大学物理练习册答案
大学物理练习册答案
练习一:1-3:D B D ;4、331ctv v +=,400121ctt v xx ++=5、s3;6、14rad, 15rad/s, 12rad/s27、解:(1)jt ti t r)4321()53(2-+++=; (2))/(73;)3(34s m j i v j t i dt rd v s t+=++===;(3))/(12s m j dtv d a == 68、解: ∵ xvvt x x v t v a d d d d d d d d === 分离变量: x x adx d )62(d 2+==υυ两边积分得c x x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13sm 252-⋅++=x x v练习二:1、C ;2、B ;3、j8,ji 4+-,4412arctg arctg-+ππ或;4、32ct,ct 2,Rt c 42,R ct 2;5、212tt +,212t+;6、210θθθθtg tgtg tg ++7、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得t s s t l l d d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v tl v d d ,d d 0-==-=船绳即 θcos d d d d 00v v sl tl s l ts v==-=-=船或 sv s h slv v2/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船8、解:(1)由23RbtdtdRdtdsv-===θ得:Rbtdtdva6-==τ,4229tRbRvan==(2)nnnetRbeRbteaeaaˆ9ˆ6ˆˆ42+-=+=τττ练习三1、C,2、A,3、D,4、2121)(mmgmmF+-+,)2(1212gmFmmm++;5、0.41cm6、解:取弹簧原长时m2所在处为坐标原点,竖直向下为x轴,m1,m2的受力分析如上图所示。
大学物理学练习册参考答案全
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
大学物理练习册习题及答案
习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫⎪+⎝⎭ (D )12124m m g m m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变 2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mgμ≤ (B )(1)s F m M mgμ≤+(C )()s F m M mg μ≤+(D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。
设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。
大学物理练习册答案
x02 = 195m
a1 = −20km / s 2 = −0.2m / s 2
a 2 = −0.2m / s 2
= 0 时,上坡车位于A点
v02 = −5.4km / h = −1.5m / s
∴ v1x = v01 + ∫ a1x dt = 5 + (−0.2)dt = 5 − 0.2t (m / s ) ∫ 0
r r r 解: r = 4i − 10 j (m)
r r dr v= dt
t =2
r r = 2i − 13 j ( m / s )
r dv a= dt
t =2
r = −8 j ( m / s 2 )
4、质点作直线运动,加速度 a = ω Asin ωt,已知 t = 0时质点初始状态为 x = 0、 0 = −ωA 、该质点运 v 动学方程为x = −Asin ϖt 0 .
0
x 2 = x02 + ∫ v 2 x dt = 195 + ∫ (−1.5 − 0.2t )dt= 195 − 0.1t 2 − 1.5t 2 ( m)
t
t
0
0
设在 t0 时刻相遇B点,则由图知:
x1B + (195 − x2 B ) = 195(m)
即: (5t 0 − 0.1t 02 ) + [195 − (−1.5t 0 − 0.1t 02 + 195)] = 195 整理得:
三、计算题:
求质点轨迹;(2)求自 t = 1 秒至 t = 2 秒时间内质 点的位移;(3)求 t = 1 秒时的速度和加速度.
