二次函数与一元二次方程知识点及经典例题
二次函数与一元二次方程(知识点考点)-九年级数学上册知识点考点(解析版)
二次函数与一元二次方程(知识点考点一站到底)知识点☀笔记知识点一 利用判别式判断抛物线与x 轴的交点个数判别式 Δ=b 2- 4ac二次函数y =ax 2+bx +c 一元二次方程ax 2+bx +c =0(a ≠0)图象图象与x 轴 的交点个数根的情况Δ>0a >0与x 轴有 2个交点有两个不相等的实数根a <0Δ=0a >0与x 轴有 1个交点有两个相等的 实数根a <0Δ<0a >00个交点没有实数根a <0二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标,就是对应方程ax 2+bx +c =0(a ≠0)的根.考点☀梳理解题指导:①确定一元二次方程ax 2+bx +c +k =0的根的情况,可以利用二次函数y =ax 2+bx +c 的图象与y =-k 的图象的交点情况进行判断.②用图象法求一元二次方程的近似根的步骤:(1)画出函数的图象,并由图象确定方程根的个数; (2)由图象交点的位置确定交点横坐标的范围; (3)估计方程的近似根.考点1:二次函数与一元二次方程的关系必备知识点:①二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标,就是对应方程ax 2+bx +c =0(a ≠0)的根.题型1 图形法确定一元二次方程的近似根例1.(2022·全国·九年级专题练习)下表是若干组二次函数25y x x c =-+的自变量x 与函数值y 的对应值: x …1.31.41.51.61.7…y … 0.36 0.13 ﹣0.08 ﹣0.27 ﹣0.44 … 那么方程x 2﹣5x +c =0的一个近似根(精确到0.1)是( )A .3.4 B .3.5 C .3.6 D .3.7【答案】B【分析】观察表格可得-0.08更接近于0,得到方程的一个近似根(精确到0.1)是1.5,再由25y x x c =-+的对称轴为x =52得到方程250x x c -+=的另一个近似根(精确到0.1)是3.5【详解】解:∵二次函数25y x x c =-+, ∵对称轴为直线x =52,观察表格得:方程250x x c -+=的一个近似根(精确到0.1)是1.5, ∵另一个近似根m 满足 1.52m +=52, ∵m =3.5, 故选:B.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.=ax 2+bx +c 的图象,并求得一个近似根为x =﹣4.3,则方程的另一个近似根为( )(精确到0.1)A .x =4.3B .x =3.3C .x =2.3D .x =1.3【答案】C【分析】根据抛物线与x 轴的一个交点为(﹣4.3,0),又抛物线的对称轴为:x =﹣1,即可求解. 【详解】解:∵抛物线与x 轴的一个交点为(﹣4.3,0),又抛物线的对称轴为:x =﹣1, ∵另一个交点坐标为:(2.3,0), 则方程的另一个近似根为x =2.3,故选:C .【点睛】本题考查了根据二次函数图象求方程的近似根,掌握抛物线的对称性是解题的关键.练习1.(2022·全国·九年级专题练习)根据表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y 的对应值,可以判断方程 ax 2+bx +c =0的一个解x 的范围是( )x 00.5 1 1.5 2 y =ax 2+bx +c 1-0.5-13.57A .0<x <0.5B .0.5<x <1C .1<x <1.5D .1.5<x <2【答案】B【分析】利用二次函数和一元二次方程的性质.【详解】解:观察表格可知:当x =0.5时,y =-0.5;当x =1时,y =1, ∵方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是0.5<x <1. 故选:B .【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.练习2.(2022.浙江湖州.九年级期末)在二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解x 的范围是( ) x (1)1.11.2 1.3 1.4 … y …-1-0.490.040.591.16…A .1<x <1.1B .1.1<x <1.2C .1.2<x <1.3D .1.3<x <1.4【答案】B【分析】根据表格中自变量与函数的值的变化情况得出当y =0时相应的自变量的取值范围即可. 【详解】由表格中数据可知,当x =1.1时,y =-0.49. 当x =1.2时,y =0.04于是可得,当y =0时,相应的自变量x 的取值范围为1.1<x <1.2 故选B【点睛】本题考查了用图像法求一元二次方程的近似根,解题的关键是找到y 由正变为负时自变量的取值即可.练习2.(2022·全国·九年级课时练习)如表,是二次函数()y f x =的自变量x 与函数值y 的几组对应值.那么方程()0f x =的一个近似解是( )x 0.9 1 1.1 1.2 1.3 1.4 y -1.49-1-0.490.040.591.16A .1B .1.1C .1.2D .1.3【答案】C【分析】由表格可得抛物线与x 轴的一个交点在(1.1,0)和(1.2,0)之间且距离(1.2,0)较近,进而求解. 【详解】解:由表格可得 1.1x =时,0y <, 1.2x =时,0y >,()0f x ∴=的一个解在1.1与1.2之间, |0.49|0.04>,()0f x ∴=的一个近似解是1.2,故选:C .【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数与方程的关系.练习4.(2022·江苏·九年级专题练习)观察下列表格,估计一元二次方程2350x x +-=的正数解在( )x-1 0 1 2 3 425x x +- -7 -5 -1 5 13 23A .-1和0之间B .0和1之间C .1和2之间D .2和3之间【答案】C【分析】令y =x 2+3x -5根据x =﹣1和x =5时的函数值,即可得到答案. 【详解】解:令y =x 2+3x -5, 当1x =时,10y =-<, 当2x =时,50y =>,∴x 2+3x -5=0的一个正数x 的取值范围为1<x <2,故选C .【点睛】本题考查二次函数的与坐标轴的交点问题,掌握二次函数的性质是解题关键. 例1.(2022·吉林省实验中学九年级阶段练习)抛物线253y x x =-+-与y 轴的交点坐标是( ) A .()0,3 B .()0,3-C .()0,5-D .()0,5【答案】B【分析】把x =0代入253y x x =-+-求得y 的值,即可得到答案. 【详解】解:∵当x =0时,253y x x =-+-=﹣3, ∵抛物线253y x x =-+-与y 轴的交点坐标是(0,﹣3).故选:B例2.(2022·全国·九年级专题练习)已知二次函数y =x 2﹣6x +5.函数图象与x 轴交点坐标为_____,与y 轴的交点坐标为__________;【答案】 (5,0),(1,0) (0,5)【分析】利用y =0解方程得到图象与轴的交点,利用x =0求图象与y 轴的交点即可. 【详解】把y =0代入y =x 2﹣6x +5得0=x 2﹣6x +5, 解得x 1=5,x 2=1,∵抛物线与x 轴交点坐标为(5,0),(1,0), 把x =0代入y =x 2﹣6x +5得y =5, ∵抛物线与y 轴交点坐标为(0,5), 故答案为:(5,0),(1,0);(0,5).【点睛】此题考查了二次函数图象与坐标轴的交点坐标,解一元二次方程,正确掌握计算方法是解题的关键.练习1.(2021·江苏·南通市八一中学九年级阶段练习)抛物线y =23x +4x +2与x 轴的交点个数是_____. 【答案】0【分析】先计算判别式的值,然后根据判别式的意义进行判断. 【详解】解:∵Δ=24-4×3×2=-8<0, ∵抛物线与x 轴没有交点. 故答案为:0.【点睛】本题考查了抛物线与x 轴的交点,解题关键是把求二次函数y =2ax +bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程的根的判别式的应用进行解决. 练习2.(2022·浙江温州·九年级期中)已知二次函数1y x k =--+的图象过点0,3.(1)求该二次函数的表达式.(2)求该二次函数图象与x 轴的交点坐标. 【答案】(1)()214y x =--+ (2)()1,0-,()3,0【分析】(1)把点()0,3代入函数解析式,求出k 的值即可得到函数表达式; (2)取y =0,得到()2140x --+=,求出x 的值,即可得到答案. (1)解:把()0,3代入()21y x k =--+得:()2013k --+=,解得:4k =,∵该二次函数的表达式是()214y x =--+; (2)当0y =时,()2140x --+=, 解得:11x =-或23x =,∵该二次函数图象与x 轴的交点坐标是()1,0-,()3,0.【点睛】此题考查了待定系数法求二次函数的表达式、二次函数图象与x 轴的交点等知识,熟练掌握方法是解题的关键.练习3.(2022·全国·九年级专题练习)如图,已知二次函数223y ax x ++=的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C .(1)求二次函数的解析式和点B 的坐标; (2)直接写出y 的最大值为 .【答案】(1)2y x 2x 3=-++;B (3,0); (2)4【分析】(1)运用待定系数法即可求得二次函数的解析式,令y =0,解一元二次方程即可求得点B 的坐标; (2)运用配方法将二次函数解析式化为顶点式,即可得出答案. (1)∵抛物线223y ax x ++=经过点A (﹣1,0), ∵a ﹣2+3=0, 解得:a =﹣1,∵二次函数的解析式为2y x 2x 3=-++, 令y =0,得2230x x -++=, 解得:13x =,21x =- ∵B (3,0); (2)∵()222314y x x x =-++=--+, ∵当x =1时,4y =最大值. 故答案为:4.【点睛】本题考查了待定系数法求函数解析式,抛物线与x 轴交点坐标,二次函数最值等,难度较小,是常见的基础题.练习4.(2021·江西上饶·九年级阶段练习)如图,抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D .(1)求抛物线的解析式; (2)求∵BOC 的面积. 【答案】(1)223y x x --+= (2)92【分析】(1)根据抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),即可得到关于a 、b 的方程,从而可以求得a 、b 的值,然后即可写出抛物线的解析式;(2)根据(1)中抛物线的解析式,可以写出点C 的坐标,然后再根据点B 的坐标,即可得到OC 和OB 的长,再根据三角形面积公式,即可求得∵BOC 的面积. (1)解:∵抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),∵309330a b a b ++=⎧⎨-+=⎩, 解得12a b =-⎧⎨=-⎩,∵抛物线的解析式为223y x x --+=. (2)解:由(1)知,223y x x --+=,∵点C 的坐标为(0,3), ∵OC =3,∵点B 的坐标为(﹣3,0), ∵OB =3, ∵∵BOC =90°, ∵∵BOC 的面积是2OB OC ⋅=33922⨯=. 【点睛】本题主要考查抛物线与x 轴的交点、待定系数法求二次函数解析式、二次函数的性质、三角形的面积,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答. 例1.(2022·福建省长汀县第二中学九年级阶段练习)定义:min{a ,b }=(),().a a b b a b ⎧≤⎨>⎩若函数y =min{x +1,223x x -++ },则该函数的最大值为___________.【答案】3【分析】根据定义画出函数图象,设直线y =x +1,抛物线2y x 2x 3=-++,联立直线与抛物线方程得抛物线与直线交点坐标,结合图象求解.【详解】解:依题意,设直线y =x +1,抛物线2y x 2x 3=-++, 联立直线与抛物线方程得2123y x y x x =+⎧⎨=-++⎩, 解得23x y =⎧⎨=⎩或10x y =-⎧⎨=⎩,∵直线与抛物线交点坐标为(-1,0),(2,3), 如图,∵x ≤-1时,y =223x x -++,函数最大值为y =0,-1<x ≤2时,y =x +1,函数最大值为y =3, 当x >2时,y =223x x -++,y <3, ∵x =2时,函数取最大值为3, 故答案为:3.【点睛】本题考查二次函数的性质,解题关键是掌握函数与方程及不等式的关系.通过数形结合求解. 例2.(2022·全国·九年级课时练习)抛物线223y x x =-,当1y =-时,自变量的值为_________. 【答案】1或12【分析】把y =1代入解析式中得到关于x 的方程,解方程即可 【详解】解:223y x x =-, 当1y =-时,2231x x -=-, 解得11x =,212x =, 故答案为:1或12.【点睛】本题考查函数值以及自变量,解题的关键是掌握函数值的计算方法.练习.(全国八年级课时练习)已知,当时,的值为;当时,y 的值等于9. 【答案】 3 0或6【分析】令y =0即可得到关于x 的一元二次方程,求出x 的值即可;令y =9即可得到关于x 的一元二次方程,求出x 的值即可.【详解】解:∵y =x 2-6x +9中的值为0, ∵令x 2-6x +9=0,解得x =3; ∵y =x 2-6x +9中的值为9, ∵令x 2-6x +9=9,即x 2-6x =0, 解得1206x x ==,. 故答案为:3;0或6.【点睛】本题考查了二次函数与一元二次方程,根据函数值得到关于x 的元二次方程,求出x 的值是解答此题的关键.练习.(全国九年级课时练习)如图,抛物线与轴交于、两点,且点、B 都在原点右侧,抛物线的顶点为点P ,当ABP △为直角三角形时,m 的值为________.【答案】2【分析】设点A (x 1,y 1),B (x 2,y 2),则AB =|x 2-x 1|,求出点P (m ,-(m -1)2),由抛物线的对称性知∵ABP 为等腰直角三角形,建立方程|x 2-x 1|=2(m -1)2,根据根与系数关系可求得m 值. 【详解】解:设点A (x 1,y 1),B (x 2,y 2),则AB =|x 2-x 1|, 令y =0得22210x mx m -+-=,∵x 1+x 2=2m ,x 1·x 2=2m -1,则|x 2-x 1|2=4m 2-8m +4=4(m -1)2,由抛物线2221y x mx m =-+-=(x -m )2-(m -1)2得顶点坐标为P (m ,-(m -1)2), 抛物线的对称性知∵ABP 为等腰直角三角形, ∵|x 2-x 1|=2(m -1)2, 即4(m -1)2=4(m -1)4, 解得:m =2或m =0或m =1,∵抛物线2221y x mx m =-+-与x 轴交于A 、B 两点,且点A 、B 都在原点右侧, ∵2m >0且m ≠1且2m -1>0,即m >12且m ≠1, ∵m =2, 故答案为:2.【点睛】本题考查二次函数的图象与性质、等腰直角三角形的判定与性质、根与系数的关系、解高次方程等知识,熟练掌握二次函数的性质是解答的关键.意创造非凡、探索未来.某商店准备用2400元购进一批冰墩墩钥匙扣出售.假如每个钥匙扣的进价降低20%,则可以多买50个.