第二章控制系统的数学模型.ppt

合集下载

自动控制原理第二章 胡寿松ppt课件

自动控制原理第二章 胡寿松ppt课件
—线性定常二阶微分方程式
4、消去中间变量i(t),整理后得整:理版课件
22
第二章 控制系统数学模型
例2、 设一弹簧、质量块、阻
尼器组成的系统如图所示,
当外力F(t)作用于系统时,系 F(t) 统将产生运动。试写出外力
F(t)与质量块的位移y(t)之间
m
的微分方程。
解:
f
1、确立入-出,入-F(t),出—y(t); 2、根据牛顿定律,∑F=ma;
limsF(s)存在 f(0)lifm (t)lism (F s)
s
t 0
s
(6)终值定理
若: L[f(t)]F(s)
f( )lifm (t)lism (F s)
t
s 0
整理版课件
7
第二章 控制系统数学模型
例2、求下列函数的拉氏变换。
(1)f(t)2(1cot)(s2)f(t)sin5(t() 3)f (t)tnet
L[
d
2
dt
f (t) 2
]
s
2
F
(s)
L [ d n f ( t ) ] s n F ( s )整理版课件
5
dt n
第二章 控制系统数学模型
(2)积分性质
若: L[f(t)]F(s)
L [ f(t)d] t1 sF (s)1 s f(t)dt t0
当初始条件为0,则有:
L[
f
(t )dt ]
1 - 311 1 14 s 2s 1s 2 s 1s 2
f(t) L 1 [f(t) ](t) e t 4 e 2 t
整理版课件
16
第二章 控制系统数学模型
例 6 求F(s)s(s2ss11)的拉氏反变换

自控原理课件 第2章-自动控制系统的数学模型

自控原理课件  第2章-自动控制系统的数学模型

第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
2.2.2 传递函数 建立数学模型的目的是为了对系统进行性能分析。分析 自动控制系统最直接的方法是求解微分方程,求得被控 量在动态过程中的时间函数,然后根据时间函数的曲线 对系统性能进行分析。求解的方法有经典法、拉氏变换 法等。 拉氏变换法是求解微分方程的简便方法,当采用这一方 法时。微分方程的求解就成为象函数的代数方程和查表 求解,使计算大为简化。更重要的是,采用拉氏变换法 能把以线性微分方程描述的数学模型转换成复数域中代 数形式的数学模型——传递函数。传递函数不仅可以表 征系统的性能,而且可以用来分析系统的结构和参数变 化对系统性能的影响。经典控制理论中应用最广泛的频 率特性法和根轨迹法就是以传递函数为基础建立起来的, 传递函数是经典控制理论中最基本最重要的概念。
解:(1)确定输入和输出量。网络的输入量为 电压ur(t),输出量为电压uc(t) (2)根据电路理论,列出原始微分方程。
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
1.信号线 信号线是带有箭头的直线,箭头表示信号的流向,在直线旁标 记信号的象函数,如图2.20(a)所示。 2.引出点 引出点表示信号引出或测量的位置。从同一位置引出的信号在 数值和性质上完全相同, 图2.20(b)所示。 3.比较点 比较点表示多个信号在此处叠加,输出量等于输入量的代数和。 因此在信号输入处要标明信号的极性,如图2.20(c)所示。 4.功能框 功能框表示一个相对独立的环节对信号的影响。框左边的箭头 处标以输人量的象函数,框右边的箭头处标以输出量的象函数, 框内为这一单元的传递函数。输出量等于输入量与传递函数的 乘积,即

自动控制原理:第二章--控制系统数学模型全

自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系

T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)

