第章比色法和分光光度法
比色法和分光光度计分析法
分光光度计分析法的原理
分光光度计分析法的原理基于朗伯-比尔定律,即当一束单 色光通过溶液时,光线被吸收的程度与溶液的浓度和液层 的厚度成正比。
通过测量特定波长的光线通过溶液后的透射强度,可以计 算出溶液中目标物质的浓度。分光光度计可以自动调整波 长,并使用光电检测器测量透射光线强度,从而得到吸光 度值。
比色法对实验条件要求不高,可 在普通实验室进行。分光光度计 分析法需要使用精密仪器,对实
验室环境有一定要求。
实验时间
比色法操作简便,实验时间较短 。分光光度计分析法需要较长时
间进行波长调整和测量。
准确度的比较
准确度
分光光度计分析法具有较高的准确度 ,能够更准确地测量待测物质的浓度 。比色法准确度相对较低,但适用于 一般实验室和现场检测。
挑战与机遇
挑战
尽管比色法和分光光度计分析法具有许多优点,但仍存在一些挑战,如样品预处理、干扰物质的影响以及仪器设 备的普及程度等。
机遇
随着科学技术的不断进步和应用领域的拓展,比色法和分光光度计分析法将面临更多的发展机遇。同时,政府支 持、市场需求和技术创新也将为其发展提供有力支持。
谢谢您的聆听
THANKS
05
未来展望
技术发展展望
智能化
01
随着人工智能和机器学习技术的进步,比色法和分光光度计分
析法将更加智能化,实现自动化、快速和准确的检测。
高灵敏度
02
提高检测灵敏度是未来的重要发展方向,以便更好地检测低浓
度的物质。
多组分同时检测
03
发展多组分同时检测技术,能够同时测定多种目标物质,提高
分析效率。
应用领域展望
干扰因素
重复性
分光光度计分析法的重复性较好,结 果稳定。比色法重复性相对较差,受 操作影响较大。
分光光度法
基于物质对光的选择性吸收而建立起来的分析方法,称为吸光光度法。包括:比色法、可见及紫外吸光光度法和红外光谱法。本章重点介绍:可见吸光光度法。在选定波长下,被测溶液对光的吸收程度与溶液中的吸光物质的浓度有简单的定量关系。吸收光波范围是紫外,可见和红外光区。它所测量的是物质的物理性质-物质对光的吸收,测量所需的仪器是特殊的光学电子学仪器,所以光度法不属于传统的化学分析法,而属于近代的仪器分析,这里只是按照我国现行教学习惯把可见光的光度法作为化学分析部分的一章。
(一)朗伯一比耳定律的推导
当一束平行单色光通过任何均匀、非散射的固体、液体或气体介质时,光的一部分被吸收,一部分透过溶液,一部分被器皿表面反射。设入射的单色光强度为I0,反射光强度为Ir,吸收光强度为Ia,透过光强度为It,则它们之间的关系为:
I0=Ir+Ia+It
因为λ射光常垂直于介质表面射λ,Ir很小(约为λ射光强度的4%)又由于进行光度分析时都采用同样质料,同厚度的吸收池盛装试液及参比溶液,反射光的强度是不变的。因此,由反射所引起的误差可校正,抵消。故上式可简化为:
ΔE=hc/λ
这里,ΔE=E2-E1,表示某一能吸级差的能量。由于不同物质的分子其组成与结构不同,它们所具有的特征能级不同,能级差也不同,所以不同物质对不同波长的光的吸收就具有选择性,有的能吸收,有的不能吸收。在电子能级发生变化时,不可避免地也伴随着分子的振动和转动能级的变化.分子光谱又成为带状光谱.
2、溶液有色的原因。
具有单一波长的光称为单色光,在可见光中,通常所说的白光是由许多不同波长的可见光组成的复合光。由红、橙、黄、绿、青、蓝、紫这些不同波长的可见光按照一定的比例混合得到白光。进一步的研究又表明,只需要把两种特定颜色的光按一定比例混合,就可以得到白光,如绿光和紫光混合,黄光和蓝光混合,都可以得到白光。
(一)物质对光的选择性吸收
第三节 吸光光度法一、测定原理基于物质对光的选择性吸收而建立的分析方法称为吸光光度法,包括比色法、可见分光光度法及紫外分光光度法等。
本章重点讨论可见光区的吸光光度法。
有些物质的溶液是有色的,例如4KMnO 溶液呈紫红色,227K Cr O 水溶液呈橙色。
许多物质的溶液本身是无色或浅色的,但它们与某些试剂发生反应后生成有色物质,例如3Fe +与3Fe +生成血红色配合物; 2Fe +与邻二氮菲生成红色配合物。
有色物质溶液颜色的深浅与其浓度有关,浓度愈大,颜色愈深。
如果是通过与标准色阶比较颜色深浅的方法确定溶液中有色物质的含量,则称为目视比色法,如果是使用分光光度计,利用溶液对单色光的吸收程度确定物质含量,则称为分光光度法。
吸光光度法主要用于测定试样中的微量组分,具有以下特点:(1)灵敏度高。
常可不经富集用于测定质量分数为210-~510-。
的微量组分,甚至可测定低至质量分数为610-~810-的痕量组分。
通常所测试的浓度下限达510-~610-1mol L -⋅。
(2)准确度高。