(1)求每个冰墩墩钥匙扣的进价;(2)市场调查发现:当每个冰墩墩钥匙扣的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.设每个冰墩墩钥匙扣的售价是x 元(x 是大于20的正整数),每周总利润是w 元. ①求w 与x 的函数关系,并求每周总利润的最大值;②当每周总利润大于1870元时,直接写出每个冰墩墩钥匙扣的售价. 【答案】(1)每个冰墩墩钥匙扣的进价为12元(2)①2105204800w x x =-+-,最大值为1960元;②每个冰墩墩钥匙扣的售价为24元或25元或26元或27元或28元【分析】(1)设每个冰墩墩钥匙扣的进价为x 元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出二次函数关系,根据二次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得x 的范围,根据题意取整数解即可.(1)设每个冰墩墩钥匙扣的进价为x 元,由题意得:()2400240050120%x x +=-,解得12x =,经检验,12x =是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①()()122001020w x x =---⎡⎤⎣⎦2105204800x x =-+-()210261960x =--+ ∵0a <且x 是大于20的正整数∵当26x =时,w 有最大值,最大值为1960元②由题意得,21052048001870x x -+-=,解得23x =或29∵抛物线开口向下,x 是大于20的正整数∵当2329x <<时,每周总利润大于1870元,∵售价为24元或25元或26元或27元或28元.【点睛】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键.练习.(全国九年级课时练习)如图,已知二次函数的图象经过点.(1)求a 的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上;①当11n =时,求m 的值,②当m <x <m -3时,该二次函数有最小值2,请直接写出m 的取值范围. 【答案】(1)2a =;()1,2-(2)①4m =-或2;②41m -<-【分析】(1)将点P 的坐标代入二次函数解析式可得关于a 的方程,再解方程即可得出a 的值.将二次函数的解析式进行配方,即可得到图象的顶点坐标;(2)①将点Q 的坐标代入二次函数解析式,求解方程即可得到m 的值;②根据当1x =-时,二次函数取最小值为2,得出13m m -≤+<,解关于m 的不等式组即可.(1)解:∵二次函数21y x ax a =+++的图象经过点()2,3P -,∵()()23221a a =-+⨯-++.解得:a =2;∵二次函数的解析式为()222312y x x x =++=++.∵图象的顶点坐标是()1,2-.(2)①∵点(),Q m n 在该二次函数图象上,且n =11,∵21123m m =++.解得14m =-,22m =,∵m 的值为-4或2;②∵二次函数()222312y x x x =++=++的最小值为2,∵13m m -≤+<,解得:41m -≤-<,∵m 的取值范围是41m -≤-<.【点睛】本题考查了二次函数的图象和性质,解一元二次方程,二次函数的最值,能够正确应用数形结合思想是解题关键.题型4 根据二次函数系数求对应方程根的情况或与x 轴交点情况例1.(2022·全国·九年级专题练习)如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为(2,4)A -,(1,1)B ,则方程2ax bx c =+的解是________________.【答案】12x =-,21x =【分析】二次函数图象与一次函数图象交点的横坐标即为2ax bx c =+的解:12x =-,21x =.【详解】解:抛物线 2y ax =与直线y bx c =+的两个交点坐标分别为 ()2,4A - , ()1,1B ,∴方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩ ,2211x y =⎧⎨=⎩ , 即关于x 的方程 20ax bx c --=的解为12x =-,21x =,所以方程2ax bx c =+ 的解是 12x =-,21x =,故答案为: 12x =-,21x =.【点睛】本题考查了函数图象与方程的解的关系,函数与方程是密不可分的,方程的根的个数问题,往往可以转化为两个函数图象的交点问题.例2.(2022·福建南平·九年级期末)如图,抛物线2y ax bx c =++的对称轴为1x =,点P 是抛物线与x 轴的一个交点,若点P 的坐标为()4,0,则关于x 的一元二次方程20ax bx c ++=的解为__________.【答案】124,2x x ==-【分析】根据函数的对称轴和点P 的坐标可以得出与x 轴的另一交点坐标,从而得出结论.【详解】解:∵抛物线2y ax bx c =++的对称轴为x =1,点P 是抛物线与x 轴的一个交点,坐标为(4,0),∵抛物线与x 轴的另一个交点坐标为(−2,0),∵关于x 的一元二次方程20ax bx c ++=的解为:124,2x x ==-.故答案为:124,2x x ==-.【点睛】本题考查抛物线与x 轴的交点问题,关键是对二次函数性质的掌握和运用.练习1.(2022·全国·九年级课时练习)已知抛物线2y x bx c =++的部分图像如图所示,则方程20x bx c ++=的解是___________【答案】11x =-或23x =【分析】根据抛物线的轴对称性即可求得抛物线与x 轴的另一个交点的坐标,这两个交点的横坐标就是方程20x bx c ++=的解.【详解】解:由图像可知抛物线与x 轴的一个交点坐标为(1,0)-,对称轴为直线1x =,设抛物线与x 轴的另一个交点为2(,0)x ,则2112x -+=, 解得:23x =.∵方程20x bx c ++=的解为11x =-或23x =.故答案为:11x =-或23x =【点睛】本题考查的是利用二次函数的图像求解一元二次方程,以及抛物线的对称性问题,正确理解抛物线与x 轴的交点的横坐标与相应的一元二次方程的根之间的关系是解题的关键.练习2.(2021·湖北·武汉二中广雅中学九年级阶段练习)如图,已知抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,直线25y kx k =-+与它有三个公共点时,则k 值为______.【答案】222-+或53【分析】先确定A 、B 、C 三点坐标,y =kx -2k +5=k (x -2)+5,可得直线经过定点(2,5)画出图形,分别找到两个极限位置,求出k 的值.【详解】解:∵223y x x =--∵当y =0时,解得x =-1或x =3;当x =0时,解得y =3∵A (-1,0),B (3,0),C (0,3)∵y =kx -2k +5=k (x -2)+5∵直线25y kx k =-+必过定点(2,5)要使直线y =kx -2k +5与图像有三个公共点,则可得到如图所示的两个极限位置,①直线经过A 、N ,此时将点A (-1,0)代入可得:0=-k -2k +5,解得:k =53②直线经过点N 与抛物线相切时,由题意可得:22325x x kx k -++=-+整理得:2(2)220x k x k +--+=2(2)4(22)0k k ∆=---+=,解得222k =-±由图像可知,k >0,则222k =-+综上可知,25y kx k =-+与223y x x =--有三个公共点时,则k 值为222-+或53. 故答案为222-+或53.【点睛】本题主要考查了一次函数与抛物线的交点问题,根据题意找到恰好有3个公共点的位置以及数形结合思想的运用是解答本题的关键.练习3.(2020·北京房山·九年级期中)若二次函数23y kx x =--的图象与轴有交点,则k 的取值范围是_______.【答案】13k ≥-且0k ≠##k ≠0且k ≥13- 【分析】根据二次函数的定义可知0k ≠,由题意令0y =,得出一元二次方程,根据一元二次方程根的判别式大于或等于0,解不等式即可求解.【详解】解:∵二次函数223y kx x =--的图象与x 轴有交点,令0y =,则2230kx x --=,∵4120k =+≥且0k ≠,解得13k ≥-且0k ≠. 故答案为:13k ≥-且0k ≠. 【点睛】本题考查了二次函数的定义以及二次函数与x 轴交点问题,转为一元二次方程根的判别式是解题的关键,注意不要漏掉0k ≠.练习.(全国九年级专题练习)已知抛物线与轴的一个交点为,则代数式2225m m -+=_____________. 【答案】15【分析】把点(,0)m 代入二次函数解析式可得25m m -=,然后问题可求解.【详解】解:把点(,0)m 代入二次函数解析式得:250m m --=,则有25m m -=,∵()222252515m m m m -+=-+=; 故答案为15.【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.。
二次函数与一元二次方程、不等式知识点总结与例题讲解
二次函数与一元二次方程、不等式知识点总结与例题讲解二次函数与一元二次方程、不等式知识点总结与例题讲解本节知识点:1.一元二次不等式的概念。
2.三个二次的关系。
3.一元二次不等式的解法。
知识点拓展:4.分式不等式的解法。
5.高次不等式的解法。
本节题型:1.解不含参数的一元二次不等式。
2.解含参数的一元二次不等式。
3.三个二次之间的关系。
4.简单高次不等式、分式不等式的解法。
5.XXX成立问题。
6.一元二次不等式的应用。
知识点讲解:一元二次不等式的概念:一元二次不等式是只含有1个未知数,并且未知数的最高次数是2的不等式。
即形如ax2+bx+c>(≥)或ax2+bx+c<(≤)(其中a≠)的不等式叫做一元二次不等式。
解一元二次不等式,就是求出使不等式成立的x的值。
解的集合,叫做这个一元二次不等式的解集。
注意一元二次不等式的解集要写成集合或区间的形式。
三个二次的关系:一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系。
一元二次方程ax2+bx+c=(a≠)与二次函数y=ax2+bx+c=(a≠)的关系是:1)当Δ=b2-4ac≥时,一元二次方程有实数根,二次函数的图象与x轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当Δ>0时,一元二次方程有两个不相等的实数根,二次函数的图象与x轴有两个不同的交点;②当Δ=0时,一元二次方程有两个相等的实数根,二次函数的图象与x轴只有一个交点(即抛物线的顶点)。
2)当Δ<0时,一元二次方程无实数根,二次函数的图象与x轴没有交点。
具体关系见下表(1)所示。
一元二次不等式与二次函数y=ax2+bx+c=(a≠)的关系是:一元二次不等式ax2+bx+c>(≥)的解集就是二次函数y=ax2+bx+c=(a≠)的图象位于x轴上方(包括x轴)的部分所对应的自变量的取值范围。
例题讲解:1.解不等式x2+4x+3≤0.解:将不等式化为一元二次方程x2+4x+3=0,解得x=-1,x=-3.因此,不等式的解集为[-3,-1]。
二次函数与一元二次方程的题
二次函数与一元二次方程的题一、知识点回顾1. 二次函数的一般形式- 二次函数的一般式为y = ax^2+bx + c(a≠0)。
其中a决定二次函数图象的开口方向(a>0时,开口向上;a < 0时,开口向下),对称轴为x =-(b)/(2a),顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。
2. 一元二次方程的一般形式- 一元二次方程的一般形式为ax^2+bx + c = 0(a≠0)。
其判别式Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
3. 二次函数与一元二次方程的关系- 二次函数y = ax^2+bx + c(a≠0)的图象与x轴的交点的横坐标就是一元二次方程ax^2+bx + c = 0(a≠0)的根。
当y = 0时,二次函数就变成了一元二次方程。
二、典型例题1. 已知二次函数y=x^2-2x - 3,求该二次函数与x轴的交点坐标。
- 分析:要求二次函数与x轴的交点坐标,就是求当y = 0时,方程x^2-2x - 3 = 0的根。
- 解:对于方程x^2-2x - 3 = 0,其中a = 1,b=-2,c=-3。
- 根据一元二次方程的求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac=<=ft(-2)^2-4×1×<=ft(-3)=4 + 12 = 16。
- 则x=(2±√(16))/(2)=(2±4)/(2)。
- 解得x_1=(2 + 4)/(2)=3,x_2=(2-4)/(2)=-1。
- 所以二次函数y=x^2-2x - 3与x轴的交点坐标为(3,0)和(-1,0)。
2. 若一元二次方程ax^2+bx + c = 0(a≠0)的两个根为x_1和x_2,求证:二次函数y = ax^2+bx + c(a≠0)可表示为y=a(x - x_1)(x - x_2)。
二次函数与一元二次方程、不等式知识点总结与例题讲解
二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。
初中数学-二次函数和一元二次方程-习题及解析
