函数的性质例题讲解

合集下载

高考数学复习典型题型与知识点专题讲解4 函数的基本性质(解析版)

高考数学复习典型题型与知识点专题讲解4 函数的基本性质(解析版)

高考数学复习典型题型与知识点专题讲解4 函数的基本性质一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x =+>的单调性知识点2 二次函数区间求最值知识点3 已知一半求另一半(奇偶性) 知识点4单调奇偶联袂 二、题型归类练专练一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x=+>的单调性例1.(2021·宁夏·平罗中学高一期中)已知4()f x x x=+. (1)判断()f x 的奇偶性;(2)判断函数()f x 在(2,)+∞的单调性并用定义证明. 【答案】(1)函数()f x 为奇函数;(2)()f x 在区间()2,+∞上是增函数;证明见详解. (1)解:由题可知,4()f x x x=+,则函数()f x 的定义域为{}|0x x ≠ ,关于原点对称,又44()()()f x x x f x x x-=--=-+=-, 所以函数()f x 为奇函数.(2)解:()f x 在区间()2,+∞上是增函数, 证明:12,(2,)x x ∀∈+∞且12x x <, 有12121244()()()()f x f x x x x x -=+-+ 121244()()x x x x =-+-121212(4)x x x x x x -=-, 122x x <<,1212124,40,0x x x x x x >->-<∴,121212(4)0x x x x x x -∴-<,即12()()f x f x <, ∴函数()f x 在区间()2,+∞上是增函数.名师点评:对于函数()(0)af x x a x =+>主要性质如下:①定义域(,0)(0,)-∞+∞; ②奇偶性:奇函数;③单调性:当0x >时;()(0)af x x a x =+>在上单调递减;在)+∞的单调增;④值域与最值:当0x >时;()(0)af x x a x =+>值域为)+∞,当x =小值特别提醒同学们函数()(0)af x x a x =+>我们称为对钩函数(耐克函数),注意需要0a >这个大前提,当0a ≤时都不再是对钩函数,此时不具有对钩函数的性质。

函数的基本性质(整理)

函数的基本性质(整理)

卓越个性化教案【知识点梳理】一、函数的单调性1.单调函数的定义(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。

(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。

(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。

那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。

2、单调性的判定方法 (1)定义法○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。

(3)复合函数的单调性的判断:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为增减函数。

也就是说:同增异减(类似于“负负得正)(4)在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

二、函数的奇偶性 1.奇偶性的定义:(1)偶函数:一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数。

(2)奇函数:一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 就叫做奇函数。

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。

高中函数四性质(单调性、奇偶性、周期性与对称性)

高中函数四性质(单调性、奇偶性、周期性与对称性)

函数四性质之一:单调性1、定义:对定义在D 上的函数)(x f ,有D x x ∈21,若21x x <,)()(21x f x f <,则)(x f 为单调递增函数若21x x <,)()(21x f x f >,则)(x f 为单调递减函数经典例题1、 证明:函数)0()(>+=a xa x x f 在),(+∞a 上的单调递增函数。

2、常见函数的单调性一次函数 b kx y += 0>k 0<k二次函数 c bx ax y ++=2 a b a 2,0-> a b a 2,0-< 反比例函数xk y = 0>k 0<k 指数函数 x a y = 10<<a 1>a对数函数 x y a log = 10<<a 1>a对勾与斜对勾函数 x a x y += )0(>-=a xa x y另一组对称函数 x x x f ++=1)(2 x x x g -+=1)(2①)(x f 为单调增函数, )(x g 为单调减函数②1)()(=•x g x f ,即互为倒数3、复合函数的单调性复合函数))((x g f y =,分里函数)(x g ,外函数)(x f单调性遵循四个字:同增异减经典例题:设)(x f y =是R 上的减函数,则)3(-=x f y 的单调递减区间为:______________________4、组合函数的单调性增+增=增 减+减=减通常:一个函数的单调性:在到倒数和添负号两种情况下发生改变。

经典例题3(1)设函数3)1(4)(2-++=x a ax x f 在),2[+∞上递增,则a 的取值范围为:_____________(2)函数21)(++=x ax x f 在区间),2[+∞-上单调递增,刚实数a 的取值范围为:_____________(3)已知1)1()(2--=x x f ,1)(2-=x x g ,则))((x g f 在什么范围内递增?提高练习;1、已知偶函数)(x f 在区间),0[+∞单调递增,则满足)31()12(f x f <-的x 取值范围为______________2、函数)(x f 对任意的R b a ∈,,都有1)()()(-+=+b f a f b a f ,并且当0>x 时,1)(>x f(1)求证:)(x f 在R 上为增函数(2)若5)4(=f ,解不等式3)23(2<--m m f3、设函数)0(1)(2>-+=a ax x x f ,试确定,当a 的取什么值时,函数)(x f 在),0[+∞上为单调递减函数?函数四性质之一:奇偶性5、定义:在函数定义域对称的前提下,若)()(x f x f =-,则函数为偶函数;若)()(x f x f -=-,则函数为奇函数。

第六讲 函数基本性质(奇偶性)

第六讲  函数基本性质(奇偶性)

求证:f(x)一定可以表示成一个奇函数与一个偶函数的和。 4、已知 f(x)是奇函数,定义域为 D,g(x)是偶函数,定义域也为 D.设 F(x)=f(x)g(x),判断 F(x) 的奇偶性; 已知 f(x)、 g(x)定义域均为 D, 若 F(x)=f(x)g(x)为偶函数, 研究 f(x)和 g(x)的奇偶性。 5、已知函数 f(x)=ax +bx+c(a≠0)是偶函数,那么 g(x)=ax +bx +cx 的奇偶性
2
2015 年
函数基础
宋老师
命题 2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。 此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有 定义; 另 一 方面 , 两 个奇函数的 差或两 个偶函数的 差 可 能 既是奇函数又是偶函数,如 f(x)=x(x∈〔-1,1〕),g(x)=x(x∈〔-2,2〕),可以看出函数 f(x)与 g(x)都是定义域上的函 数,它们的差只在区间〔-1,1〕上有定义且 f(x)-g(x)=0,而在此区间上函数 f(x)-g(x) 既是奇函数又是偶函数。 命题 3 f(x)是任意函数,那么|f(x)|与 f(|x|)都是偶函数。
1
2 3 2
2015 年
函数基础
宋老师
例题 3:分段函数求奇偶性 1、判断函数 f ( x) = í 2、判断函数 f(x)=
ì x 2 ( x ³ 0) 的奇偶性。 2 î- x ( x < 0)
(1 − ), ≥0
例题 4:利用奇偶性的定义求参数。
的奇偶性。 −x(1 + x), x<0
a × 2x + a - 2 1、已知函数 f ( x) = 2x +1
4、若函数 y = f ( x )( x Î R ) 是奇函数,则下列坐标表示的点一定在函数 y = f ( x ) 图象上的 是()

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 2 sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函数 性质例作下列函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。

注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一般称为周期)正弦函数、余弦函数:ωπ=2T 。

【方法】对数函数图象及其性质知识点及例题解析

【方法】对数函数图象及其性质知识点及例题解析

【关键字】方法对数函数的图象及性质例题解析题型一判断对数函数【例1】函数f(x)=(a2-a+1)log(a+1)x是对数函数,则实数a=__________.解析:由a2-a+1=1,解得a=0,1.又a+1>0,且a+1≠1,∴a=1.【例1-1】下列函数中是对数函数的为__________.(1)y=loga(a>0,且a≠1);(2)y=log2x+2;(3)y=8log2(x+1);(4)y=logx6(x>0,且x≠1);(5)y=log6x.解析:题型二【例2】如图所示的曲线是对数函数y=logax的图象.已知a从,,,中取值,则相应曲线C1,C2,C3,C4的a值依次为( )A.,,, B.,,,C.,,, D.,,,解析:由底数对对数函数图象的影响这一性质可知,C4的底数<C3的底数<C2的底数<C1的底数.故相应于曲线C1,C2,C3,C4的底数依次是,,,.答案:A点技巧作直线y=1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.题型三对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.(3)求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.【例3】求下列函数的定义域.(1)y=log5(1-x); (2)y=log(2x-1)(5x-4); (3).分析:利用对数函数y=logax(a>0,且a≠1)的定义求解.解:(1)要使函数有意义,则1-x>0,解得x<1,故函数y=log5(1-x)的定义域是{x|x <1}.(2)要使函数有意义,则解得x>且x≠1,故函数y=log(2x-1)(5x-4)的定义域是(1,+∞).(3)要使函数有意义,则解得<x≤1,故函数的定义域是.题型四对数型函数的值域的求解方法一、充分利用函数的单调性和图象是求函数值域的常用方法.方法二、对于形如y=logaf(x)(a>0,且a≠1)的复合函数,其值域的求解步骤如下:①分解成y=logau,u=f(x)这两个函数;②求f(x)的定义域;③求u的取值范围;④利用y=logau的单调性求解.方法三、对于函数y=f(logax)(a>0,且a≠1),可利用换元法,设logax=t,则函数f(t)(tR)的值域就是函数f(logax)(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例4】求下列函数的值域:(1)y =log2(x2+4);(2)y =.解:(1)∵x2+4≥4,∴log2(x2+4)≥log24=2.∴函数y =log2(x2+4)的值域为[2,+∞).(2)设u =3+2x -x2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4.又y =在(0,+∞)上为减函数,∴≥-2.∴函数y =的值域为[-2,+∞).【例4-1】已知f(x)=2+log3x ,x[1,3],求y =[f(x)]2+f(x2)的最大值及相应的x 的值.分析:先确定y =[f(x)]2+f(x2)的定义域,然后转化成关于log3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f(x)=2+log3x ,x[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x [1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.题型五 对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1) ②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1) ③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a ≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a >0,且a ≠1)【例5】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2.答案:-2,2【例5-1】作出函数y =|log 2(x +1)|+2的图象.解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x+1)|的图象,如图③;(第四步)将函数y=|log2(x+1)|的图象,沿y轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.题型六利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.(2)底数不同,真数相同.(3)底数不同,真数也不同.(4)对于多个对数式的大小比较注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例6】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例6-1】若a2>b>a>1,试比较loga ab,logbba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab <1.∴logaab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<ba <b,∴0<logbba<1.由log b a-logbba=2logbab,∵a2>b>1,∴2ab >1.∴2logbab>0,即log b a>logbba.∴log a b>log b a>logb ba>logaab.题型七利用对数函数的单调性解不等式常见的对数不等式有三种类型:①形如log a f(x)>log a g(x)的不等式,借助函数y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.②形如log a f(x)>b的不等式,应将b化为以a为对数的对数式的形式,再借助函数y=log a x的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例7】解下列不等式:(1)1177log log (4)x x >-; (2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.故原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23. 所以原不等式的解集是20<<1<<33x x x ⎧⎫⎨⎬⎩⎭或. 【例7-1】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围. 解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<. (1)∵当a >1时,y =log a x 为增函数, ∴123a a <<.∴a >32,结合a >1,可知a >32. (2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a . ∴a <23,结合0<a <1,知0<a <23. ∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或. 题型八 对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论; 二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.【例8】求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )的定义域是⎝ ⎛⎭⎪⎫-∞,32.设u =3-2x ,x ∈⎝ ⎛⎭⎪⎫-∞,32, ∵u =3-2x 在⎝ ⎛⎭⎪⎫-∞,32上是减函数,且y =log 2u 在(0,+∞)上单调递增, ∴函数y =log 2(3-2x )在⎝ ⎛⎭⎪⎫-∞,32上是减函数. ∴函数y =log 2(3-2x )的单调减区间是⎝ ⎛⎭⎪⎫-∞,32. 【例8-1】求函数y =log a (a -a x )的单调区间.解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x 递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x )在(-∞,1)上递减.(2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减.析规律 判断函数y =log a f (x )的单调性的方法函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例8-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,求a 的取值范围. 解:1,2⎛⎫-∞- ⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞-⎪⎝⎭上是增函数, ∴u (x )在1,2⎛⎫-∞- ⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立. ∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a a a ≥-⎧⎪⎨+-≥⎪⎩∴-1≤a ≤12. ∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭. 题型九 对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )≠-f (x )时,此函数既不是奇函数也不是偶函数.【例9】判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )==log )a x +log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例9-1】已知函数f (x )=1log 1a x x+-(a >0,且a ≠1). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11x x+->0,得-1<x <1, 故函数f (x )的定义域为(-1,1). (2)∵f (-x )=1log 1ax x -+=1log 1a x x +--=-f (x ), 又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数.(3)当a >1时,由1log 1ax x +->0=log a 1,得11x x+->1,解得0<x <1; 当0<a <1时, 由1log 1a x x +->0=log a 1,得0<11x x +-<1,解得-1<x <0. 故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.题型十 反函数【例10】若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2xB .12xC .12log x D .2x -2 解析:因为函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .【例10-1】函数f (x )=3x (0<x ≤2)的反函数的定义域为( )A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞)解析:∵ 0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f (x )的反函数的定义域为(1,9].【例10-2】若函数y =f (x )的反函数图象过点(1,5),则函数y =f (x )的图象必过点( )A .(5,1)B .(1,5)C .(1,1)D .(5,5)解析:由于原函数与反函数的图象关于直线y =x 对称,而点(1,5)关于直线y =x 的对称点为(5,1),所以函数y =f (x )的图象必经过点(5,1).【例10-3】已知f (e x )=x ,则f (5)=( )A .e 5B .5eC .ln 5D .log 5e解析:(方法一)令t =e x ,则x =ln t ,所以f (t )=ln t ,即f (x )=ln x . 所以f (5)=ln 5.(方法二)令e x =5,则x =ln 5,所以f (5)=ln 5.【例10-5】已知对数函数f (x )的图象经过点1,29⎛⎫ ⎪⎝⎭,试求f (3)的值. 分析:设出函数f (x )的解析式,利用待定系数法即可求出.解:设f (x )=log a x (a >0,且a ≠1),∵对数函数f (x )的图象经过点1,29⎛⎫ ⎪⎝⎭,∴11log 299a f ⎛⎫== ⎪⎝⎭.∴a 2=19. ∴a =11222111933⎡⎤⎛⎫⎛⎫==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f (x )=13log x . ∴f (3)=111331log 3log 3-⎛⎫= ⎪⎝⎭=-1.【例10-6】已知对数函数f (x )的反函数的图象过点(2,9),且f (b )=12,试求b 的值.解:设f (x )=log a x (a >0,且a ≠1),则它的反函数为y =a x (a >0,且a ≠1),由条件知a 2=9=32,从而a =3.于是f (x )=log 3x ,则f (b )=log 3b =12,解得b=123=此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