一般目视比色法的相对误差为5%~l0%,分光光度法为2%~5%。
(3)应用广泛。
几乎所有的无机离子和许多有机化合物都可以直接或间接地用分光光度法进行测定。
不仅用于测定微量组分,也能用于高含量组分的测定及配合物组成、化学平衡等的研究。
如农业部门常用于品质分析、动植物生理生化及土壤、植株等的测定。
(4)仪器简单,操作方便,快速。
近年来,由于新的、灵敏度高、选择性好的显色剂和掩蔽剂的不断出现,以及化学计量学方法的应用,常常可以不经分离就能直接进行比色或分光光度测定。
(一)物质对光的选择性吸收1.光的基本性质光是一种电磁波,同时具有波动性和微粒性。
光的传播,如光的折射、衍射、偏振和干涉等现象可用光的波动性来解释。
描述波动性的重要参数是波长()m λ、频率()Z H υ,它们与光速c 的关系是:341310cc J sm s E h h λυυλ--=⨯==c λυ= (10.1)在真空介质中光速为2.9979810⨯1m s -,约等于81310m s -⨯还有一些现象,如光电效应、光的吸收和发射等,只能用光的微粒性才能说明,即把光看作是带有能量的微粒流。
分光光度比色法的原理
分光光度比色法的原理
一、物质对光的吸收
分光光度比色法的基础是物质对光的吸收。
当光线穿过物质时,物质会吸收特定波长的光线,导致光的强度减弱。
物质对光的吸收程度与物质的浓度成正比,这是分光光度法进行定量分析的基础。
二、光的色散
光的色散是指光线通过棱镜或光栅等光学元件时,被分解成不同波长的光谱。
通过色散,我们可以将一束白光分解成不同颜色的光谱。
分光光度计利用这个原理,将物质吸收的光线分解成特定波长的光谱,从而确定物质对哪些波长的光线有吸收。
三、比色测定
比色测定是指在特定波长下测量物质对光的吸收程度。
通常,我们将待测物质与已知浓度的标准物质在相同条件下进行比色测定,然后根据标准曲线的斜率和截距计算出待测物质的浓度。
比色测定是分光光度比色法的重要步骤,通过它可以对物质进行定量分析。
四、定量分析
通过比色测定得到的数据,我们可以计算出待测物质的浓度。
在分光光度比色法中,我们通常使用标准曲线法或标准加入法来进行定量分析。
标准曲线法是通过绘制标准物质浓度与吸光度的关系曲线,然后根据待测物质的吸光度在曲线上找到对应的浓度。
标准加入法则是将已知浓度的标准物质加入待测样品中,然后根据吸光度的变化计算待测物质的浓度。
总之,分光光度比色法的原理主要包括物质对光的吸收、光的色散、比色测定和定量分析等方面。
通过这些原理的应用,我们可以快速、准确地测定物质的浓度,广泛应用于化学、生物学、医学等领域。
比色法和分光光度法及其仪器
-
THANKS FOR WATCHING
谢谢观看
汇报人:xxxx 汇报时间:20XX年X月
分光光度法
分光光度法的优点和缺点
分光光度法的优点包括高精度、高灵敏度和高选择性。它能够提供精确的定量数据,适用 于各种不同物质的测量。此外,分光光度法通常具有较高的灵敏度和较低的检测限,能够 检测到微量的物质 然而,分光光度法也有一些缺点。首先,它需要昂贵的仪器设备,通常只有实验室级别的 分析才使用分光光度计。其次,分光光度法需要一定的操作技能和经验,因为不同物质的 测量可能需要不同的条件和参数设置。此外,对于某些特定物质的测量,可能需要使用特 定的试剂和标准品,这可能会增加实验成本和时间
比色法和分光光度 法及其仪器
2
-
目录
CONTENTS
1 比色法 2 分光光度法Biblioteka 比色法和分光光度法及其仪器
比色法和分光光度法是两种常用的化学分析方法,用 于测量溶液中的物质浓度
x
这两种方法都基于朗伯-比尔定律,该定律描述了溶液 的吸光度与溶液浓度之间的关系
PART 1
比色法
比色法
比色法是一种通过比较有色物质 溶液的颜色深度来确定其浓度的
技术
它主要基于颜色的差异,使用肉 眼或比色计来比较样品溶液和标 准溶液的颜色
比色法
比色法仪器
比色法通常使用比色计作为仪器。比色计是一种简单的 光学仪器,它通过比较样品溶液和标准溶液的颜色来测 量浓度。比色计通常由一个光源、一个滤光片和一个接 收器组成。光源发出的光通过滤光片,然后照射到样品 溶液和标准溶液上。接收器接收反射回来的光,并将其 转换为电信号。通过比较样品溶液和标准溶液的反射率 ,可以确定样品的浓度
第四章第1节比色法与色度传感器
0 10 20 30 40 50 60 70 80 90 100 T%
四、目视比色法( colorimetry )
观察方向
方便、灵敏,
不能定量测定光
的强度,准确度 差。常用于限界
ccc112
cc23
cc3 4
c4
分析。
1 2 4 8 16 40 x
五.色度传感器
色度传感器:用光电比色法测定溶液的吸光度。 用滤光片或特定波长的发光二极管得到较窄波长