r v −2t r 2t r 1. 质点运动学方程为 r = e i + e j + 2k (米),(1)
大学物理I练习册参考答案
大学物理I练习册参考答案第一篇:大学物理I练习册参考答案大学物理I练习册参考答案力学部分:010004:(1)010011:(2)010014:(2)010016:(3)010044: B010057: D010095: B010098: C011002: 3t011009:011030:011039: 5m/s;17m/s011061: 4.8m/s;3.15rad22011012:ϖϖϖdv=ωRcosωtj-ωRsinωti;o011067: dt020003:(1)020012: C020015: B, D021002: 2g,0021016:(μcosθ-sinθ)g030023: B030028: D030038: D030061: D030069:(3)031005:031054: k/(mr);-k/(2r)2v0031062: 12J032046: h==4.25m;v=[2gh(1-μctgα)]1/2=8.16m/s 2g(1+μctgα)040001: A040011: B040020: C040030: B040032: C040054: A040064: D040070: C040076: C040090: C222040097: D040099: D041019: R1v1/R2;mvR/R112-1/2041043: Ma/2 ()041078: M/9042031: 156N;118N042005:电磁学部分1.B2.A3.C4.C5.2ε0A6.–2Ax,-2Byqd7.rλλ,ln02πε0r2πε0rUR1lnR2R1(2)Ek=4.8⨯10J , v=1.03⨯10m/s -778.(1)F=9.EP=0;UPC=⎰CPEdr=⎰rCRrλλdr=lnC 2πε0r2πε0R10.B11.B12.B13.C14.A15.D16.D17.q4πε0r2, 水平向左18.A19.εrC0,σ0,U0E0W0,εrεrεr20.看书P6721.看书P6722.C23.A24.D25.C27.μ0Iμ0IμI+=1.08⨯10-3T,垂直纸面向外28,0,垂直纸面向里2πR4R4πa29.μ0I, -2μ0I, ±2μ0I, ±2μ0I30, 2BIR,π/42;水平向右IaB,Ia2B34.πmga+b2μ0Ilna-b31,35.I1的磁场B=μ0I1,方向垂直向里,因此由安培定律(1)AD受I1的磁力FAD=I2aB 2πr=μ0I1I2a,方向向左。
《大学物理C1(上、下)》练习册及答案
大学物理C(上、下)练习册✧质点动力学✧刚体定轴转动✧静电场电场强度✧电势静电场中的导体✧稳恒磁场✧电磁感应✧波动、振动✧光的干涉✧光的衍射注:本习题详细答案,结课后由老师发放一、质点动力学一、选择题1. 以下几种运动形式中,加速度a保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动 。
[ ] 2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 R /T , 2 R/T . (B) 0 , 2 R /T(C) 0 , 0. (D) 2 R /T , 0. [ ]3. 质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ]4. 一运动质点在某瞬时位于矢径r的端点处,其速度大小的表达式为(A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛[ ] 5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) t d d v . (B)2V R.(C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]6. 质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为(A) mv. (B).(C) . (D) 2mv.[]7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.[]8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定.[]9. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是(A)在两种情况下,F做的功相等.(B)在两种情况下,摩擦力对箱子做的功相等.(C)在两种情况下,箱子获得的动能相等.(D)在两种情况下,由于摩擦而产生的热相等.[]10. 质量为m的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M,万有引力恒量为G,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B)22R GMm(C) 2121R R R R GMm - (D) 2121R R R GMm - (E) 222121R R R R GMm -[ ]二 填空11. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .12. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a=_______;物体A 的加速度A a=______.13. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=__________________; (2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.三、计算题14. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2)第2秒末的瞬时速度;(3) 第2秒内的路程.15. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.16. 一人从10 m深的井中提水.起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水.求水桶匀速地从井中提到井口,人所作的功.二、刚体定轴转动一、选择题1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ] 2. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ] 3. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为 A 和 B ,不计滑轮轴的摩擦,则有(A) A = B . (B) A > B .(C) A < B . (D) 开始时 A = B ,以后 A < B .[ ] 4. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为 0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 310. (B) ()3/1 0.(C) 3 0. (D) 3 0. [ ] 6. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题7. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =____________,物体速 度的大小v =__________________.8. 如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.三、计算题9. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.10. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.11. 如图所示,A和B两飞轮的轴杆在同一中心线kg·m2.开始时,A轮转速为600 rev/min,B轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n;(2) 两轮各自所受的冲量矩.三、静电场 电场强度一、选择题1. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. []2.如图所示,一个电荷为q 的点电荷位于立方体的A角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq .(C) 024εq . (D) 048εq . [ ]3. 电荷面密度均为+ 的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]02εx4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ] 5. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1和 2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. []6. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]7. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.P+q 0(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ] 二、填空题7. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+ ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_________,E D =___________ (设方向向右为正).8. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.9. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=______________;若以 0r表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题10. 带电细线弯成半径为R 的半圆形,电荷线密度为 = 0sin ,式中 0为一常数, 为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.11.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y+σ+σ+σABCD=0,E z=0.求立方体六个面的电场强度通量。
大学物理练习册(上册)答案
练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。
2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。
3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。
大学物理练习册答案(下册)-
(1) x Acos( 2π t )
T
(2)
x Acos( 2π t 1 )
T2
(3)x Acos( 2π t 1 ) (4) x Acos( 2π t 3 )
T3
T4
2.两位外星人A和B生活在一个没有自转,没有大气, 表面光滑的匀质球形小星球上。有一次他们决定进 行一场比赛,从他们所在的位置出发,各自采用航 天技术看谁能先达到星球的对径位置。A计划穿过星 体直径凿一条通道,采用自由下落方式到达目标位 置;B计划沿着紧贴着星球表面的空间轨道,象人造 卫星一样航行到目标位置。试问A和B谁会赢得比赛?