函数图像与性质例题和知识点总结

函数图像与性质例题和知识点总结

函数图像与性质例题和知识点总结函数是数学中非常重要的概念,它描述了两个变量之间的关系。

函数的图像和性质能够帮助我们更直观地理解函数的特点和行为。

接下来,我们将通过一些例题来深入探讨函数图像与性质的相关知识。

一、函数的基本概念函数可以简单地理解为一种规则,给定一个输入值(自变量),通过这个规则就能得到唯一的输出值(因变量)。

例如,函数$y = 2x+ 1$ 中,$x$ 是自变量,$y$ 是因变量。

二、常见函数类型1、一次函数:形如$y = kx + b$($k$、$b$ 为常数,$k ≠ 0$)的函数,其图像是一条直线。

当$k > 0$ 时,函数单调递增;当$k< 0$ 时,函数单调递减。

2、二次函数:一般式为$y = ax^2 + bx + c$($a ≠ 0$),图像是一条抛物线。

当$a > 0$ 时,抛物线开口向上,有最小值;当$a < 0$ 时,抛物线开口向下,有最大值。

3、反比例函数:形如$y =\frac{k}{x}$($k$ 为常数,$k≠ 0$),其图像是以原点为对称中心的两条曲线。

三、函数图像的性质1、对称性一次函数的图像是直线,没有对称性。

二次函数的对称轴为$x =\frac{b}{2a}$。

反比例函数的图像关于原点对称。

2、单调性一次函数中,根据斜率$k$ 的正负判断单调性。

二次函数在对称轴两侧单调性不同。

反比例函数在每个分支上分别单调。

3、定义域和值域一次函数的定义域和值域通常都是实数集。

二次函数的定义域通常是实数集,值域根据开口方向和顶点坐标确定。

反比例函数的定义域为$x ≠ 0$,值域也相应受到限制。

四、例题分析例 1:已知一次函数$y = 3x 2$,求其图像与$x$ 轴、$y$ 轴的交点坐标。

解:当$y = 0$ 时,$3x 2 = 0$,解得$x =\frac{2}{3}$,所以与$x$ 轴的交点坐标为$(\frac{2}{3}, 0)$。

当$x = 0$ 时,$y =-2$,所以与$y$ 轴的交点坐标为$(0, -2)$。

三角函数性质与应用例题和知识点总结

三角函数性质与应用例题和知识点总结

三角函数性质与应用例题和知识点总结一、三角函数的基本定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)分别定义为:正弦:对边与斜边的比值,即sinθ =对边/斜边。

余弦:邻边与斜边的比值,即cosθ =邻边/斜边。

正切:对边与邻边的比值,即tanθ =对边/邻边。

二、三角函数的性质1、周期性正弦函数和余弦函数的周期都是2π,即 sin(x +2π) = sin(x),cos(x +2π) = cos(x);正切函数的周期是π,即 tan(x +π) = tan(x)。

2、奇偶性正弦函数是奇函数,即 sin(x) = sin(x);余弦函数是偶函数,即cos(x) = cos(x)。

3、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R(全体实数)。

4、单调性正弦函数在π/2 +2kπ, π/2 +2kπ 上单调递增,在π/2 +2kπ, 3π/2 +2kπ 上单调递减(k∈Z)。

余弦函数在2kπ, π +2kπ 上单调递减,在π +2kπ, 2π +2kπ 上单调递增(k∈Z)。

正切函数在(π/2 +kπ, π/2 +kπ) 上单调递增(k∈Z)。

三、三角函数的应用例题例 1:已知一个直角三角形的一个锐角为 30°,斜边为 2,求这个直角三角形的两条直角边的长度。

解:因为一个锐角为 30°,所以 sin30°= 1/2,cos30°=√3/2。

设 30°角所对的直角边为 a,邻边为 b,则:a = 2×sin30°= 2×(1/2) = 1b = 2×cos30°= 2×(√3/2) =√3例 2:求函数 y = 2sin(2x +π/3) 的最大值和最小值,并求出取得最值时 x 的值。

解:因为正弦函数的值域为-1, 1,所以 2sin(2x +π/3) 的值域为-2, 2。

中职数学3.3函数的性质课件

中职数学3.3函数的性质课件
取值范围.
4.证明:
(1)函数() = − − 2在 −∞, +∞ 上是减函数.
(2)函数() = 2 2 + 1在 −∞, 0 上是减函数.
3.3.2
函数的奇偶性
3.3 函数的性质 ——奇偶性
情境导入 探索新知
大千世界,美无处不在.
例题辨析 巩固练习 归纳总结 布置作业
3.3 函数的性质 ——奇偶性
例5 (2)图(2)给出了奇函数 = 在 0, +∞) 上的函数图像,
试将 = 的图像补充完整,并指出函数的单调区间.
(2)由于函数 = 是奇函数,所以它的
图像关于原点中心对称,因此它的图像如图
所示.函数 = 的增区间为 −∞, +∞ .
3.3 函数的性质 ——奇偶性
则称 = 是奇函数.奇函数的图像关于原点中心对称.
3.3 函数的性质 ——奇偶性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
如果一个函数是奇函数或偶函数,就说这个函数
具有奇偶性,其定义域一定关于原点中心对称.
3.3 函数的性质 ——奇偶性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
3.3 函数的性质
函数是描述客观事物运动变化规律的数学模型.了解了
函数的变化规律,也就基本把握了相应事物的变化规律,因
此这一节我们来研究函数的性质.
3.3 函数的性质
3.3.1
函数的单调性
3.3 函数的性质 ——单调性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
下图是某市某天气温(℃)是时间(时)的函数图像,
次函数,它们的定义域、值域、单调性、奇偶性等各是怎

对勾函数讲解与例题解析

对勾函数讲解与例题解析

对勾函数对勾函数:数学中一种常见而又特殊的函数。

如图一、对勾函数f(x)=ax+ 的图象与性质(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。

当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。

对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(二)对勾函数的顶点对勾函数性质的研究离不开均值不等式。

利用均值不等式能够得到:当x>0时,。

当x<0时,。

即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数,二、关于求函数()01>+=x xx y 最小值的解法1. 均值不等式 0>x ,∴21≥+=xx y ,当且仅当x x 1=,即1=x 的时候不等式取到“=”。

∴当1=x 的时候,2min =y 2. ∆法 0112=+-⇒+=yx x xx y 若y 的最小值存有,则042≥-=∆y 必需存有,即2≥y 或2-≤y (舍)找到使2=y 时,存有相对应的x 即可。