初中数学-二次函数和一元二次方程-习题及解析勤志数学二次函数与一元二次方式练习题一、选择题(共15小题)21、已知二次函数y=a某+b某+c的图象如图所示,对称轴为直线某=1,则下列结论正确的是()2A、ac>0B、方程a某+b某+c=0的两根是某1=﹣1,某2=3C、2a﹣b=0D、当某>0时,y随某的增大而减小22、已知二次函数y=a某+b某+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a﹣b+c>02C、b=﹣4aD、关于某的方程a某+b某+c=0的根是某1=﹣1,某2=523、已知抛物线y=a某+b某+c中,4a﹣b=0,a﹣b+c>0,抛物线与某轴有两个不同的交点,且这两个交点之间的距离小于2,则下列判断错误的是()A、abc<0B、c>0C、4a>cD、a+b+c>04、抛物线y=a某+b某+c在某轴的下方,则所要满足的条件是()22A、a<0,b﹣4ac<0B、a<0,b﹣4ac>022C、a>0,b﹣4ac<0D、a>0,b﹣4ac>025、如图所示,二次函数y=a某+b某+c(a≠0)的图象经过点(﹣1,2),且与某轴交点的横坐标分别为某1,某2,其中﹣2<某1<﹣1,0<某2<1,下列结论:①abc>0;②4a﹣2b+c<0;③2a﹣b<0;2④b+8a>4ac.其中正确的有()2A、1个B、2个C、3个D、4个26、已知:a>b>c,且a+b+c=0,则二次函数y=a某+b某+c的图象可能是下列图象中的()勤志数学A、B、C、2D、27、已知y1=a1某+b1某+c1,y2=a2某+b2某+c2且满足.则称抛物线y1,y2互为“友好抛物线”,则下列关于“友好抛物线”的说法不正确的是()A、y1,y2开口方向、开口大小不一定相同B、因为y1,y2的对称轴相同C、如果y2的最值为m,则y1的最值为kmD、如果y2与某轴的两交点间距离为d,则y1与某轴的两交点间距离为|k|d28、已知二次函数的y=a某+b某+c图象是由的图象经过平移而得到,若图象与某轴交于A、C(﹣1,0)两点,与y轴交于D(0,),顶点为B,则四边形ABCD的面积为()A、9B、10C、11D、129、根据下列表格的对应值:判断方程a某+b某+c=0(a≠0,a,b,c为常数)的一个解某的范围是()A、8<某<9B、9<某<10C、10<某<11D、11<某<12210、如图,已知二次函数y=a某+b某+c的部分图象,由图象可知关于某的一元二次方程2a某+b某+c=0的两个根分别是某1=1.6,某2=()2A、﹣1.6C、4.4B、3.2D、以上都不对2211、如图,抛物线y=某+1与双曲线y=的交点A的横坐标是1,则关于某的不等式+某+1<0的解集是()2勤志数学A、某>1B、某<﹣1C、0<某<1D、﹣1<某<0212、已知二次函数y=a某+b某+c的图象如图所示,则关于某的不等式b某+a>0的解集是()A、某<B、某<C、某>D、某>2213、方程7某﹣(k+13)某+k﹣k﹣2=0(k是实数)有两个实根α、β,且0<α<1,1<β<2,那么k的取值范围是()A、3<k<4B、﹣2<k<﹣1C、3<k<4或﹣2<k<﹣1D、无解214、对于整式某和2某+3,请你判断下列说法正确的是()22A、对于任意实数某,不等式某>2某+3都成立B、对于任意实数某,不等式某<2某+3都成立C、某<3时,不等式某<2某+3成立D、某>3时,不等式某>2某+3成立二、解答题(共7小题)215、已知抛物线y=某+2p某+2p﹣2的顶点为M,(1)求证抛物线与某轴必有两个不同交点;(2)设抛物线与某轴的交点分别为A,B,求实数p的值使△ABM面积达到最小.16、已知:二次函数y=(2m﹣1)某﹣(5m+3)某+3m+5(1)m为何值时,此抛物线必与某轴相交于两个不同的点;(2)m 为何值时,这两个交点在原点的左右两边;(3)m为何值时,此抛物线的对称轴是y轴;(4)m为何值时,这个二次函数有最大值.3222勤志数学17、已知下表:(1)求a、b、c的值,并在表内空格处填入正确的数;(2)请你根据上面的结果判断:2①是否存在实数某,使二次三项式a某+b某+c的值为0?若存在,求出这个实数值;若不存在,请说明理由.22②画出函数y=a某+b某+c的图象示意图,由图象确定,当某取什么实数时,a某+b某+c>0.18、请将下表补充完整;(Ⅱ)利用你在填上表时获得的结论,解不等式﹣某﹣2某+3<0;(Ⅲ)利用你在填上表时获得的结论,试写出一个解集为全体实数的一元二次不等式;(Ⅳ)试写出利用你在填上表时获得的结论解一元二次不等式a某+b某+c>0(a≠0)时的解题步骤.224勤志数学219、二次函数y=a某+b某+c(a≠0)的图象如图所示,根据图象解答下列问题:2(1)写出方程a某+b某+c=0的两个根;2(2)写出不等式a某+b某+c>0的解集;(3)写出y随某的增大而减小的自变量某的取值范围;2(4)若方程a某+b某+c=k有两个不相等的实数根,求k的取值范围.20、阅读材料,解答问题.2例.用图象法解一元二次不等式:某﹣2某﹣3>0.2解:设y=某﹣2某﹣3,则y是某的二次函数.∵a=1>0,∴抛物线开口向上.22又∵当y=0时,某﹣2某﹣3=0,解得某1=﹣1,某2=3.∴由此得抛物线y=某﹣2某﹣3的大致图象如2图所示.观察函数图象可知:当某<﹣1或某>3时,y>0.∴某﹣2某﹣3>0的解集是:某<﹣1或某>3.2(1)观察图象,直接写出一元二次不等式:某﹣2某﹣3<0的解集是_________;2(2)仿照上例,用图象法解一元二次不等式:某﹣5某+6<0.(画出大致图象).三、填空题(共4小题)21、二次函数y=a某+b某+c(a≠0)的图象如图所示,根据图象解答下列问题:2(1)写出方程a某+b某+c=0的两个根.某1=_________,某2=_________;2(2)写出不等式a某+b某+c>0的解集._________;(3)写出y随某的增大而减小的自变量某的取值范围._________;2(4)若方程a某+b某+c=k有两个不相等的实数根,求k的取值范围._________.25勤志数学22、如图是抛物线y=a某+b某+c的一部分,其对称轴为直线某=1,若其与某轴一交点为B(3,20),则由图象可知,不等式a某+b某+c>0的解集是_________.22223、二次函数y=a某+b某+c和一次函数y=m某+n的图象如图所示,则a某+b某+c≤m某+n时,某的取值范围是_________.224、如图,已知函数y=a某+b某+c与y=﹣的图象交于A(﹣4,1)、B(2,﹣2)、C(1,﹣4)2三点,根据图象可求得关于某的不等式a某+b某+c<﹣的解集为_________.6勤志数学答案与评分标准一、选择题(共15小题)21、(2022山西)已知二次函数y=a某+b某+c的图象如图所示,对称轴为直线某=1,则下列结论正确的是()A、ac>0B、方程a某+b某+c=0的两根是某1=﹣1,某2=3C、2a﹣b=0D、当某>0时,y随某的增大而减小考点:二次函数图象与系数的关系;抛物线与某轴的交点。
九年级数学第二章二次函数与一元二次方程
用函数观点看一元二次方程【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x 轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数2(0)y ax bx c a =++≠与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表: 判别式24b ac =-△二次函数2(0)y ax bx c a =++≠ 一元二次方程20(0)ax bx c a ++=≠图象与x 轴的交点坐标根的情况△>00a >抛物线2(0)y ax bx c a =++≠与x轴交于1(,0)x ,2(,0)x 12()x x <两点,且21,242b b acx a-±-=,此时称抛物线与x 轴相交一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b ac x a-±-=0a <△=00a >抛物线2(0)y ax bx c a =++≠与x 轴交切于,02b a ⎛⎫-⎪⎝⎭这一点,此时称抛物线与x 轴相切 一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-0a <△<00a >抛物线2(0)y ax bx c a =++≠与x轴无交点,此时称抛物线与x 轴相离 一元二次方程20(0)ax bx c a ++=≠在实数范围内无解(或称无实数根)0a <要点进阶:二次函数图象与x 轴的交点的个数由的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x 轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定.当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点进阶:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 要点二、利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x 轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y 值.4.确定一元二次方程的近似根.在(3)中最接近0的y 值所对应的x 值即是一元二次方的近似根.要点进阶: 求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x 轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x 轴的两个交点之间的距离公式当△>0时,设抛物线2y ax bx c =++与x 轴的两个交点为A(1x ,0),B(2x ,0),则1x 、2x 是一元二次方程2=0ax bx c ++的两个根.由根与系数的关系得12b x x a +=-,12c x x a=. ∴ 22121||||()AB x x x x =-=-21212()4x x x x =+-24⎛⎫=-⨯ ⎪⎝⎭b c a a 224b ac a -=24||b ac a -= 即 ||||AB a =△(△>0). 要点四、抛物线与不等式的关系二次函数2y ax bx c =++(a ≠0)与一元二次不等式20ax bx c ++>(a ≠0)及20ax bx c ++<(a ≠0)之间的关系如下12()x x <:判别式 0a >抛物线2y ax bx c =++与x 轴的交点不等式20ax bx c ++>的解集不等式20ax bx c ++<的解集△>01x x <或2x x >12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解注:a <0的情况请同学们自己完成. 要点进阶:抛物线2y ax bx c =++在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式20ax bx c ++>的解集;在x 轴下方的部分点的纵坐标都为负,所对应的x 的所有值就是不等式20ax bx c ++<的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点例1. 已知抛物线22(1)423y k x kx k =+++-.求:(1)k 为何值时,抛物线与x 轴有两个交点; (2)k 为何值时,抛物线与x 轴有唯一交点;(3)k 为何值时,抛物线与x 轴没有交点.举一反三:【变式】二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程ax 2+bx+c=0的两个根; (2)写出不等式ax 2+bx+c >0的解集; (3)求y 的取值范围.类型二、利用图象法求一元二次方程的解例2. 利用函数的图象,求方程组的解.类型三、二次函数与一元二次方程的综合运用例3. 已知关于x 的二次函数22(21)34y x m x m m =--+++.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数为2,1,0.(2)设二次函数y 的图象与x 轴的交点为A(1x ,0),B(2x ,0),且22125x x +=与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.举一反三:【变式】已知抛物线)(2442是常数m m mx mx y -+-=.(1)求抛物线的顶点坐标;(2)若155m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式.例4.如图,二次函数的图象与x 轴交于A (﹣3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D . (1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围;(3)若直线与y 轴的交点为E ,连结AD 、AE ,求△ADE 的面积.【巩固练习】 一、选择题1. 若二次函数241y ax x a =++-的最大值为2,则a 的值是( )A.4B.-1C.3D.4或-12.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k <0B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠33.方程2123x x x++=的实数根的个数是( ) A. 1 B. 2 C. 3 D. 44.如图所示的二次函数2y ax bx c =++(a ≠0)的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)1c >;(3)20a b -<;(4)0a b c ++<.你认为其中错误的有( )A .2个B .3个C .4个D .1个5.方程2252x x x-++=的正根的个数为( ) A .3个 B .2个 C .1个 D .0个6.“如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( ) A .m <a <b <n B . a <m <n <b C . a <m <b <n D .m <a <n <b二、填空题7. 已知二次函数22(21)44y x m x m m =--+++的图象的顶点在x 轴上,则m 的值为 .8.如图所示,函数y =(k-8)x 2-6x+k 的图象与x 轴只有一个公共点,则该公共点的坐标为 .第8题 第9题9.已知二次函数2y ax bx c =++(a ≠0)的顶点坐标为(-1,-3.2)及部分图象(如图所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别为1 1.3x =和2x =________.10.已知二次函数222(1)2y x m x m m =-+-+-的图象关于y 轴对称,则此图象的顶点A 和图象与x 轴的两个交点B 、C 构成的△ABC 的面积是________.11.抛物线2y ax bx c =++(a ≠ 0)满足条件:(1)40a b -=;(2)0a b c -+>;(3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①0a <;②0c >;③0a b c ++<;④43c ca <<,其中所有正确结论的序号是 .12.如图是二次函数和一次函数y 2=kx+t 的图象,当y 1≥y 2时,x 的取值范围是 .三、解答题 13.已知抛物线212y x x k =-+与x 轴有两个不同的交点. (1)求k 的取值范围;(2)设抛物线与x 轴交于A 、B 两点,且点A 在点B 的左侧,点D 是抛物线的顶点,如果△ABC 是等腰直角三角形,求抛物线的解析式.14.如图所示,已知直线12y x =-与抛物线2164y x =-+交于A 、B 两点.(1)求A、B两点的坐标;(2)如图所示,取一根橡皮筋,端点分别固定在A、B两处,用铅笔拉着这根橡皮筋使笔尖在直线AB上方的抛物线上移动,动点P将与A、B两点构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,指出此时P点的坐标;如果不存在,请简要说明理由.15.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?。
2.3 二次函数与一元二次方程、不等式(全部)
【对点练习】❶ 若关于 x 的不等式 ax2+(a-2)x-2≤0 恒成立,求实数 a 的取值范围.
题型二 一元二次方程根的分布 例 2 已知方程 8x2-(m-1)x+m-7=0 有两实根,如果两实根都大于 1,求实数 m 的取值范围.
[归纳提升] 方程 ax2+bx+c=0(a≠0)的根的分布情况如下,其中 x1,x2 为该方程两根:
【对点练习】❶ 不等式 6x2+x-2≤0 的解集为
.
题型二 三个“二次”的关系 例 2 已知不等式 ax2-bx+2<0 的解集为{x|1<x<2},求 a,b 的值.
[归纳提升] 给出了一元二次不等式的解集,则可知 a 的符号和 ax2+bx+c=0 的两实根,由根与系数的关系
可知 a,b,c 之间的关系.
)
1-4x
|-1≤x≤1
A. x 3 4
|-1≤x<1
B. x 3 4
|x>1或 x≤-1
C. x 4
3
|x≥1或 x≤-1
D. x 4
3
x-1 3.已知 0<a<1,关于 x 的不等式(x-a) a >0 的解集为( )
|x<a 或 x>1
A. x
a
B.{x|x>a}
|x<1或 x>a
C. x a
课堂检测 1.求下列不等式的解集:
(1)(x+2)(x-3)>0;(2)3x2-7x≤10;(3)-x2+4x-4<0;(4)x2-x+1<0;(5)-2x2+x≤-3;(6)x2-3x+4>0. 4
2.当自变量 x 在什么范围取值时,下列函数的值等于 0?大于 0?小于 0?