第四章 其他传感器的初步应用
第一节 比色法与色度传感器
分光光度计通过比色原理测定浓度
你记得吗? 《化学反应原理》p34
一、方法依据及分类
基于物质对光的选择性吸收而建立起来的分析方 法,包括比色法、可见及紫外光度法及红外光谱法等。
比色分析法: 通过比较或测量有色物质溶液的颜色深度,
确定待测组分含量的分析方法。
4.打开计算机,进入软件系统, 显示色度传感器操作窗口。
5.点击“B”按钮,选择蓝色光源。 6.反复压缩、拉伸针筒,绘制透光率
随时间变化的曲线,记录实验结论。
NO2的制备 实验装置
(四)、实验结论
2NO2⇋N2O4平衡体系中,扩大体积,体系的压强瞬间 增小,透光率增大,平衡随即逆向移动,压强又逐渐增大, 透光率减小。反之,缩小体积,压强瞬间变大,透光率瞬 间变小,然后平衡正移,透光率增大。这说明平衡移动会 削弱,但不能消除外界条件的改变。
(二) 、实验器材
仪器:色度传感器、数据采集器、 比色皿、 计算机、大号针筒、橡皮塞、小刀、布
试剂:浓硝酸、铜片
(三) 、实验过程
1.橡皮塞切成方形,并使之恰好 塞紧比色皿口。
2.利用铜与浓硝酸反应获取NO2气 体,并收集在比色皿和针筒中。
分光光度法
光度法的优点
与目视比色法相比,光度法的优点: 1. 用光电仪器进行测量可消除轻度色盲、眼睛 疲劳等主观误差。 2. 有其他物质共存时,可选适当的入射光和参 比溶液来消除干扰,提高选择性。 3. 对于大批试样分析,校正曲线可简化手续, 提高分析速度。
2.3.2.测量条件的选择(1)
(1)选择合适的入射光 由于溶液对光的吸收是有选择性的,因此 必须选择溶液吸收最大的波长作为入射光的波 长。 (2)控制适当的吸光度范围 用光度计测量吸光度,都存在着误差。当 测量小于0.2和大于0.7吸光度时,误差会迅速 增加。为了使测量误差落在0.2~0.7之间,可 以控制试样的称取量。对于组分含量高的试样, 可减少称取量,或是稀释;对于含量低的溶液 可增加称样量或浓缩的方法来提高浓度。
图2-8 721分光光度计的光学系统
几种类型的分光光度计( 几种类型的分光光度计(三)
图2-9 7530G紫外—可见光分光光度计
几种类型的分光光度计( 几种类型的分光光度计(四)
图2-10 7530G紫外-可见分光光度计光学系统
检测器和读数装置 (2)
2. 光电管. 是一个二极真空管由一个阳极和一个光敏阴 极组成。 3. 光电倍增管。 是利用光敏阴极把光信号放大的装置。 4. 读数装置。 读数装置常用的是微安计或检流计。
几种类型的分光光度计( 几种类型的分光光度计(一)
图2-7 721分光光度计
几种类型的分光光度计( 几种类型的分光光度计(二)
2.分光光度法 2.分光光度法
光度可用光电比色计或分光光度计进 行测量。 测定时常用的是校正曲线法或比较法。
(1)校正曲线法
校正曲线法,又称工作曲线或标准曲线法。 当溶液厚度b固定时,吸光度A与溶液浓度c成 正比.取一系列不同浓度标准溶液(5-7图), 分别测定其吸光度,以浓度c为横坐标,吸光 度为纵坐标,作校正曲线.试液用同样条件显 色,测定吸光度,从曲线上求得试液浓度。
第二十章 比色法和分光光度法
3、朗伯-比尔定律
4、透光度(透射比) 5、吸光系数(吸收系数) 6、摩尔吸收系数
书P398: 例题20-1
二、吸光度的加和性 测得溶液的吸光度等于各组分的吸光度之 和。 A总 = ∑ Ai =κ1 b c1 + κ2 b c2 + …… κn b cn
三、朗伯-比尔定律的偏离 1、比尔定律的局限性 2、非单色入射光引起的偏离
4、颜色的产生:物质对不同波长的光具有选
择性吸收作用而产生了不同颜色。
5、光吸收曲线 6、吸收峰:光吸收程度最大处对应的波长。
7、物质定性分析的依据:不同物质的溶液,
其最大吸收波长不同。
20.2 光吸收的基本定律
一、朗伯-比尔定 1、朗伯定律 朗伯(Lambert) 1760年阐明了光的吸收程 度和吸收层厚度的关系。 A∝b 2、比尔定律 1852年比耳(Beer)又提出了光的吸收程度 和吸收物浓度之间也具有类似的关系。 A∝ c
一、光度分析法的特点 1、灵敏度高 2、准确度能满足微量组分测定的要求 3、操作简便快速,仪器设备简单
二、物质对光的选择性吸收
1、单色光:同一波长的光称为单色光。 2、复合光:由不同波长的光组成的光称为复
合光。如可见光。 3、互补色光:两种适当颜色的单色光按一定 强度比例混合可成为一种白光,这种两种单 色光称为互补色光。
A
λ1 A
λ2
λ
λ1
λ2
λ
Aλ1= kaλ1bCa +kbλ1bCb Aλ2= kaλ2bCa +kbλ2bCb
三、光度滴定 四、酸碱解离常数的测定 五、配合物组成的测定 1、饱和法 2、连续变化法