δ函数的性质

δ函数的性质

函数性质综合应用教学过程一、复习预习 二、知识讲解考点11. 函数性质:定义域、值域、解析式、奇偶性、单调性、周期性、对称性、最值等 2.函数图像及其变换 3. 函数与方程考点21. 等价转换思想:将不等式恒成立,有解问题等价转化为对应函数最值问题2. 数形结合思想:利用函数图像,研究函数性质3. 函数与方程思想:将方程是否有解及实根分布转化为对应函数性质与图像问题三、例题精析【例题1】(x)f 是R 上的奇函数,当0x ≥时,3(x)x ln(1x)f =++,则当0x <时,()f x =_______【答案】3x ln(1x)--【解析】∵0x <,∴0x ->,∴3()()ln(1)f x x x -=-+-,又∵(x)f 是R 上的奇函数, ∴3()()ln(1)f x x x -=-+-,∴3()ln(1)f x x x =--【例题2】定义在R 上的奇函数)(x f y =满足0)3(=f ,且不等式)()(x f x x f '->在),0(+∞上恒成立,则函数)(x g =1lg )(++x x xf 的零点的个数为_______【答案】3【解析】∵不等式)()(x f x x f '->在),0(+∞上恒成立,∴'(())0xf x >, ∴函数()y xf x =在(0,)+∞上为增函数,又∵)(x f y =在R 上为奇函数, ∴函数()y xf x =在(,0)(0,)-∞+∞上为偶函数,且过(3,0)和(3,0)-和(0,0),∴函数)(x g =1lg )(++x x xf 的零点的个数为3个.【例题3】定义在R 上的函数32()f x ax bx cx =++(0)a ≠的单调增区间为(1,1)-,若方程23(())2()0a f x bf x c ++=恰有6个不同的实根,则实数a 的取值范围是 . 【答案】12a <-【例题4】函数()0ay x x x=+>有如下性质:若常数0a >,则函数在(0,a ⎤⎦上是减函数,在),a ⎡+∞⎣ 上是增函数.已知函数()mf x x x =+(m R ∈为常数),当()0,x ∈+∞时,若对任意x N ∈,都有()()4f x f ≥,则实数m 的取值范围是 . 【答案】[]12,20【解析】当0m <时,函数y x =与m y x =在(0,)+∞都是增函数,所以()mf x x x=+在(0,)+∞单调递增,所以有(1)(4)f f <,不满足题意;当0m =时,()f x x =在(0,)+∞单调递增,所以有(1)(4)f f <,也不满足题意;当0m >时,根据题意可知函数()f x 在(0,]m 单调递减,在[,)m +∞单调递增;要使对任意x N ∈,都有()(4)f x f ≥,则须满足(3)(4)(5)(4)f f f f ≥⎧⎨≥⎩即可,即须求解不等34345454m m m m⎧+≥+⎪⎪⎨⎪+≥+⎪⎩,解得1220m ≤≤四、课堂运用【基础】1.(2017·盐城中学一模)f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x (x ≤0),log 3x (x >0),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫19=________.【解析】∵f ⎝⎛⎭⎫19=log 319=-2,∴f ⎣⎡⎦⎤f ⎝⎛⎭⎫19=f (-2)=⎝⎛⎭⎫13-2=9. 2. (2017·南京、盐城一模)已知函数f (x )=则f (f (3))=________,函数f (x )的最大值是________.【巩固】1. (2017·南通中学模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝⎛⎭⎫12=0,则不等式f (log 19x )>0的解集为________.【解析】∵y =f (x )是定义在R 上的奇函数,且y =f (x )在(0,+∞)上递增. ∴y =f (x )在(-∞,0)上也是增函数,2. (2017·苏北四市摸底)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,如果函数g (x )=f (x )-m (m ∈R )恰有4个零点,则m 的取值范围是________. 【解析】函数g (x )=f (x )-m (m ∈R )恰有4个零点可化为函数y =f (x )的图象与直线y =m 恰有4个交点,作函数y =f (x )与y =m 的图象如图所示,故m 的取值范围是(-1,0).3. (2017·郑州模拟)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.【解析】由题意知g (x )=⎩⎪⎨⎪⎧x 2 (x >1),0 (x =1),-x 2(x <1),函数的图象如图所示的实线部分,根据图象,g (x )的减区间是[0,1).【拔高】1. (2017·南京一中模拟)已知函数f (x )=e x-1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为________.【解析】由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1, 若f (a )=g (b ),则g (b )∈(-1,1], 即-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2).2.已知f (x )=log a x (a >0,且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,求实数a 的取值范围.3. (2017·无锡期末)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.【解析】作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.课程小结1. 函数性质:定义域、值域、解析式、奇偶性、单调性、周期性、对称性、最值等 2.函数图像及其变换 3. 函数与方程课后作业【基础】1.(2017·南通调研)函数f (x )=ln xx -1+的定义域为________.【解析】要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧x x -1>0,x ≥0,解得x >1,故函数f (x )=ln x x -1+的定义域为(1,+∞).2. (2017·衡水中学月考)设f ,g 都是由A 到A 的映射,其对应法则如下:映射f 的对应法则 x 1 2 3 4 f (x )3421映射g 的对应法则 x 1 2 3 4 g (x )4312则f [.g (1)]的值为________.【解析】由映射g 的对应法则,可知g (1)=4,由映射f 的对应法则,知f (4)=1,故f [g (1)]=1.3. (2017南京、盐城模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是________.综上f (x )≥-1的解集为{x |-4≤x ≤2}.【巩固】1. (2017·南通调研)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为【解析】f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516.2. (2017·无锡调研)已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =-1时,求f (|x |)的单调区间.【拔高】1.解不等式()()2log 4log 2a a x x ->-.【解析】(1)当1a >时,原不等式等价于()2424020x x x x ⎧->-⎪⎪->⎨⎪->⎪⎩,解之得6x >;当01a <<时,原不等式等价于()2424020x x x x ⎧-<-⎪⎪->⎨⎪->⎪⎩,解之得46x <<.∴当1a >时,不等式的解集为()6,+∞;当01a <<时,不等式的解集为()4,6.2. (2017·南通调研)若函数f (x )=⎩⎪⎨⎪⎧x (x -b ),x ≥0,ax (x +2),x <0(a ,b ∈R )为奇函数,则f (a +b )的值为________.3. (2017·南京模拟)已知a 是常数,函数f (x )=13x 3+12(1-a )x 2-ax +2的导函数y =f ′(x )的图象如图所示,则函数g (x )=|a x-2|的图象可能是________(填序号).4. (2017·南京、盐城模拟)函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.【解析】由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.。