C. 1 , 1 ,0.05 22
D. 2,2,0.05
9. 一列机械横波在t时刻的波形曲线如图所示, 则该时刻能量为最大值的媒y质质元的位置是:
A. o, b, d, f B. a, c, e, g O'
C. o, d
D. b, f O
d
a
eg
c
b
fx
(二) 填空题 1.一横波的波动方程为: y 0.01cos(250πt 10πx)(m)
解: 以星球中心为原点在直径 通道上设置x轴,A在x处受引力:
Fx
G
Mm R3
x
(注: 只有半径为x的星球部分对A有引力)
式中M为星球质量, R为星球半径, m为A的质量
A做简谐振动, 周期为 T 2 m / k k GMm / R3
A到达目标所需的时间为 tA T / 2 R R / GM B以第一宇宙速度做圆周运动 vB GM / R B到达目标所需的时间为 tB R / vB R R / GM
4. 一质点在x轴上作谐振动振幅A=4cm, 周期T=2s, 其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动, 则质点第二次通过 x=-2cm,处时刻为:[]
大学物理练习册答案(DOC)
大学物理练习册答案(DOC)第十章练习一一、选择题1、下列四种运动(忽略阻力)中哪一种是简谐振动?()(A)小球在地面上作完全弹性的上下跳动(B)细线悬挂一小球在竖直平面上作大角度的来回摆动(C)浮在水里的一均匀矩形木块,将它部分按入水中,然后松开,使木块上下浮动(D)浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动2、质点作简谐振动,距平衡位置2.0cm时,加速度a=4.0cm/2,则该质点从一端运动到另一端的时间为()(A)1.2(B)2.4(C)2.2(D)4.43、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,若从松手时开始计时,则该弹簧振子的初相位为()(A)0(B)(C)2kmFO某(D)24、一质量为m的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A时,该弹簧振子的总能量为E。
若将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E相等()(A)AAA(B)(C)(D)A242T时的质点速度为,2二、填空题1、已知简谐振动某Aco(t0)的周期为T,在t加速度为2、已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T,将该单摆拿到月球上去,其振动周期应为3、一质点作简谐振动,在同一周期内相继通过相距为11cm的A,B两点,历时2秒,速度大小与方向均相同,再经过2秒,从另一方向以相同速率反向通过B点。
该振动的振幅为,周期为4、简谐振动的总能量是E,当位移是振幅的一半时,当EkE,P,EE某时,EkEP。
A三、计算题1、一振动质点的振动曲线如右图所示,试求:(l)运动学方程;(2)点P对应的相位;(3)从振动开始到达点P相应位置所需的时间。
2、一质量为10g的物体作简谐运动,其振幅为24cm,周期为4.0,当t=0时,位移为+24cm。
大学物理练习册下答案
大学物理练习册下答案问题1:描述牛顿第二定律的数学表达式,并给出一个例子说明如何使用它来解决实际问题。
答案:牛顿第二定律的数学表达式是 \( F = ma \),其中 \( F \)是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。
例如,如果一个质量为5kg的物体受到10N的力,那么根据牛顿第二定律,物体的加速度 \( a \) 将是 \( 10N / 5kg = 2m/s^2 \)。
问题2:说明什么是能量守恒定律,并给出一个物理系统的例子来展示这一定律。
答案:能量守恒定律表明,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,但总量保持不变。
例如,当一个自由落体的物体从一定高度下落时,它的势能转化为动能。
如果忽略空气阻力,下落过程中总能量是守恒的。
问题3:解释什么是波的干涉,并给出一个实验设置来观察这一现象。
答案:波的干涉是指两个或多个波相遇时,它们的振幅相加形成一个新的波形的现象。
当两个波的相位相同(相长干涉)或相反(相消干涉)时,干涉效果最为明显。
观察干涉的一个简单实验设置是使用两个相干光源,它们发出的波在空间中相遇,形成明暗相间的干涉条纹。
问题4:描述电磁感应的基本原理,并解释法拉第电磁感应定律。
答案:电磁感应是当一个导体在变化的磁场中移动时,导体中产生电动势的现象。
法拉第电磁感应定律表明,导体中产生的电动势与穿过导体回路的磁通量的变化率成正比。
