长不变C. 图形的对称性改变D. 图形的旋转角度改变二、填空题6. 平移是将一个图形整体沿某一直线方向移动,图形的________不变。
7. 旋转是将一个图形绕一点按一定角度进行旋转,图形的________不变。
8. 平移后图形的位置发生变化,但图形的________和________都不变。
9. 旋转后图形的方向发生变化,但图形的________和________都不变。
10. 若一个图形绕原点顺时针旋转90°,则图形的________发生了变化。
三、判断题11. 平移和旋转都是图形变换的一种形式。
()12. 平移后的图形与原图形全等。
()13. 旋转后的图形与原图形相似。
()14. 平移和旋转都不改变图形的形状和大小。
()15. 旋转变换可以改变图形的位置。
()四、简答题16. 描述平移变换和旋转变换的区别。
17. 举例说明如何通过平移变换改变一个正方形的位置。
18. 举例说明如何通过旋转变换改变一个等边三角形的方向。
五、计算题19. 如图所示,一个长方形ABCD的长为5厘米,宽为3厘米,若将长方形沿x轴正方向平移2厘米,求平移后长方形A'B'C'D'的四个顶点坐标。
20. 如图所示,一个圆心在原点的圆,半径为4厘米,若将该圆绕原点顺时针旋转30°,求旋转后圆上任意一点P(x, y)的新坐标。
六、应用题21. 某工厂的机器需要进行位置调整,原位置为(2, 3),需要将其平移至新位置(5, 6),请计算平移的距离和方向。
小学数学平移练习题
小学数学平移练习题练习题一:图形平移1. 小明用方格纸做了一个图形,如图所示。
请你将这个图形向右平移两个单位,并用方格纸绘制平移后的图形。
2. 用已知线段作为边,分别绘制一个正方形、一个长方形和一个菱形。
然后将这些图形分别向下平移三个单位,并用方格纸绘制平移后的图形。
3. 小红用三角尺绘制了一个直角三角形ABC,其中∠ABC为直角。
请你将这个三角形向左平移四个单位,并用三角尺绘制平移后的三角形。
练习题二:图形的翻转1. 小明用方格纸做了一个图形,如图所示。
请你将这个图形以原点为对称中心进行翻转,并用方格纸绘制翻转后的图形。
2. 用已知线段作为边,分别绘制一个正方形、一个长方形和一个菱形。
然后将这些图形以原点为对称中心进行翻转,并用方格纸绘制翻转后的图形。
3. 小红用三角尺绘制了一个等腰直角三角形,其中∠ABC为直角,AB=BC。
请你将这个三角形以AB为对称轴进行翻转,并用三角尺绘制翻转后的三角形。
练习题三:图形的旋转1. 小明用方格纸做了一个图形,如图所示。
请你将这个图形以原点为中心逆时针旋转90°,并用方格纸绘制旋转后的图形。
2. 用已知线段作为边,分别绘制一个正方形、一个长方形和一个菱形。
然后将这些图形以原点为中心逆时针旋转180°,并用方格纸绘制旋转后的图形。
3. 小红用三角尺绘制了一个等边三角形ABC。
请你将这个三角形以顶点B为中心逆时针旋转60°,并用三角尺绘制旋转后的三角形。
练习题四:坐标系中的平移1. 在坐标系中,点A(-3, 2)、B(-1, 5)、C(0, -1)、D(-4, -3)分别表示平面上的四个点。
请你将这些点向右平移5个单位,并写出平移后的坐标。
2. 在坐标系中,点E(2, 1)、F(4, -3)、G(5, 0)、H(1, -2)分别表示平面上的四个点。
请你将这些点向左平移3个单位,并写出平移后的坐标。
3. 在坐标系中,点I(0, 3)、J(2, 0)、K(3, 1)、L(-1, -2)分别表示平面上的四个点。
图形平移练习题二年级
图形平移练习题二年级一、选择题1. 平移图形时,图形的哪个属性不会改变?A. 形状B. 面积C. 位置D. 颜色2. 下列哪个操作不是平移?A. 将一个正方形向右移动3格B. 将一个圆形向上旋转90度C. 将一个三角形向下移动5格D. 将一个长方形向左移动2格3. 平移图形时,图形的哪个属性会改变?A. 形状B. 面积C. 位置D. 颜色二、填空题4. 平移图形时,图形的______和______不会改变。
5. 如果一个图形向右平移了5个单位,那么它的______坐标会增加5,而______坐标保持不变。
6. 平移图形时,图形的______属性会改变。
三、判断题7. 平移图形时,图形的大小会发生变化。
()8. 一个图形向上平移后,它的水平位置会发生变化。
()9. 平移图形时,图形的方向不会改变。
()四、简答题10. 解释什么是图形的平移,并给出一个平移的例子。
五、操作题11. 假设有一个正方形,它的左上角坐标是(2,3),请将它向右平移3个单位,向上平移2个单位,写出平移后的坐标。
六、图形题12. 下面是一个由点A(1,2), B(3,2), C(3,4), D(1,4)组成的正方形,请画出这个正方形向右平移5个单位后的图形。
七、应用题13. 小明有一个长方形的花园,长是10米,宽是5米。
他想要将整个花园向右平移3米,然后再向上平移2米。
请描述平移后的花园的左下角和右上角的坐标。
八、拓展题14. 如果一个图形在平面直角坐标系中进行了平移,那么它的顶点坐标会如何变化?请给出一个具体的平移例子,并计算出平移后的顶点坐标。
九、综合题15. 有一个由点E(-1,-1), F(1,-1), G(1,1), H(-1,1)组成的平行四边形。
请画出这个平行四边形向左平移4个单位,向上平移3个单位后的图形。
十、探究题16. 平移图形在实际生活中有哪些应用?请举出至少两个例子,并简要说明。
请注意,以上题目为练习题,旨在帮助二年级学生理解图形平移的概念和操作。
图形的平移测试卷(含答案)
7.3 图形的平移一.选择题(共13 小题)1.已知直线a∥ b∥ c, a 与 b 的距离为 5cm,b 与 c 的距离为 2cm,则 a 与 c 的距离是()A . 3cmB . 7cm C. 3cm 或 7cm D.以上都不对2.如图,在6× 6 方格中有两个涂有阴影的图形M、 N,①中的图形M 平移后位置如②所示,以下对图形M 的平移方法叙述正确的是()A .向右平移 2 个单位,向下平移 3 个单位B.向右平移 1 个单位,向下平移 3 个单位C.向右平移 1 个单位,向下平移 4 个单位D.向右平移 2 个单位,向下平移 4 个单位3.如图,将△ ABE 向右平移 2cm 得到△ DCF ,如果△ ABE 的周长是 16cm,那么四边形ABFD 的周长是()A . 16cmB . 18cm C. 20cmD . 21cm4.如图,△ABC 沿着由点 B 到点 E 的方向,平移到△ DEF ,已知 BC= 5.EC= 3,那么平移的距离为()A. 2B.3C.5D.75.如图,将直线l1沿着 AB 的方向平移得到直线l 2,若∠ 1= 50°,则∠ 2 的度数是()A. 40° B.50° C.90° D.130°6.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.7.下列各网格中的图形是用其图形中的一部分平移得到的是()1A.B.C.D.8.如图,在10× 6 的网格中,每个小方格的边长都是 1 个单位,将△ABC 平移到△ DEF 的位置,下面正确的平移步骤是()A .先把△ ABC 向左平移 5个单位,再向下平移 2 个单位B.先把△ ABC 向右平移5个单位,再向下平移 2 个单位C.先把△ ABC 向左平移5个单位,再向上平移 2 个单位D.先把△ ABC 向右平移 5个单位,再向上平移 2 个单位9.如图,将△ ABC 沿 BC 方向平移 2cm 得到△ DEF ,若△ ABC 的周长为16cm,则四边形 ABFD 的周长为()A . 16cmB . 18cm C. 20cmD . 22cm10.如图,在5× 5 方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是()A .先向下平移 3 格,再向右平移 1 格B.先向下平移 2 格,再向右平移 1 格C.先向下平移 2 格,再向右平移 2 格D.先向下平移 3 格,再向右平移 2 格211.如图,在Rt△ ABC 中,∠ BAC= 90°,AB=3, AC= 4,将△ ABC 沿直线 BC 向右平移 2.5 个单位得到△ DEF ,连接 AD, AE,则下列结论中不成立的是()A . AD∥BE ,AD= BEB .∠ ABE=∠ DEFC. ED⊥AC D.△ ADE 为等边三角形12.如图,把边长为 2 的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()A. 18 B.16 C.12 D.813. 4 根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()A.B.C.D.二.填空题(共11 小题)14.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=.15.如图,△ ABC 中, AB= AC, BC= 12cm,点 D 在 AC 上, DC= 4cm.将线段 DC 沿着 CB 的方向平移7cm 得到线段EF,点 E, F 分别落在边AB, BC 上,则△ EBF 的周长为cm.16.如图,△ ABC 中, BC= 5cm,将△ ABC 沿 BC 方向平移至△A′B′C′的对应位置时,A′B′恰好经过 AC 的3中点 O,则△ ABC 平移的距离为cm.17.如图,面积为 6 的平行四边形纸片ABCD 中, AB= 3,∠ BAD = 45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD 剪开,得到△ ABD 和△ BCD 纸片,再将△ ABD 纸片沿AE 剪开( E 为 BD 上任意一点),得到△ ABE 和△ ADE 纸片;第二步:如图②,将△ABE 纸片平移至△ DCF 处,将△ ADE 纸片平移至△ BCG 处;第三步:如图③,将△DCF 纸片翻转过来使其背面朝上置于△PQM 处(边 PQ 与 DC 重合,△ PQM 和△DCF 在 DC 同侧),将△ BCG 纸片翻转过来使其背面朝上置于△PRN 处,(边 PR 与 BC 重合,△ PRN 和△BCG 在 BC 同侧).则由纸片拼成的五边形PMQRN 中,对角线 MN 长度的最小值为.18.如图,将周长为8 的△ ABC 沿 BC 方向向右平移 1 个单位得到△ DEF ,则四边形 ABFD 的周长为.19.如图,在△ABC 中, AB= 4, BC= 6,∠ B=60°,将△ ABC 沿射线 BC 的方向平移 2 个单位后,得到△ A′B′C′,连接 A′C,则△ A′B′C 的周长为.420.如图,将面积为 5 的△ ABC 沿 BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为.21.如图,△ A′B′C′是由△ ABC 沿射线 AC 方向平移2cm 得到,若AC= 3cm,则A′C=cm.22.如图,将△A BC 沿直线 AB 向右平移后到达△BDE 的位置,若∠ CAB= 50°,∠ ABC= 100°,则∠ CBE 的度数为.23.如图:矩形ABCD 的对角线AC= 10, BC= 8,则图中五个小矩形的周长之和为.24.在如图所示的单位正方形网格中,将△ABC 向右平移 3 个单位后得到△A′B′C′(其中 A、B、C 的对应点分别为 A′、B′、 C′),则∠ BA′A 的度数是度.三.解答题(共 4 小题)525.如图,在边长为 1 个单位长度的小正方形组成的12× 12 网格中,给出了四边形ABCD 的两条边AB 与 BC,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC.( 1)试在图中标出点 D ,并画出该四边形的另两条边;( 2)将四边形ABCD 向下平移 5 个单位,画出平移后得到的四边形A′B′C′D′.26.如图,△ A1B1C1是△ ABC 向右平移 4 个单位长度后得到的,且三个顶点的坐标分别为A1( 1, 1), B1(4, 2),C1( 3, 4).(1)请画出△ ABC,并写出点 A, B,C 的坐标;(2)求出△ AOA1的面积.27.如图,在方格纸中(小正方形的边长为1),△ ABC 的三个顶点均为格点,将△ABC 沿 x 轴向左平移5个单位长度,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)画出平移后的△ A′B′C′,并直接写出点 A′、 B′、 C′的坐标;(2)求出在整个平移过程中,△ ABC 扫过的面积.628.如图,直线EF 将矩形纸片ABCD 分成面积相等的两部分,E、 F 分别与 BC 交于点 E,与 AD 交于点F( E,F 不与顶点重合),设 AB= a, AD= b, BE= x.(Ⅰ)求证:AF= EC;(Ⅱ)用剪刀将纸片沿直线EF 剪开后,再将纸片ABEF 沿 AB 对称翻折,然后平移拼接在梯形ECDF 的下方,使一底边重合,直腰落在边DC 的延长线上,拼接后,下方的梯形记作EE′B′C.( 1)求出直线EE′分别经过原矩形的顶点 A 和顶点 D 时,所对应的x: b 的值;( 2)在直线 EE′经过原矩形的一个顶点的情形下,连接BE ′,直线 BE′与 EF 是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当 a 与 b 满足什么关系时,它们垂直?答案与解析一.选择题(共13 小题)1.( 2016?铜仁市)已知直线 a∥ b∥ c,a 与 b 的距离为5cm,b 与 c 的距离为2cm,则 a 与 c 的距离是()A . 3cm B . 7cm C. 3cm 或 7cm D.以上都不对【分析】分①直线 c 在直线 a、b 外,②直线 c 在直线 a、 b 之间两种情况讨论求解.【解答】解:如图,①直线 c 在 a、 b 外时,∵ a 与 b 的距离为5cm, b 与 c 的距离为2cm,∴ a 与 c 的距离为5+2= 7cm,②直线 c 在直线 a、 b 之间时,∵ a 与 b 的距离为5cm, b 与 c 的距离为2cm,∴ a 与 c 的距离为5﹣2= 3cm,综上所述, a 与 c 的距离为3cm 或 7cm.故选: C.7【点评】本题考查的是平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.2.( 2016?济南)如图,在 6× 6 方格中有两个涂有阴影的图形M、N,①中的图形M 平移后位置如②所示,以下对图形M 的平移方法叙述正确的是()A .向右平移 2 个单位,向下平移 3 个单位B.向右平移 1 个单位,向下平移 3 个单位C.向右平移 1 个单位,向下平移 4 个单位D.向右平移 2 个单位,向下平移 4 个单位【分析】根据平移前后图形M 中某一个对应顶点的位置变化情况进行判断即可.【解答】解:根据图形M 平移前后对应点的位置变化可知,需要向右平移 1 个单位,向下平移 3 个单位.故选( B)【点评】本题主要考查了图形的平移,平移由平移方向和平移距离决定,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.3.( 2016?