三角函数的图象与性质 高中数学例题课后习题详解

三角函数的图象与性质 高中数学例题课后习题详解

第五章三角函数5.4三角函数的图象与性质例1画出下列函数的简图:(1)1sin y x =+,[0,2π]x ∈;(2)cos y x =-,[0,2π]x ∈.解:(1)按五个关键点列表:x0π2π3π22πsin x010-101sin x+1211描点并将它们用光滑的曲线连接起来(图5.4-6):(2)按五个关键点列表:x0π2π3π22πcos x10-101cos x--11-1描点并将它们用光滑的曲线连接起来(图5.4-7):例2求下列函数的周期:(1)3sin y x =,x ∈R ;(2)cos 2y x =,x ∈R ;(3)1π2sin 26y x ⎛⎫=-⎪⎝⎭,x ∈R .分析:通常可以利用三角函数的周期性,通过代数变形,得出等式()()f x T f x +=而求出相应的周期.对于(2),应从余弦函数的周期性出发,通过代数变形得出cos 2()cos 2x T x +=,x ∈R ;对于(3),应从正弦函数的周期性出发,通过代数变形得出1π1πsin ()sin 2626x T x ⎡⎤⎛⎫+-=- ⎪⎢⎣⎦⎝⎭,x ∈R .解:(1)x ∀∈R ,有3sin(2π)3sin x x +=.由周期函数的定义可知,原函数的周期为2π.(2)令2z x =,由x ∈R 得z ∈R ,且cos y z =的周期为2π,即cos(2π)cos z z +=,于是cos(22π)cos 2x x +=,所以cos 2(π)cos 2x x +=,x ∈R .由周期函数的定义可知,原函数的周期为π.(3)令1π26z x =-,由x ∈R 得z ∈R ,且2sin y z =的周期为2π,即2sin(2π)2sin z z +=,于是1π1π2sin 2π2sin 2626x x ⎛⎫⎛⎫-+=-⎪ ⎪⎝⎭⎝⎭,所以1π1π2sin (4π)2sin 2626x x ⎡⎤⎛⎫+-=- ⎪⎢⎥⎣⎦⎝⎭.由周期函数的定义可知,原函数的周期为4π.例3下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x 的集合,并求出最大值、最小值.(1)cos 1y x =+,x ∈R ;(2)3sin 2y x =-,x ∈R ;解:容易知道,这两个函数都有最大值、最小值.(1)使函数cos 1y x =+,x ∈R 取得最大值的x 的集合,就是使函数cos y x =,x ∈R 取得最大值的x 的集合{}2|π,x x k k =∈Z ;使函数cos 1y x =+,x ∈R 取得最小值的x 的集合,就是使函数cos y x =,x ∈R 取得最小值的x 的集合(){}1|2π,x x k k =+∈Z .函数cos 1y x =+,x ∈R 的最大值是112+=;最小值是110-+=.(2)令2z x =,使函数3sin y z =-,z ∈R 取得最大值的z 的集合,就是使sin y z =,z ∈R 取得最小值的之的集合π2π,2z z k k ⎧⎫=-+∈⎨⎬⎩⎭Z .由π22π2x z k ==-+,得ππ4x k =-+.所以,使函数3sin 2y x =-,x ∈R 取得最大值的x 的集合是ππ,4x x k k ⎧⎫=-+∈⎨⎬⎩⎭Z .同理,使函数3sin 2y x =-,x ∈R 取得最小值的x 的集合是ππ,4x x k k ⎧⎫=+∈⎨⎬⎩⎭Z .函数3sin 2y x =-,x ∈R 的最大值是3,最小值是-3.例4不通过求值,比较下列各组数的大小:(1)πsin 18⎛⎫-⎪⎝⎭与πsin 10⎛⎫- ⎪⎝⎭;(2)23πcos 5⎛⎫-⎪⎝⎭与17πcos 4⎛⎫- ⎪⎝⎭.分析:可利用三角函数的单调性比较两个同名三角函数值的大小.为此,先用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.解:(1)因为πππ021018-<-<-<,正弦函数sin y x =在区间π,02⎡⎤-⎢⎥⎣⎦上单调递增,所以ππsin sin 1810⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭.(2)23π23π3πcos cos cos 555⎛⎫-== ⎪⎝⎭,17π17ππcos cos cos 444⎛⎫-== ⎪⎝⎭.因为π3π0π45<<<,且函数cos y x =在区间[0,π]上单调递减,所以π3πcos cos 45>,即17π23πcos cos 45⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.例5求函数1πsin 23y x ⎛⎫=+ ⎪⎝⎭,[2π,2π]x ∈-的单调递增区间.分析:令1π23z x =+,[2π,2π]x ∈-,当自变量x 的值增大时,z 的值也随之增大,因此若函数sin y z =在某个区间上单调递增,则函数1πsin 23y x ⎛⎫=+ ⎪⎝⎭在相应的区间上也一定单调递增.解:令1π23z x =+,[2π,2π]x ∈-,则24π,π33z ⎡⎤∈-⎢⎥⎣⎦.因为sin y z =,24π,π33z ⎡⎤∈-⎢⎥⎣⎦的单调递增区间是ππ,22⎡⎤-⎢⎥⎣⎦,且由π1ππ2232x -≤+≤,得5ππ33x -≤≤.所以,函数1πsin 23y x ⎛⎫=+⎪⎝⎭,[2π,2π]x ∈-的单调递增区间是5ππ,33⎡⎤-⎢⎥⎣⎦.例6求函数ππtan 23y x ⎛⎫=+⎪⎝⎭的定义域、周期及单调区间.分析:利用正切函数的性质,通过代数变形可以得出相应的结论.解:自变量x 的取值应满足ππππ232x k +≠+,k ∈Z ,即123x k ≠+,k ∈Z .所以,函数的定义域12,3x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z .设ππ23z x =+,又tan(π)tan z z +=,所以ππππtan πtan 2323x x ⎡⎤⎛⎫⎛⎫++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即()ππππtan 2tan 2323x x ⎡⎤⎛⎫++=+ ⎪⎢⎣⎦⎝⎭.因为12,3x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z 都有()ππππtan 2tan 2323x x ⎡⎤⎛⎫++=+ ⎪⎢⎥⎣⎦⎝⎭,所以,函数的周期为2由ππππππ2232k x k -+<+<+,k ∈Z 解得512233k x k -+<<+,k ∈Z .因此,函数在区间512,233k k ⎛⎫-++ ⎪⎝⎭,k ∈Z 上都单调递增.5.4.1正弦函数、余弦函数的图象练习1.在同一直角坐标系中,画出函数sin y x =,[0,2]x πÎ,cos y x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象.通过观察两条曲线,说出它们的异同.【答案】见解析【解析】【分析】根据五点作图法画出图像,再直观分析即可.【详解】解:可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象,图象如图.两条曲线的形状相同,位置不同.【点睛】本题主要考查了正余弦函数图像之间的关系,属于基础题.2.用五点法分别画下列函数在[,]-ππ上的图象:(1)sin y x =-;(2)2cos y x =-.【答案】(1)见解析(2)见解析【解析】【分析】根据五点作图法的方法描点,再用光滑曲线连接起来即可.【详解】解:xπ-2π-02ππsin y x =-010-102cos y x=-32123【点睛】本题主要考查了五点作图法的运用,属于基础题.3.想一想函数|sin |y x =与sin y x =的图象及其关系,并借助信息技术画出函数的图象进行检验.【答案】见解析【解析】【分析】分析可知当sin 0y x =≥时|sin |y x =与sin y x =的图象相同,当sin 0y x =<时,|sin |y x =与sin y x =的图象关于x 轴对称,再分析即可.【详解】解:把sin y x =的图象在轴下方的部分翻折到x 轴上方,连同原来在x 轴上方的部分就是|sin |y x =的图象,如图所示.【点睛】本题主要考查了绝对值图像与原图像之间的关系,属于基础题.4.函数y=1+cos x ,,23x ππ⎛⎫∈ ⎪⎝⎭的图象与直线y =t (t 为常数)的交点可能有()A.0个B.1个C.2个D.3个E.4个【答案】ABC 【解析】【分析】画出1cos y x =+在,23x ππ⎛⎫∈ ⎪⎝⎭的图象,即可根据图象得出.【详解】画出1cos y x =+在,23x ππ⎛⎫∈ ⎪⎝⎭的图象如下:则可得当0t <或2t ≥时,1cos y x =+与y t =的交点个数为0;当0=t 或322t ≤<时,1cos y x =+与y t =的交点个数为1;当302t <<时,1cos y x =+与y t =的交点个数为2.故选:ABC.5.4.2正弦函数、余弦函数的性质练习5.等式2sin sin 636πππ⎛⎫+= ⎪⎝⎭是否成立?如果这个等式成立,能否说23π是正弦函数sin y x =,x ∈R 的一个周期?为什么?【答案】见解析【解析】【分析】2sin sin 636πππ⎛⎫+= ⎪⎝⎭成立,再利用函数的周期的定义说明不能说23π是正弦函数sin y x =,x ∈R 的一个周期.【详解】等式2sin sin 636πππ⎛⎫+= ⎪⎝⎭成立,但不能说23π是正弦函数sin y x =,x ∈R 的一个周期.因为不满足函数周期的定义,即对定义内任意x ,2sin 3x π⎛⎫+ ⎪⎝⎭不一定等于sin x ,如2sin sin 333πππ⎛⎫+≠ ⎪⎝⎭,所以23π不是正弦函数sin y x =,x ∈R 的一个周期.【点睛】本题主要考查周期函数的定义,意在考查学生对这些知识的理解掌握水平.6.求下列函数的周期,并借助信息技术画出下列函数的图象进行检验:(1)3sin4y x =,x ∈R ;(2)cos 4y x =,x ∈R ;(3)1cos 223y x π⎛⎫=- ⎪⎝⎭,x ∈R ;(4)1sin 34y x π⎛⎫=+ ⎪⎝⎭,x ∈R .【答案】(1)周期为83π.见解析(2)周期为2π.见解析(3)周期为π.见解析(4)周期为6π.见解析【解析】【分析】利用周期函数的定义证明函数的周期,再作出函数的图象得解.【详解】解:(1)因为33388()sin sin 2sin 44433y f x x x x f x πππ⎛⎫⎛⎫⎛⎫===+=+=+ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以由周期函数的定义可知,原函数的周期为83π.函数的图象如图所示:(2)因为()cos 4cos(42)cos 422y f x x x x f x πππ⎛⎫⎛⎫===+=+=+ ⎪ ⎪⎝⎭⎝⎭,所以由周期函数的定义可知,原函数的周期为2π.函数的图象如图所示:(3)因为111()cos 222cos 2()()232323y f x x x x f x ππππππ⎡⎤⎛⎫⎛⎫⎡⎤==-=-+=+-=+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,所以由周期函数的定义可知,原函数的周期为π.函数的图象如图所示:(4)因为111()sin sin 2sin (6)(6)343434y f x x x x f x ππππππ⎡⎤⎛⎫⎛⎫⎡⎤==+=++=++=+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,所以由周期函数的定义可知,原函数的周期为6π.函数的图象如图所示:【点睛】本题主要考查三角函数的周期的求法,意在考查学生对这些知识的理解掌握水平.7.下列函数中,哪些是奇函数?哪些是偶函数?(1)2sin y x =;(2)1cos y x =-;(3)sin y x x =+;(4)sin cos y x x =-.【答案】(1)(3)(4)是奇函数;(2)是偶函数.【解析】【分析】利用函数奇偶性的定义判断函数的奇偶性.【详解】(1)()2sin f x x =,函数的定义域为R ,()2sin()2sin ()f x x x f x ∴-=-=-=-,所以函数是奇函数;(2)()1cos f x x =-,函数的定义域为R ,()1cos()1cos ()f x x x f x ∴-=--=-=,所以函数是偶函数;(3)()sin f x x x =+,函数的定义域为R ,()sin (sin )()f x x x x x f x ∴-=--=-+=-,所以函数是奇函数;(4)()sin cos f x x x =-,函数的定义域为R ,()sin()cos()sin cos ()f x x x x x f x ∴-=---==-所以函数是奇函数.【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对这些知识的理解掌握水平.8.设函数()()f x x ∈R 是以2为最小正周期的周期函数,且当[0,2]x ∈时,2()(1)f x x =-.求(3)f ,72f ⎛⎫⎪⎝⎭的值.【答案】(3)0f =,7124f ⎛⎫=⎪⎝⎭【解析】【分析】直接利用函数的周期求解.【详解】解:由题意可知,2(3)(21)(1)(11)0f f f =+==-=;2733312122224f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【点睛】本题主要考查函数的周期性,意在考查学生对这些知识的理解掌握水平.练习9.观察正弦曲线和余弦曲线,写出满足下列条件的x 所在的区间:(1)sin 0x >;(2)sin 0x <;(3)cos 0x >;(4)cos 0x <.【答案】(1)(2,2)()k k k πππ+∈Z ;(2)(2,2)()k k k πππ-∈Z ;(3)2,2()22k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z ;(4)32,2()22k k k ππππ⎛⎫++∈ ⎪⎝⎭Z 【解析】【分析】观察正弦曲线和余弦曲线得解.【详解】(1)sin 0x >,观察正弦曲线得(2,2)()x k k k πππ∈+∈Z ;(2)sin 0x <,观察正弦曲线得(2,2)()x k k k πππ∈-∈Z ;(3)cos 0x >,观察余弦曲线得2,2()22x k k k ππππ⎛⎫∈-+∈ ⎪⎝⎭Z ;(4)cos 0x <,观察余弦曲线得32,2()22x k k k πππ⎛⎫∈++∈ ⎪⎝⎭Z .【点睛】本题主要考查正弦曲线和余弦曲线的应用,意在考查学生对这些知识的理解掌握水平.10.求使下列函数取得最大值、最小值的自变量的集合,并求出最大值、最小值.(1)2sin y x =,x ∈R ;(2)2cos3xy =-,x ∈R .【答案】(1)当|2,2x x x k k ππ⎧⎫∈=+∈⎨⎬⎩⎭Z 时,函数取得最大值2;当|2,2x x x k k ππ⎧⎫∈=-+∈⎨⎬⎩⎭Z 时,函数取得最小值-2.(2)当{|63,}x x x k k ππ∈=+∈Z 时,函数取得最大值3;当{|6,}x x x k k π∈=∈Z 时,函数取得最小值1.