二次函数与一元二次方程
二次函数与一元二次方程二次函数与一元二次方程二次函数与一元二次方程二次函数与不等式二次函数与方程和不等式综合知识点1 二次函数与一元二次方程二次函数y =ax 2+bx +c 与一元二次方程ax 2+bx +c =0的关系.(1)一般地,二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是一元二次方程ax 2+bx +c =0的根;当二次函数y =ax 2+bx +c 的函数值为0 时,相应的自变量的值即是一元二次方程ax 2+bx +c =0的根;(2)若抛物线y =ax 2+bx +c 与x 轴的两个交点坐标分别为(1,0x ),2(,0)x ,那么对应方程ax 2+bx +c =0的两个根即为 12,x x ,结合一元二次方程根与系数关系可知12,b x x a +=-12c x x a⋅=(3)二次函数与x 轴的交点情况和一元二次方程根的情况的关系具体见下表:二次函数y =ax 2+bx +c 与x 轴交点情况a >0两个交点 一个交点 没有交点a <0两个交点一个交点没有交点24b ac -的值240b ac ->240b ac -=240b ac -<一元二次ax 2+ bx +c =0根的情况有两个不相等的实根有两个相等的实根没有实根例1.当a<0时,方ax2+bx+c=0无实数根,则二次函数y=ax2+bx+c的图象一定在()A. x轴上方B. x轴下方C. y轴右侧D. y轴左侧例2.已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点。
(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(−3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;例3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax2+bx+c=0的两个根是;(2)不等式ax2+bx+c>0的解集是;(3)y随x的增大而减小的自变量x的取值范围是。
专题22.2 二次函数与一元二次方程(讲练)(解析版)
专题22.2二次函数与一元二次方程(讲练)一、知识点二、标准例题:例1:如图,已知二次函数2y ax bx c=++的部分图象,由图象可估计关于x的一元二次方程20ax bx c++=的两个根分别是1 1.6x=,2x=A.-1.6 B.3.2C.4.4 D.5.2【答案】C【解析】由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.故选C.总结:此题主要利用抛物线是轴对称图象的性质确定抛物线与x 轴交点坐标,是一道较为简单的试题.例2:如图,二次函数2y ax bx c =++(0a ≠)和一次函数1y x =-的图象交于(2,3)A --,(1,0)B 两点,则方程2(1)10ax b x c +-++=(0a ≠)的根为( )A .122,3x x =-=-B .121,0x x ==C .122,1x x =-=D .123,0x x =-=【答案】C【解析】解:∵2(1)10ax b x c +-++=,∴21ax bx c x ++=-. ∴方程2(1)10ax b x c +-++=的根即为二次函数2y ax bx c =++(0a ≠)与一次函数1y x =-的图象交点的横坐标,∵二次函数2y ax bx c =++(0a ≠)和一次函数1y x =-的图象交于(2,3)A --,(1,0)B 两点,∴方程2(1)10ax b x c +-++=(0a ≠)的根为122,1x x =-=.故选C.总结:本题考查了二次函数与一元二次方程的关系,解此题的关键是将方程2(1)10ax b x c +-++=变形为21ax bx c x ++=-,进一步将所求转化为求二次函数2y ax bx c =++(0a ≠)与一次函数1y x =-的图象交点的横坐标,这类题目的求解,重在理解与领悟.最后结合抛物线的增减性进行判断.例3:二次函数y =x 2+bx ﹣t 的对称轴为x =2.若关于x 的一元二次方程x 2+bx ﹣t =0在﹣1<x <3的范围内有实数解,则t 的取值范围是( )A .﹣4≤t <5B .﹣4≤t <﹣3C .t≥﹣4D .﹣3<t <5【答案】A【解析】解:∵抛物线的对称轴x =2b -=2, ∴b =﹣4,则方程x 2+bx ﹣t =0,即x 2﹣4x ﹣t =0的解相当于y =x 2﹣4x 与直线y =t 的交点的横坐标,∵方程x 2+bx ﹣t =0在﹣1<x <3的范围内有实数解, ∴当x =﹣1时,y =1+4=5,当x =3时,y =9﹣12=﹣3,又∵y =x 2﹣4x =(x ﹣2)2﹣4,∴当﹣4≤t <5时,在﹣1<x <3的范围内有解.∴t 的取值范围是﹣4≤t <5,故选:A .总结:本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程2ax bx c k ++=的解相当于2y ax bx c =++ 与直线y=k 的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是解题的关键.例4:.某班“数学兴趣小组”对函数22||y x x =-的图象和性质进行了探究,探究过程如下:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下表:其中,m =__________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象剩下的部分.(3)观察函数图象,写出一条性质__________.(4)进一步探究函数图象发现:①方程22||0x x -=有__________个实数根.②关于x 的方程22||x x a -=有4个实数根时,a 的取值范围是__________.【答案】(1)0 (2)(3)当1x >时,y 随x 的增大而增大(4)①3 ②10a -<<.【解析】(1)x=-2时,m=x 2-2l-2l=0;.(2)如图所示(3)由函数图象知:1x >时y 随x 的增大而增大;函数图像关于y 轴对称;(4)如图:①22||=0x x -时即0y =,∴令x 轴有3个交点,分别是2-、0、2;即答案为3;②由函数图象知:关于x 的方程22||x x a -=有4个交点,∴a 的取值范围是10a -<<.总结:本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.其中观察函数图像的能力是解答本题的关键.三、练习1.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤<【答案】D【解析】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点, 22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线 22a x a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小,1a ∴≥-,∴实数a 的取值范围是12a -≤<,故选D .2.如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个 【答案】B【解析】∵抛物线开口向下,∴0a <, ∵抛物线的对称轴为直线12bx a =-=,∴20b a =->,∵抛物线与y 轴的交点在x 轴上方,∴0c >,∴0abc <,所以①正确;∵2b a =-, ∴102a b a a +=-=,∵0c >, ∴11024a b c ++>,所以②错误;∵(0,)C c ,OA OC =,∴(,0)A c -,把(,0)A c -代入2y ax bx c =++得20ac bc c -+=,∴10ac b -+=,所以③错误;∵(,0)A c -,对称轴为直线1x =,∴(2,0)B c +,∴2c +是关于x 的一元二次方程20ax bx c ++=的一个根,所以④正确;综上正确的有2个,故选B.3.已知0m >,关于x 的一元二次方程()()120x x m +--=的解为1212,()x x x x <,则下列结论正确的是( )A .1212x x <-<<B .1212x x -<<<C .1212x x -<<<D .1212x x <-<<【答案】A【解析】解:关于x 的一元二次方程()()120x x m +--=的解为12,x x ,可以看作二次函数()()12m x x =+-与x 轴交点的横坐标,∵二次函数()()12m x x =+-与x 轴交点坐标为()()1,0,2,0-,如图:当0m >时,就是抛物线位于x 轴上方的部分,此时1x <-,或2x >;又∵12x x <∴121,2x x =-=;∴1212x x <-<<,故选:A .4.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <1【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc-⎧⎨++⎩><,解得c<﹣2,故选B.5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点②方程ax2+bx+c=0(a≠0)的解为x=0或x=4,③a﹣b+c<0;④当0<x<4时,ax2﹣bx+c<0;⑤当x<2时,y随x增大而增大,其中结论正确的个数()A.1 B.2 C.3 D.4【答案】C【解析】①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线与x轴的交点坐标为:(0,0),(4,0),∴方程ax2+bx+c=0(a≠0)的解为x=0或x=4,正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当0<x<4时,ax2﹣bx+c<0,结论④正确;⑤观察函数图象可知:当x<2时,y随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选:C .6.抛物线23y x bx =++的对称轴为直线1x =.若关于x 的一元二次方程230x bx t ++-=(t 为实数)在14x -<<的范围内有实数根,则t 的取值范围是( )A .211t ≤<B .2t ≥C .611t <<D .26t ≤<【答案】D【解析】∵23y x bx =++的对称轴为直线1x =,∴2b =-,∴223y x x =-+,∴一元二次方程230x bx t ++-=的实数根可以看做223y x x =-+与函数y t =的有交点,∵方程在14x -<<的范围内有实数根,当1x =-时,6y =,当4x =时,11y =,函数223y x x =-+在1x =时有最小值2,∴26t ≤<,故选D .7.若函数y =(m ﹣1)x 2﹣6x + m 的图象与x 轴有且只有一个交点,则m 的值为( )A .﹣2或3B .﹣2或﹣3C .1或﹣2或3D .1或﹣2或﹣3【答案】C【解析】解:当m =1时,函数解析式为:y =﹣6x + 是一次函数,图象与x 轴有且只有一个交点,当m ≠1时,函数为二次函数,∵函数y =(m ﹣1)x 2﹣6x + m 的图象与x 轴有且只有一个交点,∴62﹣4×(m ﹣1)× m =0,解得,m =﹣2或3,故选:C .8.二次函数y =ax 2+bx +c (a ≠0)和正比例函数y =﹣13x 的图象如图所示,则方程ax 2+(b + 13)x +c =0(a ≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定【答案】C 【解析】解:设20(0)ax bx c a ++=≠的两根为x 1,x 2,∵由二次函数的图象可知12x x 0+<,a 0>, 0b a∴-<. 设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,则1133b b m n a a a++=-=-- 010300a a b am m >∴-<-<∴+< . 故选:C .9.如图,二次函数y =ax 2+bx+c 图象的对称轴是直线x =1,与x 轴一个交点A (3,0),则与x 轴的另一个交点坐标是( )A .(0,12-)B .(12-,0)C .(0,﹣1) D .(﹣1,0)【答案】D【解析】解:∵点A 的坐标为(3,0), ∴点A 关于x =1的对称点的坐标为(﹣1,0). 故选:D .10.已知二次函数226y x x m =-+的图象与x 轴没有交点,则m 的取值范围是_____. 【答案】92m >【解析】∵二次函数y=2x 2-6x+m 的图象与x 轴没有交点,∴△<0,∴(-6)2-4×2×m <0, 解得:92m >; 故答案为:92m >.11.抛物线2243y x x =--,当14x -≤≤时,y 的取值范围是__________. 【答案】513y -≤≤【解析】解:根据二次函数的解析式2243y x x =--可得 由a=2>0,可得抛物线的开口向上 对称轴为:41222b x a -=-=-=⨯ 所以可得在14x -≤≤范围内,二次函数在11x -≤≤ ,y 随x 的增大而减小,在14x <≤ 上y 随x 的增大而增大.所以当1x = 取得最小值,最小值为:2435y =--=- 当4x =取得最大值,最大值为:22444313y =⨯-⨯-= 所以513y -≤≤ 故答案为:513y -≤≤12.抛物线223y x x =--与x 轴的交点坐标是_____【答案】(10)-,,(3,0) 【解析】令y=0,则x 2-2x-3=0,解得x=3或x=-1.则抛物线y=x 2-2x-3与x 轴的交点坐标是(3,0),(-1,0).故答案为(3,0),(-1,0).13.已知函数 的图象如图所示,若直线 与该图象恰有两个不同的交点,则的取值范围为_____.【答案】【解析】解:直线 与该图象恰有三个不同的交点, 则直线与 有一个交点, ∴ ,∵与 有两个交点, ∴ , , ∴, ∴; 故答案为.14.抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx-+=-的解是___________ 【答案】12x =-,25x =.【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩,解得:12b a c a =-⎧⎨=-⎩,所以,关于x 的一元二次方程a(x -1)2+c =b -bx 为:2(1)12a x a a ax --=-+,即:2(1)121x x --=-+, 化为:23100x x --=, 解得:12x =-,25x =, 故答案为:12x =-,25x =.15.已知m ,n 是方程(x ﹣a )(x ﹣b )﹣1=0(其中a <b )的两根,且m <n ,则a ,b ,m ,n 的大小关系是_____. 【答案】m <a <b <n【解析】∵函数y =(x ﹣a )(x ﹣b )与x 轴的交点坐标的横坐标为a 与b , 二次函数y =(x ﹣a )(x ﹣b )﹣1相当于y =(x ﹣a )(x ﹣b )向下平移一个单位, 又∵二次项系数为1,开口向上,如图所示:∴由图可得:m <a <b <n . 故答案为:m <a <b <n .16.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是_____.【答案】3x <-或1x >.【解析】解:∵抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,∴m n p -+=,3m n q +=,∴抛物线2y ax c =+与直线y mx n =-+交于()1,P p ,()3,Q q -两点,观察函数图象可知:当3x <-或1x >时,直线y mx n =-+在抛物线2y ax bx c =++的下方,∴不等式2ax mx c n ++>的解集为3x <-或1x >. 故答案为:3x <-或1x >.17.如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A (﹣1,p ),B (4,q )两点,则关于x 的不等式mx +n <ax 2+bx +c 的解集是____.【答案】﹣1<x <4.【解析】观察函数图象可知:当﹣1<x <4时,直线y =mx+n 在抛物线y =ax 2+bx+c 的下方, ∴不等式mx+n <ax 2+bx+c 的解集为﹣1<x <4.故答案为:﹣1<x <4.18.已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标. 【答案】(1)k =-3;(2)点P 的坐标为(2,-5)或(-2,-5).【解析】(1)∵抛物线y=x 2+(k 2+k -6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=,即k 2+k -6=0,解得k=-3或k=2,当k=2时,二次函数解析式为y=x 2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x 2-9,它的图象与x 轴有两个交点,满足题意, ∴k=-3;(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为-2或2, 当x=2时,y=-5; 当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).19.在画二次函数()20y ax bx c a =++≠的图象时,甲写错了一次项的系数,列表如下乙写错了常数项,列表如下:通过上述信息,解决以下问题:(1)求原二次函数()20y ax bx c a =++≠的表达式;(2)对于二次函数()20y ax bx c a =++≠,当x _____时,y 的值随x 的值增大而增大;(3)若关于x 的方程()20ax bx c k a ++=≠有两个不相等的实数根,求k 的取值范围.【答案】(1)2323y x x =-++;(2)13≤;(3)103k <. 【解析】解:(1)由甲同学的错误可知c=3, 由甲同学提供的数据选x=-1,y=6;x=1,y=2,有6323a b a b =-+⎧⎨=++⎩,∴12a b =⎧⎨=-⎩,∴a=1,由甲同学给的数据a=1,c=3是正确的;由乙同学提供的数据,可知c=-1,选x=-1,y=-2;x=1,y=2,有2121a b a b -=--⎧⎨=+-⎩, ∴12a b =⎧⎨=⎩, ∴a=1,b=2,∴y=x 2+2x+3;(2)y=x 2+2x+3的对称轴为直线x=-1,抛物线开口向上,∴当-1x ≥时,y 的值随x 的值增大而增大; 故答案为-1≥;(3)方程()20ax bx c k a ++=≠有两个不相等的实数根,即x 2+2x+3-k=0有两个不相等的实数根,∴()4-430k ∆=->, ∴2k >;20.已知抛物线232y ax bx c =++.(1)若1a b ==,1c =-,求该抛物线与x 轴公共点的坐标;(2)若1a b ==,且当11x -<<时,抛物线与x 轴有且只有一个公共点,求c 的取值范围. 【答案】(1)()1,0-和1,03⎛⎫ ⎪⎝⎭.(2)13c =或51c -<≤- 【解析】(1)当1a b ==,1c =-时,抛物线为2321y x x =+-,方程23210x x +-=的两个根为11x =-,213x =.所以该抛物线与x 轴公共点的坐标是()1,0-和1,03⎛⎫⎪⎝⎭.(2)当1a b ==时,抛物线为232y x x c =++,且与x 轴有公共点.对于方程2320x x c ++=,判别式4120c ∆=-≥,有13c ≤.①当13c =时,由方程213203x x ++=,解得1213x x ==-,此时抛物线为21323y x x =++与x 轴只有一个公共点1,03⎛⎫- ⎪⎝⎭; ②当13c <时,11x =-时,1321y c c =-+=+,21x =时,2325y c c =++=+.由已知11x -<<时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为13x =-,应有1200y y ≤⎧⎨>⎩,即1050c c +≤⎧⎨+>⎩,解得51c -<≤-.综上,13c =或51c -<≤-. 21.已知函数()21y x m x m =-+-+(m 为常数). (1)该函数的图象与x 轴公共点的个数是( ). A .0 B .1 C .2 D .1或2(2)求证:不论m 为何值,该函数的图象的顶点都在函数()21y x =+的图象上. (3)当23m -≤≤时,求该函数的图象的顶点纵坐标的取值范围.【答案】(1)D (2)详见解析;(3)当23m -≤≤时,该函数的图象的顶点纵坐标z 的取值范围是04z ≤≤. 【解析】(1)因为()()()2214110m m m ∆=--⋅-⋅=+≥,故选D.(2)配方得()2221(1)124m m y x m x m x -+⎛⎫=-+-+=--+⎪⎝⎭, 所以该函数的图象的顶点坐标为()211,24m m ⎛⎫+- ⎪ ⎪⎝⎭. 把12m x -=代入()21y x =+,得221(1)124m m y -+⎛⎫=+=⎪⎝⎭. 因此,不论m 为何值,该函数的图象的顶点都在函数()21y x =+的图象上.(3)设函数的图象的顶点纵坐标()214m z +=.当1m =-时,z 有最小值0.当1m <-时,z 随m 的增大而减小;当1m >-时,z 随m 的增大而增大.又当2m =-时,()221144z -+==;当3m =时,()23144z +==.因此,当23m -≤≤时,该函数的图象的顶点纵坐标z 的取值范围是04z ≤≤.。