济宁)如图,将△ ABE 向右平移2cm 得到△ DCF ,如果△ ABE 的周长是16cm,那么四边形ABFD 的周长是()A . 16cmB . 18cm C. 20cmD . 21cm【分析】先根据平移的性质得到CF = AD=2cm, AC= DF ,而 AB+ BC+ AC= 16cm,则四边形ABFD 的8周长= AB+ BC+ CF + DF+ AD,然后利用整体代入的方法计算即可【解答】解:∵△ ABE 向右平移2cm 得到△ DCF ,∴EF =AD = 2cm, AE= DF ,∵△ ABE 的周长为 16cm,∴AB+BE +AE=16cm,∴四边形 ABFD 的周长= AB+ BE+ EF + DF +AD=AB+BE +AE+EF +AD=16cm+ 2cm+ 2cm=20cm.故选 C.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.4.( 2015?泉州)如图,△ ABC 沿着由点 B 到点 E 的方向,平移到△DEF ,已知 BC =5. EC= 3,那么平移的距离为()A. 2B.3C.5D.7【分析】观察图象,发现平移前后,B、 E 对应, C、F 对应,根据平移的性质,易得平移的距离=BE= 5﹣3= 2,进而可得答案.【解答】解:根据平移的性质,易得平移的距离= BE= 5﹣ 3= 2,故选 A.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.5.( 2015?宁德)如图,将直线l 1沿着 AB 的方向平移得到直线l 2,若∠ 1=50°,则∠ 2 的度数是()A. 40° B.50° C.90° D.130°【分析】根据平移的性质得出l1∥ l2,进而得出∠ 2 的度数.【解答】解:∵将直线l 1沿着 AB 的方向平移得到直线l2,∴ l 1∥ l2,∵∠ 1= 50°,∴∠ 2 的度数是50°.故选: B.【点评】此题主要考查了平移的性质以及平行线的性质,根据已知得出l1∥l 2是解题关键.6.( 2012?定西)将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【解答】解:观察各选项图形可知, A 选项的图案可以通过平移得到.故选: A.【点评】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.7.( 2012?本溪)下列各网格中的图形是用其图形中的一部分平移得到的是()A.B.C.D.【分析】根据平移及旋转的性质对四个选项进行逐一分析即可.【解答】解: A、是利用图形的旋转得到的,故本选项错误;B、是利用图形的旋转和平移得到的,故本选项错误;C、是利用图形的平移得到的,故本选项正确;D、是利用图形的旋转得到的,故本选项错误.故选 C.【点评】本题考查的是利用平移设计图案,熟知图形经过平移后所得图形与原图形全等是解答此题的关键.8.( 2012?宜昌)如图,在10×6 的网格中,每个小方格的边长都是 1 个单位,将△ ABC 平移到△ DEF 的位置,下面正确的平移步骤是()A .先把△ ABC 向左平移 5个单位,再向下平移 2 个单位B.先把△ ABC 向右平移5个单位,再向下平移 2 个单位C.先把△ ABC 向左平移5个单位,再向上平移 2 个单位D.先把△ ABC 向右平移 5个单位,再向上平移 2 个单位【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、 D,点 A 向左平移 5 个单位,再向下平移 2 个单位即可到达点 D 的位置,所以平移步骤是:先把△ABC 向左平移 5 个单位,再向下平移 2 个单位.故选: A.【点评】本题考查了生活中的平移现象,利用对应点的平移规律确定图形的平移规律是解题的关键.9.( 2014?舟山)如图,将△ ABC 沿 BC 方向平移2cm 得到△ DEF ,若△ ABC 的周长为16cm,则四边形ABFD 的周长为()A . 16cmB . 18cm C. 20cmD . 22cm【分析】根据平移的基本性质,得出四边形ABFD 的周长= AD + AB+ BF + DF = 2+ AB+BC+2+ AC 即可得出答案.【解答】解:根据题意,将周长为16cm 的△ ABC 沿 BC 向右平移2cm 得到△ DEF ,∴AD= CF = 2cm, BF = BC+ CF = BC+ 2cm, DF =AC;又∵ AB+ BC+ AC= 16cm,∴四边形 ABFD 的周长= AD +AB+ BF+ DF =2+ AB+ BC+ 2+ AC=20cm.故选: C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF = AD, DF =AC 是解题的关键.10.( 2009?江苏)如图,在5× 5 方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是()A .先向下平移 3 格,再向右平移 1 格B.先向下平移 2 格,再向右平移 1 格C.先向下平移 2 格,再向右平移 2 格D.先向下平移 3 格,再向右平移 2 格【分析】根据图形,对比图①与图②中位置关系,对选项进行分析,排除错误答案.【解答】解:观察图形可知:平移是先向下平移 3 格,再向右平移 2 格.故选: D.【点评】本题是一道简单考题,考查的是图形平移的方法.11.( 2007?莆田)如图,在Rt△ ABC 中,∠ BAC= 90°,AB= 3,AC= 4,将△ ABC 沿直线 BC 向右平移2.5个单位得到△DEF ,连接 AD, AE,则下列结论中不成立的是()A . AD∥BE ,AD= BEB .∠ ABE=∠ DEFC. ED⊥AC D.△ ADE 为等边三角形【分析】根据平移的性质,结合图形,对选项进行一一分析,选出正确答案.【解答】解: A、经过平移,对应点所连的线段平行且相等,对应线段平行且相等,则AD ∥ BE, AD =BE 成立;B、经过平移,对应角相等,则∠ABE =∠ DEF 成立;C、 AC∥ DF ,∠ EDF = 90°,则 ED ⊥ AC 成立;D、 AE= DE =AB=3, AD = BE= 2.5,则△ ADE 为等边三角形不成立.故选 D.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.( 2006?吉林)如图,把边长为 2 的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()A. 18 B.16 C.12 D.8【分析】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.【解答】解:一个正方形面积为4,而把一个正方形从①﹣④变换,面积并没有改变,所以图⑤由 4 个图④构成,故图⑤面积为4× 4= 16.故选 B.【点评】本题考查图形拼接与平移的变换.解决此题的关键是要知道平移不改变图形的形状和大小,即面积没有改变.13.( 2004?烟台)4 根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()A.B.C.D.【分析】由平移的性质,结合图形,采用排除法判断正确结果.【解答】解:原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有 B 符合.故选 B.【点评】本题利用了平移的基本性质:平移不改变图形的形状、大小和方向,只改变图形的位置.二.填空题(共11 小题)14.( 2016?台州)如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点 C 平移的距离 CC ′= 5 .【分析】直接利用平移的性质得出顶点 C 平移的距离.【解答】解:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,∴三角板向右平移了 5 个单位,∴顶点 C 平移的距离CC′= 5.故答案为: 5.【点评】此题主要考查了平移的性质,正确把握平移的性质是解题关键.15.( 2016?广州)如图,△ ABC 中, AB =AC,BC= 12cm,点 D 在 AC 上, DC = 4cm.将线段 DC 沿着 CB 的方向平移 7cm 得到线段 EF ,点 E,F 分别落在边 AB, BC 上,则△ EBF 的周长为 13 cm.【分析】直接利用平移的性质得出 EF = DC= 4cm,进而得出 BE =EF = 4cm,进而求出答案.【解答】解:∵将线段 DC 沿着 CB 的方向平移 7cm 得到线段 EF,∴EF =DC = 4cm, FC = 7cm,∵AB=AC, BC= 12cm,∴∠B=∠C,BF =5cm,∴∠ B=∠ BFE,∴ BE=EF =4cm,∴△ EBF 的周长为: 4+4+ 5= 13( cm).故答案为: 13.【点评】此题主要考查了平移的性质,根据题意得出BE 的长是解题关键.16.( 2016?泰州)如图,△ ABC 中, BC= 5cm,将△ ABC 沿 BC 方向平移至△ A′B′C′的对应位置时, A′B′恰好经过 AC 的中点 O,则△ ABC 平移的距离为 2.5 cm.【分析】根据平移的性质:对应线段平行,以及三角形中位线定理可得B′是 BC 的中点,求出BB′即为所求.【解答】解:∵将△ ABC 沿 BC 方向平移至△ A′B′C′的对应位置,∴ A′B′∥AB,∵O 是AC 的中点,∴ B′是 BC 的中点,∴ BB′= 5÷2= 2.5( cm).故△ ABC 平移的距离为2.5cm.故答案为: 2.5.【点评】考查了平移的性质,平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17.(2016?成都)如图,面积为 6 的平行四边形纸片ABCD 中, AB= 3,∠ BAD =45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD 剪开,得到△ABD 和△ BCD 纸片,再将△ABD 纸片沿AE 剪开( E 为 BD 上任意一点),得到△ ABE 和△ ADE 纸片;第二步:如图②,将△ABE 纸片平移至△ DCF 处,将△ ADE 纸片平移至△BCG 处;15第三步:如图③,将△DCF 纸片翻转过来使其背面朝上置于△PQM 处(边 PQ 与 DC 重合,△ PQM 和△DCF 在 DC 同侧),将△ BCG 纸片翻转过来使其背面朝上置于△PRN 处,(边 PR 与 BC 重合,△ PRN 和△BCG 在 BC 同侧).则由纸片拼成的五边形PMQRN 中,对角线 MN 长度的最小值为.【分析】根据平移和翻折的性质得到△MPN 是等腰直角三角形,于是得到当 PM 最小时,对角线 MN 最小,即 AE 取最小值,当AE⊥ BD 时, AE 取最小值,过 D 作 DF ⊥ AB 于 F,根据平行四边形的面积得到DF =2,根据等腰直角三角形的性质得到AF= DF = 2,由勾股定理得到BD==,根据三角形的面积得到 AE ===,即可得到结论.【解答】解:∵△ ABE≌△ CDF ≌△ PMQ ,∴AE=DF = PM ,∠ EAB=∠ FDC =∠ MPQ ,∵△ ADE ≌△ BCG ≌△ PNR,∴AE=BG= PN,∠ DAE=∠ CBG=∠ RPN,∴PM= PN,∵四边形 ABCD 是平行四边形,∴∠ DAB =∠ DCB =45°,∴∠ MPN = 90°,∴△ MPN 是等腰直角三角形,当PM 最小时,对角线 MN 最小,即 AE 取最小值,∴当 AE⊥ BD 时, AE 取最小值,过D作DF⊥AB于F,∵平行四边形 ABCD 的面积为 6, AB= 3,∴DF=2,∵∠ DAB =45°,∴AF=DF = 2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.【点评】本题考查了平移的性质,翻折的性质,勾股定理,平行四边形的性质,正确的识别图形是解题的关键.18.( 2015?新疆)如图,将周长为8 的△ ABC 沿 BC 方向向右平移 1 个单位得到△DEF ,则四边形ABFD 的周长为10.【分析】根据平移的基本性质解答即可.【解答】解:根据题意,将周长为8 的△ ABC 沿边 BC 向右平移 1 个单位得到△DEF ,则AD = 1, BF= BC+ CF= BC +1, DF =AC,又∵ AB+ BC+ AC= 8,∴四边形 ABFD 的周长= AD +AB+ BF+ DF =1+ AB+ BC+ 1+ AC=10.故答案为: 10.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF = AD, DF =AC 是解题的关键.19.( 2014?江西)如图,在△ ABC 中, AB = 4, BC= 6,∠ B= 60°,将△ ABC 沿射线 BC 的方向平移 2 个单位后,得到△ A′B′C′,连接 A′C,则△ A′B′C 的周长为 12 .【分析】根据平移性质,判定△A′B′C 为等边三角形,然后求解.【解答】解:由题意,得BB′=2,∴B′C= BC﹣ BB′= 4.由平移性质,可知A′B′=AB = 4,∠ A′B′C=∠ ABC=60°,∴A′B′=B′C,且∠ A′B′C=60°,∴△ A′B′C 为等边三角形,∴△ A′B′C 的周长= 3A′B′= 12.故答案为: 12.【点评】本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.20.( 2013?宜宾)如图,将面积为 5 的△ ABC 沿 BC 方向平移至△ DEF 的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为15.【分析】设点 A 到 BC 的距离为h,根据平移的性质用BC 表示出 AD 、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.【解答】解:设点 A 到 BC 的距离为h,则 S△ABC=BC?h= 5,∵平移的距离是BC 的长的 2 倍,∴ AD= 2BC, CE= BC,∴四边形 ACED 的面积=(AD+CE)?h=(2BC+BC)?h=3×BC ?h= 3× 5=15.故答案为: 15.【点评】本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.21.( 2012?莆田)如图,△ A′B′C′是由△ ABC 沿射线 AC 方向平移 2cm 得到,若 AC =3cm,则 A′C= 1 cm.【分析】先根据平移的性质得出AA′= 2cm,再利用A C= 3cm,即可求出A′C 的长.【解答】解:∵将△ ABC 沿射线 AC 方向平移2cm 得到△ A′B′C′,∴AA′= 2cm,又∵ AC= 3cm,∴A′C= AC﹣ AA′= 1cm.故答案为: 1.【点评】本题主要考查对平移的性质的理解和掌握,能熟练地运用平移的性质进行推理是解此题的关键.22.( 2011?益阳)如图,将△ ABC 沿直线 AB 向右平移后到达△BDE 的位置,若∠ CAB= 50°,∠ ABC= 100°,则∠ CBE 的度数为30° .