数学表达式为 \( \varepsilon = -d\Phi_B/dt \),其中 \( \varepsilon \) 是感应电动势,\( \Phi_B \) 是磁通量,\( t \) 是时间。
问题5:简述量子力学的基本原理,并解释海森堡不确定性原理。
答案:量子力学是描述微观粒子行为的物理学分支,其基本原理包括波粒二象性、量子态的叠加以及量子态的演化遵循薛定谔方程等。
海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积至少等于普朗克常数的一半。
大学物理练习册答案(1)
第一单元 质点运动学一、选择题1.A2.D3.C4.A5.B6.C7.D8.D9. D 10. D二.填空题1.瞬时加速度 t 1到t 3时间内的平均加速度4d t t ⎰v4d t t ⎰v2.圆周运动,匀速率曲线运动,变速率曲线运动3. px y 2=2ut put 2± j p u tpu i u2±=v 4.1+=1v v kt 5. 0v l -h h v =v l -h lv = 6. )2(sec 2θπω-=D v7. 2.67rad8. 22-16=x v9. j i 3-2 j i4-2 j 2-10. t 3+8t -628 -628 8三、计算题1.解:由)2-0(142j t i t r +=得: j t i4-4=v由已知:024-83==⋅t t r v得t =0s 、s 3=t2.解:v =R ω =ARt 2由已知:t =1s ,v =4m/s 得A=2在t=2s 时 v =R ω =ARt 2=2×2×22=16m/sn n n R ARt n R t a 1281621622222d d 222+=+⨯⨯⨯=+=+=ττττv v vm/s 1291281622=+=a 23.解:由题意可知θsin t g a -=θsin d d d d d d d d t g st s s t a -====vv v v s g d sin d θ-=v v ①从图中分析看出syd d sin =θ y s d d sin =θ ②将②代入①得dy d sin d g s g --=θv v⇒-=⎰⎰yy y g 0d d vv v v )(2022y y g -+=v v 第二单元 质点动力学参考答案一、选择题1.B 2C 3.D 4.D 5.B 6. E 7. C 8.C 9.B 10.C 11.C 12.B 13. D二、填空题1.)/(m M F + )/(m M MF + 2. 0 2g 3.R g /4.v m 2 指向正西南或南偏西45° 5.i2 m/s6.0.003 s 0.6 N·s 2g 7.)131(R R GMm -或RGMm32-8.kg m 2229. 2112r r r r GMm- 2121r r r r G M m -10.)(mr k E =)2(r k - 11.gl 32112. km 32v .三、计算题1. 解:取距转轴为r 处,长为d r 的小段绳子,其质量为( M /L ) d r 由于绳子作圆周运动,所以小段绳子有径向加速度,T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r ) 得 d T =-( M ω2 / L ) r d r 由于绳子的末端是自由端 T (L ) =0有r r L M T Lr r T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 2.解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B0,由机械能守恒,有2/32120B 20v m kx = 得 mkx 300B =vA 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有0B 22211v v v m m m =+ ①20B 2222221121212121v v v m m kx m =++ ②O ω当v 1 = v 2时,由式①解出v 1 = v 2mk x 3434/300B ==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 = v 2 =3v B0/4,再由式②解出 0max 21x x =3.解:设m 与M 碰撞后的共同速度为v ,它们脱离球面的速度为u .