《二次函数与一元二次方程》知识点解读
《二次函数与一元二次方程》知识点解读知识点一:二次函数与一元二次方程的关系二次函数与一元二次方程的关系十分密切,历来是数学中考的必考内容之一.同学们应学会熟练地将这两部分知识相互转化.二次函数c bx ax y ++=2与一元二次方程02=++c bx ax 从形式上看十分相似,两者之间既有联系又有区别.当抛物线c bx ax y ++=2的y 的值为0时,就得到一元二次方程02=++c bx ax .抛物线与x 轴是否有交点就取决于一元二次方程02=++c bx ax 的根的情况.当ac b 42->0时,方程有两个不相等的实数根,抛物线与x 轴的两个交点的横坐标是此方程的两个实数根;当ac b 42-=0时,方程有两个相等的实数根,抛物线与x 轴的只有一个交点,此交点的横坐标是方程的根;当ac b 42-<0时,方程没有实数根,抛物线与x 轴没有交点.下面分析几个实例,供同学们参考.例1 求抛物线4832+-=x x y 与x 轴的两个交点.分析:可令y=0,根据04832=+-x x 的根来确定抛物线与x 轴的交点的横坐标.解:令y=0,则04832=+-x x 解方程得:2,3221==x x ∴抛物线4832+-=x x y 与x 轴的两个交点坐标为)0,32(,(2,0) 例2 已知二次函数142-++=k x x y(1) 若抛物线与x 轴有两个不同的交点,求k 的取值范围.(2) 若抛物线的顶点在x 轴上,求k 的取值.分析:此题的关键是利用二次函数与一元二次方程的关系来解,当抛物线与x 轴有两个不同的交点,可利用ac b 42->0来确定k 的取值范围.当抛物线的顶点在x 轴上,说明抛物线与x 轴只有有一个的交点,可利用ac b 42-=0来确定k 的取值.解:在一元二次方程0142=-++k x x 中,(1)△=04204416)1442>-=+-=--k k k (∴当k<5时,抛物线与x 轴有两个不同的交点.(2)△=0420=-k∴k=5时,抛物线的顶点在x 轴上.例3 已知抛物线m mx x y 222--=的图象与x 轴有两个交点为),0,(1x )0,(2x ,且52221=+x x ,求m 的值. 分析:令y=0,则0222=--m mx x ,可利用一元二次方程根与系数的关系来解.解:令y=0,则0222=--m mx x 根据根与系数的关系得:221m x x =+,m x x -=⋅21 524)(2)2(2)(22212212221=+=-⋅-=-+=+m m m m x x x x x x 02082=-+m m ∴2,1021=-=m m当101-=m 时,得方程01052=++x x ,而△=0254025101452<-=-=⨯⨯-当21=m 时,得方程022=--x x ,而△=0981)2(14)1(2>=+=-⨯⨯-- ∴2=m说明:此题求出m 的值后,必须检验一元二次方程的△的取值,因为若△<0,方程无解,抛物线与x 轴也无交点.知识点二:一元二次方程的图象解法方法一:直接画出函数y=ax 2+bx+c 的图象,则图象与x 轴交点的横坐标就是方程ax 2+bx+c=0的根.其步骤一般为:(1)作出二次函数y=ax 2+bx+c 的图象;(2)观察图象与x 轴交点的个数;(3)若图象与x 轴有交点,估计出图象与x 轴交点的横坐标即可得到一元二次方程的近似根.方法二:先将方程变形为ax 2+bx=-c ,再在同一坐标系中画出抛物线y=ax 2+bx 和直线y=-c 的图象,则图象交点的横坐标就是方程的根.方法三:可将方程化为a c x a b x ++2=0,移项后为a c x a b x --=2.设y=x 2和y=a c x a b --,在同一坐标系中画出抛物线y=x 2和直线y=ac x a b --的图象,则图象交点的横坐标就是方程的根.这种方法显然要比方法一快捷得多,因为画抛物线远比画直线困难得多.。
专题05 二次函数与一元二次方程、不等式(解析版)
目录不等关系与不等式 ................................................................................................. 错误!未定义书签。
考点1:二次函数与一元二次方程、不等式 (2)考点2:一元二次不等式在实际问题中的应用 (9)专题05 二次函数与一元二次方程、不等式考点1:二次函数与一元二次方程、不等式知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅题型1:解不含参数的一元二次不等式例1解下列不等式:(1)-x2+5x-6>0;(2)3x2+5x-2≥0;(3)x2-4x+5>0.解(1)不等式可化为x2-5x+6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .变式 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.题型2:三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根, 所以⎩⎨⎧-3+2=-b -8a,-3×2=-a -aba ,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512. 所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .变式 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎨⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x+1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤1.题型3:含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1a<x <2; ②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2.变式 (1)当a =12时,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集; (2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集. 解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎫a +1a x +1≤0⇔⎝⎛⎭⎫x -1a (x -a )≤0, ①当0<a <1时,a <1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪a ≤x ≤1a ; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 1a ≤x ≤a . 综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a≤x ≤a .考点1:练习题1.已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎫x -1m <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1m <x <m B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >1m 或x <m C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >m 或x <1m D.⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-b a ,-2×3=ca ,∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m 和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧ 1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎨⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C. 12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0,故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立,∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.考点2:等式性质与不等式性质知识点 用一元二次不等式解决实际问题的步骤 1.理解题意,搞清量与量之间的关系;2.建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题. 3.解决这个一元二次不等式,得到实际问题的解.题型1:分式不等式的解法例1 解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1. 解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-4<x <52.(2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4.变式 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 解 (1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎨⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎪⎨⎪⎧ x +3>0,2-x >x +3或⎩⎪⎨⎪⎧x +3<0,2-x <x +3.解得⎩⎪⎨⎪⎧ x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12, ∴-3<x <-12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12.题型2:一元二次不等式的实际应用例2 某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担.政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x >0)个百分点,预测收购量可增加2x 个百分点.(1)写出降税后税收y (万元)与x 的关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值范围.解 (1)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万担,收购总金额为200a (1+2x %)万元.依题意得y =200a (1+2x %)(10-x )%=150a (100+2x )(10-x )(0<x <10). (2)原计划税收为200a ×10%=20a (万元).依题意得150a (100+2x )(10-x )≥20a ×83.2%, 化简得x 2+40x -84≤0,解得-42≤x ≤2.又因为0<x <10,所以0<x ≤2.即x 的取值范围为{x |0<x ≤2}.变式 北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入x 5万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?此时该商品每件定价多少元?解 (1)设每件定价为t 元,依题意得⎝⎛⎭⎫8-t -251×0.2t ≥25×8, 整理得t 2-65t +1 000≤0,解得25≤t ≤40.所以要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意得当x >25时,不等式ax ≥25×8+50+16(x 2-600)+x 5有解, 等价于当x >25时,a ≥150x +x 6+15有解. 由于150x +x 6≥2150x ·x 6=10,当且仅当150x =x 6,即x =30时等号成立, 所以a ≥10.2.故当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.考点2:练习题1.不等式3x -12-x≥1的解集是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x ≤2 B.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x <2 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2或x ≤34 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥34 答案 B解析 不等式3x -12-x ≥1,移项得3x -12-x-1≥0, 即x -34x -2≤0,可化为⎩⎪⎨⎪⎧ x -34≥0,x -2<0或⎩⎪⎨⎪⎧x -34≤0,x -2>0, 解得34≤x <2,则原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x <2, 故选B.2.与不等式x -32-x≥0同解的不等式是( ) A .(x -3)(2-x )≥0B .0<x -2≤1 C.2-x x -3≥0 D .(x -3)(2-x )>0答案 B解析 解不等式x -32-x≥0,得2<x ≤3, A .不等式(x -3)(2-x )≥0的解是2≤x ≤3,故不正确.B .不等式0<x -2≤1的解是2<x ≤3,故正确.C .不等式2-x x -3≥0的解是2≤x <3,故不正确. D .不等式(x -3)(2-x )>0的解是2<x <3,故不正确.故选B.3.若关于x 的不等式ax -b >0的解集为{x |x >1},则关于x 的不等式ax +b x -2>0的解集为( ) A .{x |x >1或x <-2}B .{x |1<x <2}C .{x |x >2或x <-1}D .{x |-1<x <2}答案 C解析 x =1为ax -b =0的根,∴a -b =0,即a =b ,∵ax -b >0的解集为{x |x >1},∴a >0,故ax +b x -2=a (x +1)x -2>0, 等价为(x +1)(x -2)>0.∴x >2或x <-1.4.已知不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围为( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1} 答案 A解析 由题意知,原不等式可化为-(x -2)2+4≥a 2-3a 在R 上有解,∴a 2-3a ≤4,即(a -4)(a +1)≤0,∴-1≤a ≤4,故选A.5.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x (单位:元)的取值范围是( )A .{x |10≤x <16}B .{x |12≤x <18}C .{x |15<x <20}D .{x |10≤x <20} 答案 C解析 设这批台灯的销售单价为x 元,则[30-(x -15)×2]x >400,即x 2-30x +200<0,∴10<x <20,又∵x >15,∴15<x <20.故选C.6.若不等式ax 2+bx +c >0的解集为{x |-1<x <2},则不等式2a +b x +c >bx 的解集为________.答案 {x |x <0}解析 由题意知,-1,2为ax 2+bx +c =0的两根,∴⎩⎪⎨⎪⎧b =-a ,c =-2a 且a <0, ∴不等式2a +b x +c >bx 可化为a x-2a >-ax , ∵a <0,即1x -2<-x ,即(x -1)2x<0, ∴x <0.7.现有含盐7%的食盐水200克,生产含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________.答案 {x |100<x <400}解析 5%<x ·4%+200·7%x +200<6%, 解得x 的取值范围是{x |100<x <400}.8.某种汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m和汽车车速x km/h 有如下关系:s =118x +1180x 2.在一次交通事故中,测得这种车的刹车距离不小于40 m ,那么这辆汽车刹车前的车速不低于________ km/h.答案 80解析 根据题意,得118x +1180x 2≥40. 移项整理,得x 2+10x -7 200≥0.显然Δ>0,x 2+10x -7 200=0有两个实数根,即x 1=80,x 2=-90,然后,根据二次函数y =x 2+10x -7 200的图象(图略),得不等式的解集为{x |x ≤-90或x ≥80}.