《自动控制原理》课件第二章

《自动控制原理》课件第二章

Cen idRd
Ld
d id dt
ud
(2-4)
当略去电动机的负载力矩和粘性摩擦力矩时,机械运动
微分方程式为
M GD2 d n 375 d t
(2-5)
式中,M为电动机的转矩(N·m); GD2为电动机的飞轮矩
(N·m2)。当电动机的励磁不变时,电动机的转矩与电枢电
流成正比,即电动机转矩为
M=Cmid
称为相似量。如式(2-1)中的变量ui、uo分别与式(2-3)中的变
量f(t)、y(t)为对应的相似量。
2.1.2 线性定常微分方程求解及系统运动的模态 当系统微分方程列写出来后,只要给定输入量和初始条
件,便可对微分方程求解,并由此了解系统输出量随时间变 化的特性。
若线性定常连续系统的微分方程模型的一般表示形式为 y(n)(t)+a1y(n-1)(t)+···+any(t)=b0u(m)(t)+b1u(m-1)(t)+…+bmu(t)
x0
( x x0 )2
当增量x-x0很小时,略去其高次幂项,则有
y
y0
f (x)
f (x0)
d f (x) dx
x0
(x x0)
令Δy=y-y0=f(x)-f(x0),Δx=x-x0,K=(df(x)/dx)|x0,则线性
化方程可简记为Δy=KΔx。这样,便得到函数y=f(x)在工作
点A附近的线性化方程为y=Kx。
图2-4 小偏差线性化示意图
对于有两个自变量x1、x2的非线性函数f(x1,x2),同样 可在某工作点(x10,x20)附近用泰勒级数展开为
y
f (x1 ,x2 )
f

机械工程控制基础课件 第2章: 系统的数学模型

机械工程控制基础课件 第2章: 系统的数学模型
统,而闭环控制系统则是指系统中存在反馈环节的控制系统。
控制系统的状态空间模型
要点一
总结词
控制系统的状态空间模型
要点二
详细描述
状态空间模型是一种描述控制系统动态行为的数学模型, 它通过建立系统的状态方程和输出方程来描述系统的动态 特性。在状态空间模型中,系统的状态变量、输入变量和 输出变量都被表示为矩阵和向量的形式,从而能够方便地 描述系统的动态行为。状态空间模型具有直观、易于分析 和设计等优点,因此在控制工程中得到了广泛应用。
传递函数模型的求解
通过求解传递函数模型中的代数方程或超 越方程,得到系统在给定输入下的输出响 应。
04
控制系统的数学模型
控制系统的定义与分类
总结词
控制系统的定义与分类
详细描述
控制系统的定义是:控制系统是一种能够实现自动控制和调节的装置或系统,它能够根 据输入信号的变化,自动调节输出信号,以实现某种特定的控制目标。控制系统可以分 为开环控制系统和闭环控制系统两类。开环控制系统是指系统中没有反馈环节的控制系
状态空间模型的求解
通过数值计算方法求解状态空间模型中的微分方程或差分方程,得到 系统状态变量的时间响应。
非线性系统的传递函数模型
总结词
传递函数模型的建立、性质和求解
传递函数模型的性质
传递函数模型是非线性的,具有频率响应 特性,可以描述系统在不同频率下的行为
特性。
传递函数模型的建立
通过拉普拉斯变换将非线性系统的微分方 程或差分方程转换为传递函数的形式,从 而建立非线性系统的传递函数模型。
03
非线性系统的数学模型
非线性系统的定义与性质
总结词
非线性系统的定义、性质和特点
非线性系统的定义

过程控制技术-第二章过程控制系统的数学模型精品PPT课件

过程控制技术-第二章过程控制系统的数学模型精品PPT课件
式(2-7)中q s0是常数项,因此式(2-7)
成为只有输出变量(被控变量)Tout与输入变 量Tin的微分方程式,该式称为蒸汽直接加热器
扰动通道的微分方程式。
2 过程控制系统的数学模型
(5 输出变量和输入变量用增量形式表示的方程式 称为增量方程式。变量进行增量化处理后,使 方程不必考虑初始条件;能使非线性特性化成 线性特性;而且符合线性自动控制系统的情况。 因为在过程控制系统中,主要是考虑被控变量 偏离设定值的过渡过程,而不考虑在t=0时刻 的被控变量。现以蒸汽直接加热器为例,说明 增量方程式的列写方法。
今后在习惯上为书写的便利,可以将一阶微分 方程式中的增量“Δ”省略,但要理解为是相 应变量的增量。因此,一阶被控对象的数学模 型便可写成:
T dy y Kx dt
2 过程控制系统的数学模型
于是上述所讨论的温度对象的阻力系数是:
T 1
热阻R=温差/热量流量=