【解析】【分析】(1)利用2sin y x =取得最大值和最小值的集合与正弦函数sin y x =取最大值最小值的集合是一致的求解;(2)利用2cos 3xy =-取得最大值和最小值的集合与余弦函数cos y x =取最小值最大值的集合是一致的求解.【详解】(1)当sin 1x =即|2,2x x x k k ππ⎧⎫∈=+∈⎨⎬⎩⎭Z 时,函数取得最大值2;当sin 1x =-|2,2x x x k k ππ⎧⎫∈=-+∈⎨⎬⎩⎭Z 时,函数取得最小值-2;(2)当cos 13x=-即2+,3x k k Z ππ=∈即{|63,}x x x k k ππ∈=+∈Z 时,函数取得最大值3;当cos13x=即2,3x k k Z π=∈即当{|6,}x x x k k π∈=∈Z 时,函数取得最小值1.【点睛】本题主要考查三角函数的最值的求法,意在考查学生对这些知识的理解掌握水平.11.下列关于函数4sin y x =,[0,2]x πÎ的单调性的叙述,正确的是.A.在[0,]π上单调递增,在[,2]ππ上单调递减B.在0,2π⎡⎤⎢⎥⎣⎦上单调递增,在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减C.在0,2π⎡⎤⎢⎥⎣⎦及3,22ππ⎡⎤⎢⎥⎣⎦上单调递增,在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减D.在3,22ππ⎡⎤⎢⎥⎣⎦上单调递增,在0,2π⎡⎤⎢⎥⎣⎦及3,22ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】【分析】利用正弦函数的单调性分析判断得解.【详解】因为4sin y x =,[0,2]x πÎ,所以函数的单调性和正弦函数sin y x =的单调性相同,所以函数在0,2π⎡⎤⎢⎥⎣⎦及3,22ππ⎡⎤⎢⎥⎣⎦上单调递增,在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减.故选:C【点睛】本题主要考查三角函数的单调性,意在考查学生对这些知识的理解掌握水平.12.不通过求值,比较下列各组中两个三角函数值的大小:(1)2cos 7π与3cos 5π⎛⎫-⎪⎝⎭;(2)sin 250︒与sin 260︒.【答案】(1)23cos cos 75ππ⎛⎫>-⎪⎝⎭(2)sin 250sin 260︒︒>【解析】【分析】(1)利用cos y x =在(0,)π内为减函数判断它们的大小;(2)利用sin y x =在()90,270︒︒内为减函数判断它们的大小.【详解】解:(1)33cos cos 55ππ⎛⎫-= ⎪⎝⎭,∵23075πππ<<<,且cos y x =在(0,)π内为减函数,∴23cos cos 75ππ>,即23cos cos 75ππ⎛⎫>-⎪⎝⎭.(2)∵90250260270︒︒︒︒<<<,且sin y x =在()90,270︒︒内为减函数,∴sin 250sin 260︒︒>.【点睛】本题主要考查正弦余弦函数的单调性的应用,意在考查学生对这些知识的理解掌握水平.13.求函数3sin(2),[0,2]4y x x ππ=+∈的单调递减区间.【答案】5[,88ππ和913[,]88ππ.【解析】【分析】根据正弦型函数的性质有3222242k x k πππππ+≤+≤+时函数单调递减,即可求出3sin(2)4y x π=+的递减区间,进而讨论k 值确定[0,2]x πÎ上的递减区间即可.【详解】∵3222242k x k πππππ+≤+≤+()k ∈Z 上3sin(2)4y x π=+单调递减,∴588k x k ππππ+≤≤+上3sin(2)4y x π=+单调递减,当0k =:5[,][0,2]88x πππ∈⊂;当1k =:913[,][0,2]88x πππ∈⊂;∴5[,]88ππ、913[,]88ππ为3sin(2),[0,2]4y x x ππ=+∈的单调递减区间.5.4.3正切函数的性质与图象练习14.借助函数tan y x =的图象解不等式tan 1x ≥-,0,22x πππ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭.【答案】30,,24πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【解析】【分析】画出0,,2tan ,2x x y πππ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭=和1y =-的图象,观察图象即可.【详解】在同一坐标系中画出0,,2tan ,2x x y πππ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭=和1y =-的图象,如下:当tan 1x =-时,34x π=,由图象可知不等式tan 1x ≥-的解集为30,,24πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.【点睛】本题考查了正切函数不等式,考查了用数形结合法,属于基础题.15.观察正切曲线,写出满足下列条件的x 值的范围:(1)tan 0x >;(2)tan 0x =;(3)tan 0x ≤.【答案】(1)2k x k πππ<<+()k ∈Z ;(2)x k π=()k ∈Z ;(3)2k x k πππ-<≤()k ∈Z ;【解析】【分析】画出tan y x =的函数图象,通过图象判断(1)、(2)、(3)对应自变量的取值范围即可.【详解】(1)tan 0x >:2k x k πππ<<+()k ∈Z ;(2)tan 0x =:x k π=()k ∈Z ;(3)tan 0x ≤:2k x k πππ-<≤()k ∈Z ;16.求函数tan 3y x =的定义域.【答案】,36k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【解析】【分析】令()32x k k Z ππ≠+∈,解出x 的范围即可求得定义域.【详解】令()32x k k Z ππ≠+∈,得()36k x k Z ππ≠+∈,所以函数tan 3y x =的定义域为,36k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.【点睛】本题考查正切函数的定义域,属于基础题.17.求下列函数的周期:(1)tan 2y x =,()42k x k ππ≠+∈Z ;(2)5tan 2xy =,(21)()x k k π≠+∈Z .【答案】(1)周期为2π(2)周期为2π【解析】【分析】(1)由诱导公式,得tan 2tan(2)x x π=+,即()2f x f x π⎛⎫=+ ⎪⎝⎭,问题得解;(2)由诱导公式,得2tan tan tan 222x x x ππ+⎛⎫=+= ⎪⎝⎭,即()(2)f x f x π=+,问题得解;【详解】(1)令()y f x =,因为()tan 2tan(2)tan 222f x x x x f x πππ⎛⎫⎛⎫==+=+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数tan 2y x =,()42k x k ππ≠+∈Z 的周期为2π.(2)令()y f x =,因为2()5tan5tan 5tan (2)222x x x f x f x πππ+⎛⎫==+==+ ⎪⎝⎭,所以函数5tan2xy =,(21)()x k k π≠+∈Z 的周期为2π.【点睛】本题考查了诱导公式,函数周期性定义,属于中档题.18.不通过求值,比较下列各组中两个正切值的大小:(1)()tan 52-︒与()tan 47-︒;(2)13tan4π与17tan 5π【答案】(1)()()tan 52tan 47-︒<-︒;(2)1317tan tan 45ππ<【解析】【分析】(1)根据tan y x =在()90,0-︒︒的单调性进行比较,得到答案;(2)根据正切函数的周期对所求的值进行化简,再根据tan y x =在0,2π⎛⎫⎪⎝⎭的单调性进行比较,得到答案.【详解】解:(1)9052470-︒<-︒<-︒<︒,且tan y x =在,02π⎛⎫- ⎪⎝⎭内为增函数,()()tan 52tan 47∴-︒<-︒.(2)13tantan 3tan 444ππππ⎛⎫=+= ⎪⎝⎭,1722tantan 3tan 555ππππ⎛⎫=+= ⎪⎝⎭,20452πππ<<< ,且tan y x =在0,2π⎛⎫⎪⎝⎭内为增函数,2tantan 45ππ∴<,故1317tan tan 45ππ<.【点睛】本题考查根据正切函数的单调性比较函数值的大小,属于简单题.习题5.4复习巩固19.画出下列函数的简图:(1)1sin ,[0,2]y x x π=-∈;(2)3cos 1,[0,2]y x x π=+∈.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据五点作图法作图法作图;(2)根据五点作图法作图法作图.【详解】解:(1)x2ππ32π2π1sin y x=-10121描点连线得如图①,(2)x2ππ32π2π3cos 1y x =+412-14描点连线得如图②.【点睛】本题考查考查五点作图法作图,考查基本分析作图能力,属基础题.20.求下列函数的周期:(1)2sin ,3y x x R =∈;(2)1cos ,2y x x R =Î.【答案】(1)3k π()k ∈Z ;(2)2k π()k ∈Z .【解析】【分析】利用正余弦的性质,结合2||T πω=可求(1)(2)中三角函数的最小正周期,进而可写出函数的周期.【详解】(1)由题设知:23ω=,故最小正周期为2232||3T πππω===,即2sin ,3y x x R =∈的周期为3k π()k ∈Z ;(2)由题设知:1ω=,故最小正周期为222||1T πππω===,即1cos ,2y x x R =Î的周期为2k π()k ∈Z ;21.下列函数中,哪些是奇函数?哪些是偶函数?哪些既不是奇函数,也不是偶函数.(1)|sin |y x =;(2)1cos 2y x =-;(3)3sin 2y x =-;(4)12tan y x =+.【答案】(1)偶函数;(2)偶函数;(3)奇函数;(4)非奇非偶函数.【解析】【分析】(1)根据奇偶性定义进行判断;(2)根据奇偶性定义进行判断;(3)根据奇偶性定义进行判断;(4)根据奇偶性定义进行判断;【详解】(1)|sin |y x =定义域为R,且|sin()||sin |x x -=,所以|sin |y x =是偶函数;(2)1cos 2y x =-定义域为R,且1cos 2()1cos 2x x --=-,所以1cos 2y x =-是偶函数;(3)3sin 2y x =-定义域为R,且3sin 2()3sin 2(3sin 2)x x x --==--,所以3sin 2y x =-是奇函数;(4)12tan y x =+定义域为π{|π,}2x x k k ≠+∈Z ,但12tan()12tan ,12tan()12tan ,x x x x +-≠++-≠--,所以12tan y x =+既不是奇函数,也不是偶函数.【点睛】本题考查函数奇偶性,考查基本分析判断能力,属基础题.22.求使下列函数取得最大值、最小值的自变量x 的集合,并求出最大值、最小值.(1)11cos ,23y x x R π=-∈;(2)3sin 2,4y x x R π⎛⎫=+∈ ⎪⎝⎭.(3)31cos ,226y x x R π⎛⎫=--∈ ⎪⎝⎭;(4)11sin ,223y x x R π⎛⎫=+∈ ⎪⎝⎭.【答案】(1)使y 取得最大值的x 的集合是max 3{|63,},2x x k k Z y =+∈=;使y 取得最小值的x 的集合是min 1{|6,},2x x k k Z y =∈=.(2)使y 取得最大值的x 的集合是max |,,38x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;使y 取得最小值的x 的集合是min 3|,,38x x k k Z y ππ⎧⎫=-∈=-⎨⎬⎩⎭.(3)使y 取得最大值的x 的集合是max 73|4,,32x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;使y 取得最小值的x 的集合是min 3|4,,32x x k k Z y ππ⎧⎫=+∈=-⎨⎬⎩⎭.(4)使y 取得最大值的x 的集合是max 1|4,,32x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;使y 取得最小值的x 的集合是min 51|4,,32x x k k Z y ππ⎧⎫=-∈=-⎨⎬⎩⎭.【解析】【分析】(1)根据余弦函数性质求最值以及对应自变量范围;(2)根据正弦函数性质求最值以及对应自变量范围;(3)根据余弦函数性质求最值以及对应自变量范围;(4)根据正弦函数性质求最值以及对应自变量范围.【详解】(1)由2,3x k k Z πππ=+∈得使y 取得最大值的x 的集合是max 3{|63,},2x x k k Z y =+∈=;由2,3x k k Z ππ=∈使y 取得最小值的x 的集合是min 1{|6,},2x x k k Z y =∈=.(2)由22,42x k k Z πππ+=+∈得使y 取得最大值的x 的集合是max |,,38x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;由22,42x k k Z πππ+=-∈得使y 取得最小值的x 的集合是min 3|,,38x x k k Z y ππ⎧⎫=-∈=-⎨⎬⎩⎭.(3)由12,26x k k Z πππ-=+∈得使y 取得最大值的x 的集合是max 73|4,,32x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;由12,26x k k Z ππ-=∈得使y 取得最小值的x 的集合是min3|4,,32x x k k Z y ππ⎧⎫=+∈=-⎨⎬⎩⎭.(4)由12,232x k k Z πππ+=+∈得使y 取得最大值的x 的集合是max1|4,,32x x k k Z y ππ⎧⎫=+∈=⎨⎬⎩⎭;由12,232x k k Z πππ+=-∈得使y 取得最小值的x 的集合是min 51|4,,32x x k k Z y ππ⎧⎫=-∈=-⎨⎬⎩⎭.【点睛】本题考查正余弦函数最值,考查基本分析求解能力,属基础题.23.利用函数的单调性比较下列各组中两个三角函数值的大小:(1)sin10315︒'与sin16430︒';(2)3cos 10π⎛⎫- ⎪⎝⎭与4cos 9π⎛⎫- ⎪⎝⎭.(3)sin 508︒与sin144︒;(4)47cos 10π⎛⎫ ⎪⎝⎭与44cos 9π⎛⎫ ⎪⎝⎭.【答案】(1)'sin10315sin16430︒'︒>(2)34cos cos 109ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭(3)sin 508sin144︒︒<(4)4744cos cos 109ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【解析】【分析】(1)根据正弦函数单调性判断大小;(2)先根据诱导公式化简,再根据余弦函数单调性判断大小;(3)先根据诱导公式化简,再根据正弦函数单调性判断大小;(4)先根据诱导公式化简,再根据余弦函数单调性判断大小.