在这个实际问题中,x >0,所以这辆汽车刹车前的车速不低于80 km/h.9.解关于x 的不等式a -x x +1>0(a ∈R ). 解 原不等式可化为x -a x +1<0, 即(x +1)(x -a )<0,①当a =-1时,x ∈∅;②当a >-1时,{x |-1<x <a };③当a <-1时,{x |a <x <-1}.综上,a =-1时,不等式的解集为∅,a >-1时,不等式的解集为{x |-1<x <a },a <-1时,不等式的解集为{x |a <x <-1}.10.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000×(1+0.6x )(0<x <1),整理得y =-6 000x 2+2 000x +20 000(0<x <1).(2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧ y -(12-10)×10 000>0,0<x <1, 即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13, 所以投入成本增加的比例x 应在0<x <13的范围内. 11.不等式x 2-x -2x -2>0的解集为( ) A .{x |x >-1且x ≠2}B .{x |x >-1}C .{x |-1<x <2}D .{x |x <-1或x >2} 答案 A解析 原不等式可化为(x -2)(x +1)x -2>0⇒⎩⎪⎨⎪⎧x +1>0,x -2≠0,∴x >-1且x ≠2.故选A. 12.若a >0,b >0,则不等式-b <1x<a 的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1b 或x >1a B.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1a <x <1b C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >1bD.⎩⎨⎧⎭⎬⎫x ⎪⎪-1b <x <0或0<x <1a 答案 A解析 原不等式可化为⎩⎨⎧1x >-b ,1x <a ,即⎩⎨⎧ bx +1x >0,ax -1x >0, 可得⎩⎨⎧ x <-1b 或x >0,x <0或x >1a , 故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1b 或x >1a . 13.不等式x 2-2x -2x 2+x +1<2的解集为( ) A .{x |x ≠-2}B .RC .∅D .{x |x <-2或x >2} 答案 A解析 ∵x 2+x +1>0恒成立,∴原不等式⇔x 2-2x -2<2x 2+2x +2⇔x 2+4x +4>0⇔(x +2)2>0,∴x ≠-2.∴不等式的解集为{x |x ≠-2}.14.在一个限速40 km /h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m .又知甲、乙两种车型的刹车距离s m 与车速x km/h 之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.这次事故的主要责任方为________.答案 乙车解析 由题意列出不等式s 甲=0.1x +0.01x 2>12,s 乙=0.05x +0.005x 2>10.分别求解,得x 甲<-40或x 甲>30.x 乙<-50或x 乙>40.由于x >0,从而得x 甲>30 km /h ,x 乙>40 km/h.经比较知乙车超过限速,应负主要责任.。
专题二次函数与一元二次方程(5个考点)(题型专练+易错精练)
专题5.3 二次函数与一元二次方程(5个考点)【考点1 二次函数与x 轴交点问题】【考点2 图象法确定一元二次方程的根】【考点3已知函数值y 求x 的取值范围】【考点4二次函数与一次函数不等式的关系】【考点5二次函数综合】【考点1 二次函数与x 轴交点问题】1.在平面直角坐标系中,二次函数24y ax ax c =-+(0a ¹)的图象与x 轴的一个交点的横坐标为1-,则另一个交点的横坐标为( )A .5B .3C .3-D .5-2.抛物线y=x 2+6x+8与x 轴交点坐标( )A .(0,8)B .(0,-8)C .(0,6)D .(-2,0),(-4,0)3.二次函数256y x x =--与坐标轴的交点个数是( )A .1个B .2个C .3个D .0个4.如图,二次函数2y x mx n =-++的图象与x 轴的一个交点坐标为(5,0),那么关于x 的一元二次方程20x mx n -++=的解为( )A .15x =,21x =B .15x =,21x =-C .15x =,25x =-D .5x =5.已知二次函数22y x x m =--+的部分图象如图所示,则关于x 的一元二次方程220x x m --+=的解为( )A .3或1B .3-或1C .3或3-D .3-或1-6.若抛物线224y x x =-与x 轴分别交于A 、B 两点,A 、B 两点间的距离是 .7.若二次函数22y x x b +=-的图象与坐标轴有两个公共点,则b 满足的条件是 .【考点2 图象法确定一元二次方程的根】8.根据下列表格对应值:x3.24 3.253.262ax bx c++0.020.01-0.03-判断关于x 的方程20ax bx c ++=的一个解的范围是( )A . 3.24x < B .3.24 3.25x <<C .3.25 3.26x <<D . 3.26x >9.观察下列表格,一元二次方程x 2﹣x =1.1的一个解x 所在的范围是( ) x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9x 2﹣x0.110.240.390.560.750.961.191.441.71A .1.5<x <1.6B .1.6<x <1.7C .1.7<x <1.8D .1.8<x <1.910.下表是一组二次函数 y =ax 2+bx +c 的自变量x 与函数值y 的对应值:那么下列选项中可能是方程 20ax bx c ++=的近似根的是( )x 1.21.31.4 1.5 1.6y0.36-0.01-0.360.751.16A .1.2B .1.3C .1.4D .1.511.小明在学习了利用图象法来求一元二次方程的近似根的知识后进行了尝试:在直角坐标系中作出二次函数2210y x x =+-的图象.由图象可知,方程22100x x +-=有两个根,一个在5-和4-之间,另一个在2和3之间,利用计算器进行探索:由下表知,方程的一个近似根是( )x4.1- 4.2- 4.3- 4.4-y1.39-0.76-0.11-0.56A . 4.12-B . 4.23-C . 4.32-D . 4.43-12.根据下列表格,判断出方程28910x x +-=的一个近似解(结果精确到0.01)是( )x1.5- 1.4- 1.3- 1.2- 1.1-2891x x +- 3.52.080.820.28- 1.22-A . 1.45-B . 1.35-C . 1.25-D . 1.15-13.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0,,,a a b c ¹为常数)的一个解x 的范围是( )x1.5-00.51.52y ax bx c=++ 1.25-2- 1.25- 1.75A .2 1.5x -<<-B . 1.50x -<<C .00.5x <<D .0.5 1.5x <<【考点3已知函数值y 求X 的取值范围】14.已知函数222y x x =--的图象如图所示,根据图象提供的信息,可得1y £时,x 的取值范围是( )A .3x ³-B .31x -££C .13x -££D .1x £-或3x ³15.已知一次函数()10y kx m k =+¹和二次函数()220y ax bx c a =++¹部分自变量和相应的函数值如表,当21y y >时,自变量x 的取值范围是( )x×××1-0245×××1y ×××01356×××2y ×××1-059×××A .12x -<<B .45x <<C .1x <-或5x >D .1x <-或4x >16.已知关于x 的一元二次方程2x mx n 0++=的两个实数根分别为1x a =,2x b =(a b <),则二次函数2y x mx n =++中,当y 0<时,x 的取值范围是( )A .x a<B .x b>C .a x b<<D .x a <或x b>17.已知二次函数222y x x -=-,当1y >时,则x 的取值范围为( )A .13x -<<B .31x -<<C .1x <-或3x >D .3x <-或1x >18.如图,对于抛物线2y ax bx =+,若当x <3时,y 随x 的增大而减小;当x >3时,y 的值随x 的增大而增大,则使y <0的x 的取值范围为.19.如图,已知点()4,P m 在抛物线223y x x =--上,当y m >时,x 的取值范围是.20.如图,抛物线y=ax 2+bx+c 分别交坐标轴于A (-2,0)、B (6,0)、C (0,4),则0≤ax 2+bx+c<4的解是.21.函数y =-x 3+x 的部分图像如图所示,当y >0时,x 的取值范围是 .【考点4二次函数与一次函数不等式的关系】22.如图是二次函数()210y ax bx c a =++¹和一次函数()20y mx n m =+¹的图象,当12y y <时,x 的取值范围是 .23.如图,抛物线21(2)1y x =--与直线21y x =--交于(1,0)A 、(4,3)B 两点,则当21y y >时,x 的取值范围为.24.直线11y x =+与抛物线223y x =-+的图象如图,当12y y >时,x 的取值范围为25.如图,抛物线21y ax =与直线2y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,则12y y £,x 的取值范围是 .26.如图,已知抛物线2y ax bx c =++与直线y kx m =+交于()31A --,,()03B ,两点.则关于x 的不等式2ax bx c kx m ++£+的解集是.27.二次函数21y ax bx c =++的图象与一次函数2y kx b =+的图象如图所示,当21y y >时,根据图象写出x 的取值范围 .28.如图,直线y =px +q (p ≠0)与抛物线y =ax 2+bx +c (a ≠0)交于A (﹣2,m ),B (1,n )两点,则关于x 的不等式ax 2+bx +c ≤px +q 的解集是 .29.如图,直线y=mx+n 与抛物线y=ax 2+bx+c 交于A (−1,p ),B (5,q )两点,则关于x 的不等式mx+n<a 2x +bx+c 解集是 .【考点5二次函数综合】30.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++的图象经过点()0,3A -,()1,0B .(1)求该抛物线的解析式;(2)结合函数图象,直接写出3y <-时,x 的取值范围.31.如图,二次函数2y ax bx c =++的图象与x 轴交于O (O 为坐标原点)、A 两点,且二次函数的最小值为2-,点()1,M m 是其对称轴上一点,点B 在y 轴上,1OB =.(1)求二次函数的解析式;(2)二次函数在第四象限的图象上有一点P ,连接PA ,PB ,求PAB V 面积的最大值;(3)在二次函数图象上是否存在点N ,使得以A ,B ,M ,N 为顶点的四边形是平行四边形若存在,请直接写出所有符合条件的点N 的坐标;若不存在,请说明理由.32.如图,二次函数22y ax ax c =++的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,且3OA OC ==.(1)求二次函数及直线AC 的解析式.(2)P 是拋物线上一点,且在x 轴上方,若45ABP Ð=°,求点P 的坐标.33.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2112y x bx =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且线段OA OB =.(注:抛物线2y ax bx c =++的对称轴为2bx a=-)(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使AM CM -的值最大,求点M 的坐标.34.将抛物线2(0)y ax a =¹向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+.抛物线H 与x 轴交于点A ,B ,与y 轴交于点C .已知(3,0)A -,点P是抛物线H 上的一个动点.(1)求抛物线H 的表达式;(2)如图,点M 是抛物线H 的对称轴L 上的一个动点,是否存在点M ,使得以点A ,M ,C 为顶点的三角形是直角三角形?若存在,求出所有符合条件的点M 的坐标;若不存在,说明理由.35.如图,抛物线234y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线334y x =+经过A 、C 两点,点D 是第二象限内抛物线上一点.(1)求抛物线的解析式;(2)连接AD 、CD ,求ACD V 面积的最大值;(3)若点D 关于直线BC 的对称点D ¢恰好落在直线AC 上,求点D 的坐标.1.A【分析】本题考查二次函数图象与性质,涉及求抛物线对称轴、图象与x 轴交点的对称性等知识,先求出抛物线对称轴,再由抛物线图象与性质求解即可得到答案,熟练掌握二次函数图象与性质是解决问题的关键.【详解】解:Q 二次函数24y ax ax c =-+(0a ¹)的对称轴为4222-=-=-=b a x a a,且图象与x 轴的一个交点的横坐标为1-,\由抛物线上点的对称性可知,图象与x 轴的另一个交点的横坐标为5,故选:A .2.D【分析】把y=0代入函数解析式得到x 2+6x+8=0,解方程即可.【详解】解:把y=0代入函数解析式得x 2+6x+8=0,解得 x 1=-2,x 2=-4,∴抛物线y=x 2+6x+8与x 轴交点坐标为(-2,0),(-4,0).故选:D【点睛】本题考查了二次函数与一元二次方程的关系,求抛物线与x 轴交点坐标就是求当y=0时自变量的取值.3.C【分析】先计算=0x 的函数值得到抛物线与y 轴的交点坐标,再解方程2560x x --=得抛物线与x 轴的交点坐标,从而可判断抛物线与坐标轴的交点坐标.【详解】解:当=0x 时,2566y x x =--=-,∴抛物线与y 轴的交点坐标为(0,6)-,当=0y 时,2560x x --=,解得121,6x x =-=,∴抛物线与x 轴的交点坐标为(1,0),(6,0)-,∴二次函数256y x x =--与坐标轴有3个交点.故选:C .【点睛】本题考查了二次函数与坐标轴的交点坐标及解一元二次方程,抛物线与x 的的交点纵坐标为0,与y 轴的交点横坐标为0.4.B【分析】此题考查的是求二次函数图象与x 轴的交点坐标和求一元二次方程的根,掌握二次函数图象的对称性和二次函数与x 轴的交点的横坐标与一元二次方程的根的关系是解决此题的关键.根据图象可知二次函数图象的对称轴,然后利用二次函数图象的对称性求出图象与x 轴的另一个交点坐标,最后根据二次函数与x 轴的交点的横坐标与一元二次方程的根的关系即可得出结论.【详解】解:由图象可知:二次函数2y x mx n =-++图象的对称轴为直线2x =,∵图象与x 轴的一个交点为(5,0),∴图象与x 轴的另一个交点坐标为()1,0-,∴关于x 的一元二次方程20x mx n -++=的两实数根是125,1x x ==-故选B .5.B【分析】根据函数图象可以得到该函数的对称轴,该函数与x 轴的一个交点,然后根据二次函数的对称性即可得到另一个交点,从而可以得到关于x 的一元二次方程220x x m --+=的解.【详解】解:由图象可知,该函数的对称轴是直线212(1)x -=-=-´-,与x 轴的一个交点是(3,0)-,则该函数与x 轴的另一个交点是(1,0),即当0y =时,220x x m --+=时,13x =-,21x =,故关于x 的一元二次方程220x x m --+=的解为13x =-,21x =,故选:B .【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6.2【分析】本题考查了二次函数与坐标轴交点问题,熟悉掌握交点的运算方法是解题的关键.0y =代入224y x x =-求出两个交点后,即可得到两点间的距离.【详解】解:、把0y =代入224y x x =-得:2240x x -=解得:2x =或0,∴202AB =-=,故答案为:2.7.1-或0【分析】本题考查了二次函数的图象,二次函数与一元二次方程的关系,一元二次方程根的判别式等知识.熟练掌握二次函数的图象,二次函数与一元二次方程的关系,一元二次方程根的判别式是解题的关键.由题意知,分①二次函数22y x x b +=-的图象与x 轴有1个公共点;②二次函数22y x x b +=-的图象与x 轴有2个公共点,但其中一个点为原点,两种情况求解作答即可.【详解】解:∵二次函数22y x x b +=-的图象与坐标轴有两个公共点,∴分①二次函数22y x x b +=-的图象与x 轴有1个公共点;②二次函数22y x x b +=-的图象与x 轴有2个公共点,但其中一个点为原点,两种情况求解;①当二次函数22y x x b +=-的图象与x 轴有1个公共点时,()2240b D =--=,解得1b =-;②当二次函数22y x x b +=-的图象与x 轴有2个公共点,但其中一个点为原点时,0b =,∴()222y x x x x +==+,与x 轴有2个公共点,为()20-,或()00,,综上所述,b 的值为1-或0,故答案为:1-或0.8.B【分析】本题考查二次函数和一元二次方程的根的联系,解题的关键是掌握二次函数的图象和性质,根据上表可知当20ax bx c ++=时,x 的取值范围为:3.24 3.25x <<,即可.【详解】由上表可知当20ax bx c ++=,关于x 的方程的一个解的范围为:3.24 3.25x <<,故选:B .9.B【分析】利用表中数据可判断方程解的范围为1.6<x <1.7.【详解】解:因为x =1.6时,x 2-x =0.96,x =1.7时,x 2-x =1.19,所以一元二次方程x 2﹣x =1.1的一个解的范围为1.6<x <1.7.故选:B .【点睛】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.10.B【分析】本题考查了抛物线法求方程的近似根,采用零距离比较法,与零的距离越小,越近似看成方程的根,得到所求方程的近似根即可.【详解】观察图表的,得0.01-与零的距离最小,方程 20ax bx c ++=的近似根的是: 1.3x =故选B .11.C【分析】本题考查了一元二次方程的近似根,当y 等于0时得到的x 值即为方程22100x x +-=的解.分析题干中的表格,取y 值最接近0时x 的值作为方程的近似解.【详解】解:由表格可知,当 4.3x =-时,0.110y =-<,当 4.4x =-时,0.560y =>,则方程的一个根在 4.3-和 4.4-之间, 4.3x =-时的y 值比 4.4x =-时更接近0,\方程的一个近似根为: 4.32-.