【分析】根据平移的性质得出 AC∥ BE ,以及∠ CAB=∠ EBD= 50°,进而求出∠ CBE 的度数.【解答】解:∵将△ ABC 沿直线 AB 向右平移后到达△ BDE 的位置,∴AC∥ BE,∴∠ CAB=∠ EBD = 50°,∵∠ ABC= 100°,∴∠ CBE 的度数为: 180°﹣ 50°﹣ 100°= 30°.故答案为: 30°.【点评】此题主要考查了平移的性质以及三角形内角和定理,得出∠ CAB=∠ EBD=50°是解决问题的关键.23.( 2011?鄂州)如图:矩形 ABCD 的对角线 AC= 10, BC= 8,则图中五个小矩形的周长之和为28 .【分析】运用平移个观点,五个小矩形的上边之和等于AD ,下边之和等于BC,同理,它们的左边之和等于 AB ,右边之和等于CD,可知五个小矩形的周长之和为矩形ABCD 的周长.【解答】解:由勾股定理,得AB==6,将五个小矩形的所有上边平移至AD ,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,故答案为: 28.【点评】本题考查了平移的性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.24.(2008?泰安)在如图所示的单位正方形网格中,将△ABC 向右平移 3 个单位后得到△A′B′C′(其中 A、B、 C 的对应点分别为A′、B′、C′),则∠ BA′A 的度数是45度.【分析】根据题意,画出图形,由平移的性质求得结果.【解答】解:如图所示,平移后AA′= 3,而过点 B 向 AA′引垂线,垂足为D,∴ BD= 4, A′D= 4,∴∠ BA′A= 45°.【点评】本题考查平移的基本性质.经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意结合图形解题的思想.三.解答题(共 4 小题)25.( 2016?安徽)如图,在边长为 1 个单位长度的小正方形组成的12× 12 网格中,给出了四边形ABCD 的两条边 AB 与 BC,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC.( 1)试在图中标出点 D ,并画出该四边形的另两条边;( 2)将四边形ABCD 向下平移 5 个单位,画出平移后得到的四边形A′B′C′D′.【分析】( 1)画出点 B 关于直线AC 的对称点 D 即可解决问题.( 2)将四边形ABCD 各个点向下平移 5 个单位即可得到四边形A′B′C′D′.【解答】解:( 1)点 D 以及四边形ABCD 另两条边如图所示.( 2)得到的四边形A′B′C′D′如图所示.【点评】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移,属于基础题,中考常考题型.26.( 2015?崇左)如图,△ A1B1C1是△ ABC 向右平移 4 个单位长度后得到的,且三个顶点的坐标分别为A1( 1, 1),B1( 4, 2), C1( 3, 4).(1)请画出△ ABC,并写出点 A, B,C 的坐标;(2)求出△ AOA1的面积.【分析】( 1)直接把△ A1B1C1是向左平移4 个单位,再写出点A, B,C 的坐标即可;( 2)直接根据三角形的面积公式即可得出结论.【解答】解:( 1)如图所示, A(﹣ 3,1), B( 0, 2), C(﹣ 1, 4);(2) S AOA1=×4×1=2.△【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.27.( 2013?晋江市)如图,在方格纸中(小正方形的边长为1),△ ABC 的三个顶点均为格点,将△ABC 沿 x 轴向左平移 5 个单位长度,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)画出平移后的△ A′B′C′,并直接写出点 A′、 B′、 C′的坐标;(2)求出在整个平移过程中,△ ABC 扫过的面积.【分析】( 1)根据网格结构找出点 A′、 B′、 C′的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观图形可得△ ABC 扫过的面积为四边形 AA′B′B 的面积与△ ABC 的面积的和,然后列式进行计算即可得解.【解答】解:( 1)平移后的△ A′B′C′如图所示;点 A′、 B′、 C′的坐标分别为(﹣1, 5)、(﹣ 4,0)、(﹣ 1, 0);( 2)由平移的性质可知,四边形AA′B′B 是平行四边形,∴△ ABC 扫过的面积= S 四边形AA'B'B+ S△ABC= B′B?AC+BC?AC= 5× 5+× 3× 5=25+=.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.28.( 2007?日照)如图,直线EF 将矩形纸片ABCD 分成面积相等的两部分,E、 F 分别与 BC 交于点 E,与AD 交于点 F( E, F 不与顶点重合),设 AB= a, AD= b, BE=x.(Ⅰ)求证: AF= EC;(Ⅱ)用剪刀将纸片沿直线EF 剪开后,再将纸片ABEF 沿 AB 对称翻折,然后平移拼接在梯形ECDF 的下方,使一底边重合,直腰落在边DC 的延长线上,拼接后,下方的梯形记作EE′B′C.( 1)求出直线EE′分别经过原矩形的顶点 A 和顶点 D 时,所对应的x: b 的值;( 2)在直线 EE′经过原矩形的一个顶点的情形下,连接BE ′,直线 BE′与 EF 是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当 a 与 b 满足什么关系时,它们垂直?( 2)直线 EE′经过原矩形的顶点 D 时,可证明四边形BE′EF 是平行四边形,则BE′∥ EF ;当直线 EE ′经过原矩形的顶点 A 时, BE′与 EF 不平行.【解答】(Ⅰ)证明:∵AB= a, AD =b, BE= x, S梯形ABEF= S 梯形CDFE,∴a( x+AF )= a( EC+ b﹣ AF),∴2AF =EC+( b﹣ x).又∵ EC= b﹣ x,∴2AF =2EC.∴AF=EC.(Ⅱ)解:( 1)当直线 EE′经过原矩形的顶点 D 时,如图(一)∵EC∥ E′B′,∴=,由EC= b﹣ x, E′B′=EB =x, DB ′=DC + CB′=2a,得,∴ x: b=.当直线 E′E 经过原矩形的顶点 A 时,如图(二)在梯形 AE′B′D 中,∵EC∥ E′B′,点 C 是 DB ′的中点,∴ CE=( AD+ E′B′),即b﹣x=(b+x),∴ x: b=.( 2)如图(一),当直线 EE′经过原矩形的顶点 D 时, BE ′∥ EF,证明:连接BF ,∵FD∥BE,FD =BE,∴四边形 FBED 是平行四边形,∴ FB∥DE , FB= DE,又∵ EC∥ E′B′,点 C 是 DB′的中点,∴FB ∥EE ′, FB = EE′,∴四边形 BE ′EF 是平行四边形,∴BE′∥ EF.如图(二),当直线EE′经过原矩形的顶点 A 时,显然BE′与 EF 不平行,设直线 EF 与 BE′交于点 G,过点 E′作 E′M⊥ BC 于 M,则 E′M= a,∵ x: b=,∴EM= BC= b,若 BE ′与 EF 垂直,则有∠ GBE+∠ BEG= 90°,又∵∠ BEG=∠ FEC =∠ MEE ′,∠ MEE′+∠ ME ′E= 90°,∴∠ GBE=∠ ME ′E,在 Rt△ BME ′中, tan∠ E′BM= tan∠ GBE==,在 Rt△ EME ′中, tan∠ ME′E==,∴=.又∵ a> 0,b> 0,=,∴当=时,BE′与EF垂直.【点评】本题是道根据平移的性质、梯形的性质和平行四边形的性质结合求解的综合题,解题复杂,难度大.考查学生综合运用数学知识的能力.。
平移练习题(含答案)
第五章相交线与平行线5.4 平移1.下列现象中不属于平移的是A.滑雪运动员在平坦的雪地上滑雪B.彩票大转盘在旋转C.高楼的电梯在上上下下D.火车在一段笔直的铁轨上行驶2.如图,现将四边形ABCD沿AE进行平移,得到四边形EFGH,则图中与CG平行的线段有A.0条B.1条C.2条D.3条3.如图,△FDE经过怎样的平移可得到△ABCA.沿射线EC的方向移动DB长B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长D.沿射线BD的方向移动BD长4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D .先向右平移5个单位,再向下平移2个单位5.如图,将△ABE 向右平移得到△DCF ,AE 与CD 交于点G ,其中45B ∠=︒,60F ∠=︒,则AGC ∠=A .75︒B .105︒C .125︒D .85︒6.如图,将△ABE 向右平移2 cm 得到△DCF ,如果△ABE 的周长是16 cm ,那么四边形ABFD 的周长是A .16 cmB .18 cmC .20 cmD .21 cm7.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=____.8.如图,三角形ADE 是由三角形DBF 沿BD 所在的直线平移得到的,AE ,BF 的延长线交于点C.若∠BFD =45°,则∠C 的度数是 ________9.如图,A B C '''△ 是△ABC 向右平移4 cm 得到的,已知∠ACB =30°,B ′C =3 cm ,则∠C ′=_________,B ′C ′=________cm.10.要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是40元,台阶宽为3米,侧面如图所示.购买这种红地毯至少需要__________元.11.如图,△ABC沿直线BC向右移了3 cm,得△FDE,且BC=6 cm,∠B=40°.(1)求BE;(2)求∠FDB的度数;(3)找出图中相等的线段(不另添加线段);(4)找出图中互相平行的线段(不另添加线段).12.如图,将△ABC平移,可以得到△DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置,并作出△DEF.13.如图,在三角形ABC中,已知AB=3cm,AC=4cm,BC=5cm.现将三角形ABC沿着垂直于BC的方向平移6cm,到三角形DEF的位置,求三角形ABC所扫过的面积.14.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中已有的线段走,那么从A点到B点的最短距离的走法共有A.1种B.2种C.3种D.4种15.多边形的相邻两边互相垂直,则这个多边形的周长为A.a+b B.2a+bC.2a+2b D.2b+a16.如图,平移△ABC可得到△DEF,如果∠C=60°,AE=7cm,AB=4cm,那么∠F= ______ 度,DB= ______ cm.17.如图,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼梯宽为2 m,其侧面与正面如图所示,则购买地毯至少需要多少元?18.如图,在四边形ABCD中,AD∥BC,且AD<BC,△ABC平移到△DEF的位置.(1)指出平移的方向和平移的距离;(2)试说明AD+BC=BF.19.(2017•铜仁)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是A.S1>S2B.S1<S2C.S1=S2D.S1=2S21.【答案】B【解析】A.滑雪运动员在平坦的雪地上滑雪,属于平移,故本选项错误;B.彩票大转盘在旋转,不属于平移,故本选项正确;C. 高楼的电梯在上上下下,属于平移,故本选项错误;D. 火车在一段笔直的铁轨上行驶,属于平移,故本选项错误.故选:B.4.【答案】A【解析】根据网格结构,观察对应点A,D,点A向左平移5个单位,再向下平移2个单位即可到达点D 的位置,所以平移步骤是:先把△ABC 向左平移5个单位,再向下平移2个单位,故选A . 5.【答案】B【解析】∵△ABE 向右平移得到△DCF ,∴AB ∥CD ,AE ∥DF ,∴∠DCF =∠B =45°,∴∠CDF =180°- 45°-60°=75°,∴∠AGC =∠DGE =180°-75°=105°,故选B . 6.【答案】C【解析】已知,△ABE 向右平移2 cm 得到△DCF ,根据平移的性质得到EF =AD =2 cm ,AE =DF ,又因△ABE 的周长为16 cm ,所以AB +BE +AE =16 cm ,则四边形ABFD 的周长=AB +BC +CF +DF +AD =16+2+ 2=20(cm ),故选C . 7.【答案】5【解析】∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,∴三角板向右平移了5个单位,∴顶点C 平移的距离CC ′=5.故答案为:5. 8.【答案】45°【解析】∵△ADE 是由△DBF 沿BD 所在的直线平移得到的, ∴DE ∥BC ,∠BFD =∠AED , ∴∠AED =∠C ∴∠C =∠BFD =45°. 故答案是:45°. 9.【答案】30°,7【解析】∵A B C '''△ 是△ABC 向右平移4 cm 得到的, ∴BB ′=CC ′=4 cm ,∠C ′=∠ACB =30°, ∵B ′C =3 cm , ∴B ′C ′=4+3=7 cm . 故答案为:30°,7.12.【解析】如图:13.【解析】由题意可知,长方形BEFC的面积为5×6=30cm2,直角三角形ABC的面积为3×4÷2=6cm2,30+6=36cm2.∴三角形ABC所扫过的面积为36cm2.14.【答案】C【解析】如图,由题意和“两点之间线段最短”及“平行四边形的对边相等”可知,由A到B的最短距离的走法有下面三种:(1)由A→C→D→B;(2)由A→F→E→B;(3)由A→F→D→B,故选C.17.【解析】利用平移线段,把楼梯的横竖向上向左平移,构成一个长方形,长、宽分别为5米,3米,∴地毯的长度为5+3=8(米),∴地毯的面积为8×2=16(平方米),∴买地毯至少需要16×32=512(元).18.【解析】(1)平移的方向是点A到点D的方向,平移的距离是线段AD的长度;(2)∵△ABC平移到△DEF的位置,∴CF=AD,∵CF+BC=BF,∴AD+BC=BF.19.【答案】C【解析】∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.。
《图形的平移》练习题
《图形的平移》练习题1.在下列说法中:①图形在平移过程中,对应线段一定相等;②图形在平移过程中,对应线段一定平行;③图形在平移过程中,周长不变;④图形在平移过程中,面积不变。
其中正确的有____________________。