【详解】解:(1)901031516430180︒︒︒︒'︒<<< ,且sin y x =在,2ππ⎛⎫⎪⎝⎭内为减函数,'sin10315sin16430︒'︒∴>.(2)3344cos cos ,cos cos 101099ππππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭.340109πππ<<< ,且cos y x =在(0,)π内为减函数.34coscos 109ππ∴>,即34cos cos 109ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.(3)()sin 508sin 360148sin148︒︒︒︒=+=.90144148180︒︒︒︒<<< ,且sin y x =在,2ππ⎛⎫⎪⎝⎭内为减函数,sin144sin148︒︒∴>,即sin 508sin144︒︒<.(4)4777coscos 4cos 101010ππππ⎛⎫=+= ⎪⎝⎭,4488cos cos 4cos 999ππππ⎛⎫=+= ⎪⎝⎭.782109ππππ<<<,且cos y x =在,2ππ⎛⎫⎪⎝⎭内为减函数,78coscos 109ππ∴>,即4744cos cos 109ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查诱导公式以及正余弦函数单调性,考查基本分析判断能力,属基础题.24.求下列函数的单调区间:(1)1sin ,[0,2]y x x π=+∈;(2)cos ,[0,2]y x x π=-∈.【答案】(1)单调递增区间为30,,,222πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;单调递减区间为3,22ππ⎡⎤⎢⎥⎣⎦.(2)单调递增区间为[0,]π,单调递减区间为[,2]ππ.【解析】【分析】(1)根据正弦函数单调性求单调区间;(2)根据余弦函数单调性求单调区间【详解】(1)当22,()22k x k k Z ππππ-≤≤+∈时;1sin y x =+单调递增;因为[0,2]x πÎ,所以单调递增区间为30,,,222πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;当322,()22k x k k Z ππππ+≤≤+∈时;1sin y x =+单调递减;因为[0,2]x πÎ,所以单调递减区间为3,22ππ⎡⎤⎢⎥⎣⎦;(2)当22,()k x k k Z πππ≤≤+∈时;cos y x =-单调递增;因为[0,2]x πÎ,所以单调递增区间为[0,]π;当222,()k x k k Z ππππ+≤≤+∈时;cos y x =-单调递减;因为[0,2]x πÎ,所以单调递减区间为[,2]ππ.【点睛】本题考查正余弦函数单调区间,考查基本分析求解能力,属基础题.25.求函数tan 26y x π⎛⎫=-++ ⎪⎝⎭的定义域.【答案】|,3x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【解析】【分析】根据正切函数性质列式求解,即得结果.【详解】解:由()62x k k Z πππ+≠+∈,得()3x k k Z ππ≠+∈,∴原函数的定义域为|,3x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.【点睛】本题考查正切函数定义域,考查基本分析求解能力,属基础题.26.求函数5tan 2,()3122k y x x k Z πππ⎛⎫=-≠+∈ ⎪⎝⎭的周期.【答案】2π【解析】【分析】根据周期定义或正切函数周期公式求解.【详解】解法一:()tan 2tan 2tan 233232f x x x x f x ππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ∴所求函数的周期为2π.解法二:所求函数的周期2ππT ω==.【点睛】本题考查正切函数周期,考查基本分析求解能力,属基础题.27.利用正切函数的单调性比较下列各组中两个函数值的大小:(1)tan 5π⎛⎫- ⎪⎝⎭与3tan 7π⎛⎫-⎪⎝⎭;(2)tan1519︒与tan1493︒;(3)9tan 611π与3tan 511π⎛⎫- ⎪⎝⎭;(4)7tan8π与tan 6π.【答案】(1)3tan tan 57ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭(2)tan1519tan1493︒︒>(3)93tan 6tan 51111ππ⎛⎫>- ⎪⎝⎭(4)7tantan 86ππ<【解析】【分析】(1)先根据诱导公式化简,再根据正切函数单调性判断大小;(2)先根据诱导公式化简,再根据正切函数单调性判断大小;(3)先根据诱导公式化简,再根据正切函数单调性判断大小;(4)先根据诱导公式化简,再根据正切函数单调性判断大小【详解】解:(1)33tan tan ,tan tan 5577ππππ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭.30572πππ<<< ,且tan y x =在0,2π⎛⎫⎪⎝⎭上为增函数,33tantan ,tan tan 5757ππππ⎛⎫⎛⎫∴<∴->- ⎪ ⎪⎝⎭⎝⎭.(2)()tan1519tan 436079tan 79︒︒︒︒=⨯+=,()tan1493tan 436053tan 53︒︒︒︒=⨯+=.0537990︒︒︒︒<<< ,且tan y x =在0,2π⎛⎫⎪⎝⎭上为增函数,tan 53tan 79︒︒∴<,即tan1519tan1493︒︒>.(3)9938tan 6tan ,tan 5tan 11111111ππππ⎛⎫=-= ⎪⎝⎭.893211112ππππ<<<,且tan y x =在3,22ππ⎛⎫⎪⎝⎭上为增函数,89tantan 1111π∴<,即93tan 6tan 51111ππ⎛⎫>- ⎪⎝⎭.(4)7tantan tan 888ππππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.2862ππππ-<-<< ,且tan y x =在,22ππ⎛⎫- ⎪⎝⎭上为增函数,tan tan 86ππ⎛⎫∴-< ⎪⎝⎭,即7tan tan 86ππ<.【点睛】本题考查周期函数单调性以及诱导公式,考查基本分析求解能力,属基础题.综合运用28.求下列函数的值域:(1)5sin ,,44y x x ππ⎡⎤=∈⎢⎥⎣⎦;(2)cos ,0,32y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦.【答案】(1),12y ⎡⎤∈-⎢⎥⎣⎦;(2)1,22y ⎡⎤∈-⎢⎥⎣⎦.【解析】【分析】(1)根据正弦函数单调性求值域;(2)根据余弦函数单调性求值域.【详解】(1)当,42x ππ⎡⎤∈⎢⎥⎣⎦时sin y x =单调递增,22y ∈;当5(,24x ππ∈时sin y x =单调递减,2[,1)2y ∈-;因此5sin ,,44y x x ππ⎡⎤=∈⎢⎥⎣⎦的值域为,1][,1)[,1]222-=- ;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,5,336x πππ⎡⎤+∈⎢⎥⎣⎦,cos 3y x π⎛⎫=+ ⎪⎝⎭单调递减,31[,]22y ∈-;因此cos ,0,32y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦;【点睛】本题考查根据正余弦函数单调性求值域,考查基本分析求解能力,属基础题.29.根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合.(1)3sin ()2x x R ∈;(22cos 0()x x R +∈ .【答案】(1)2|22,33x k x k k Z ππππ⎧⎫++∈⎨⎬⎩⎭;(2)33|22,44x k x k k Z ππππ⎧⎫-++∈⎨⎬⎩⎭ .【解析】【分析】(1)先作一个周期的图象,再根据图象写结果;(2)先作一个周期的图象,再根据图象写结果.【详解】(1)所以3sin ()2x x R ∈成立的x 的取值集合为2|22,33x k x k k Z ππππ⎧⎫++∈⎨⎬⎩⎭(2)22cos 0cos 2x x ∴-22cos 0()x x R +∈ 成立的x 的取值集合为33|22,44x k x k k Z ππππ⎧⎫-++∈⎨⎬⎩⎭【点睛】本题考查根据正余弦函数图象解简单三角不等式,考查基本分析求解能力,属基础题.30.下列四个函数中,以π为最小正周期,且在区间,2ππ⎛⎫⎪⎝⎭上单调递减的是()A.|sin |y x =B.cos y x= C.tan y x= D.cos2x y =【答案】A 【解析】【分析】先判断各函数最小正周期,再确定各函数在区间,2ππ⎛⎫⎪⎝⎭上单调性,即可选择判断.【详解】|sin |y x =最小正周期为π,在区间,2ππ⎛⎫⎪⎝⎭上|sin |sin y x x ==单调递减;cos y x =最小正周期为2π,在区间,2ππ⎛⎫⎪⎝⎭上单调递减;tan y x =最小正周期为π,在区间,2ππ⎛⎫⎪⎝⎭上单调递增;cos 2xy =最小正周期为4π,在区间,2ππ⎛⎫ ⎪⎝⎭上单调递减;故选:A【点睛】本题考查函数周期以及单调性,考查基本分析判断能力,属基础题.31.若x 是斜三角形的一个内角,写出使下列不等式成立的x 的集合:(1)1tan 0x + ;(2)tan 0x .【答案】(1)3|24x x ππ⎧⎫<≤⎨⎬⎩⎭;(2)|32x x ππ⎧⎫≤<⎨⎬⎩⎭.【解析】【分析】(1)根据正切函数单调性求解三角不等式;(2)根据正切函数单调性求解三角不等式.【详解】(1)1tan 0tan 1,()24x x k x k k Z ππππ+∴-∴-+<≤-+∈ 3(0,)(,)2224x x πππππ∈∴<≤ ,即所求集合为3|24x x ππ⎧⎫<≤⎨⎬⎩⎭;(2))tan 0tan ,()32x x k x k k Z ππππ∴≥+≤<+∈ (0,)(,)2232x x πππππ∈∴≤< ,即所求集合为|32x x ππ⎧⎫≤<⎨⎬⎩⎭【点睛】本题考查根据正切函数单调性解三角不等式,考查基本分析求解能力,属基础题.32.求函数3tan 24y x π⎛⎫=-- ⎪⎝⎭的单调区间.【答案】单调递减区间为5,,2828k k k Z ππππ⎛⎫++∈ ⎪⎝⎭;无单调递增区间.【解析】【分析】根据正切函数单调性列不等式,解得结果.【详解】当32,()242k x k k Z πππππ-+<-<+∈时,3tan 24y x π⎛⎫=-- ⎪⎝⎭单调递减,即5,,2828k k x k Z ππππ⎛⎫∈++∈ ⎪⎝⎭所以3tan 24y x π⎛⎫=-- ⎪⎝⎭的单调递减区间为5,,2828k k k Z ππππ⎛⎫++∈ ⎪⎝⎭;无单调递增区间.【点睛】本题考查正切函数单调性,考查基本分析求解能力,属基础题.33.已知函数()y f x =是定义在R 上周期为2的奇函数,若(0.5)1f =,求(1),(3.5)f f 的值.【答案】(1)0f =,(3.5)=1f -【解析】【分析】根据函数周期以及奇偶性找自变量之间关系,即可解得结果.【详解】解:由题意可得(1)(12)(1)(1)(1)f f f f f ,=-=-=-,2(1)0,(1)0f f ∴=∴=.(3.5)(40.5)(0.5)(0.5)1f f f f =-=-=-=-.【点睛】本题考查根据函数周期以及奇偶性求函数值,考查基本分析求解能力,属基础题.34.已知函数1()sin 2,23f x x x R π⎛⎫=-∈ ⎪⎝⎭,(1)求()f x 的最小正周期;(2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)T π=(2)最大值为14,最小值为12-【解析】【分析】(1)根据正弦函数周期公式求解;(2)根据正弦函数单调性求最值.【详解】解:(1)最小正周期为22T ππ==.(2)5,244636x x πππππ-∴--≤ ,11111sin 2,sin 2322234x x ππ⎛⎫⎛⎫∴--∴-- ⎪ ⎪⎝⎭⎝⎭ .即()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值为14,最小值为12-.【点睛】本题考查正弦函数周期以及最值,考查基本分析求解能力,属基础题.拓广探索35.在直角坐标系中,已知O 是以原点O 为圆心,半径长为2的圆,角x (rad )的终边与O 的交点为B ,求点B 的纵坐标y 关于x 的函数解析式,并画出其图象【答案】2sin y x =,图象见解析【解析】【分析】根据三角函数定义可得点B 的纵坐标y 关于x 的函数解析式,利用五点作图法可画图.【详解】解:三角函数定义可得sin 2sin y r x x ==,x 02ππ32π2π2sin y x =020-20描点连线,再向两边延伸得图象如图所示:【点睛】本题考查三角函数定义以及五点作图法,考查基本分析求解能力,属基础题.36.已知周期函数()y f x =的图象如图所示,(1)求函数的周期;(2)画出函数(1)y f x =+的图象;(3)写出函数()y f x =的解析式.【答案】(1)2T =.(2)见解析(3)|2|,[21,21],y x k x k k k Z=-∈-+∈【解析】【分析】(1)根据周期定义结合图象求得结果;(2)把()y f x =向左平移一个单位得(1)y f x =+的图象;(3)根据一次函数解析式得()y f x =在一个周期上的解析式,再根据周期得结果.【详解】解:(1)1(1)2T =--=.(2)把()y f x =向左平移一个单位得(1)y f x =+的图象,即如图所示(3),[0,1],[1,1],[1,0)x x y x x x x ∈⎧==∈-⎨-∈-⎩所以|2|,[21,21],y x k x k k k Z =-∈-+∈.【点睛】本题考查函数周期、图象变换以及解析式,考查基本分析求解能力,属基础题.37.容易知道,正弦函数sin y x =是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心,除原点外,正弦曲线还有其他对称中心吗?如果有,那么对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,那么对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗?对余弦函数和正切函数,讨论上述同样的问题【答案】见解析【解析】【分析】根据正弦函数、余弦函数以及正切函数性质即可得到结果.【详解】解:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,它们的坐标为(,0)()k k Z π∈,正弦曲线是轴对称图形,对称轴的方程为()2x k k Z ππ=+∈.能.由余弦函数和正切函数的周期性可知,余弦曲线的对称中心坐标为,0()2k k Z ππ⎛⎫+∈ ⎪⎝⎭,对称轴的方程是()x k k Z π=∈,正切曲线的对称中心坐标为,0()2k k Z π⎛⎫∈ ⎪⎝⎭,正切曲线不是轴对称图形.【点睛】本题考查正弦函数、余弦函数以及正切函数性质,考查基本分析求解能力,属基础题.。