q FinC
热容C=被储存的热量的变化/温度的变化=
U Tout
Mc
2 过程控制系统的数学模型
二阶被控对象的数学模型
• 二阶被控对象数学模型的建立与一阶类似。由于二 阶被控对象实际是复杂的,下面仅以简单的实例作 一介绍。
• 【例2-2】 两个串联的液体储罐如图2-2所示。为便 于分析,假设液体储罐1和储罐2近似为线性对象, 阻力系数R1、R2
2 过程控制系统的数学模型
2 过程控制系统的数学模型
(1) 建立原始方程式:
A1
dL1 dt
F1
F2
A2
dL2 dt
F2
F3
F2
L1 R1
F3
L2 R2
2 过程控制系统的数学模型

自动控制原理胡寿松第六版ppt

自动控制原理胡寿松第六版ppt
通常m < n;a1 , … , an; b0 , … , bm 均为实数; 首先将Xs的 分母因式分解,则有
X (s)b 0s (s m p b 1 1) sm s ( 1 p 2) b (s m 1s p n)b m
3) 随动系统中,取θ为输出
d
dt
Tmd d22td d tk 1euaT JmM L
4 在实际使用中;转速常用nr/min表示,设 ML=0
2 6 n 0 3 n代 02 入 2, 2k'e令 ke3 0
TaTmdd2n 2tTmd dn tnk1'eua
24 线性系统的传递函数 一 复习拉氏变换及其性质
方程数与变量数相等 5) 联立上述方程,消去中间变量,得到只包含输入 输出的方程式。 6) 将方程式化成标准形。
与输出有关的放在左边,与输入有关的放在右边,导数项按 降阶排列,系数化为有物理意义的形式。
2 2.2 机械平移系统举例
三个基本的无源元件:质量m,弹簧k,阻尼器f 对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv
2微分定理
Lddx(tt)sX(s)x(0)
Ld2 dx2 (tt)s2X(s)sx (0)x (0)
若 x ( 0 ) x ( 0 ) 0 ,则
Lddx(tt) sX(s)
d2x(t)
L
dt2
s2X(s)

dnx(t)
L
dtn
snX(s)
3积分定律
Lx (t)d t1X (s)1x ( 1 )(0 )
系统处于平衡状态。
K m y(t)
3按牛顿第二定律列写原始方程;即
d2y FF(t)F k(t)F f(t)md2t

自动控制理论邹伯敏PPT第二章

自动控制理论邹伯敏PPT第二章
等其它模型均由它而导出 状态变量描述 状态方程是这种描述的最基本形式
建立系统数学模型的方法
实验法:人为施加某种测试信号,记录基本输出响应。
解析法:根据系统及元件各变量之间所遵循的基本物理
定律,列写处每一个元件的输入-输出关系式。
2019/11/2
第二章 控制系统的数学模型
2
自动控制理论
第一节 列写系统微分方程的一般方法

Gs C Rssb a00ssm n b a1 1ssm n 1 1
bm 1sbm an1san
Gs就是系统的传递函数。
( 2-30)
其中 C, sLCt;RsLRt它们之间的传
方框图表示。
2019/11/2
第二章 控制系统的数学模型
15
自动控制理论
由式(2-17)减式(2-15),式(2-17)减式(2-15)后得
iBRNdd t u1 E GC 1
( 2-19) ( 2-20)
式(2-19)、(2-20)均为增量方程,它们描述了发电机在平衡点 A处受到△u1作用后的运动过程。对增量方程式而言,磁化曲线的坐 标原点不是在O点,而是移到A点。因而发电机的初始条件仍为零。 式中N为励磁绕组的匝数。
n0