2.下列说法中正确的是()A.一个图形经过平移后,与原图形成轴对称 B.图形的平移由平移的方向和距离决定C.如果两个图形成轴对称,那么一个图形可由另一个图形经过平移变换得到D.一个图形经过平移后,它的性质都发生了变化3.关于平移的说法,下列正确的是()A.经过平移对应线段相等; B.经过平移对应角可能会改变C.经过平移对应点所连的线段不相等; D.经过平移图形会改变4、将点P(1,-m)向右平移2个单位后,再向上平移1个单位得到点Q(n,3),则点K(m,n)的坐标为_____________________。
5.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A .(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)6.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,四边形ABFD的周长为()A .16cmB.18cmC.20cmD.22cm7.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°8.如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE.如果CB=1,那么OE的长为____ .9.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()6 7 8 910.如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=BC′;(2)若AB=2,BC=1,求AE的长.11.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(1)如图①,当α=90°时,求AE′,BF′的长;(2)如图②,当α=135°时,求证:AE′=BF′,且AE′⊥BF′;(3)直线AE′与直线BF′相交于点P,当点P在坐标轴上时,分别表示出此时点E′、D′、F′的坐标12.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM 绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.。
初二数学图形的平移和旋转练习题
初二数学图形的平移和旋转练习题题目一:平移图形
给定一个图形,如下所示:
(在这里插入图形示例)
1. 将该图形向右平移4个单位,向上平移3个单位。
请计算平移后的新坐标,并画出平移后的图形。
2. 将平移后的图形再向左平移2个单位,向下平移1个单位。
请计算最终平移后的新坐标,并画出图形。
题目二:旋转图形
给定一个图形,如下所示:
(在这里插入图形示例)
1. 将该图形以原点为中心,逆时针旋转90度。
请计算旋转后的新坐标,并画出旋转后的图形。
2. 将旋转后的图形再顺时针旋转180度。
请计算最终旋转后的新坐标,并画出图形。
题目三:综合练习
给定一个复杂图形,如下所示:
(在这里插入图形示例)
1. 将该图形向右平移5个单位,向上平移2个单位。
请计算平移后的新坐标,并画出平移后的图形。
2. 将平移后的图形以中心为轴顺时针旋转120度。
请计算旋转后的新坐标,并画出旋转后的图形。
3. 将旋转后的图形再向左平移3个单位,向下平移1个单位。
请计算最终平移后的新坐标,并画出图形。
通过以上练习题的实践操作,初二的学生们可以更好地理解和掌握数学图形的平移和旋转。
这些技能在解题过程中能够提高他们的几何思维和空间想象力,同时也为日常生活中的空间定位和方向感提供了基础。
希望同学们能够认真完成这些练习,不断巩固和提升自己的数学能力。
(文章正文结束)。
平移的题20道
以下是20道平移的题目:1. 将一个正方形沿着一个方向平移一段距离,画出平移后的图形。
2. 将一个矩形沿着横向和纵向分别平移一段距离,画出平移后的图形。
3. 画出一个三角形向右平移三格后的图形。
4. 画出一个菱形向上平移两格后的图形。
5. 将一个直角三角形沿着横向和纵向平移,画出平移后的图形。
6. 将一个平行四边形沿着一个方向平移,画出平移后的图形。
7. 画出一个梯形向右平移三格后的图形。
8. 将一个圆形沿着一个方向平移一段距离,求圆心移动的距离。
9. 画出一个菱形向下平移两格后的图形,再求出图形的面积和原来相比变化了多少。
10. 画出三角形向右平移n格后的图形,如何求出n的值?11. 画出一个正方形沿着横向平移一段距离后的图形,再求出图形的面积和原来相比变化了多少。
12. 将一个五边形沿着一个方向平移后,画出平移后的图形。
13. 求出将一个正方形沿着一个方向旋转一定角度后的面积变化。
14. 画出一个三角形向上平移三格后的三角形,求新三角形的面积与原三角形面积的比值。
15. 求将一个正方形沿着一行摆放后形成的平行四边形的面积与原正方形面积的比值。
16. 将一个梯形沿着横向平移一段距离后,求新梯形的面积与原梯形面积的比值。
17. 求将一个圆形沿着半径旋转一周后形成的圆的面积与原圆面积的比值。
18. 求将一个矩形沿着一条对角线对折后形成的矩形的面积与原矩形面积的比值。
19. 求将一个正方形沿着中心对折后得到的矩形的周长与原正方形边长的比值。
20. 将两个三角形按照不同的方式进行组合摆放,求它们的面积变化。
以上题目均以平移为主要考点,考察了学生的空间想象和作图能力,需要学生掌握一定的平移规律和作图技巧。
平移的练习题答案
平移的练习题答案平移是一种几何变换,指的是在平面内,将一个图形沿着某一方向移动一定的距离,而图形的形状和大小保持不变。
下面是一些关于平移的练习题及其答案。
练习题1:若一个点A(3,4)沿x轴正方向平移5个单位,求平移后的新坐标。
答案:点A沿x轴正方向平移5个单位后,x坐标增加5,y坐标不变。
因此,新坐标为(3+5, 4) = (8, 4)。
练习题2:一个矩形的顶点坐标为(1,2), (1,6), (5,6), (5,2)。
如果这个矩形沿y轴负方向平移3个单位,求平移后矩形的顶点坐标。
答案:沿y轴负方向平移3个单位,即每个顶点的y坐标减少3。
所以,平移后的顶点坐标为:(1, 2-3), (1, 6-3), (5, 6-3), (5, 2-3) = (1, -1), (1, 3), (5, 3), (5, -1)。
练习题3:如果一个三角形的顶点坐标为A(2,5), B(4,1), C(-1,3),求这个三角形沿向量<3,2>平移后的新顶点坐标。
答案:沿向量<3,2>平移,即每个顶点的x坐标增加3,y坐标增加2。
因此,新顶点坐标为:A'(2+3, 5+2) = (5, 7)B'(4+3, 1+2) = (7, 3)C'(-1+3, 3+2) = (2, 5)练习题4:一个平行四边形的顶点坐标为D(0,0), E(4,0), F(4,3), G(0,3)。
如果这个平行四边形沿y轴正方向平移4个单位,求平移后平行四边形的顶点坐标。
答案:沿y轴正方向平移4个单位,即每个顶点的y坐标增加4。
因此,平移后的顶点坐标为:D'(0, 0+4), E'(4, 0+4), F'(4, 3+4), G'(0, 3+4) = (0, 4), (4, 4), (4, 7), (0, 7)。
练习题5:一个圆的圆心坐标为H(-3,-3),半径为2。
求这个圆沿向量<-1,1>平移后的新圆心坐标。
图形的运动平移练习题
图形的运动平移练习题一、选择题1. 平移图形时,图形的什么属性不会改变?A. 形状B. 大小C. 颜色D. 位置2. 下列哪个操作不是图形的平移?A. 向上移动B. 向下移动C. 旋转D. 向左移动3. 平移后的图形与原图形相比,下列哪项是不同的?A. 形状B. 面积B. 位置D. 颜色二、填空题4. 平移图形时,图形的____和____不会改变,但____会改变。
5. 如果一个图形向右平移了5个单位,那么它的____坐标会增加5,而____坐标不变。
三、判断题6. 平移图形时,图形的周长和面积都不变。
()7. 平移后的图形与原图形关于平移方向对称。
()四、简答题8. 描述一下图形平移的基本概念,并举例说明。
五、计算题9. 如图所示,一个矩形ABCD的顶点A在原点(0,0),B在(3,0),C在(3,4),D在(0,4)。
如果将矩形向右平移6个单位,求平移后矩形的顶点坐标。
六、作图题10. 根据题目9中的矩形ABCD,画出平移后的图形,并标注新的顶点坐标。
七、应用题11. 一个正方形的边长为4厘米,它位于坐标平面的第二象限,顶点A 在(-2,-2)。
如果将这个正方形向右平移5厘米,求平移后正方形的顶点坐标。
八、综合题12. 考虑一个由四个点A(1,2),B(3,2),C(3,4),D(1,4)组成的平行四边形。
如果这个平行四边形向上平移3个单位,求平移后各顶点的坐标。
九、探索题13. 假设有一个图形由多个点组成,这些点的坐标已知。
如果这个图形需要平移,那么如何快速计算出所有点平移后的坐标?十、创新题14. 设计一个算法,输入一个图形的顶点坐标和需要平移的向量,输出平移后的图形的顶点坐标。
十一、拓展题15. 考虑一个图形平移后,其与原图形的重叠部分。
如果一个矩形向右平移了2个单位,并且向下平移了1个单位,讨论这个矩形平移前后的重叠区域。
十二、实践题16. 利用计算机软件或绘图工具,绘制一个图形,并进行平移操作。
图形的平移与旋转专项练习(含答案)
图形的平移与旋转专项练习(含答案)一、选择题(本大题共34小题,共102.0分)1.如图,在正方形网格中有△ABC,△ABC绕点O逆时针旋转90°后的图案应该是()A. B. C. D.2.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个3.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O()A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°4.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A. 30°B. 60°C. 90°D. 120°5.在平面直角坐标系中,将点A(−1,2)先向左平移2个单位长度,再向下平移3个单位长度后,得到的点的坐标为()A. (1,−1)B. (−1,5)C. (−3,−1)D. (−3,5)6.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO的方向平移后得到△O′A′B′,平移后点A′的横坐标为6√3,则点B′的坐标为()A. (8√3,−4√3)B. (8,−4√3)C. (8√3,−4)D. (8,−4)7.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字是()A.B.C.D.8.如图,将△ABC绕点A逆时针旋转90∘得到△ADE,点B,C的对应点分别为点D,E,AB=1,则BD的长为()A. 1B. √2C. 2D. 2√29.下列四个图形中,可以由下图通过平移得到的是()A. B. C. D.10.下列宣传图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.11.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m212.如图,在两个重叠的直角三角形中,将其中的一个直角三角形沿着BC方向平移BE距离得到此图形,其中AB=6,BE=5,DH=3,则四边形DHCF的面积为()A. 35B. 652C. 452D. 3113.如图,由△ABC平移得到的三角形有()A. 15个B. 5个C. 10个D. 8个14.将点A(1,−1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A. (−2,1)B. (−2,−1)C. (2,1)D. (2,−1)15.如图的四个图形中,由基础图形通过平移、旋转或轴对称这三种变换都能得到的是()A. B.C. D.16.如图,点A,B的坐标分别是(−3,1),(−1,−2),若将线段AB平移至A1B1的位置,则线段AB在平移过程中扫过的图形面积为()A. 18B. 20C. 36D. 无法确定17.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)18.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)19.将△ABC各顶点的纵坐标加“−3”,连接这三点所成的三角形是由△ABC()A. 向上平移3个单位长度得到的B. 向下平移3个单位长度得到的C. 向左平移3个单位长度得到的D. 向右平移3个单位长度得到的20.如图,将△OAB绕点O逆时针旋转70°,得到△OCD,若∠A=2∠D=100°,则α的度数是()A. 50°B. 60°C. 40°D. 30°21.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A. πcm2B. 4cm2)cm2C. (π−π2)cm2D. (π+π222.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个23.如图,在△ABC中,AB=12,将△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,则阴影部分的面积为()A. 24B. 48C. 36D. 7224.如图,P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A. 2√2B. 3√2C. 3D. 无法确定25.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是()A. 12B. 1 C. √3 D. √3226.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A. 2(√33+1)B. √33+1C. √3−1D. √3+127.如图,△ABC绕点A旋转至△ADE,则旋转角是()A. ∠BADB. ∠BACC. ∠BAED. ∠CAD28.如图,△ABC经过平移后得到△DEF,则下列说法中正确的有()①AB//DE,AB=DE;②AD//BE//CF,AD=BE=CF;③AC//DF,AC=DF;④BC//EF,BC=EF.A. 1个B. 2个C. 3个D. 4个29.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.30.如图,∠A=80∘,O是AB上一点,直线OD与AB所夹的∠AOD=82∘,要使OD//AC,直线OD绕点O按逆时针方向至少旋转()A. 8∘B. 10∘C. 12∘D. 18∘31.下列说法中,不正确的是()A. 图形平移是由移动的方向和距离所决定的B. 图形旋转是由旋转中心和旋转角度所决定的C. 任意两条相等的线段都成中心对称D. 任意两点都成中心对称32.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上()A. 向左平移了5个单位长度B. 向下平移了5个单位长度C. 向上平移了5个单位长度D. 向右平移了5个单位长度33.