目视比色法和分光光度法的分析和比较
目视比色法和分光光度法的分析和比较2015年12月5日龙浪李珂璇王宇鑫李嘉浩程卫东王佳佳临床医学院指导教师:徐尧一、摘要本讨论报告通过分析和比较目视比色法和分光光度法两种比色法的主要优缺点,即目视比色法操作简便但精度较低,分光光度法精确度较高但对溶液的性质要求较高;并且结合实例说明两种比色法各自的适用范围和浓度限制,即两种比色方法分别在光的波长、物质的组分、以及对朗伯-比尔定律的符合情况上有不同的适用范围,并给出了适用的吸光度范围(0.2-0.8)和浓度范围。
由此针对不同情况给出了不同的选择方案。
这对实际的研究和生产生活具有指导性的意义。
二、前言在确定有色溶液待测组分含量时,常常可以通过比较和测量溶液的颜色来进行,这种方法叫做比色法。
早在19世纪30-40年代,比色法就开始作为一种定量分析的方法被应用到研究和生产中。
常用的比色法有目视比色法和分光光度法两种,其中前者主要通过眼睛观察得出结论,后者借助光电比色计进行。
由于这两种比色方法的实际应用非常广泛,因此分析和比较两种方法对于方法的优化显得尤为重要。
三、内容(一)两种比色方法优缺点比较1.目视比色法1)优点(1)比色时操作简便,成本较低相比分光光度法,目视比色法不需要动用分光光度计,只需要几个比色管便可以完成测定,因此显得仪器设备简单,操作简便,使用成本低。
同时节省了电能,有利于能源的节约和保护。
在分析大批试样时,其优势就显得更加明显,大大节省了人力、物力、财力以及测定消耗时间。
在本实验中,我们仅需配置5个标准溶液,便可直接在比色管架上进行比较,与分光光度法中所需的多次清洗比色皿的操作要求相比比较简易。
(2)适用范围较广,可用于不严格符合Lambert-Beer定律的情况目视比色法是通过比较通过光的强度来测定组分含量,可以在白光下进行[2],因此对于有些不严格符合Lambert-Beer定律的显色反应也是适用的。
例如在用碘量比色法测定油脂中过氧化值时,碘和淀粉反应的特征蓝色只有在含碘量在2~10μg[6]时才较为严格地符合Lambert-Beer定律,因此只要反应产生的碘稍稍过量或不足,使用分光光度法测定就会产生较大误差,只能使用目视光度法。
分光光度法的原理是什么
分光光度法的原理是什么分光光度法是一种广泛应用于化学分析和生物化学领域的分析方法,它基于物质对特定波长的光的吸收或透射特性进行定量分析。
分光光度法的原理主要包括光的吸收和透射、比色法和分光光度计的工作原理等几个方面。
首先,我们来看光的吸收和透射原理。
在分光光度法中,我们通常会使用紫外-可见分光光度计来测量样品溶液对特定波长光的吸收或透射。
当样品溶液中的分子或离子处于基态时,它们会吸收特定波长的光,使得光子的能量被转化为激发态的能量。
而当处于激发态的分子或离子返回到基态时,它们会释放出吸收的光,这种现象被称为光的透射。
根据比尔-朗伯定律,物质对光的吸收或透射与其浓度成正比,因此可以利用这一特性来定量分析样品中的物质含量。
其次,比色法是分光光度法中常用的定量分析方法之一。
比色法通过将待测样品与标准溶液进行比较,利用它们在特定波长光下的吸光度差异来确定待测物质的浓度。
比色法通常需要使用分光光度计来测量样品溶液的吸光度,并通过构建标准曲线或使用已知浓度的标准溶液来进行定量分析。
最后,分光光度计是分光光度法的关键仪器。
分光光度计是一种能够测量样品溶液在不同波长光下吸光度的仪器,它通常由光源、单色器、样品室、检测器和数据处理系统等部分组成。
分光光度计能够选择特定波长的光进行照射样品溶液,并测量样品对光的吸收或透射情况,然后将吸光度转化为浓度信息,从而实现对待测物质的定量分析。
总的来说,分光光度法是一种基于物质对光的吸收或透射特性进行定量分析的方法,它包括光的吸收和透射、比色法和分光光度计的原理。
通过合理选择光源、单色器和检测器等参数,以及构建标准曲线或使用标准溶液,分光光度法能够准确、快速地对样品中的物质进行定量分析,因此在化学分析和生物化学领域得到了广泛的应用。
比色法和分光光度法
例如, 白光通过CuSO4溶液时, 溶液 颜色为蓝色。
吸收曲线: 为了精确表明溶液对不 同波长光的吸收情况, 可将不同波长 的单色光依次通过某一固定浓度的有 色溶液, 测量该溶液对各单色光的吸 收程度, 即吸光度, 以波长为横坐标, 吸光度为纵坐标作图所得曲线, 即为 吸收曲线, 或称吸收光谱。
光栅:色散元件, 利用光的衍射和干 涉原理制成。当白光通过密刻平行条 痕的光栅后, 将不同波长的光色散成 连续光谱。具有波长范围宽、色散均 匀、分辨本领高等优点。
c. 吸收池(比色皿) 用于盛装被测试液和参比溶液。 按制作材料不同分为石英吸收 池和玻璃吸收池。