1 Ce
EG
(n0为电动机的空载转速)
(2-9 )
测速发电机
输入量是电动机的转速n,输出量是测速发电机的电压Ufn ,假设 测速发电机的磁场恒定不变,则Ufn与n成线性关系即有
2019/11/2
第二章 控制系统的数学模型
11
自动控制理论

ufn an
(2-10)
ue ug-ufn
(2-11)

《自动控制原理》-胡寿松-002-自动控制原理-第二章ppt

《自动控制原理》-胡寿松-002-自动控制原理-第二章ppt
3
2-0 预备知识—牢记一些典型时域数学模型
1.电容 2 .电感 3弹簧弹性力 4 阻尼器 5 牛顿定律 6 电机 7 二阶方程的通解
4
§2.1 傅里叶变换与拉普拉斯变换
▪ 傅里叶 变换 自学
5
拉氏变换及其性质
1.定义 X (s) x(t )est dt 0 记 X(s) = L[x(t)]
24
2.2 时域模型 - 微分方程
2.2.1. 建立系统或元件微分方程的步骤
I. 确定元件输入量和输出量
II. 根据物理或化学定律,列出元件的原始方 程
III. 在可能条件下,对各元件的原始方程进行 适当简化,略去一些次要因素或进行线性 化处理
IV. 消去中间变量,得到描述元件输入和输出 关系的微分方程
t
0
t
0
t0
0
t
A
解: x(t) = x1(t) + x2(t) =A1(t) A1(t t0 )
X (s) A A et0s A (1 et0s )
ss
s
13
例2-7 求e at 的拉氏变换。
解:
X (s) eat est dt
1
e(as)t
1
0
as
0 sa
X (s) L 1(t )eat 1 sa 例2-8 求e 0.2 t 的拉氏变换。 解:
论: (1) D(s) = 0无重根。
16
X (s) c1 c2
cn
n
ci
(s p1 ) (s p2 )
(s pn ) i1 (s pi )
式中ci 是待定常数,称为X(s)在极点si 处的留数。
ci
lim(s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例• 2.1 图为机械位移系统。试列写质量m在外力F作用下位移
y(t)的运动方程。
解:
阻尼器的阻尼力:
弹簧弹性力: F2
F1(t ) f
(t) ky(t)
dy(t dt
)
ቤተ መጻሕፍቲ ባይዱ
k
F
d 2 y(t) m dt 2 F (t ) F1(t ) F2 (t )
整理得:
m
d
2 y(t dt 2
)
f
dy(t) ky(t) F (t) dt
y y0 y f ( x0 )
dx
x
x x0
2.2.4 线性定常微分方程的求解 2.2.1 2.2.2 2.2.3
• 求解方法:经典法、拉氏变换法。零状态响应、零输入响应。
拉氏变换法求解步骤:
1. 考虑初始条件,对微分方程中的每一项分别进行拉氏变换,
得到变量s的代数方程;
2. 求出输出量拉氏变换函数的表达式;
5.由数学模型求取系统性能指标的主要途径
求解
观察
线性微分方程
时间响应
性能指标
傅 氏 变
拉氏变换 传递函数
拉氏反变换 估算
估算