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称图形,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称图形;③将△ABC向下、向左各平移1个单位长度,再以AC的中点为中心作中心对称图形,其中正确的变换有()A. ①②B. ①③C. ②③D. ①②③34.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组二、填空题(本大题共25小题,共75.0分)35.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45∘,将△ADC绕点A顺时针旋转90∘后,得到△AFB,连接EF,下列结论: ①△AED≌△AEF; ②BE+DC=DE; ③BE2+DC2=DE2,其中正确的是.(填序号)36.如图,在平面直角坐标系中,已知点A(−3,−1),点B(−2,1),平移线段AB,使点A落在A1(0,−1),点B落在点B1,则点B1的坐标为37.如图,在△ABC中,∠C=90°,AC=8,BC=6,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为.38.在平面直角坐标系中,将点A(−1,2)向上平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是39.如图,将周长为8的△ABC沿BC边向右平移2个单位长度,得到△DEF,则四边形ABFD的周长为.40.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3、√2、4,则正方形ABCD的面积为.41.已知平面直角坐标内的点A(−2,5),如果将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是.42.根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.43.若将点P(m+2,2m+1)向右平移1个单位长度后,点P的对应点正好落在y轴上,则m=.44.有下列图形:①线段;②三角形;③平行四边形;④正方形;⑤圆.其中不是中心对称图形的是(填序号).45.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.46.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着__点_______旋转__度可得到△____.47.已知点A(1,−2),B(−1,2),E(2,a),F(b,3),若将线段AB平移至EF,点A,E为对应点,则a+b的值为________.48.钟表上的时针走1小时旋转了度.49.如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”“B”或“C”).50.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为.51.如图,将△ABC绕点A旋转一定角度后得到△ADE.若∠CAE=60∘,∠E=65∘,且AD⊥BC,则∠BAC=°.52.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.53.如图,四边形ABCD与四边形FGHE关于某一点成中心对称,则这个点是.54.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.55.如图,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=________°.56.点P(−4,y)先向左平移2个单位长度,再向下平移3个单位长度后得到点Q(x,−1),则x=,y=.57.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.58.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5cm,BC=8cm,∠BAC=130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.59.如图,在△ABC中,∠ACB=90∘,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为.三、解答题(本大题共23小题,共184.0分)60.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.61.如图,已知BC与CD重合,∠B=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是.62.如图,在4×3的网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.63.如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.64.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)平移△ABC,使得点A与点O重合,画出平移后的△A′B′C′;(2)画出△ABC关于点O成中心对称的△DEF;(3)判断△A′B′C′与△DEF是否成中心对称.65.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(−3,5),B(−2,1),C(−1,3).(1)若点C1的坐标为(4,0),画出△ABC经过平移后得到的△A1B1C1,并写出点B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称,画出△A2B2C2,并写出点B2的坐标;(3)若△ABC绕着坐标原点O按逆时针方向旋转90°得到△A3B3C3,画出△A3B3C3,并写出点B3的坐标.66.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.67.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论;(2)若EF//CD,求∠BDC的度数.68.如图,已知△ABC三个顶点的坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图: ①画出△ABC向左平移5个单位长度后得到的△A1B1C1; ②画出△ABC绕着原点O顺时针旋转90∘后得到的△A2B2C2;(2)请写出直线B1C1与直线B2C2的交点坐标.69.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置.(1)旋转中心是点,旋转角是度;(2)连接EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.70.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.71.如图,△ABC各顶点的坐标分别为A(−2,6),B(−3,2),C(0,3),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,得到△DEF.(1)画出△DEF,并分别写出△DEF各顶点的坐标;(2)在(1)中,若△ABC内有一点M(a,b),则其在△DEF中的对应点M′的坐标为______________;(3)如果将△DEF看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.72.如图 ①,在△ABC中,∠A=90∘,AB=AC=√2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0∘<α<360∘),如图 ②,连接CE,BD,CD.(1)当0∘<α<180∘时,求证:CE=BD;(2)如图 ③,当α=90∘时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.73.如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.74.如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.75.操作与探究如图,在平面直角坐标系中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为点A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.76.在平面直角坐标系中,将点向右平移2个单位长度,再向上平移1个单位长度记为一次“跳跃”.点A(−6,−2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标:A3______________;(2)写出点A n的坐标:____________________________(用含n的代数式表示).77.在如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,−2),C(5,1),D(4,4),画出将四边形ABCD向左平移3个单位长度后得到的四边形A1B1C1D1,并写出平移后四边形各个顶点的坐标.78.如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图 ①中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系(不要求证明);(2)当△DEF沿直线m向左平移到图 ②所示的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△ACE能否通过旋转重合.请证明你的猜想.79.如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.80.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.81.如图,在Rt△ABC中,∠C=90°,BC=AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′重叠部分的面积;(2)若平移距离为x(0≤x≤4),用含x的代数式表示△ABC与△A′B′C′重叠部分的面积.82.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC向下平移2个单位长度后得到的△A1B1C1,并写出点A1,B1,C1的坐标;(2)作出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出点C2的坐标.答案和解析1.【答案】A【解析】【分析】本题考查了旋转的性质,知道想要确定旋转后的图形①要确定旋转的方向②要确定旋转的大小是解题的关键.根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可.【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.2.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:图1是轴对称图形不是中心对称图形;图2、3、4既是轴对称图形,又是中心对称图形.故选B.3.【答案】C【解析】【分析】本题考查了图形的旋转,解题时注意旋转三要素:①旋转中心;②旋转方向;③旋转角度.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,据此即可解答.解:将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,这时如果使图形回到原来的位置,需要将图形绕着点O顺时针旋转110°.故选:C.4.【答案】C【解析】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.5.【答案】C【解析】将点(−1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是(−1−2,2−3),即(−3,−1),故选C.6.【答案】C【解析】∵等边三角形OAB的边长为4,点A在第二象限内,∴易得点A的坐标为(−2√3,2),B(0,4),∵平移后点A′的横坐标为6√3,∠AOB=60∘,∴平移规律为向右平移8√3个单位,向下平移8个单位,∴点B′的坐标为(8√3,−4),7.【答案】C【解析】原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有C 符合.故选C.8.【答案】B【解析】解:由旋转的性质可知AD=AB=1,∠BAD=90∘,∴BD=√AB2+AD2=√12+12=√2,故选B.9.【答案】D【解析】略10.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形;B、D不是轴对称图形,也不是中心对称图形;只有C选项符合题意,故选C.11.【答案】B【解析】略12.【答案】C【解析】略13.【答案】B14.【答案】A【解析】【分析】本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1−3=−2;纵坐标为−1+2=1,∴点B的坐标是(−2,1).故选:A.15.【答案】B【解析】略16.【答案】A【解析】略17.【答案】C【解析】解:∵A(1,3)的对应点的坐标为(−2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(−1,−1).故选:C.根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.18.【答案】D【解析】解:由题图可知点A的坐标为(4,2),向上平移一个单位后对应点的坐标为(4,3),再绕点P按逆时针方向旋转90∘后对应点的坐标为(−1,4),如图所示.19.【答案】B【解析】略20.【答案】C【解析】【分析】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于70°,则可以利用三角形内角和定理列出等式进行求解.【解答】解:∵将△OAB绕点O逆时针旋转70°,∴∠A=∠C,∠AOC=70°,∴∠DOC=70°−α,∵∠A=2∠D=100°,∴∠D=50°,∵∠C+∠D+∠DOC=180°,∴100°+50°+70°−α=180°,解得α=40°,故选:C.21.【答案】B【解析】略22.【答案】B【解析】略23.【答案】C【解析】解:∵△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,∴S△ABC=S△AB1C1,AB=AB1=12,∠BAB1=30∘,∴S阴影=S△ABB1+SΔAB1C1−S△ABC=SΔABB1,作BD⊥AB1于D,在Rt△ABD中,∵∠BAB1=30∘,∴BD=12AB=6,∴SΔABB1=12AB1⋅BD=12×12×6=36.