(1) 对碰撞过程,由动量守恒定律得 )/(0m M m +=v v①m 与M 沿固定光滑球面滑下过程中机械能守恒,在任一位置θ 时,有22)(21)cos 1()()(21u m M gR m M m M +=-+++θv ②R u m M N g m M /)(cos )(2+=-+θ ③当物体脱离球面时,N = 0,代入③式并与①、②式联立,可解得:32)(332cos 22022++=+=m M gR m gR gR v v θ ∴ ]32)(3[cos 22021++=-m M gR m v θ(2) 若要在A 处使物体脱离球面,必须满足g m M R m M A )(/)(2+≥+v即Rg A >2v ,考虑到①式有 Rg m M m ≥+)/(202v所以油灰的速度至少应为 m Rg m M /)(0+=v第三单元 静电场一、选择题1.D2.D3.D4.D5.C6.D7.D8.C9.C 10.C 11.A 12.B 13.D 14. A二、填空题1.θπεθtan sin 40mg l2.023εσ-02εσ- 023εσ 3.包围在曲面内的净电荷 曲面外的电荷 4.)11(400ab r r qq -πε 5.2ελ 6.0 7.< 8.-2000V9.> (分别垂直指向U 3) 10.F/4 11.<三、计算题1.解:在球内取半径为r 、厚度为d r 的薄球壳,该壳内所包含的电荷为d q =ρd V =Kr 4πr 2d r在半径为r 的球面内包含的总电荷为403d 4d Kr r Kr V q rVππρ===⎰⎰ (r ≤R )以该面为高斯面,按照高斯定理有0421/4εππKr r E =⋅得到 0214εKr E =, (r ≤R )方向沿径向,K >0时向外,K <0时向里。
大学物理练习册参考解答
第17章 量子物理学基础 参考答案一、选择题1(D),2(D),3(C),4(B),5(A),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). λ/hc ,λ/h ,)/(λc h . (2). 2.5,4.0×1014 . (3). A /h ,))(/(01νν-e h . (4). π,0 . (5).3/1 (6). 1.66×10-33 kg ·m ·s -1 ,0.4 m 或 63.7 mm . (7). 1, 2. (8).粒子在t 时刻在(x ,y ,z )处出现的概率密度. 单值、有限、连续.1d d d 2=⎰⎰⎰z y x ψ(9). 2, 2×(2l +1), 2n 2. (10). 泡利不相容, 能量最小. 三 计算题1. 用辐射高温计测得炼钢炉口的辐射出射度为22.8 W ·cm -2,试求炉内温度.(斯特藩常量σ = 5.67×10-8 W/(m 2·K 4) )解:炼钢炉口可视作绝对黑体,其辐射出射度为M B (T ) = 22.8 W ·cm -2=22.8×104 W ·m -2由斯特藩──玻尔兹曼定律 M B (T ) = σT 4 ∴ T = 1.42×103 K2.已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2. (1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4))解: (1) 太阳在单位时间内辐射的总能量 E = 1.37×103×4π(R SE )2 = 3.87×1026 W(2) 太阳的辐射出射度 =π=204Sr E E 0.674×108 W/m 2由斯特藩-玻尔兹曼定律 40T E σ= 可得 5872/40==σE T K3.图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19C)解:(1) 由 A h U e a -=ν 得 e A e h U a //-=ν|14Hz)e h U a /d /d =ν (恒量) 由此可知,对不同金属,曲线的斜率相同. (2) h = e tg θ 1410)0.50.10(00.2⨯--=e= 6.4×10-34J ·s4. 波长为λ的单色光照射某金属M 表面发生光电效应,发射的光电子(电荷绝对值为e ,质量为m )经狭缝S 后垂直进入磁感应强度为B的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为R .求(1) 金属材料的逸出功A ; (2) 遏止电势差U a .解:(1) 由 R m eB /2v v = 得 m R e B/)(=v , 代入 A m h +=221v ν 可得 222221m B e mR hc A ⋅-=λ m B e R hc 2222-=λ (2) 221v m U e a =, meB R e m U a 22222==v .5.光电管的阴极用逸出功为A = 2.2 eV 的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为| U a | = 5.0 V ,试求:(1) 光电管阴极金属的光电效应红限波长; (2) 入射光波长.(普朗克常量h = 6.63×10-34 J ·s , 基本电荷e = 1.6×10-19 C )解:(1) 由 00/λνhc h A == ==Ahc0λ 5.65×10-7 m = 565 nm(2)a U e m =221v , A U e hc h a +==λν 得=+=AU e hca λ 1.73×10-7 m = 173 nm6.