S=jω
频率特性 计算 频率响应
2.2 线性系统的微分方程 2.1 2.3
2.4 2.5
2.2.1 微分方程的列写 2.2.2 2.2.3 2.2.4
1
ur i1 R1 c1 i1dt
2.3.1 传递函数的定义 2.3.2 2.3.3 2.3.4
2.1 2.2 2.4 2.5
• 线性定常系统在零初始条件下,输出量的拉氏变换与输入 量的拉氏变换之比,称为传递函数。
d nc(t)
d n1c(t)
dc(t )
a 0 dt n a1 dt n1 an1 dt anc(t )
d m r(t) d m1r(t)
dr(t )
b0 dt m b1 dt m1 bm1 dt bm r(t )
(a0sn a1sn1 an1s an )C(s) (b0sm b1sm1 bm1s bm )R(s)
m
f
y(t)
• 例2.2 如图RLC电路,试列写以ur(t)为输入量,uc(t)为输出量 的网络微分方程。
• 解:
di(t ) L dt uc (t) Ri(t) ur (t)
i(t) R L
uc (t)
1 c
i (t )dt
ur(t)
C uc(t)
返回
LC
d
2uc (t ) dt 2
RC
duc (t ) dt
1
uc c i1dt
化简, 得 R 1C1
duc dt
uc
ur
i1 (t) R1
ur(t)
C1 uc(t)
微分方程的列写步骤
动画演示
1)确定系统的输入、输出变量; 2)从输入端开始,按照信号的传递顺序,根据各变量所遵循的 物理定理写出各微分方程; 3)消去中间变量,写出输入、输出变量的微分方程; 4)变换成标准形式。
2.2.3 非线性元件微分方程的线性化 2.2.1 2.2.2 2.2.4
• 严格地说,实际控制系统的某些元件含有一定的非线性特性,而
非线性微分方程的求解非常困难。如果某些非线性特性在一定的工
作范围内,可以用线性系统模型近似,称为非线性模型的线性化。
小偏差线性化:用台劳级数展开,略去二阶以上导数项。
2.建立数学模型的目的 ●建立系统的数学模型,是分析和设计控制系统的首要工作 (或基础工作)。 ●自控系统的组成可以是电气的、机械的、液压或气动的等等, 然而描述这些系统发展的模型却可以是相同的。因此,通过数学 模型来研究自动控制系统,可以摆脱各种不同类型系统的外部特 征,研究其内在的共性运动规律。
uc
(t)
ur
(t)
动画演示
2.2.2 微分方程的类型 2.2.1 2.2.3 2.2.4
• 非线性(nonlinear)系统:用非线性微分方程描述。
f dy ky2 y F(t) dt
• 线性(linear)系统:用线性微分方程描述。 • 线性定常系统:用线性微分方程描述,微分方程的系数是常数。
3.建模方法
分析法 本课研究 实验法 系统辨识课研究
4.常用数学模型
微分方程(differential equation)(或差分difference方程) 传递函数(transfer function) (或结构图block diagram ) 频率特性(frequency characteristics) 状态空间表达式(或状态模型state space model )
第二章 控制系统的数学模型
2.1 数学模型基础 2.2 线性系统的微分方程 2.3 线性系统的传递函数 2.4 系统的结构图 2.5 信号流图及梅逊公式 本章作业
End
2.1 数学模型基础
2.2 2.3 2.4 2.5
1.定义:数学模型(mathematical model)是指出系统内部物理量 (或变量)之间动态关系的表达式。
3. 对输出量拉氏变换函数求反变换,得到输出量的时域表达式,
即为所求微分方程的解。
i 1(t) R1
例2.3 已知R1=1,C1=1F,uc(0)=0.1v,
ur(t)=1(t),求 uc(t)
解:R1C1
duc dt
uc
ur
ur(t)
C1
R1C1sUc (s) R1C1uc (0) Uc (s) Ur (s)
一、假设:x,y在平衡点(x0,y0)附近变化,即 x=x0+△x, y=y0+△y
二、近似处理 y df ( x) x
三、数学方法
dx x x0
df ( x)
y y0 y f ( x0 )
dx
x
x x0
1 d 2 f (x) 2! dx2
(x)2
x x0
略去高阶无穷小项:
df ( x)
f dy ky F(t) dt
• 线性时变系统:用线性微分方程描述,微分方程的系数是 随时间而变化的。
f dy k(t) y F(t) dt
• 线性系统的重要性质:满足叠加性和均匀性(齐次性)。即: 如果输入r1(t)—>输出y1(t),输入r2(t)—>输出y2(t) 则输入a r1(t)+b r2(t) —>输出a y1(t)+by2(t)
动画演示
uc(t)
sUc (s) 0.1 Uc (s) Ur (s)
1
0.1
Uc (s) s(s 1) s 1
uc (t ) 1 et 0.1et
零初始条件下取拉氏变换: R1C1sUc (s) Uc (s) Ur (s)
Uc (s)
1
Ur (s) R1C1s 1
2.3 传递函数
相关文档
最新文档