故选C.24.【答案】B【解析】【分析】本题考查了旋转的性质,利用了旋转的性质:对应点到旋转中心的距离相等,旋转角相等,又利用了勾股定理,根据旋转的性质,可得BP′的长,∠PBP′的度数,根据勾股定理,可得答案.【解答】解:由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°.在Rt△PBP′中,由勾股定理,得PP′=√BP2+P′B2=√32+32=3√2.故选B.25.【答案】B【解析】由旋转的性质可知BM=BN,又∵∠MBN=60∘,∴△BMN为等边三角形,∴MN=BM,∵点M是高CH所在直线上的一个动点,∴当BM⊥CH时,BM的长取得最小值,即MN 的长取得最小值,此时点M与点H重合.又∵等边三角形ABC的边长是2,∴AB=BC=CA=2,AB=1.∵CH⊥AB,∴BH=12∴线段MN长度的最小值是1.故选B.26.【答案】D【解析】略27.【答案】A【解析】解:∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选A.28.【答案】D【解析】略29.【答案】B【解析】解:A中的图形既不是轴对称图形也不是中心对称图形;C中的图形为轴对称图形,但不是中心对称图形;D中的图形为中心对称图形,但不是轴对称图形,故选B.30.【答案】D【解析】如图,当OD绕点O旋转至OD′时,OD′//AC,则∠A+∠AOD′=180∘,∴∠AOD′= 180∘−∠A=100∘,∴∠DOD′=∠AOD′−∠AOD=100∘−82∘=18∘,故选D.31.【答案】C【解析】略32.【答案】D【解析】略33.【答案】A【解析】略34.【答案】C【解析】略35.【答案】 ① ③【解析】如图,由已知得,∠BAC=90∘,又∠DAE=45∘,∴∠1+∠2=45∘,由旋转的性质得,∠2=∠3,AD=AF,∴∠FAE=∠1+∠3=45∘=∠DAE,又∵AE=AE,∴△AED≌△AEF,故 ①正确.∵AB=AC,∠BAC=90∘,∴∠ABC+∠C=90∘,由旋转的性质知∠4=∠C,∴∠EBF=∠4+∠ABC=90∘,在Rt△EBF中,BE2+BF2=EF2,由△AED≌△AEF,得EF=ED,由旋转的性质得BF=DC,∴BE2+DC2=DE2,故 ③正确, ②不正确.综上, ① ③正确.36.【答案】(1,1)【解析】【分析】本题考查了坐标与图形变化−平移,熟练掌握网格结构准确找出点的位置是解题的关键.根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.【解答】解:通过平移线段AB,点A(−3,−1)落在(0,−1),即线段AB沿x轴向右移动了3格.如图,点B1的坐标为(1,1).故答案为(1,1).37.【答案】2√10【解析】【分析】本题主要考查旋转的性质,掌握旋转前后对应线段相等、对应角相等是解题的关键.由旋转的性质可求得AE、DE,由勾股定理可求得AB,则可求得BE,连接BD,在Rt△BDE 中可求得BD的长.【解答】解:如图所示:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∵△ABC绕点A逆时针旋转得到△AED,∴∠DEA=∠C=90°,AE=AC=8,DE=BC=6,∴BE=AB−AE=10−8=2,连接BD,在Rt△BDE中,由勾股定理可得BD=√DE2+BE2=√62+22=2√10,即B、D两点间的距离为2√10,故答案为2√10.38.【答案】(−1,−5)【解析】略39.【答案】12【解析】略40.【答案】14+4√3【解析】解:如图,将△ABP绕点B顺时针旋转90∘得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=√2,∠PBM=90∘,∴PM=√2PB=2,∵PC=4,PA=CM=2√3,∴PC2=CM2+PM2,∴∠PMC=90∘,∵∠BPM=∠BMP=45∘,∴∠CMB=∠APB=135∘,∴∠APB+∠BPM=180∘,∴A,P,M三点共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2√3+1,∴AB2=AH2+BH2=(2√3+1)2+12=14+4√3,∴正方形ABCD的面积为14+4√3.故答案为14+4√3.41.【答案】(−5,1)【解析】略42.【答案】16【解析】【分析】本题考查了平移变换的性质,通过平移,把不规则图形的周长转化为规则图形矩形的周长进行求解是解题的关键.根据平移的性质,不规则图形的周长正好等于长为5,宽为3的矩形的周长,再根据矩形的周长公式进行计算即可.【解答】解:如图所示,封闭图形的周长是:2×(5+3)=2×8=16.故答案为:16.43.【答案】−344.【答案】②【解析】略45.【答案】点B【解析】略46.【答案】C;逆时针方向;60;BCD【解析】【分析】本题考查了旋转的定义,等边三角形的性质和三角形全等的判定定理,难度适中.先根据等边三角形的性质,运用SAS证明△ACE≌△BCD,再由旋转的定义即可求解.【解答】解:∵△ABC和△DCE是等边三角形,∴CA=CB,CE=CD,∠DCE=∠ACB=60°,∴∠ACE=∠BCD=60°+∠ACD.∵在△ACE与△BCD中,{CA=CB∠ACE=∠BCDCE=CD,∴△ACE≌△BCD(SAS),∴△ACE绕点C逆时针方向旋转60度可得到△BCD.故答案为C;逆时针方向;60;BCD.47.【答案】−1【解析】【分析】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.解决本题的关键是通过点的坐标之间的关系确定线段平移的方向和距离.利用A点与E点的横坐标,B点与F点的纵坐标坐标可判定线段AB先向右平移1个单位,再向上平移1个单位得到EF,然后根据此平移规律得到−2+1=a,−1+1=b,则可求出a和b的值,从而得到a+b的值.解:∵线段AB平移至EF,即点A平移到E,点B平移到点F,而A(1,−2),B(−1,2),E(2,a),F(b,3),∴点A向右平移一个单位到E,点B向上平移1个单位到F,∴线段AB先向右平移1个单位,再向上平移1个单位得到EF,∴−2+1=a,−1+1=b,∴a=−1,b=0,∴a+b=−1+0=−1.故答案为−1.48.【答案】30【解析】略49.【答案】平移;A【解析】【分析】本题考查平移、旋转的性质.平移前后,对应边平行,故由①到②属于平移;旋转中心的确定方法是,两组对应点连线的垂直平分线的交点,即为旋转中心.【解答】解:根据题意:观察可得:图①与图②对应点位置不变,通过平移可以得到;根据旋转中心的确定方法,两组对应点连线的垂直平分线的交点,可确定图②经过旋转变换得到图③的旋转中心是A.故答案为平移,A.50.【答案】(7,0)【解析】解:∵点A(3,√3)的对应点D的坐标为(6,√3),∴平移的距离为6−3=3,∴BE=3,∵B(4,0),∴E(7,0).51.【答案】 85【解析】由旋转的性质可知,∠BAD=∠CAE=60∘,∠C=∠E=65∘,∵AD⊥BC,∴∠CAD=90∘−65∘=25∘,∴∠BAC=∠BAD+∠CAD=85∘,故答案为85.52.【答案】方块5【解析】略53.【答案】O1【解析】略54.【答案】2√2【解析】略55.【答案】46【解析】【分析】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.先根据三角形外角的性质求出∠ACD=67°,再由△ABC绕点C按顺时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACD=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=67°,∴∠ACE=180°−∠ACD−∠BCE=180°−67°−67°=46°.故答案为:46.56.【答案】−6 2【解析】略57.【答案】AC,E线段AC,CE,EA∠ACE60°【解析】略58.【答案】AB5 BC 8 BAD30°100°【解析】略59.【答案】272【解析】在△ABC中,∠ACB=90∘,AC=4,BC=3,∴AB=5.∵将△ABC绕点A顺时针旋转,使点B落在AC延长线上点D处,∴AD=AB=5,∴CD=AD−AC=1,∴S四边形AEDB =2×12×4×3+12×1×3=272.60.【答案】解:图略【解析】略61.【答案】解:如图示,旋转角为:90°.【解析】【分析】此题主要考查了旋转变换,得出旋转中心的位置是解题关键.分别作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.【解答】解:如图所示:旋转中心即为对应点连线的垂直平分线的交点,旋转角度是90°.故答案为90°.62.【答案】解:图略(答案不唯一).【解析】略63.【答案】解:如图,连接P′P,∵△ABC是正三角形,∴∠BAC=60∘,由旋转的性质得P′A=PA=5,P′B=PC=13,∠P′AP=∠CAB=60∘,∴△PAP′为等边三角形,∴PP′=PA=5,即点P与点P′之间的距离为5.在△PP′B中,PP′=5,PB=12,P′B=13,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠P′PB=90∘,又∵∠P′PA=60∘,∴∠APB=∠P′PB+∠P′PA=90∘+60∘=150∘.【解析】略64.【答案】解:(1)如图,△A′B′C′即为所求作.(2)如图,△DEF即为所求作.(3)△A′B′C′与△DEF成中心对称,对称中心是线段A′D与线段FC′的交点.【解析】略65.【答案】解:(1)如图,△A1B1C1即为所求作的图形.B1(3,−2).(2)如图,△A2B2C2即为所求作的图形.B2(2,−1).(3)如图,△A3B3C3即为所求作的图形.B3(−1,−2).【解析】略66.【答案】(1)∵将△ADF绕点A顺时针旋转90∘后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF.∵∠EAF=45∘,∴∠DAF+∠BAE=∠BAQ+∠BAE=45∘,∴∠QAE=45∘,∴∠QAE=∠FAE.在△AQE和△AFE中,{AQ=AF,∠QAE=∠FAE, AE=AE,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线.(2)由(1)得△AQE≌△AFE,∴QE=EF,由旋转知∠ADF=∠ABQ,又∠ABD+∠ADF=90∘,∴∠ABD+∠ABQ=90∘,即∠QBE=90∘.在Rt△QBE中,QE2=BE2+QB2,则EF2=BE2+DF2.【解析】略67.【答案】解:(1)∠CEF+∠ADC=180°.证明:∵线段CD绕点C按顺时针方向旋转90°后得CE,∴CE=CD,∠DCE=90°,∵∠ACB=90°,∴∠ECF=∠BCD,在△BCD和△FCE中,{CB=CF∠BCD=∠FCE CD=CE,∴△BCD≌△FCE,∴∠CDB=∠CEF,而∠CDB+∠ADC=180°,∴∠CEF+∠ADC=180°;(2)∵EF//CD,∴∠CEF+∠DCE=180°,而∠DCE=90°,∴∠CEF=90°,∴∠BDC=90°.【解析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.(1)根据旋转的性质得CE=CD,∠DCE=90°,则利用等角的余角相等可得∠ECF=∠BCD,于是可根据“SAS”判断△BCD≌△FCE,则∠CDB=∠CEF,然后利用邻补角的定义可得到∠CDB+∠ADC=180°,所以∠CEF+∠ADC=180°;(2)根据平行线的性质得∠CEF+∠DCE=180°,又∠DCE=90°,所以∠CEF=90°,于是得到∠BDC=90°.68.【答案】(1) ①如图所示,△A1B1C1即为所求作. ②如图所示,△A2B2C2即为所求作.。
五年级下册平移练习题
五年级下册平移练习题平移是几何学中的一个基本概念,它指的是在平面上,将一个图形沿着某一方向按照一定的距离进行移动,而图形的形状和大小保持不变。
以下是一些适合五年级学生的平移练习题:1. 基本概念题:- 什么是平移?- 平移后图形的形状和大小会改变吗?2. 判断题:- 平移后的图形与原图形相比,位置发生了变化,但形状和大小不变。
(对/错)- 如果一个图形向右平移了5个单位,那么它的所有点都向右移动了5个单位。
(对/错)3. 填空题:- 一个正方形向右平移了3个单位,它的新位置相对于原位置来说,是向____平移了____个单位。
- 如果一个三角形的顶点坐标分别是(2,3), (4,5), (1,6),那么这个三角形向下平移2个单位后,顶点的新坐标分别是____, ____,____。
4. 图形平移题:- 给出一个简单的图形(如三角形、正方形、圆形等),要求学生画出该图形向右平移5个单位后的图形。
- 给出一个图形,要求学生画出该图形向上平移3个单位后的图形。
5. 坐标平移题:- 若点A的坐标为(3,4),求点A向右平移6个单位后的坐标。
- 若点B的坐标为(-2,-1),求点B向下平移4个单位后的坐标。
6. 应用题:- 一个长方形的长为8厘米,宽为5厘米,它的一个顶点在坐标(1,2)。
如果这个长方形向右平移7厘米,求新长方形的四个顶点的坐标。
- 一个公园的入口在坐标(0,0),公园的长椅在入口的正东方向上,距离入口5米。
如果公园的入口向南移动了3米,求长椅相对于新入口的坐标。
7. 拓展题:- 如果一个图形沿着对角线方向平移,它的坐标变化规则是什么?- 描述一个图形绕着某一点旋转90度后,它的坐标变化规则。
这些练习题旨在帮助学生理解平移的概念,掌握平移的基本规则,并能够应用这些规则解决实际问题。
通过这些练习,学生可以加深对平移这一几何变换的理解。
练习试题3-7.3图形的平移
练习试题3-7.3图形的平移学校 班级 姓名 考号________________考试时间 ______ ________ 装订线内不要答题 ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆2015--2016学年度七年级数学练习三7.3 图形的平移(1)本试卷共印6个班:初一1、2、4、6、7、8, 命题人:尹东泽 时间:2016-02-171.将三角形ABC 经过平移得到三角形A ′B ′C ′,如果∠BAC=60°,AB=5cm ,那么 ∠B ′A ′C ′=________,A ′B ′=_________.2.如图,O 是长方形的对角线AC 的中点,OE ⊥AB ,OF ⊥BC ,垂足分别为E 、F ,若AC=3cm ,则将△OFC 沿CA 方向平移______cm 可以得到三角形AEO.3.如图,是由8个边长均为2cm 的小正方形组成的长方形,图中阴影部分的面积是_________cm 2。
4. 下列关于图形平移的说法中,错误的是 ( )A.图形上任意点移动的方向相同B.图形上任意点移动的距离相等C.图形上任意两点的连线长度相同D.图形上可能存在不动点5.下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升。