故选:C .12.C【分析】本题考查了二次函数与一元二次方程的关系,根据方程28910x x +-=的一个根是函数2891y x x =+-的图象与x 轴的一个交点的横坐标,再找到表格中2891x x +-的值最接近0的数即可,掌握二次函数的图象与x 轴的交点与一元二次方程的关系是解题关键.【详解】解:方程28910x x +-=的一个根是函数2891y x x =+-的图象与x 轴的一个交点的横坐标,即关于函数2891y x x =+-,0y =时,x 的取值,由表格可知:当 1.2x =-时,函数y 的值最接近0,\方程的近似解是 1.25-,故选:C .13.D【分析】本题考查了用图象法求一元二次方程的近似根,根据表格找到y 由负变为正时,自变量的取值范围即可得到答案.【详解】解:由表格中的数据可知,当0.5x =时, 1.250y =-<,当 1.5x =时, 1.750y =>,∴方程20ax bx c ++=(0,,,a a b c ¹为常数)的一个解x 的范围是0.5 1.5x <<,故选D .14.C【分析】令y=1,求解出x 的两个值,则在这两个值所包含的范围内的x 均符合题意要求.【详解】解:令y=1,则2221x x --=,解得x=-1或3,则由图像可知当13x -££时,可使得1y £,故选择C.【点睛】本题结合一元二次方程考查了二次函数的知识.15.D【分析】利用表中数据得到直线与抛物线的交点为(−1,0)和(4,5),−1<x<4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围.【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5;∴直线与抛物线的交点为(−1,0)和(4,5),而−1<x<4时, y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x<−1或x>4.故选D.【点睛】此题考查二次函数的性质,解题关键在于掌握其性质定义.16.C【分析】根据抛物线方程画出该抛物线的大体图象,根据图象直接回答问题.【详解】∵关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=a ,x 2=b (a <b ),∴二次函数y=x 2+mx+n 与x 轴的交点坐标分别是(a ,0)、(b ,0)(a <b ),且抛物线的开口方向向上,∴该二次函数的图象如图所示:根据图示知,符合条件的x 的取值范围是:a <x <b ;故选C .【点睛】考查了抛物线与x 轴的交点问题.解题时,采用的是“数形结合”的数学思想.17.C【分析】先求出当1y =时,对应的x 的值,然后根据二次函数的性质即可解答.【详解】解:根据题意可得:当1y =时,即2221x x --=,解得:1231x x ==-,,∵10a =>,∴图象开口向上,∵1y >,∴1x <-或3x >故选:C .【点睛】本题考查了二次函数的性质和二次函数与不等式的关系,正确理解题意、明确求解的方法是关键.18.06x <<【分析】求出抛物线与x 轴的交点坐标即可解决问题.【详解】解:由题意对称轴x =3,抛物线经过(0,0)和(6,0),观察图象可知:使y <0的x 的取值范围为0<x <6.故答案为:0<x <6.【点睛】本题考查抛物线与x 轴的交点,二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.2x <-或4x >【分析】先将4x =代入223y x x =--求出m 的值,再令y m =,解一元二次方程,结合二次函数图象即可得出x 的取值范围.【详解】解:Q 点()4,P m 在抛物线223y x x =--上,\242435m --=´=,令5y m ==,则2235x x --=,即2280x x --=,解得12x =-,24x =,Q 抛物线开口向上,\当y m >即>5y 时,x 的取值范围是2x <-或4x >.故答案为:2x <-或4x >.【点睛】本题考查二次函数图象上的点的坐标特征,根据交点确定不等式的解集等,解题的关键是掌握二次函数与一元二次方程的关系,熟练运用数形结合的思想.20.-2≤x <0或4<x≤6【分析】根据点A 、B 的坐标确定出对称轴,再求出点C 的对称点的坐标,然后写出即可.【详解】解:∵A (-2,0)、B (6,0),∴对称轴为直线x=262-+=2,∴点C 的对称点的坐标为(4,4),∴0≤ax 2+bx+c <4的解集为-2≤x <0或4<x≤6.故答案为:-2≤x <0或4<x≤6.【点睛】本题考查了二次函数与不等式,难点在于求出对称轴并得到C 点的对称点的坐标.21.x <-1或0<x <1【分析】根据y =0时,对应x 的值,再求函数值y >0时,对应x 的取值范围.【详解】解:y =0时,即-x 3+x =0,∴-x (x 2-1)=0,∴-x (x +1) (x -1)=0,解得x =0或x =-1或x =1,∴函数y =-x 3+x 的部分图像与x 轴的交点坐标为(-1,0),(0,0),(1,0),故当函数值y >0时,对应x 的取值范围上是:x <-1,0<x <1.故答案为:x <-1或0<x <1.【点睛】本题考查了函数值与对应自变量取值范围的关系,需要形数结合解题.22.2<<1x -【分析】本题考查了二次函数的性质.根据图象可以直接回答,使得21y y >的自变量x 的取值范围就是直线()20y mx n m =+¹落在二次函数()210y ax bx c a =++¹的图象上方的部分对应的自变量x 的取值范围.【详解】根据图象可得出:当21y y >时,x 的取值范围是:2<<1x -.故答案为:2<<1x -.23.14x <<【分析】本题考查了二次函数图象与一次函数函数值比较,解决的办法是首先求出交点坐标,然后根据图象找到上方部分,即可解答.【详解】解:抛物线21(2)1y x =--与直线21y x =--交点为(1A ,0)(4B ,3),由图象知,当21y y >时,x 的取值范围14x <<,故答案为:14x <<.24.2x <-或x >1##x >1或2x <-【分析】根据函数图象写出直线在抛物线上方部分的x 的取值范围即可.【详解】解:∵直线11y x =+与抛物线223y x =-+的图象交点的横坐标分别为2,1-,∴当12y y >时,x 的取值范围为:2x <-或1x >,故答案为:2x <-或1x >.【点睛】本题考查了根据函数图象求不等式的解集,数形结合是解题的关键.25.21x -££【分析】直接观察图象,即可求解.【详解】解:观察图象得:当21x -££时,12y y £,∴12y y £时,x 的取值范围是21x -££.故答案为:21x -££【点睛】本题考查了根据交点求一元二次方程的解,数形结合,理解方程的解为两函数图象的交点的横坐标是解题的关键.26.3x £-或0x ³##0x ³或3x £-【分析】根据图象,写出抛物线在直线下方部分的x 的取值范围即可.【详解】解:∵抛物线y =ax 2+bx +c 与直线y kx m =+交于()31A --,、()03B ,,∴不等式2ax bx c kx m ++£+的解集是3x £-或0x ³,故答案为:3x £-或0x ³.【点睛】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象下方时,自变量x 的取值范围.27.2<<1x -【分析】利用一次函数与二次函数图象,进而结合其交点横坐标得出21y y >时,x 的取值范围.【详解】解:当21y y >时,即一次函数2y kx b =+的图象在二次函数21y ax bx c =++的图象的上面,可得x 的取值范围是:2<<1x -.故答案为:2<<1x -.【点睛】此题主要考查了二次函数与不等式,解题的关键是正确利用函数的图象得出正确信息.28.x ≤﹣2或x ≥1##x ≥1或x ≤﹣2【分析】直接利用函数的交点坐标进而结合函数图象得出不等式ax2+bx+c≤px+q 的解集.【详解】解:由图象可得点A 左侧与点B 右侧抛物线在直线下方,∴x ≤﹣2或x ≥1时,ax 2+bx +c ≤px +q ,故答案为:x ≤﹣2或x ≥1.【点睛】此题主要考查了二次函数与不等式,正确数形结合分析是解题关键.29.-1<x <5【分析】直接利用函数的交点坐标进而结合函数图象得出不等式mx+n <ax 2+bx+c 的解集.【详解】解:∵直线y=mx+n 与抛物线y=ax 2+bx+c 交于A (-1,p ),B (5,q )两点,∴关于x 的不等式mx+n <ax 2+bx+c 解集是-1<x <5故答案为:-1<x <5.【点睛】此题主要考查了二次函数与不等式,正确数形结合分析是解题关键.30.(1)223y x x =+-(2)20x -<<【分析】本题考查二次函数的性质,解题关键是掌握待定系数法求函数解析式,掌握二次函数与方程及不等式的关系.(1)根据待定系数法即可求得;(2)令=3y -求出x 的值,即可求解.【详解】(1)解:将点(0,3),(1,0)A B -代入2y x bx c =++得:301c b c -=ìí=++î,解得:2,3b c =ìí=-î223y x x \=+-.(2)令=3y -即2233x x +-=-,解得:120,2x x ==-,Q 抛物线开口向上,\3y <-时,20x -<<。
二次函数与一元二次方程关系
二次函数与一元二次方程及一元二次不等式【典型例题】例1、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),(1)求方程20(0)ax bx c a ++=> 的解(2)解不等式:20(0)ax bx c a ++>>练习1.若抛物线y =x 2+4x +m 与x 轴的一个交点为(1,0),则另一个交点的坐标为 .练习2.抛物线y =ax 2+bx +c 与x 轴的公共点是(﹣1,0),(3,0),则这条抛物线的对称轴是( )A .直线x =﹣1B .直线x =0C .直线x =1D .直线x =3 练习3.函数y =ax 2+2ax +m (a <0)的图象过点(2,0),则使函数值y <0成立的x 的取值范围是( )A .x <﹣4或x >2B .﹣4<x <2C .x <0或x >2D .0<x <2练习4.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A (m ,n ),B (m +6,n ),则n = .练习5.二次函数y =ax 2﹣2ax +c 的图象经过点(﹣1,0),则方程ax 2﹣2ax +c =0的解为( )A .x 1=﹣3,x 2=﹣1B .x 1=1,x 2=3C .x 1=﹣1,x 2=3D .x 1=﹣3,x 2=1练习6.若不等式的解为-1x 2,则b =_____,c =______ 例2.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣,),B (1,1),则关于x 的方程ax 2﹣bx ﹣c =0的解为 .例3.已知抛物线y =a (x ﹣h )2+k 与x 轴有两个交点A (﹣1,0),B (3,0),抛物线y =a (x ﹣h ﹣m )2+k 与x 轴的一个交点是(4,0),则m 的值是( )A .5B .﹣1C .5或1D .﹣5或﹣1 练习1.若二次函数y =ax 2+1的图象经过点(﹣2,0),则关于x 的方程a (x ﹣2)2+1=0的实数根为( )A .x 1=0,x 2=4B .x 1=﹣2,x 2=6C .x 1=32,x 2=52 D .x 1=﹣4,x 2=0 练习2.已知关于x 的一元二次方程ax 2+bx +c =0的两个根分别是1和﹣3,若二次函数y =ax 2+bx +c +m (m >0)与x 轴有两个交点,其中一个交点坐标是(4,0),则另一个交点坐标是 .02>++c bx x <<练习3.已知m>0,关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2(x1<x2),则下列结论正确的是()A.x1<﹣1<2<x2B.﹣1<x1<2<x2C.﹣1<x1<x2<2D.x1<﹣1<x2<2练习4.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b <a,则m,n,b,a的大小关系是()A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m例4.已知抛物线y=ax2﹣4ax+3a(a≠0)与x轴交于A,B两点(点A在点B的左侧).(1)①该抛物线的对称轴为直线;②求点A,B的坐标;(2)过点C(0,t)作y轴的垂线l,与抛物线交于P(x1,t),Q(x2,t),与直线y=x﹣3交于点N(x3,t),若存在t,使得x1<x2<x3且x1+x2+x3=9,求t和x3练习1.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=﹣x2+(2a﹣2)x﹣a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;②若y1=y2=0,求x1的值(用含a的式子表示).(3)若对于x1+x2<﹣4,都有y1<y2,求a的取值范围.练习2.平面直角坐标系xOy中,已知抛物线y=ax2+bx+c(a、b、c为常数,其中a<0)上有两点M(x1,y1),N(x2,y2).(1)若M(1,t),N(﹣1,﹣t),求的值;(2)已知x1<x2,抛物线的对称轴为x=m.若对于x1+x2<7,都有y1<y2,求m的取值范围;例5.若函数a x x a y 24)1(2+--=的图像与x 轴只有一个交点,求a 的值练习1.若抛物线221y kx x =-+与x 轴有两个交点,则k 的取值范围是 。
初中数学:二次函数与一元二次方程练习(含答案)
初中数学:二次函数与一元二次方程练习(含答案)知识点1 二次函数与一元二次方程之间的对应关系图1-4-151.二次函数y=-x2+2x+k的部分图象如图1-4-15所示,且关于x的一元二次方程-x2+2x+k=0的一个根x1=3,则另一个根x2=( ) A.1 B.-1 C.-2 D.02.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个根x的范围是( )A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.20图1-4-163.如图1-4-16是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是( )A.-1≤x≤3B.x≤-1C.x≥1D.x≤-1或x≥34.(1)请在如图1-4-17所示的平面直角坐标系中画出二次函数y=x2-2x 的大致图象;(2)观察图象,试写出方程x2-2x=1的根(精确到0.1).图1-4-17知识点2 二次函数在抛物线型问题中的应用5.某公园有一个圆形喷水池,喷出的水流呈抛物线,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数表达式为h=30t-5t2,那么水流从喷出至回落到地面所需要的时间是( )A.6 s B.4 s C.3 s D.2 s6.廊桥是我国古老的文化遗产.如图1-4-18是某座抛物线型廊桥示意图.已知抛物线的函数表达式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF 是________米.图1-4-187.如图1-4-19,一名男生推铅球,铅球行进的高度y(m)与水平距离x(m)之间的关系是二次函数的关系.铅球行进起点的高度为53m,行进到水平距离为4 m时达到最高处,最大高度为3 m.(1)求二次函数的表达式(化成一般形式);(2)求铅球推出的最大距离.图1-4-198.若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c =0的解为( )A.x1=-3,x2=-1 B.x1=1,x2=3C.x1=-1,x2=3 D.x1=-3,x2=1图1-4-209.二次函数y=ax2+bx的图象如图1-4-20所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3C.-6 D.910.二次函数y=ax2+bx+c(a≠0)的图象如图1-4-21所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的两个根;(2)写出不等式ax2+bx+c>0(a≠0)的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.图1-4-2111.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图1-4-22,甲在O 点上正方1 m 的P 处发出一球,羽毛球飞行的高度y (m)与水平距离x (m)之间满足函数表达式y =a (x -4)2+h .已知点O 与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a =-124时,①求h 的值;②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7 m,离地面的高度为125m 的点Q 处时,乙扣球成功,求a 的值.图1-4-2212.若x 1,x 2是关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-ba,x1·x2=ca,我们把它们称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用一元二次方程根与系数关系定理可以得到A,B两个交点间的距离:AB=|x1-x2|=(x1+x2)2-4x1x2=⎝⎛⎭⎪⎫-ba2-4ca=b2-4aca2=b2-4ac|a|.参考以上定理和结论,解答下列问题:如图1-4-23,设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,求b2-4ac的值;(2)当△ABC为等边三角形时,求b2-4ac的值.图1-4-23详解详析1.B 2.C 3.D 4.解:(1)如图.(2)方程x 2-2x =1的根为x 1≈-0.4,x 2≈2.4.5.A [解析] 水流从喷出至回落到地面时高度h 为0,把h =0代入h =30t -5t 2,得5t 2-30t =0,解得t 1=0(舍去),t 2=6.故水流从喷出至回落到地面所需要的时间为6 s .故选A.6.8 5 [解析] 把y =8代入y =-140x 2+10,得8=-140x 2+10,解得x =±4 5,∴EF =8 5米.7.解:(1)设二次函数的表达式为y =a (x -4)2+3, 把⎝⎛⎭⎪⎫0,53代入y =a (x -4)2+3,解得a =-112, 则二次函数的表达式为y =-112(x -4)2+3,即y =-112x 2+23x +53.(2)由-112x 2+23x +53=0,解得x 1=-2(舍去),x 2=10, 则铅球推出的最大距离为10 m.8.C [解析] ∵二次函数y =ax 2-2ax +c 的图象经过点(-1,0), ∴方程ax 2-2ax +c =0一定有一个解为x =-1. 又∵二次函数图象的对称轴为直线x =1,∴二次函数y =ax 2-2ax +c 的图象与x 轴的另一个交点为(3,0), ∴方程ax 2-2ax +c =0的解为x 1=-1,x 2=3.故选C. 9.B10.(1)x 1=1,x 2=3(2)1<x <3 (3)x >2(或x ≥2) (4)k <211.解:(1)①把(0,1),a =-124代入y =a (x -4)2+h ,得1=-124×16+h ,解得h =53.②把x =5代入y =-124(x -4)2+53,得y =-124×(5-4)2+53=1.625. ∵1.625>1.55,∴此球能过网.(2)把(0,1),⎝ ⎛⎭⎪⎫7,125代入y =a (x -4)2+h ,得⎩⎨⎧16a +h =1,9a +h =125,解得⎩⎪⎨⎪⎧a =-15,h =215,故a 的值为-15.12.解:(1)当△ABC 为等腰直角三角形时,过点C 作CD ⊥AB 于点D ,则AB =2CD .由题意,得AB =b 2-4ac ||a =b 2-4aca .又∵抛物线与x 轴有两个交点, ∴b 2-4ac >0,则||4ac -b 2=b 2-4ac ,∴CD =⎪⎪⎪⎪⎪⎪4ac -b 24a =b 2-4ac4a , ∴b 2-4ac a =2×b 2-4ac4a∴b 2-4ac =b 2-4ac 2,∴b 2-4ac =(b 2-4ac )24.∵b 2-4ac >0, ∴b 2-4ac =4.(2)当△ABC 为等边三角形时,CD =32AB ,∴b 2-4ac 4a =32×b 2-4aca .∵b 2-4ac >0, ∴b 2-4ac =12.。