2函数的基本性质(单调性、奇偶性、周期性)(含答案)

2函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)一些单调性的判断规则:①若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。

②复合函数的单调性规则是“同增异减”。

2.函数的奇偶性的定义:(1)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,则称)(x f 为 . 奇函数的图象关于 对称。

(2)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,则称)(x f 为 . 偶函数的图象关于 对称。

(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。

3.奇偶函数图象的对称性(1)若)(x a f y +=是偶函数,则⇔=-⇔-=+)()2()()(x f x a f x a f x a f )(x f 的图象关于直线a x =对称;(2)若)(x b f y +=是偶函数,则⇔-=-⇔+-=-)()2()()(x f x b f x b f x b f )(x f 的图象关于点)0,(b 中心对称;4.若函数满足()()x f a x f =+,则函数的周期为T=a 。

二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( ) A .||2x y = B .3y x = C .12+-=x y D .y =cosx 【答案】C 【解析】试题分析:偶函数需满足()()f x f x -=,由此验证可知A,C,D 都是偶函数,但要满足在区间(0,+∞)上单调递减,验证可知只有C 符合. 考点:偶函数的判断,函数的单调性.2.2()24f x x x =-+的单调减区间是 .【答案】(,1)-∞ 【解析】试题分析:将函数进行配方得22()24(1)3f x x x x =-+=-+,又称轴为1x =,函数图象开口向上,所以函数的单调减区间为(,1)-∞. 考点:二次函数的单调性.3.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 【答案】A 【解析】试题分析:由2230x x +->,得3x <-或1x >,∴()f x 的定义域为(,3)(1,)-∞-+∞.22log (23)y x x =+-可看作由2log y u =和223u x x =+-复合而成的,223u x x =+-=2(1)4x +-在(,3)-∞-上递减,在(1,)+∞上递增,又2log y u =在定义域内单调递增,∴22log (23)y x x =+-在(,3)-∞-上递减,在(1,)+∞上递增,所以22log (23)y x x =+-的单调递减区间是(,3)-∞-,故选A .考点:复合函数的单调性.4.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a 【答案】B 【解析】试题分析:函数5)2(22+-+=x a x y 的图像是开口向上以2x a =-为对称轴的抛物线,因为函数在区间(4,)+∞上是增函数,所以24a -≤,解得2a ≥-,故A 正确。

最全函数概念及基本性质知识点总结及经典例题

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质一、函数的概念(1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.(2)函数的三要素:定义域、值域和对应法则.注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( )⑪3)5)(3(1+-+=x x x y ,52-=x y ;⑫111-+=x x y ,)1)(1(2-+=x x y ;⑬x x f =)(,2)(x x g =;⑭()f x =()F x =⑮21)52()(-=x x f ,52)(2-=x x f 。

A .⑪、⑫B .⑫、⑬ C .⑭D .⑬、⑮ 2:求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()635-=x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f ,131><x x 或 ④对数函数的真数大于零0,log )(>=x x x f a ,当对数或指数函数的底数中含变量时,底数须大于零且不等于1。

如:()212()log 25f x x x =-+⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.如:)2(log 22x y --=⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.如:()[]()x f x f 28,2,的定义域是的定义域为822≤≤x⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.例:求函数()())1lg(lg x k x x f -+-=的定义域。

高中数学必修一第三章函数的概念与性质知识总结例题(带答案)

高中数学必修一第三章函数的概念与性质知识总结例题(带答案)

高中数学必修一第三章函数的概念与性质知识总结例题单选题1、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32. 综上:−12≤x ≤0或12≤x ≤32. 故选:A2、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可. 解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B3、若函数f(x)=x 2−mx +10在(−2,1)上是减函数,则实数m 的取值范围是( )A .[2,+∞)B .[−4,+∞)C .(−∞,2]D .(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m 的取值范围.函数f(x)=x 2−mx +10的对称轴为x =m 2,由于f (x )在(−2,1)上是减函数,所以m 2≥1⇒m ≥2. 故选:A4、函数f (x )=x 2−1的单调递增区间是( )A .(−∞,−3)B .[0,+∞)C .(−3,3)D .(−3,+∞)答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞).故选:B.5、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可解:∵函数f(x)=x ln(x+√a+x2)为偶函数,x∈R,∴设g(x)=ln(x+√a+x2)是奇函数,则g(0)=0,即ln√a=0,则√a=1,则a=1.故选:B.6、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.7、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D8、设a为实数,定义在R上的偶函数f(x)满足:①f(x)在[0,+∞)上为增函数;②f(2a)<f(a+1),则实数a 的取值范围为()A.(−∞,1)B.(−13,1)C.(−1,13)D.(−∞,−13)∪(1,+∞)答案:B分析:利用函数的奇偶性及单调性可得|2a|<|a+1|,进而即得.因为f(x)为定义在R上的偶函数,在[0,+∞)上为增函数,由f(2a)<f(a+1)可得f(|2a|)<f(|a+1|),∴|2a|<|a+1|,解得−13<a<1.故选:B.多选题9、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−20.2×0.5)x≥22.4,解得x的范围,可得答案.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2×0.5万册,则该杂志销售收入为(10−x−20.2×0.5)x万元,所以(10−x−20.2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x(x>2)元时的发行量是解题关键.10、已知函数f(x)={|x |+2,x <1x +2x,x ≥1 ,下列说法正确的是( ) A .f(f(0))=3B .函数y =f(x)的值域为[2,+∞)C .函数y =f(x)的单调递增区间为[0,+∞)D .设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是[−2,2]答案:ABD解析:作出函数f(x)的图象,先计算f(0),然后计算f(f(0)),判断A ,根据图象判断BC ,而利用参变分离可判断D .画出函数f(x)图象.如图,A 项,f(0)=2,f(f(0))=f(2)=3,B 项,由图象易知,值域为[2,+∞)C 项,有图象易知,[0,+∞)区间内函数不单调D 项,当x ≥1时,x +2x ≥|x 2+a|恒成立,所以−x −2x ≤x 2+a ≤x +2x 即−32x −2x ≤a ≤x 2+2x 在[1,+∞)上恒成立,由基本不等式可得x 2+2x ≥2,当且仅当x =2时等号成立,3x 2+2x ≥2√3,当且仅当x =2√33时等号成立, 所以−2√3≤a ≤2.当x <1时,|x |+2≥|x 2+a|恒成立,所以−|x |−2≤x 2+a ≤|x |+2在(−∞,1)上恒成立,即−|x |−2−x 2≤a ≤|x |+2−x 2在(−∞,1)上恒成立 令g (x )=|x |+2−x 2={−32x +2,x ≤0x 2+2,0<x <1 ,当x ≤0时,g (x )≥2,当0<x <1时,2<g (x )<32,故g (x )min =2;令ℎ(x )=−|x |−2−x 2={12x −2,x ≤0−3x 2−2,0<x <1 ,当x ≤0时,ℎ(x )≤−2,当0<x <1时,−72<ℎ(x )<−2,故ℎ(x )max =−2; 所以−2≤a ≤2.故f(x)≥|x 2+a|在R 上恒成立时,有−2≤a ≤2. 故选:ABD .小提示:关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.11、已知函数f (x )={x 2,−2≤x <1−x +2,x ≥1关于函数f (x )的结论正确的是( ) A .f (x )的定义域为RB .f (x )的值域为(−∞,4]C .若f (x )=2,则x 的值是−√2D .f (x )<1的解集为(−1,1)答案:BC分析:求出分段函数的定义域可判断A ;求出分段函数的值域可判断B ;分x ≥1、−2≤x <1两种情况令f (x )=2求出x 可判断C ;分x ≥1、−2≤x <1两种情况解不等式可判断D.函数f (x )={x 2,−2≤x <1−x +2,x ≥1的定义域是[−2,+∞),故A 错误; 当−2≤x <1时,f (x )=x 2,值域为[0,4],当x ≥1时,f (x )=−x +2,值域为(−∞,1],故f (x )的值域为(−∞,4],故B 正确;当x ≥1时,令f (x )=−x +2=2,无解,当−2≤x <1时,令f (x )=x 2=2,得到x =−√2,故C 正确; 当−2≤x <1时,令f (x )=x 2<1,解得x ∈(−1,1),当x ≥1时,令f (x )=−x +2<1,解得x ∈(1,+∞),故f (x )<1的解集为(−1,1)∪(1,+∞),故D 错误.故选:BC.填空题12、写出一个同时具有下列性质的函数f(x)=___________.①f(x)是奇函数;②f(x)在(0,+∞)上为单调递减函数;③f(x1x2)=f(x1)f(x2).答案:x−1(答案不唯一,符合条件即可)分析:根据三个性质结合图象可写出一个符合条件的函数解析式.f(x)是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又f(x)在(0,+∞)上为单调递减函数,同时f(x1x2)=f(x1)f(x2),故可选,f(x)=xα,α<0,且α为奇数,所以答案是:x−113、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a 的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)14、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x−13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13.所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平. 解答题15、美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为y =kx a (x >0),其图像如图所示.(1)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A ,B 两种芯片,求可以获得的最大利润是多少.答案:(1)生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式分别为y =0.25x ,y =√x (x >0),(2)9千万元分析:(1)根据待定系数法可求出函数解析式,(2)将实际问题转换成二次函数求最值的问题即可求解解:(1)因为生产A 芯片的毛收入与投入的资金成正比,所以设y =mx (m >0),因为当x =1时,y =0.25,所以m =0.25,所以y =0.25x ,即生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x ,对于生产B 芯片的,因为函数y =kx a (x >0)图像过点(1,1),(4,2),所以{1=k k⋅4a=2,解得{k=1a=12,所以y=x12,即生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=√x(x>0),(2)设投入x千万元生产B芯片,则投入(40−x)千万元生产A芯片,则公司所获利用f(x)=0.25(40−x)+√x−2=−14(√x−2)2+9,所以当√x=2,即x=4千万元时,公司所获利润最大,最大利润为9千万元。