其中属于平移的是( )A 、①②B 、①③C 、②③D 、③④6.如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )7.如图,把方格纸中的五边形向右平移8格,画出图形并观察平移前后的图形,其形状、大小是否发生了变化?答:____________________________________.8.如图,三角形ADF 是等边三角形,C 、B 、E 分别是三边的中点,则图中共有____卷面分个等边三角形。
平移专项练习题及解析
一、选择题1. 如图所示,四幅名车标志设计中能用平移得到的是()奥迪本田大众铃木A B C D2. 如图的图形中只能用其中一部分平移可以得到的是()A B C D3. 将图所示的图案通过平移后可以得到的图案是()A B C D4. 下列平移作图错误的是()A B C D5. 如图,O是正六边形ABCDEF的中心,下列图形:△OCD,△ODE,△OEF,△OAF,△OAB,其中可由△OBC平移得到的有()A.1个B.2个C.3个D.4个6. 下列运动属于平移的是()A.空中放飞的风筝B.旋转的电风扇C.摆动的钟摆D.用黑板擦沿直线擦黑板7. 关于平移,下列说法正确的是()A.平移由移动的方向所决定B.平移由移动的距离所决定C.图形只要移动就是平移D.平移由移动的方向和距离所决定8. 如图,在长方形ABCD中,AB=CD=6,AD=BC=8,对角线BD=10,现将长方形沿对角线BD所在直线向左平移4个单位得到长方形EFGH,则点F到直线AD的距离是()A.8B.8.4C.9D.109. 如图,有一块长为32m,宽为24m的草坪,其中有两条宽2m的直道把草坪分为四块,则草坪的面积是()A.640m2B.656m2C.660m2D.670m210. 下列四个图形中,不能通过基本图形平移得到的是()A B C D11. 下列图形可由平移得到的是()A B C D12. 某城市新建了一座游乐场,即日将完工.当施工者准备给游乐场用砖头砌上围墙时,发现在设计图纸中的某些数据已经模糊不清了(如图),从而无法计算出外围围墙的周长,因此无法备砖料.根据图中的标示,可计算出外围围墙的周长是()A.320米B.260米C.160米D.100米13. 如图,是一块电脑主板的示意图,每一转角处都是直角,数据如图(单位:mm),则该主板的周长是()A.88mmB.96mmC.80mmD.84mm14. 如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m2二、填空题15. 如图,在四边形ABCD中,AD // BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为________三角形.16. 兰兰家要在楼梯上铺地毯,已知如图楼梯高2.5米,宽3.5米,楼梯道宽2米,则他家至少要买________米长的地毯.17. 如图,边长为4的两个正方形,则阴影部分的面积为________.18. 如图,△ABC的顶点都在方格纸的格点上.将△ABC向左平移2格,再向上平移2格.请在图中画出平移后的△A′B′C′,并作出△A′B′C′边A′B′上的高C′D′,再写出图中与线段AC平行的线段________.19. 如图,已知Rt△ABC中∠A=90∘,AB=3,AC=4.将其沿边AB向右平移2个单位得到△FGE,则四边形ACEG的面积为________.20. 如图,在8×8的正方形网格中,线段CD是线段AB先向右平移________格,再向上平移________格后得到的.21. 如图,已知线段AB平移后的位置点C,作出线段AB平移后的图形.作法1:连接AC,再过B作线段BD,使BD满足________:连接CD.则CD为所作的图形.作法2:过C作线段CD,使CD满足________且________,则CD为所作的图形.22. 如图,长方形ABCD中,对角线AC,BD相交于O,DE // AC,CE // BD,那么△EDC可以看作是△________平移得到的,平移的距离是线段________的长.23. 如图,△ABC沿BC方向平移到△DEF的位置,若EF=5cm,CE=2cm,则平移的距离是________cm.三、解答题24. 如图,将直角△ABC沿BC边平移得到直角△DEF,AB=6cm,BE=3cm,DH=3cm,求四边形CHDF的面积为多少cm2?25. 如图,将图中的“小船”平移,使点A平移到点A′,画出平移后的小船.26. 如图,是6级台阶的侧面示意图,准备在台阶上铺上红色地毯,已知这种地毯每平方米50元,主楼梯道宽2米,问:(1)至少要买地毯多少米?(2)要买这种地毯至少需要多少元?27. 将直角三角形ABC沿CB方向平移CF的长度后,得到直角三角形DEF.已知DG=4,CF=6,AC= 10,求阴影部分的面积.参考答案与试题解析2019年7月22日初中数学一、选择题(本题共计 14 小题,每题 3 分,共计42分)1.【答案】A【考点】生活中的平移现象【解析】根据平移的定义结合图形进行判断.【解答】解:根据平移的定义可知,只有A选项是由一个圆作为基本图形,经过平移得到.故选:A.2.【答案】B【考点】利用平移设计图案【解析】根据平移的性质,对选项进行一一分析,排除错误答案.【解答】解:A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.3.【答案】A【考点】利用平移设计图案【解析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【解答】解:根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选A.4.【答案】C【考点】作图-平移变换【解析】根据平移变换的性质进行解答即可.【解答】解:A、B、D符合平移变换,C是轴对称变换.故选C.5.【答案】B【考点】平移的性质【解析】根据平移的性质,结合图形,对题中给出的三角形进行分析,排除错误答案,求得正确选项.【解答】解:△OCD方向发生了变化,不是平移得到;△ODE符合平移的性质,是平移得到;△OEF方向发生了变化,不是平移得到;△OAF符合平移的性质,是平移得到;△OAB方向发生了变化,不是平移得到.故选:B.6.【答案】D【考点】生活中的平移现象【解析】运动前后形状与大小没有改变,并且对应线段平行且相等的现象即为平移现象.【解答】解:A、对应线段不平行,不符合平移的定义;B、对应线段不平行,不符合平移的定义;C、对应线段不平行,不符合平移的定义;D、符合平移的定义;故选D.7.【答案】D【考点】平移的性质【解析】根据平移的概念和基本性质,对选项进行一一分析,排除错误答案.【解答】解:∵ 平移由移动的方向和距离所决定,两者缺一不可,∵ A、B错误,D正确;C、移动不是平移,旋转也是移动,故C错误;故选D.8.【答案】D【考点】平移的性质【解析】根据平移的性质解答即可.【解答】解:因为长方形沿对角线BD所在直线向左平移4个单位得到长方形EFGH,所以平移的距离为4,因为AB=CD=6,所以点F到直线AD的距离是6+4=10,故选D9.【答案】C【考点】生活中的平移现象【解析】草坪的面积等于矩形的面积-两条路的面积+两条路重合部分的面积,由此计算即可.【解答】解:S=32×24−2×24−2×32+2×2=660(m2).故选:C.10.【答案】C【考点】利用平移设计图案【解析】根据图形平移的性质即可得出结论.【解答】解:由图可知,A、B、D可以由平移得到,C由旋转得到.故选C.11.【答案】A【考点】生活中的平移现象【解析】根据平移的性质,对逐个选项进行分析即可.【解答】解:A、由一个图形经过平移得出,正确;B、由一个图形经过旋转得出,错误;C、由一个图形经过旋转得出,错误;D、由一个图形经过旋转得出,错误;故选A12.【答案】B【考点】生活中的平移现象【解析】根据图示提供的数据推知:A+B+C=50米,从而求出竖向的围墙总长度,继而表示出围墙的总长度,合并可得出答案.【解答】解:由图示提供的数据推知:A+B+C=50米,从而竖向的围墙总长度为100米,∵ 从横的部分提供的数据推知,横向的围墙总长度为:50+A+30+50+30−A=160米,从而外围围墙的总长度为260米.故选B.13.【答案】A【考点】生活中的平移现象【解析】根据平移,可得一个矩形,根据矩形的周长,可得答案.【解答】解:把凹进去的边向外平移,得矩形周长是矩形的周长,(24+20)×2=88mm故选:A.14.【答案】C【考点】生活中的平移现象【解析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.【解答】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102−2=100m,这个长方形的宽为:51−1=50m,因此,草坪的面积=50×100=5000m2.故选:C.二、填空题(本题共计 9 小题,每题 3 分,共计27分)15.【答案】直角【考点】平移的性质【解析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在△EFG中求得∠FEG= 90∘.【解答】解:∵ AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF,又∵ ∠B与∠C互余,∵ ∠EFG与∠EGF互余,∵ 在△EFG中,∠FEG=90∘(三角形内角和定理),∵ △EFG为Rt△EFG,故答案是:直角.16.【答案】6【考点】生活中的平移现象【解析】根据题意,结合图形,把楼梯的横竖向上向左平移,构成一个矩形,则3.5+2.5即为所求.【解答】解:如果在楼梯上铺地毯,那么至少需要地毯为2.5+3.5=6米.故答案为:6.17.【答案】16【考点】平移的性质【解析】观察可以发现:阴影部分的面积正好是正方形的面积,即42.【解答】解:根据图形易知:阴影部分的面积=正方形的面积=42=16,故答案为:16.18.【答案】A′C′【考点】作图-平移变换【解析】分别找出A、B、C三点平移后的对应点,再顺次连接即可;根据图形平移后对应线段平行可得答案.【解答】解:如图所示:,与线段AC平行的线段A′C′.19.【答案】14【考点】平移的性质【解析】所求四边形的面积等于矩形ACEF的面积加上平移后的三角形的面积.【解答】解:∵ Rt△ABC中∠A=90∘,AB=3,AC=4,将其沿边AB向右平移2个单位得到△FGE,S△GEF=S△BAC=12×3×4=6∵ AF=2,AC=4∵ S矩形ACEF=2×4=8∵ S四边形ACEG=S△GEF+S矩形ACEF=6+8=14故答案为:14.20.【答案】3,1【考点】平移的性质【解析】利用平移的性质,结合图形,得出答案.【解答】解:结合图形可得线段CD是线段AB先向右平移3格,再向上平移1格后得到的.故答案为:3、1.21.【答案】平行且等于AC,平行,等于【考点】作图-平移变换【解析】根据图形平移的性质进行解答即可.【解答】解:作法1:连接AC,再过B作线段BD,使BD满足平行且等于AC,连接CD.则CD为所作的图形;作法2:过C作线段CD,使CD满足平行且等于AB,则CD为所作的图形.故答案为:平行且等于AC;平行;等于AB.22.【答案】OAB,AD【考点】平移的性质【解析】结合图形和已知条件,利用平移的性质,找出各对应线段是解题的关键.【解答】解:由平移的性质,可知AB、AO、BO平移AD的长分别得到DC、DE、CE,所以△EDC可以看作是△OAB平移得到的,平移的距离是线段AD的长.故填OAB,AD.23.【答案】3【考点】平移的性质【解析】根据平移的性质,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵ EF=5cm,CE=2cm,∵ 平移的距离CF=EF−EC=3cm.三、解答题(本题共计 4 小题,每题 10 分,共计40分)24.【答案】cm2.四边形CHDF的面积为272【考点】平移的性质【解析】根据平移的性质得△ABC≅△DEF,DE=AB=6,则S△ABC=S△DEF,HE=DE−DH=3,所以S四边形CHDF=S梯形ABEH,然后根据梯形的面积公式计算即可.【解答】解:∵ 直角△ABC沿BC边平移得到直角△DEF,∵ △ABC≅△DEF,DE=AB=6,∵ S△ABC=S△DEF,HE=DE−DH=6−3=3,∵ S四边形CHDF=S梯形ABEH=12×(3+6)×3=272(cm2).25.【答案】解:如图所示:.【考点】利用平移设计图案【解析】先根据A、A′的位置关系,找出平移的规律,作出各个关键点的对应点,连接即可.【解答】解:如图所示:.26.【答案】至少买地毯3.8米;(2)地毯的面积为:3.8×2=7.6(平方米),故买地毯至少需要:7.6×50=380(元),答:要买这种地毯至少需要380元.【考点】生活中的平移现象【解析】(1)根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个矩形,得出长与宽即可;(2)根据(1)中所求得其面积,即可得出购买地毯的钱数.【解答】解:(1)如图,利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为2.8米,1米,即可得地毯的长度为2.8+1=3.8(米),答:至少买地毯3.8米;(2)地毯的面积为:3.8×2=7.6(平方米),故买地毯至少需要:7.6×50=380(元),答:要买这种地毯至少需要380元.27.【答案】解:∵ 将△ABC沿CB向右平移得到△DEF,CF=6,∵ AD // BE,AD=BE=6,∵ 四边形ABED是平行四边形,∵ 四边形ABED的面积=BE×AC=6×10=60.【考点】平移的性质【解析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵ 将△ABC沿CB向右平移得到△DEF,CF=6,∵ AD // BE,AD=BE=6,∵ 四边形ABED是平行四边形,∵ 四边形ABED的面积=BE×AC=6×10=60.。
第三章图形的平移与旋转练习题及答案全套一