d. 检测器 作用: 是将光强度信号转换为可 测电信号, 常见检测器有光电池和 光电管。 光电池: 国产581-G型光电比色 计及72型分光光度计。
与目视比色法相比, 光度法的特点: ① 灵敏度高;10-5 ~ 10-6mol/L ② 准确度较高; ③ 仪器设备较简单, 操作简便、 快速; ④ 应用广泛。
(2) 光的性质和物质的颜色 光的性质: 光是一种电磁波, 具 有波粒二象性。光的波动性可用 波长来描述, 其单位常用纳米(nm) 表示, 波长越短, 能量越高。
具有同一波长的光称为单色光,由不 同波长光组成的光称为复合光。
互补色光: 若将两种颜色的光按适当的 强度比混合可成白光, 那么这两种光称为 互补色光。
物质的颜色: 物质对光的吸收是具有选择性的。 当一束白光通过溶液时, 若溶液对各 种色光都不吸收, 则白光全部通过, 溶液呈无色透明; 若各种色光几乎全 被吸收, 则溶液呈黑色; 若溶液只吸收 某种色光, 则溶液呈透过光的颜色, 也 就是说, 溶液呈吸收光的互补色光的 颜色。
(2) 吸光系数 当b以cm, c以g/L为单位, K为吸光 系数, 用符号a表示, 单位为L/g · cm A=abc 当b以cm, c以mol/L为单位时, K为 摩尔吸光系数, 用符号ε表示, 单位 为L/ mol · cm A=εbc a a与ε的关系: M
比色分析与分光光度分析
▪ 将待测组分转化为有色化合物的反应叫显色反应。
▪显色反应有配位反应和氧化还原反应 。
▪ 1.灵敏度高 因为光度法一般用于测定微量组分含量, 故通常选择灵敏度高的显色反应。生成的有色化合物摩
尔吸光系数大,灵敏度高,通常 k 值达104~105,认为 灵敏度较高。
▪ 2.选择性好 即显色剂只与一种或少数几种物质反应 而显色。
2021/3/7
14
▪ 例:已知含Fe2+浓度为1.0mg·L-1的溶液,用邻二氮菲 光度法测定铁(Fe2+与邻二氮菲反应,生成橙红色配合 物)。使用厚度为2 cm的吸收池,在波长510nm处测得 吸光度A= 0.390。计算该配合物的 摩尔吸光系数。。
▪ 解:已知铁的相对原子质量为 55.85。
由棱镜和光栅等色散元件及狭缝和透镜组成。 ▪ ①入射狭缝:光源的光由此进入单色器; ▪ ②准光装置:透镜或返射镜使入射光成为平行光束; ▪ ③色散元件:将复合光分解成单色光;棱镜或光栅; ▪ ④聚焦装置:透镜或凹面反射镜,将分光后所得单色
光聚焦至出射狭缝; ▪ ⑤出射狭缝。
2021/3/7
28
▪ c. 吸收池 ▪ 作用:用于盛放试样溶液。也叫比色皿。
▪ A = A1+A2+…+A3
2021/3/7
16
(3) 对朗伯-比尔定律的偏离
▪ 比尔定律的局限性 ▪ 非单色入射光引起的偏离 ▪ 由于溶液本身发生化学变化的原因引起的偏离
2021/3/7
17
比尔定律的局限性
▪ 通常在用分光光度法进行分析时,多采用标准工作
曲线法。即固定液层厚度、入射光的波长,测定一系 列不同浓度标准溶液的吸光度,此时A与c应成直线关 系。
第十五章比色法和分光光度法
(4)不同浓度的同一种物质,在某一定波长下 吸光度 A 有差异,在λmax处吸光度A 的差异最大。 此特性可作为物质定量分析的依据。
15.2 光吸收的基本定律
一、朗伯-比尔定律
1、朗伯—比尔定律
一束平行单色光照射透明溶液时,光的一部分被吸收, 一部分透过溶液,一部分被器皿的表面反射。
Ir
Ia
It
价电 子
分子 振动
分子 振动
分子 转动
肉眼可见
单色光:只具有一种波长的光。 复合光:由两种以上波长组成的光,如白光。
白光(如日光)是复合光,是由红、橙、黄、绿、 青、蓝、紫等光按适当的强度比例混合而成的,在 400nm~750nm 范围的一种复合光。
2、物质对光的选择性吸收
当光通过透明的物质时,具有某种能量的光子被 吸收,而另外能量的光子不被吸收。光子是否被物 质吸收,既决定于光子的能量,又决定于物质的内 部结构。
(组成固定) Fe3+ + SCN - → FeSCN2+、 Fe(SCN)2 + ……
(组成不固定)
4、有色物稳定性高,其它离子干扰才小。如三 磺基水杨酸铁的Kf =1042 , F- 、H3PO4 对它 无干扰。
5、显色过程易于控制,而且有色化合物与显 色剂之间的颜色差别应尽可能大。
| m M a R xm R ax|60nm
κ与温度、波长及吸收物质本身的性质有关,与 吸收物质浓度无关。
分光光度的灵敏度
κ越大表明该物质的吸光能力越强,用光度 法测定该物质的灵敏度越高。 κ>105:超高灵敏; κ=(6~10)×104 :高灵敏; κ< 2×104 :不灵敏。
桑德尔(Sandell)灵敏度(灵敏度指数)用S来表示。
8第八章 比色分析法