高中数学根据函数性质解题技巧总结

高中数学根据函数性质解题技巧总结

高中数学根据函数性质解题技巧总结在高中数学中,函数是一个重要的概念,它是数学中的一种基本关系,描述了自变量和因变量之间的对应关系。

掌握了函数的性质,我们就能够更加灵活地解决各种与函数相关的问题。

本文将总结一些根据函数性质解题的技巧,并通过具体的题目举例说明。

一、函数的奇偶性函数的奇偶性是指函数在自变量取相反数时,函数值的变化规律。

对于一个函数f(x),如果满足f(-x) = f(x),则称该函数为偶函数;如果满足f(-x) = -f(x),则称该函数为奇函数。

例题1:已知函数f(x) = x^3 - x,判断该函数的奇偶性。

解析:我们可以将函数的定义代入判断。

对于任意的x,有f(-x) = (-x)^3 - (-x)= -x^3 + x。

与f(x)进行比较,发现f(-x) = -f(x),所以该函数是奇函数。

通过这个例题,我们可以看到,判断函数的奇偶性可以通过将自变量取相反数,然后与原函数进行比较,从而得到结论。

这个技巧在解题中非常实用。

二、函数的周期性函数的周期性是指函数在某个区间内的函数值具有重复的规律性。

对于一个函数f(x),如果存在正数T,使得对任意的x,有f(x+T) = f(x),则称该函数为周期函数,T称为函数的周期。

例题2:已知函数f(x) = sin(x),求f(x)的周期。

解析:根据三角函数的性质,我们知道sin(x+2π) = sin(x),所以函数f(x)的周期为2π。

周期函数在解题中经常出现,掌握函数的周期性可以帮助我们快速求解问题。

例如在解决函数在某个区间上的最值问题时,我们可以利用函数的周期性将区间缩小,从而简化计算。

三、函数的单调性函数的单调性是指函数在某个区间上的函数值的变化规律。

对于一个函数f(x),如果在某个区间上,当x1 < x2时,有f(x1) < f(x2),则称该函数在该区间上为递增函数;如果在某个区间上,当x1 < x2时,有f(x1) > f(x2),则称该函数在该区间上为递减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的性质的应用举例一、知识点回顾1. 定义法判断和证明函数的单调性用定义法判断函数单调性的一般步骤:取值、作差、变形、判号、定论. (1)取值 设21,x x 是给定区间上的任意两个值,且21x x <; (2)作差 计算()()21x f x f -;(3)变形 对()()21x f x f -进行有利于判断符号的变形,如因式分解、配方、通分、有理化等;(4)判号 即判断()()21x f x f -的符号,当符号不确定时,需要进行分类讨论; (5)定论 根据函数单调性的定义得出结论,即确定函数在给定区间上的单调性. 在以上步骤中,作差是基础,变形是关键,判号是目的. 2. 抽象函数的单调性抽象函数是指没有给出具体解析式的函数. 判断抽象函数单调性的方法:(1)凑 凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值 给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. 注意①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f xx x f x f x f -⎪⎪⎭⎫⎝⎛⋅=- 或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f .3. 函数奇偶性的判定判断函数奇偶性的方法有三种:定义法、图象法和性质法. 用定义法判断函数的奇偶性(1)求 求函数的定义域,若定义域关于原点对称,则进行第(2)步;若定义域关于原点不对称,则函数是非奇非偶函数.(2)判 求出)(x f -,然后根据)(x f -与)(x f 的关系,确定函数的奇偶性;①若)()(x f x f =-,或0)()(=--x f x f ,或1)()(=-x f x f (0)(≠x f ),则函数)(x f 是偶函数;②若)()(x f x f -=-,或0)()(=+-x f x f ,或1)()(-=-x f x f (0)(≠x f ),则函数)(x f 是奇函数;③若)()(x f x f ±≠-,则函数)(x f 是非奇非偶函数.说明: 若要说明一个函数不是偶函数(或奇函数),只需在函数定义域内找到一个数a ,有)()(a f a f ≠-(或)()(a f a f -≠-)即可.(见后面的相关例题)图象法判断函数的奇偶性对于容易画出图象的函数,若函数的图象关于y 轴对称,则它是偶函数;若函数的图象关于原点对称,则它是奇函数. 性质法判断函数的奇偶性两个在公共定义域上具有奇偶性的函数,它们的和与积所构成的函数的奇偶性为: 奇+奇=奇; 偶+偶=偶;(一奇一偶的和的单调性不能确定) 奇⨯奇=偶; 偶⨯偶=偶; 奇⨯偶=奇. 二、函数性质的应用举例例1. 已知函数x q px x f 32)(2-+=是奇函数,且35)2(-=f .(1)求函数)(x f 的解析式;(2)判断)(x f 在区间()1,0上的单调性,并用定义证明.解:(1)∵35)2(-=f ,∴35624-=-+q p ,整理得:24512=+q p . ∵函数)(x f 是奇函数,∴()()x f x f -=-∴qx px x q px -+=++323222,∴q x x q -=+33,解之得:0=q .把0=q 代入24512=+q p ,解得2=p .∴函数)(x f 的解析式为()xx x x x f 32232222+-=-+=; (2))(x f 在区间()1,0上为增函数,理由如下: 任取∈21,x x ()1,0,且21x x <,则有()()()()21212122212121312322322x x x x x x x x x x x f x f --=⎪⎪⎭⎫ ⎝⎛+--+-=- ∵∈21,x x ()1,0,且21x x <,∴0,01,0212121>>-<-x x x x x x ∴()()021<-x f x f ,∴()()21x f x f < ∴)(x f 在区间()1,0上为增函数.例2. 定义在[]2,2-上的偶函数)(x g ,当x ≥0时,)(x g 单调递减,若()()m g m g <-1,求m 的取值范围.解:∵)(x g 是定义在[]2,2-上的偶函数,()()x g x g =. ∵()()m g m g <-1,∴()()m g m g <-1 ∵当x ≥0时,)(x g 单调递减,∴m m >-1由题意可得:⎪⎩⎪⎨⎧>-≤≤-≤-≤-mm m m 122212,解之得:1-≤21<m .∴m 的取值范围是⎪⎭⎫⎢⎣⎡-21,1.例3. 已知)(x f 是定义在R 上的奇函数,且当x ≥0时,()a x a x x f ++-=4)(2. (1)求实数a 的值及)(x f 的解析式; (2)求使得6)(+=x x f 成立的x 的值.解:(1)∵)(x f 是定义在R 上的奇函数,∴0)0(=f ∵当x ≥0时,()a x a x x f ++-=4)(2 ∴0)0(==a f ,∴x x x f 4)(2-=. 当0<x 时,0>-x ,则有()()x f x x x f -=+=-42,∴x x x f 4)(2--=∴0=a ,)(x f 的解析式为⎩⎨⎧<--≥-0,40,422x x x x x x ;(2)∵6)(+=x x f∴当x ≥0时,642+=-x x x ,解之得:1,621-==x x (不合题意,舍去); 当0<x 时,642+=--x x x ,解之得:3,221-=-=x x . 综上所述,使得6)(+=x x f 成立的x 的值为6或2-或3-. 例4. 若定义在R 上的函数)(x f 对任意的∈21,x x R ,都有:()()()12121-+=+x f x f x x f 成立,且当0>x 时,1)(>x f .(1)求证:()1-=x f y 为奇函数; (2)求证:)(x f 是R 上的增函数; (3)若5)4(=f ,解不等式()323<-m f .(1)证明:令021==x x ,则有1)0()0()0(-+=f f f ,∴1)0(=f . 设1)()(-=x f x F ,则0111)0()0(=-=-=f F .令x x x x -==21,,则有()1)()()0(--+=-=x f x f x x f f ∴)(1)()0(1)(x f x f f x f -=-=--即())(1)()(11)()(x F x f x f x f x F -=--=-=--=- ∵)(x F 的定义域为R ,关于原点对称,)()(x F x F -=- ∴函数)(x F ,即()1-=x f y 为奇函数;(2)证明:任取∈21,x x R ,且21x x <,则012>-x x ∵当0>x 时,1)(>x f ,∴()112>-x x f∴()()()()()()()11121112121)(x f x f x x f x f x x x f x f x f --+-=-+-=-()0112>--=x x f∴()()21x f x f < ∴)(x f 是R 上的增函数;(3)解:∵5)4(=f ,∴51)2(21)2()2()22()4(=-=-+=+=f f f f f ,∴3)2(=f . ∵()323<-m f ,∴())2(23f m f <- ∵)(x f 是R 上的增函数 ∴223<-m ,解之得:34<m . ∴不等式()323<-m f 的解集为⎪⎭⎫ ⎝⎛∞-34,.例5. 已知函数⎪⎩⎪⎨⎧<+=>+-=0,0,00,2)(22x mx x x x x x x f 是奇函数.(1)求实数m 的值;(2)若函数)(x f 在区间[]2,1--a 上单调递增,求实数a 的取值范围. 解:(1)∵函数)(x f 是奇函数,∴()()x f x f -=-当0<x 时,0>-x ,则有:()()mx x x f x x x f --=-=--=-222 ∴2=m ;(2)由(1)可知:()()⎪⎩⎪⎨⎧<-+=+=>+--=+-=0,1120,00,112)(2222x x x x x x x x x x f .∴当0>x 时,)(x f 的单调递增区间为(]1,0; 当0=x 时,0)(=x f ;当0<x 时,)(x f 的单调递增区间为[)0,1-.综上所述,函数)(x f 在R 上的单调递增区间为[]1,1-. ∵函数)(x f 在区间[]2,1--a 上单调递增∴⎩⎨⎧≤-->-1212a a ,解之得:a <1≤3. ∴实数a 的取值范围是(]3,1.下面的这道题目,综合性较强.例 6. 已知函数)(x f y =的定义域为[]1,1-,且)()(x f x f -=-,1)1(=f ,当[]1,1,-∈b a ,且0≠+b a 时,0)()(>++ba b f a f 恒成立.(1)判断)(x f 在[]1,1-上的单调性;(2)解不等式⎪⎭⎫⎝⎛-<⎪⎭⎫ ⎝⎛+1121x f x f ; (3)若12)(2+-<am m x f ,对所有[]1,1-∈x ,[]1,1-∈a 恒成立,求m 的取值范围. 解:(1)∵当[]1,1,-∈b a ,且0≠+b a 时,0)()(>++ba b f a f 恒成立∴[]1,1-∈-b ,0)()()(>-+-+b a b f a f∵)()(x f x f -=-,∴0)()(>--ba b f a f∴当b a >时,)()(b f a f >;当b a <时,)()(b f a f <. ∴)(x f 在[]1,1-上为单调增函数.(2)∵)(x f 在[]1,1-上为单调增函数,⎪⎭⎫⎝⎛-<⎪⎭⎫ ⎝⎛+1121x f x f ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-112111111211x x x x ,解之得:23-≤1-<x .∴所求不等式的解集为⎪⎭⎫⎢⎣⎡--1,23;(3)∵)(x f 在[]1,1-上为单调增函数,且1)1(=f ∴1)1()(max ==f x f∵12)(2+-<am m x f 在[]1,1-∈x 上恒成立 ∴12)(2max +-<am m x f ,∴1212+-<am m ∴022>-am m ,设2222)(m am am m a g +-=-= ∵022>-am m 在[]1,1-∈a 上恒成立,∴0)(min >a g 当0=m 时,00>显然不成立,舍去; 当0>m 时,)(a g 在[]1,1-∈a 为减函数 ∴2min 2)1()(m m g a g +-== ∴022>+-m m ,解之得:2>m ; 当0<m 时,)(a g 在[]1,1-∈a 为增函数 ∴2min 2)1()(m m g a g +=-= ∴022>+m m ,解之得:2-<m .综上所述,m 的取值范围是()()+∞-∞-,22, .。

相关文档
最新文档