情景再现:你对以上图片熟悉吗?请你回答以下几个问题: (1)汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?(2)传送带上的物品,比如带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?(3)以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A ′B ′C ′D ′是梯形ABCD 经过平移得到的且∠ABC =90°.那么梯形ABCD 的面积为________,∠A ′B ′C =________. 图1 2.在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.图23.请将图3中的“小鱼”向左平移5格.图34.请欣赏下面的图形4,它是由若干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?一、填空:1、如下左图,△ABC 经过平移到△A ′B ′C ′的位置,则平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB 是线段CD 经过平移得到的,则线段AC 与BC 的关系为( )A.相交B.平行C.相等D.平行且相等3、如下右图,△ABC 经过平移得到△DEF ,请写出图中相等的线段______,互相平行的线段______,相等的角______.(在两个三角形的内角中找) 4、如下左图,四边形ABCD 平移后得到四边形EFGH ,则:①画出平移方向,平移距离是_______;(精确到0.1cm )②HE=_________,∠A=_______,∠A=_______. ③DH=_________=_______A=_______. 5、如下右图,△ABC 平移后得到了△DEF ,(1)若∠A=28º,∠E=72º,BC=2,则∠1=____º,∠F=____º,EF=____º;(2)在图中A 、B 、C 、D 、E 、F 六点中,选取点_______和点_______,使连结两点的线段与AE 平行. 6、如图,请画出△ABC 向左平移4格后的△A 1B 1C 1,然后再画出△A 1B 1C 1向上平移3格后的△A 2B 2C 2,若把△A 2B 2C 2看成是△ABC 经过一次平移而得到的,那么平移的方向是______,距离是____的长度. 二、选择题:7、如下左图,△ABC 经过平移到△DEF 的位置,则下列说法:①AB ∥DE ,AD=CF=BE ; ②∠ACB=∠DEF ; ③平移的方向是点C 到点E 的方向; ④平移距离为线段BE 的长. 其中说法正确的有( ) A.个 B.2个 C.3个 D.4个8、如下右图,在等边△ABC 中,D 、E 、F 分别是边BC 、AC 、AB 的中点,则△AFE 经过平移可以得到( ) A.△DEF B.△FBD C.△EDC D.△FBD 和△EDC三、探究升级:1、如图,△ABC 上的点A 平移到点A 1,请画出平移后的图形△A 1B 1C 1.3、 △ABC 经过平移后得到△DEF ,这时,我们可以说△ABC 与△DEF 是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如下图,如果线段MO 绕点O 旋转90°得到线段NO ,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.§3.3图形的平移与旋转§3.2图形的平移与旋转§3.1图形的平移与旋转3、如图,在下列四张图中不能看成由一个平面图形旋转而产生的是( )4、请你先观察图,然后确定第四张图为( ) 4、 如下左图,△ABC 绕着点O 旋转后得到△DEF ,那么点A 的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F.6、如下中图,△ABC 与△BDE 都是等腰三角形,若△ABC 经旋转后能与△BDE 重合,则旋转中心是________,旋转了______°.7、如下右图,C 是AB 上一点,△ACD 和△BCE 都是等边三角形,如果△ACE 经过旋转后能与△DCB 重合,那么旋转中心是_______,旋转了______°,点A 的对应点是_______. 二、解答题:8、如图11.4.7,△ABC 绕顶点C 旋转某一个角度后得到△A ′B ′C ,问:(1)旋转中心是哪一点? (2)旋转角是什么? (3)如果点M 是BC 的中点,那么经过上述旋转后,点M 转到了什么位置?9、观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的? 三、探究升级10、如图,△ACE 、△ABF 都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC 是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F 的对应点是什么?一、选择题1.平面图形的旋转一般情况下改变图形的( )A.位置B.大小C.形状D.性质2.9点钟时,钟表的时针和分针之间的夹角是( )A.30° B.45° C.60° D.90°3.将平行四边形ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,下列结论错误的是( )A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.5.菱形ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',则四边形D C B A ''''是________.6.△ABC 绕一点旋转到△A ′B ′C ′,则△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度.8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度. 10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗? 12.Rt △ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°,(1)试作出Rt △ABC 旋转后的三角形;(2)将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转下列角度后的图形: (1)90°;(2)180°;(3)270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.看一看:下列三幅图案分别是由什么“基本图形”经过平移或旋转而得到的?1.2.3.试一试:怎样将下图中的甲图变成乙图? 做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , (1)△ABE ≌△ADF .吗?说明理由。
五年级上小学数学平移和旋转练习题.doc
小学数学平移和旋转练习题(一)
一、连一连。
升旗时国旗的运动钟摆的运动
在算盘上拨珠平移电梯的运动
风扇叶片的运动旋转火车的运动
光盘在电脑里的运动把握汽车的方向盘2、在方格里画出先向下平移3格,再向右平移4格后的图形。
3、画出图形的另一半,使它成为一个轴对称图形。
(5)画出三角形绕“A ”点顺时针旋转 (6) 画出小旗绕“O ”点逆时针旋
900
后的图形。
900后的图形。
900后的图形。
五、选择。
汽车在公路上运动时,轮子的运动是( )。
A 、平移
B 、旋转
C 、既平移又旋转
五、下图是按照一定规律排列起来的,请按这一规律在空格处画出适当的图形。
A B C
六、接着往下画。
根据要求画出图形:
(1)将图形A绕点O顺时针旋转90°,得到图形B。
(2)将图形B向右平移4格,得到图形C。
以点O为旋转中心,利用旋转变化设计图案。
图形的平移与旋转练习题及答案全套
情景再现:你对以上图片熟悉吗?请你答复以下几个问题:〔1〕汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?〔2〕传送带上的物品,比方带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?〔3〕以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,〔2〕〔3〕〔4〕〔5〕〔6〕中的图案_________可以通过平移图案〔1〕得到的.图2“小鱼〞向左平移5格.图34.请欣赏下面的图形4,它是由假设干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§图形的平移与旋转一、填空:1、如下左图,△ABC经过平移到△A′B′C′的位置,那么平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB是线段CD经过平移得到的,那么线段AC与BC的关系为〔〕3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.〔在两个三角形的内角中找〕4、如下左图,四边形ABCD平移后得到四边形EFGH,那么:①画出平移方向,平移距离是_______;〔准确到0.1cm〕②HE=_________,∠A=_______,∠A=_______.③DH=_________=_______A=_______.5、如下右图,△ABC平移后得到了△DEF,〔1〕假设∠A=28º,∠E=72º,BC=2,那么∠1=____º,∠F=____º,EF=____º;〔2〕在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行.6、如图,请画出△ABC向左平移4格后的△A1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,假设把△A2B2C2看成是△ABC经过一次平移而得到的,那么平移的方向是______,距离是____的长度.二、选择题:7、如下左图,△ABC经过平移到△DEF的位置,那么以下说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有〔〕8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,那么△AFE经过平移可以得到〔〕A.△DEFB.△FBDC.△EDCD.△FBD和△EDC三、探究升级:1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1.3、△ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如以下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,那么草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如以下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在以下四张图中不能看成由一个平面图形旋转而产生的是〔〕4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,假设△ABC经旋转后能与△BDE重合,那么旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:〔1〕旋转中心是哪一点?〔2〕旋转角是什么?〔3〕如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察以下图形,它可以看作是什么“根本图形〞通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?§图形的平移与旋转一、选择题1.平面图形的旋转一般情况下改变图形的〔 〕° ° ° °ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,以下结论错误的选项是〔 〕A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',那么四边形D C B A ''''是________. 6.△ABC 绕一点旋转到△A ′B ′C ′,那么△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.以下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?△ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°,〔1〕试作出Rt △ABC 旋转后的三角形; 〔2〕将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转以下角度后的图形: 〔1〕90°;〔2〕180°;〔3〕270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.§图形的平移与旋转看一看:以下三幅图案分别是由什么“根本图形〞经过平移或旋转而得到的?1.2.3.试一试:怎样将以下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , 〔1〕△ABE ≌△ADF .吗?说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的平移练习题
第一周 图形的平移练习
班级_____________ 姓名:_____________ 1.图形的平移只改变图形的________,不改变图形的_______、________。
2.图形平移的决定因素:平移的_______和_______。
3.平移的方向是图形上的某一点到它_____点的方向;平移的距离是图形上的某一点
到它对应点的连线的______。
平移的对应点所连线段 。
4.一个图形先向右平移5个单位,再向左平移7个单位,所得到的图形,可以看作是
原来位置的图形一次向 平移 个单位得到的 5.如果三角形ABC 沿着北偏东300的方向移动了2cm ,那么三角形ABC 的一条边AB
边上的一点P向__________移动了______cm 。
6.在下列说法中:①△ABC 在平移过程中,对应线段一定相等;
②△ABC 在平移过程中,对应线段一定平行;③△ABC 在平移过程中,周长不变;
④△ABC 在平移过程中,面积不变。
其中正确的有____________________。
7.下列说法中正确的是( )
A .一个图形经过平移后,与原图形成轴对称
B .如果两个图形成轴对称,那么一个图形可由另一个图形经过平移变换得到
C .一个图形经过平移后,它的性质都发生了变化
D .图形的平移由平移的方向和距离决定 8.在以下现象中,属于平移的是( )
① 在挡秋千的小朋友;② 打气筒打气时,活塞的运动; ③ 钟摆的摆动; ④ 传送带上,瓶装饮料的移动 A . ①② B . ①③ C . ②③ D . ②④ 9.如图,大矩形的长是10cm ,宽是8cm ,阴影的宽为2cm ,则空白部分的面积是( )
A.36cm 2
B.40cm 2
C.32cm 2
D.48 cm 2
10.如图,△ABC 经过平移之后得△DEF ,
请你在两三角形的内角中找出图中相等的线段
写出图中互相平行的线段
写出图中相等的角
11.如图,△ABC 经过平移后称为△A ′B ′C ′,画出平移的方向,量出平移的距离。
思路点拔:先找出一组对应点,确定平移方向,测量平移的距离.
12.(1)已知△ABC 和线段PQ ,画出△ABC 沿线段PQ 的方向平移2cm 后的图形;
13.如图,已知平行四边形ABCD ,作DE ⊥AB ,垂足为E ,把三角形AED 沿AB 方向 平移AB 长个单位. ①作出平移后的图形.
②经过这样的平移后,原来的图形变成了什么图形? 等吗?
③这两个图形的面积相
E
D B
C
F
A O
E
D
B
C
A。