上式为朗伯-比尔定律的数学表示式。它表示一束 单色光通过溶液时,溶液的吸光度与溶液的浓度 和液层厚度的乘积成正比。 医学化学
上页 下页 回主目录 返回
式中,K为吸光系数,当溶液浓度c和液层厚度b 的数值均为1时,A=K,即吸光系数在数值上等 于c和b均为1时溶液的吸光度。对于同一物质和 一定波长的入射光而言,它是一个常数。
T 比色法中常把I/I0 称为透光度,用T表示,
def
透光度和吸光度的关系如下:
I I0
A =-lgT
医学化学
上页
下页
回主目录
返回
当c以质量体积浓度(g· ml-1)表示时,吸光系数 称为质量吸光系数,用a表示。当c以mol· L-1为单 位时,吸光系数称为摩尔吸光系数,用ε表示, 其单位是L· mol-1· cm-1。吸光系数越大,表示溶液 对入射光越容易吸收,当c有微小变化时就可使 A有较大的改变,故测定的灵敏度较高。一般ε 值在103以上即可进行比色分析。
医学化学
上页
下页
回主目录
返回
用标准曲线法时,应注意的问题:
(1)标准液的测定和被测液的测定应在相同条件 下进行。 • (2)溶液的浓度应在标准曲线的线性范围内。
•
医学化学
上页
下页
回主目录
返回
在测定溶液吸光度时,为了消除与被测物质吸收 无关的因素的影响,如溶剂或其他物质对入射光 的吸收,光在溶液中的散射以及吸收池界面对光 的反射等,必须采用空白溶液(又称参比溶液) 作对照。常用的空白溶液有三种: (1)溶剂空白 (2)试剂空白 (3)试样空白 P85
则
c = -lg65%/2235×2.0=4.19×10-5(mol· L-1)
比色分析和紫外可见分光光度法的区别
近紫外 200~400nm 中红外 2500~50000nm 无线电 1~1000nm
本章内容涉及到的光谱区域为近紫外和 可见光。
光的粒子性是指光是一粒一粒不连续的,具有பைடு நூலகம்
一定能量的粒子即光子构成的。光子的能量(E)与
光的频率ν成正比,而与波长成反比,即:
E=hν=h(C/λ)
式中:h —— 普朗克(Planck)常数,数值为 6.6262×10-34J•S
1.145
K K1 K2 K3 K4 1.255 1.180 1.180 1.145 1.190
第二章 比色分析和紫外可见分光光度法
第一节 比色分析和分光光度法的定义及特点 第二节 物质对光的选择性吸收 第三节 朗伯-比耳定律 第四节 分析仪器 第五节 紫外吸收光谱 第六节 影响分光光度法分析的因素 第七节 紫外可见分光光度法的应用 第八节 对分光光度法分析方法的评价
第一节 比色分析和分光光度法的定义及特点
第三节 朗伯-比耳定律
一、朗伯、比耳定律 1、透光率、吸光度 溶液吸收光的程度与溶液的性质、浓度、入射光
的强度、波长以及溶液液层厚度等因素有关。 一束平行光(单色光)通过溶液(或固体、气体)
时,一部分光被溶液反射,一部分光被溶液吸收,一 部 为I分a,光透透过过光溶强液度,为如It果,入反射射光光强强度度为为IIr0,,那吸么收,光强度
被测溶液的浓度越大,颜色越深。
4、比色方法
(1)目视比色法; (2)光电比色法。
5、显色反应
(1)定义: 进行比色分析时,通常需要加入适当的试
剂,使待测物质与试剂反应生成便于比色测定
的有色物质,此反应称为显色反应,所加入的 试剂称显色剂。
第十五章 比色法和分光光度法
分析:
A A bc bc 4
0.50 0.5 3.0103 / 125 1
4.2 10 ( L mol
cm )
1
例:有一Fe3+ 标准溶液,浓度为6μg· L-1,测得吸 光度A为0.304。另一含Fe3+ 的有色溶液,在同一 条件下测得吸光度 A为0.510,求试样中的含铁量 (mg· L-1)。 分析:
12.1.2 物质对光的选择性吸收
2 物质的颜色与光吸收
1) 固体物质:当白光照射到物质上时,物质对于不同波长 的光线吸收、透过、反射、折射的程度不同而使物质呈现 出不同的颜色。
(1)全吸收,物质呈现黑色; (2)全反射,物质呈现白色; (3)吸收程度差不多,物质呈现灰色;
(4)选择性地吸收某些波长的光, 由它所反射或透过光 的颜色来决定物质的颜色。从互补色中找;
2 读数误差 仪器测量误差有很多,如光强不稳,光不纯,光电池不 灵敏,比色皿、标尺的精度不够,及读数不准等。对于一台 给定的仪器来说,前面一些因素都已经确定,只有读数是可 变的,所以读数误差是衡量准确度的主要因素。 由于T是均匀刻度,△T是一定的, A=-lgT,A不均匀, △ A 不一定,而测量浓度的误差 是由 决定的。
红
白 青
橙 黄 绿
互补色:如果把适当颜色的两种单色光 按一定的强度比例混合,也可以得道多 助白光,这两种单色光叫做互补色光.