【特荐】九年级上册数学 人教版 二次函数与一元二次方程的关系(知识点+练习题)
课题:二次函数与一元二次方程的关系(一)二次函数与坐标轴的交点 环节一、求函数与坐标轴的交点坐标1、求一次函数36y x =+与x 轴、y 轴的交点坐标. 解:当x=0时,y=∴函数36y x =+与 轴的交点坐标是( , ) 当y=0时,得方程 解得∴函数36y x =+与 轴的交点坐标是( , ) 2、求二次函数y=x 2-4x+3与x 轴,y 轴的交点坐标. 解:当x=0时,y=∴函数与 轴的交点坐标是( , ); 当y=0时,得方程 解得∴函数与 轴的交点坐标是( , )与( , ).3、求二次函数962++=x x y 与x 轴,y 轴的交点坐标解:4、求二次函数322+-=x x y 与x 轴,y 轴的交点坐标解:环节二:两个函数的交点坐标1、如图,已知直线x y =与直线3+-=x y 相交 于点A , 则交点A 的坐标是即方程组⎩⎨⎧+-==3x y xy 的解是直线x y =与直线3+-=x y 的交点坐标(x ,y )是方程组⎩⎨⎧+-==3x y xy 的 .5、求二次函数y=x 2和y=21x+3的交点坐标. 解:依题意,得方程组⎩⎨⎧解得⎩⎨⎧∴二次函数y=x 2和y=21x+3的交点坐标是 . 3、由上题还可知:方程x 2=21x+3的解是 .归纳总结:1、二次函数与一元二次方程的关系:抛物线2(0)y ax bx c a =++≠与x 轴的交点的横坐标12,x x 是一元二次方程 的根.2、(1)当24b ac - 0 时,方程20(0)ax bx c a ++=≠有两个不相等的实数根,二次函数2(0)y ax bx c a =++≠与x 轴有 个不同的交点;(2)当24b ac -=0 时,方程20(0)ax bx c a ++=≠有 根,二次函数2(0)y ax bx c a =++≠与x 轴有 个交点;(3)当24b ac - 0 时,方程20(0)ax bx c a ++=≠没有实数根,二次函数2(0)y ax bx c a =++≠与x 轴 交点;环节三、巩固练习 A 组1、抛物线y=x 2-5x-6 与y 轴的交点坐标( , );与x 轴交点的坐标( , )和( , ).2、抛物线y=--2x 2+3x+2 与y 轴的交点坐标( , );与x 轴交点的坐标( , )和( , ).3、已知方程2x 2-3x+5=0的两个根是25,-1,则二次函数y=2x 2-3x-5与x 轴两个交点坐标( , )和( , ),两交点间距离为 .4、不论m 为何实数时,抛物线y=x 2-mx -1与x 轴的交点( ).A.有0个B.有1个C.有2个D.无法确定5、已知直线y=-2x+3与抛物线y=x 2相交于A 、B 两点,求A 、B 两点的坐标.6、已知:二次函数y=2x 2-4x-6,求:(1)函数图象的开口方向、对称轴和顶点坐标,(2)求函数图象与y 轴交点、与x 轴交点坐标,并画出草图 ※(3)以此函数与x 轴,y 轴交点为顶点的三角形的面积 解:(二)、二次函数与一元二次不等式之间的关系 环节一、例题学习例1、已知:二次函数y=x 2-3x-4的图象(如图)(1)方程x 2-3x-4=0的解是 ,则二次函数与x 轴交点的坐标是( , )和( , );图象与y 轴交点坐标是( , );(2)看图得:当x 或x 时,y>0;此时不等式x 2-3x-4>0 的解集为(3)看图得:当 <x< 时,y<0;此时不等式x 2-3x-4<0的解集为 例2、已知y=x 2+4x-12,当x 取何值时y>0, 当x 取何值时y <0?解:函数2412y x x =+-,开口向 ,对称轴 ,顶点坐标 ;函数y= x 2+4x-12与x 轴交点坐标( , )和( , ) 根据开口方向、顶点坐标和对称轴与x 轴交点坐标,画出函数草图: 看图回答:不等式x 2+4x-12>0的解集由上图,可得,不等式x 2+4x-12<0的解集是 .小结:二次函数2(0)y ax bx c a =++≠与x 轴的交点为()()0,0,21x x : ① 0>a当 时,0>y 即ax 2+bx+c>0;当 时,0<y 即ax 2+bx+c<0; ② 0<a当 时,0>y 即ax 2+bx+c>0;当 时,0<y 即ax 2+bx+c<0. 环节二、巩固练习 A 组1、抛物线如图所示:①当x 时,y=0; ②当x= 时,y 有最 值.③当x<-1或x>3时,y 0;当-1<x<3时,y 0; -11 2 3xyO —1 —22、抛物线y=x 2-2x-8开口 ,对称轴 ,顶点坐标 , 与y 轴的交点坐标( , )与x 轴交点的坐标( , )和( , )。
二次函数与一元二次方程、一次函数 知识点+例题+练习 (非常好 分类全面)
教学主题二次函数与一元二次方程、一次函数教学目标掌握二次函数与一元二次方程、一次函数重要知识点1.二次函数与一元二次方程2.二次函数与一次函数3.教学过程二次函数与一元二次方程知识点一:一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x 轴)的公共点的个数。
抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。
(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根,(3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0.(4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。
抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。
练习1:已知:关于x 的函数772--=x kx y 的图象与x 轴总有交点,求k 的取值范围?练习2:已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.题型二 一次函数图象和二次函数图象的交点问题【例2】已知抛物线C 经过(-5,0),(0,25),(1,6)三点,直线l 的函数表达式为32-=x y ;(1)求抛物线的表达式;(2)证明抛物线C 与直线l 无交点;(3)若与l 平行的直线m x y +=2与抛物线C 只有一个公共点P ,求点P 的坐标;练习1:已知二次函数y=﹣x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(﹣1,0),与y 轴的交点坐标为(0,3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.题型三 关于二次函数图象交点的综合问题【例3】已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.练习1:抛物线2y x bx c =-++的部分图象如图所示,则方程02=++-c bx x 的两根为 .练习1:如图所示,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点的坐标和一次函数、二次函数的解析式;(2)根据图象写出使一次函数值大于二次函数值的x的取值范围.练习2:在同一直角坐标系,开口向上的抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,-3),一次函数图象与二次函数图象交于B、C两点.(1)求一次函数和二次函数的解析式.(2)当自变量x为何值时,两函数的函数值都随x的增大而增大?(3)当自变量x为何值时,一次函数值大于二次函数值.(4)当自变量x为何值时,两函数的函数值的积小于0.练习3:一次函数y=2x+3与二次函数y=ax 2+bx+c 的图象交于A (m ,5)和B (3,n )两点,且点B 是抛物线的顶点.(1)求一次函数和二次函数的表达式; (2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x 为何值时,两个函数的值都随x 的增大而增大,当x 为何值时,二次函数的值大于一次函数的值?类型三:与一次函数和二次函数的交点有关的面积类问题。
二次函数与一元二次方程专题知识点 常考(典型)题型 重难点题型(含详细答案)
二次函数与一元二次方程基本性质专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.二次函数图像与一元二次方程的关系 (2)2.二次函数a、b、c的几何意义 (4)3.利用交点式求二次函数 (6)4.用函数图像解一元二次方程(不等式) (7)5.二次函数常用解题方法总结 (8)三、重难点题型 (10)1.判别式的应用 (10)3.图像信息题 (11)3.抛物线与直线交点问题 (13)4.抛物线与三角形面积 (16)二、基础知识点1.二次函数图像与一元二次方程的关系(1)二次函数:一元二次方程:当y=0时,二次函数即化为一元二次方程。
即二次函数y=0时,x的值(与x轴的交点)为一元二次方程的解。
(2)利用配方法可转化为:y=a()当y=ax2+bx+c中,y=0时,即得到二次方程ax2+bx+c=0其解的几何意义即为二次函数的图象与x轴的交点横坐标.令=当>0时,函数与x轴有两个交点,即一元二次方程有2解;当=0时,函数与x轴有一个交点,即一元二次方程有1解;<0时,函数与x轴无交点,即一元二次方程无解。
例 1.同一坐标系中有函数,及,请填写下表。
答案:如下表所示例2.如图,一次函数与二次函数ax2+bx+c的图像相交于两点,则函数y=ax2+(b-1)x+c的图像可能为()A B C D答案:由ax2+bx+c图像知:>>>,即><>则函数y=ax2+(b-1)x+c中,>>>所以函数y=ax2+(b-1)x+c开口向上,且与对称轴在x轴正半轴,与y轴的交点在y轴正半轴所以答案在A,C中选择因为一次函数与二次函数ax2+bx+c的图像相交于两点联立得:ax2+(b-1)x+c=0有两解即y=ax2+(b-1)x+c的图像与x轴有两个交点所以答案为A2.二次函数a、b、c的几何意义(1)a>0,开口向上;a<0,开口向下;(2)图像关于x=对称(3)顶点坐标(-,)(4)抛物线与y轴的交点(0,c)(5)当>0,与x轴有2个交点;当=0,与x轴有1个交点;当<0,与x轴无交点(6)两点P1(x1,y1),P2(x2,y2),关于x=对称,()例1.二次函数y=ax2+bx+c(a≠0)的图像如图所示,则下列关系式成立的是()A.abc>0B. a+b+c<0C. D. 4ac->答案:因为抛物线开口向下所以a<0抛物线与y轴交点在y轴正半轴所以c>0抛物线对称轴为x=1>0所以>,即b>0综上得:abc<0,A错误令x=1得:a+b+c=y因为x=1与抛物线交点在y轴上半部分所以a+b+c>0,即B错误令x=-1得:a-b+c<0两边同时乘a得:>,即C正确抛物线与x轴有两个交点,则>0,即D错误例2.如图,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于A,B两点,与y轴交于C,且OA=OC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数y=ax 2+bx +c 与ax 2+bx +c =0(a ≠0)的关系
1、 一元二次方程ax 2
+bx +c =0(a ≠0)的根是二次函数y=ax 2
+bx +c (a ≠0)与x 轴交
点的横坐标,反之y=ax 2+bx +c (a ≠0)与x 轴交点的横坐标是一元二次方程ax 2
+bx +c =0(a ≠0)的根;
2、 一元二次方程ax 2+bx +c =0(a ≠0)根情况的判别即二次函数y=ax 2
+bx +c (a ≠0)
与x 轴交点个数情况:①判别式∆②直接看方程③平移
例1:抛物线y=ax 2
+bx +c 图像如下, 则
① ax 2
+bx +c =0的根有 ( )个
②ax 2
+bx +c+3=0的根有( )个
③ax 2
+bx +c -4=0的根有( )个
x 3-≥a
例
2:若关于x 的不等式组 无解,则二次函数y=(a-2)x 2
-x +4
1与X
x a 515-≤ 轴交点有( )个; 例3:一元二次方程22717
)
83(2
-=-x y 与X 轴的交点个数为( )个;
例4:二次函数y=ax 2
+bx +c (a ≠0)的图像如图所示,根据图像解答下列问题:
(1) 写出方程ax 2
+bx +c =0的两个根;
(2) 写出不等式ax 2
+bx +c >0的解集;
(3) 写出y 随x 的增大而减小的自变量x 的取值范值;
(4) 若方程ax 2
+bx +c =k 有两个不相等的实数根,求k 的取什范围。
3、 韦达定理在二次函数y=ax2+bx +c (a ≠0)中的应用(
a c
a b x x x x =-=+2121,)
① 已知其中一个交点,求另一个交点: 例5:若抛物线m x y x
+-=
22
与X 轴的一个交点是
(-2,0)则另一个交点是( ); ② 求两交点A,B 线段的长度x x x x AB 212
421)
(-=+
例6:若抛物线32
-+=
ax y x
与X 轴的交点为A ,B ,且AB 的长度为10,求a
③ 利用韦达定理求面积:
例7:抛物线m x y x
++=
-22
与X 轴的一个交点是A(3,0)
,另一个交点是B ,且与y 轴交于点C ,
(1)求m 的值;
(2)求点B 的坐标;
(3)该二次函数图象上有一点D (x ,y )(其中x>0,y>0),使
s s
ABC ABD
∆∆=,求
点D 的坐标。
例5:已知如图,二次函数2)2(22
++++-=m x m y x
与x 轴于A,B 两点,若
OA:OB=3:1,求m 例6:已知二次函数m x m y x
++-=
)1(2
的图像交x 轴于A(
1,0)、B (2,0)两点,
交y 轴正半轴于点C ,且
10212
2=+x x 。
(1) 求此二次函数的解析式; () (2) 是否存在过点D(0,2
5
-
)的直线与抛物线交于点M 、N,与x 轴交于E 点,使得M 、N 关于点E 对称?若存在,求直线MN 的解析式;若不存在,请说明理由。
4、 抛物线ax2+bx +c =0与x 轴交点及对称轴之间的关系;
设抛物线与x 轴的交点为A(
x
1
,0)和B (x
2
,0)则对称轴为直线2
2
1
x
x x +=,抛物
线任纵坐标相等的两点关于对称轴对称,即若有
)
,(,,k N k x x M 2
1
)(,则则对称轴为直线2
2
1
x
x x +=。
例10:已知二次函数m x y x
++-
=22
的部分图像如图所示,则关于x 的一元二次方
程022
=++-
m x x
的解是( )
x
5.若二次函数y=(a-2)x^2-(2a-1)x+a的图象与坐标轴共有两个交点,则a可取( )
6.已知二次函数y=ax2+bx+c(a>0)经过点M(-1,2)和点N(1,-2),交x轴于A,B两点,交y轴于C.则:
①b=-2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、
A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.
以上说法正确的有()
A.①②③④B.②③④ C.①②④D.①②③
解析:解:①∵二次函数y=ax2+bx+c(a>0)经过点M(-1,2)和点N (1,-2),
∴
2=
a−b+c
−2=a+b+c
解得b=-2.故该选项正确.
②方法一:∵二次函数y=ax2+bx+c,a>0
∴该二次函数图象开口向上
∵点M(-1,2)和点N(1,-2),
∴直线MN的解析式为y=-2x,
根据抛物线的图象的特点必然是当-1<x<1时,二次函数图象在y=-2x 的下方,
∴该二次函数图象与y轴交于负半轴;
方法二:由①可得b=-2,a+c=0,即c=-a<0,
所以二次函数图象与y轴交于负半轴.
故该选项正确.
③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.
故该选项错误.
④当a=1时,c=-1,∴该抛物线的解析式为y=x2-2x-1
当y=0时,0=x2-2x+c,利用根与系数的关系可得x
1•x
2
=c,
即OA•OB=|c|,
当x=0时,y=c,即OC=|c|=1=OC2,
∴若a=1,则OA•OB=OC2,
故该选项正确.总上所述①②④正确.故选C.
7.如图,在平面直角坐标系xOy中,一次函数y
1
=kx+b(k≠0)与反比例函数y2=m/x(m<0)交于A(-2,n)及另一点B,与两坐标轴分别交
于点C、D.过A作AH⊥x轴于H,若OC=2OH,且△ACH
的面积为9.
(1)求一次函数与反比例函数的解析式及另一交点B的坐标;
(2)根据函数图象,直接写出当y
1>y
2
时自变量x的取值范围.
解析:(1)∵A(-2,n),
∴OH=2,
∴OC=2OH=4,
∴CH=2+4=6,
∴S△ACH=1/2CH•|y A|=1/2×6•n=9n=3,(2分)
∴A(-2,3),C(4,0),
∵一次函数图象过点A(-2,3),C(4,0),
∴∴y1=−1/2x+2.(4分)
∵3=m/-2,
∴m=-6
∴y2=−6/x,
∴B(6,-1);(8分)
(2)x<-2或0<x<6(10分)
8.已知二次函数y=x^2+ax+a-2(1)说明y=ax^2+ax+a-2与x轴有两个不同交点(2)求出交点距离(用a的表达式)
解析:(1)因为△=a*2-4(a-2)=(a-2)*2+4>0,(即y=0时,方程x^2+ax+a-2=0有两个不同的实数根),故y=x^2+ax+a-2与x轴有两个不同交点。
(2)令交点坐标为(x1,0)、(x2,0),且:x2>x1,故:交点距离=x2-x1
又x1、x2可以看作是方程x^2+ax+a-2=0的两个不同实数根,故:
x1+x2=-a
x1•x2=a-2
故:(x2-x1)^2=(x1+x2)^2-4x1•x2=a*2-4(a-2)=a*2-4a+8
故:交点距离=√(a*2-4a+8)。