12.1.2 物质对光的选择性吸收
1 物质对光产生选择性吸收的原因 如果我们把具有不同颜色的各种物体放置在黑暗处, 则什么颜色也看不到。可见物质呈现的颜色与光有着 密切的关系,一种物质呈现何种颜色,是与光的组成 和物质本身的结构有关的。 物质对光的吸收并不是随意的。物质的结构不同具有 不同的能级,只有光量子的能量与物质的能量相吻合时 才吸收这种能量(波长)的光,物质吸收一定波长的光 就显示出他的互补色。
分光光度法与比色法
1、几个概念:分光光度法在分光光度计中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与众不同波长相对应的吸收强度。
如以波长(λ)为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。
利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。
用紫外光源测定无色物质的方法,称为紫外分光光度法;用可见光光源测定有色物质的方法,称为可见光光度法。
它们与比色法一样,都以Beer-Lambert定律为基础。
上述的紫外光区与可见光区是常用的。
但分光光度法的应用光区包括紫外光区,可见光区,红外光区。
比色法colorimetry以可见光作光源,比较溶液颜色深浅度以测定所含有色物质浓度的方法。
以生成有色化合物的显色反应为基础,通过比较或测量有色物质溶液颜色深度来确定待测组分含量的方法。
比色法作为一种定量分析的方法,开始于19世纪30~40年代。
比色分析对显色反应的基本要求是:反应应具有较高的灵敏度和选择性,反应生成的有色化合物的组成恒定且较稳定,它和显色剂的颜色差别较大。
选择适当的显色反应和控制好适宜的反应条件,是比色分析的关键。
常用的比色法有两种:目视比色法和光电比色法,两种方法都是以朗伯-比尔定律(A=εbc)为基础。
常用的目视比色法是标准系列法,即用不同量的待测物标准溶液在完全相同的一组比色管中,先按分析步骤显色,配成颜色逐渐递变的标准色阶。
试样溶液也在完全相同条件下显色,和标准色阶作比较,目视找出色泽最相近的那一份标准,由其中所含标准溶液的量,计算确定试样中待测组分的含量。
光电比色法是在光电比色计上测量一系列标准溶液的吸光度,将吸光度对浓度作图,绘制工作曲线,然后根据待测组分溶液的吸光度在工作曲线上查得其浓度或含量。
与目视比色法相比,光电比色法消除了主观误差,提高了测量准确度,而且可以通过选择滤光片来消除干扰,从而提高了选择性。
但光电比色计采用钨灯光源和滤光片,只适用于可见光谱区和只能得到一定波长范围的复合光,而不是单色光束,还有其他一些局限,使它无论在测量的准确度、灵敏度和应用范围上都不如紫外-可见分光光度计。
比色法与紫外分光光度法的异同
比色法与紫外分光光度法的异同比色法和紫外分光光度法,这俩听上去好像很复杂的科学名词,其实它们都跟“测量颜色”有关系。
嗯,简单说就是看东西的颜色,然后通过这个颜色来判断里面有什么成分。
你可能会想,这俩是不是差不多?是的,差不多,但细节上还是有点不同的,了解清楚了,能让你在实验室里也能像个小专家一样,得心应手。
比色法嘛,简单来说,就是通过溶液的颜色来判断它的浓度。
比方说,你往水里加了某种化学物质,水的颜色可能会变得更加浓烈。
你通过比较颜色的深浅,来推算浓度。
你觉得有点意思吧?其实这就像你平时看着一杯饮料的颜色,越深可能说明加糖多,越浅可能说明糖少,做化学实验也是一样。
可是,比色法有个小问题就是它受光线、溶液颜色、试剂浓度等各种因素的影响,哎,这就让它的准确性有点小小的波动。
紫外分光光度法呢,就像是比色法的“升级版”,有点像拿着超级显微镜来看问题。
它的原理是通过紫外线光源照射样品,然后测量样品吸收了多少光,最后得出结论。
简而言之,紫外线比可见光更“强”,它能穿透更多的东西。
所以,紫外分光光度法通常用来测量那些对紫外线有吸收的物质,比如药物中的有效成分,或者环境中的污染物。
这种方法不仅能量度颜色的深浅,还能更精确地定量物质的含量。
比色法和紫外分光光度法,最大的不同就体现在它们对光的“利用”上。
比色法主要依赖的是可见光,而紫外分光光度法则是通过紫外光去探测物质的特性。
就像你用手电筒和紫外线手电筒照东西,两者照出来的效果完全不一样。
比色法的测量范围一般限制在了肉眼能看到的颜色范围内,所以它适合一些比较简单的、颜色鲜明的实验;紫外分光光度法就不一样了,紫外光波长比可见光短,能“看到”更深层的东西,能测量更多“看不见”的物质。
所以,紫外分光光度法在处理一些微量物质或者需要高精度测量的场合,表现得更有“压倒性优势”。
不过,说到优缺点,它们俩也各有千秋。
比色法简单易用,设备不复杂,花费也相对便宜。
你只需要准备一个比色皿,把样品放进去,然后在一定的波长下对比颜色,就可以得出浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20章比色法和分光光度法
【20-1】将下列百分透光度值换算为吸光度:
(1)1% (2)10% (3)50% (4)75% (5)99%
解:A=2-lg T%
(1)A=2-lg 1 = 2.000
(2)A=2-lg 10 = 1.000
(3)A=2-lg 50 = 0.301
(4)A=2-lg 75 = 0.125
(5)A=2-lg 99 = 0.0044
【20-2】将下列吸光度值换算为百分透光度:
(1)0.01 (2)0.10 (3)0.50 (4)1.00
解:lgT%=2-A
(1)lgT1%=2-0.01 = 1.99 T1%=97.7 %
(2)lgT2%=2-0.10 = 1.90 T2%=79.4 %
(3)lgT3%=2-0.50 = 1.50 T3%=31.6 %
(4)lgT4% =2-1.00 =1.00 T4%=10.0 %
【20-3】有一有色溶液,用1.0 cm 吸收池在527 nm 处测得其透光度T = 60%,如果浓度加倍,则(1)T值为多少?
(2)A 值为多少?
(3)用5.0 cm 吸收池时,要获得T = 60%,则溶液的浓度为原来浓度的多少倍?
解:A=-lg T =εbc -lg 0.60 = 0.222
浓度增倍时:
(1)lg T =-0.444 T= 36 %
(2)A=-lg T = 0.444
(3)1.0cm时:c1 = 0.222 5.0cm时:c2 = 0.222
c2/c1= 1.0 /5.0 = 0.2倍
【20-4】有两种不同浓度的KMnO4溶液,当液层厚度相同时,在527nm处透光度T分别为(1)65.0%,(2)41.8%。
求它们的吸光度A各为多少?若已知溶液(1)的浓度为6.51×10-4mol·L-1,求出溶液(2)的浓度为多少?
解:(1)A=εbc =-lgT=-lg 0.650 = 0.187
(2)A=-lg 0.418 = 0.379
(3)当c1= 6.51×10-4 mol • L-1时,
b = 0.187∕6.51×10-4 = 287 mol -1 • L
c 2= 0.379∕287 = 1.32×10-3 mol • L -1
【20-5】在pH=3时,于655 nm 处测得偶氮胂Ⅲ与镧的紫蓝色配合物的摩尔吸光系数为4.50×104。
如果在25mL 容量瓶中有30g La 3+,用偶氮胂Ⅲ显色,用2.0cm 吸收池在655 nm 处测量,其吸光度应为多少? 解:A =εbc
= (4.50×104×2.0×30×10-6)∕(138.9×0.025) = 0.78
【20-6】有一含有0.088 mgFe 3+的溶液用SCN -显色后,用水稀释到50.00 mL ,以1.0 cm 的吸收池在480 nm 处测得吸光度为0.740,计算Fe(SCN)2+配合物的摩尔吸光系数。
解:ε= A∕bc
= (0.740×55.85×50.00)∕(1.0×0.088) = 2.35 × 104 cm -1 • mol -1 • L
【20-7】当光度计的透光度测量的读数误差△T = 0.01时,测得不同浓度的某吸光溶液的吸光度为 0.010,0.100,0.200,0.434,0.800,1.20。
利用吸光度与浓度成正比以及吸光度与透光度的关系,计算由仪器读数误差引起的浓度测量的相对误差。
解:T = 10-A lg T =-A
0.434 c T
c T lg T
=V V 当 A = 0.010 时, T = 10-0.010 ,lg T =-0.010 , 又△T = 0.01
c
c
V = 0.434 ×0.01∕10-0.010×(-0.01 0 ) =-44.4 % 同理,当A = 0.100 、0.200、0.434、0.800、1.20时,
c
V =-5.46% ,-3.44 %,-2.72 % ,-3.42 % ,-5.73%
【20-8】设有 X 和 Y 两种组分的混合物。
X 组分在波长1λ和2λ处的摩尔吸光系数分别为1.98 × 103 cm -1 • mol -1 • L 和2.80 × 104cm -1 • mol -1 • L 。
Y 组分在波长1λ和2λ处的摩尔吸光系数分别为2.04×104 cm -1• mol -1•L 和3.13×102cm -1•mol -1•L 。
液层厚度相同,在1λ处测得总吸光度为0.301,在2λ处为0.398。
求算X 和Y 两组分的浓度是多少?
解:A 1X =ε1X bc X 、A 1Y =ε1Y bc Y
A 1总= A 1X + A 1Y =ε1X bc X +ε1Y bc (1) 同理A 2总= A 2X + A 2Y =ε2X bc X +ε2Y bc (2)
由(1) c X =( A 1总-ε1Y bc Y )∕ε1X b
代入(2) c Y =( ε1X A 2总-ε2X A 1总)∕( ε1X 2Y b -2X 1Y b ) 设 b =1.0 cm ,
c Y =( 1.98×103×0.398-2.80×104×0.301 )∕(1.98×103×3.13×102×1.0-2.80×104×2.04×104×1.0) = 1.34×10-
5 mol • L -
1
c X = ( 0.301-2.04×104×1.0×1.34×10-
5)∕(1.98×103×1.0) = 1.40×10
-5
mol • L -
1
【20-9】某有色配合物的0.0010%水溶液在510nm 处,用2cm 吸收池测得透光度T 为0.420,已知
510κ=2.5×103L·mol -1·cm -1。
试求此有色配合物的摩尔质量。
解:A=-lgT=-lg0.42=0.376,
c=A/bε=0.376/(2.5×103×2)=7.52×10-5 mol/L
因此,1000mL 中含有色物7.52×10-5×Mg 。
已知含量为0.001%, 故1000/(7.52×10-5M )=100/0.0010,M=131.5g/mol
【20-10】浓度为2.0×10-4mol·L -1的甲基橙,在不同pH 的缓冲溶液中,于520nm 波长处,用1cm 吸收池测得吸光度值。
计算甲基橙的p K a 值。
pH 0.88 1.17 2.99 3.41 3.95 4.89 5.50 A 0.890
0.890
0.692
0.552
0.385
0.260
0.260
解:设甲基橙酸式组分和碱式组分在波长520nm 处的吸光度分别为A HL 和A L -,由已知数据
可知A HL =0.890,A L -=0.260。
所以: 311HL -41
0.890
=
4.4510L mol cm 1cm 2.010mol L
κ---=⨯⋅⋅⨯⨯⋅,
-311
-41
L 0.260= 1.3010L mol cm 2cm 10mol L
κ---=⨯⋅⋅⨯⋅ (1)用代数法求K a 。
根据HL L =
[H ]a A A A A K -
+
--计算不同pH 值时的K a 值:
pH=2.99时,K a =4.7×10-4;pH=3.41时,K a =4.5×10-4;pH=3.95时,K a =4.5×10-4。
取以上三个K a 的平均值,有K a =4.6×10-4,得到p K a =3.34。
(2)用图解法求K a :
按已知条件A L -=0.260,A HL =0.890,计算相关数据,填入表中:
pH 0.88 1.17 2.99 3.41 3.95 4.89 5.50 A
0.890 0.890 0.692 0.552 0.385 0.260 0.260 L HL lg
A A
B A A
--=-
0.339
-0.064
-0.606
以pH 值为横坐标,L HL lg
A A
B A A
--=-为纵坐标绘图,如图所示。
直线与横坐标交点处对应的值(或与纵坐标交点处对应的值)即为p K a 。
从图中可得p K a =3.33,K a =4.7×10-4。