α粒子在磁感应强度为B = 0.025 T 的均匀磁场中沿半径为R =0.83 cm 的圆形轨道运动. (1) 试计算其德布罗意波长.(2) 若使质量m = 0.1 g 的小球以与α粒子相同的速率运动.则其波长为多少?(α粒子的质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)解:(1) 德布罗意公式:)/(v m h =λ由题可知α 粒子受磁场力作用作圆周运动R m B q /2v v α=,qRB m =v α又 e q 2= 则 e R B m 2=v α故nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλB× × × × ×(2) 由上一问可得 αm eRB /2=v 对于质量为m 的小球 αααλλ⋅=⋅==mm m m eRB hm h 2v =6.64×10-34 m7. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式 ∆E ∆t ≥ 得∆E ≥ /∆t = 0.659×10-7 eV根据光子能量与波长的关系 λν/hc h E ==得光子的波长 ==E hc /λ 3.67×10-7 m波长的最小不确定量为 ∆λ = hc ∆E /E 2 = 7.13×10-15 m8.已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为 axn a x n π=sin2)(ψ , n = 1, 2, 3, … 试计算n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率.解:找到粒子的概率为⎰4/34/1*1d )()(a a x x x ψψ⎰π=4/34/2d sin 2a a x a xa π+=+ππ=121)12(1=0.818四 研讨题1. 人体也向外发出热辐射,为什么在黑暗中还是看不见人?参考解答:人体辐射频率太低,远离可见光波段。
大学物理练习册习题解答(1-22上)
练习一 运动的描述 (一)1.(D )2.(D ) 3.217,5s m sm 4.mmπ5,105.(1)s m t x V 5.0-=∆∆= (2)()s m v t t dt dx v 62,692-=-==(3)()()()()质点反向运动时,,05.125.25.1215.1===⨯-⨯+⨯-⨯=v s t m S6.答:矢径是从坐标原点至质点所在位置的有向线段。
位移是由前一时刻质点所在位置引向后一时刻质点所在位置的有向线段,它们的一般关系为0r r r -=∆ 若把坐标原点选在质点的初始位置,则00=r,任意时刻质点对此位置的位移为r r =∆,即此时r既是矢径也是位移。
练习二 运动的描述 (一)1.()()s m t t s radtt 612,34223-- 2.(c ) 3.三 , 三至六 4.s m s m s m 20,3103.17=5.1032,224,432102+===∴===⎰⎰⎰⎰t x dt t dx tv tdt dv t dt dv a txvt6.根据已知条件确定常量K 222224,4,4RtR v t s d ra Rtv tk ======ωωω22222228.3532168841sm a a a sm R v a s m Rt dt v d a sm Rtv s t n n =+=========ττ时,练习三 运动定律与力学中的守恒定律(一)1.(D ) 2. (C )3.4.5.因绳子质量不计,所以环受到的摩擦力在数值上等于张力T ,设2m 对地加速度为/2a ,取向上为正;1m 对地加速度为1a (亦即绳子的加速度)向下为正,⎪⎩⎪⎨⎧-==-=-21/2/222111aa a a m g m T a m T g m()()()212121/22121221222112m m a m g m m a m m m m a g T m m a m g m m a +--=+-=++-=解得:6.(1)子弹进入沙土后受力为-kv,由牛顿定律有mt k vv tev v v dv dt mk vdv dt mk dtdv mkv -=∴=-=-∴=-⎰⎰00,,(2)求最大深度()()kv mv x ev k m x dtev dx dt dx v mkt mkt 00max 00,1,=-=∴=∴=--练习四 运动定律与力学中的守恒定律(二)1.(C )2.(B ) 3.s m S N 24,140⋅()()sm m mv I v mv mv I sN dtt dt F I t t 24,14040301212221=+=∴-=⋅=+==⎰⎰4.2221221,m t F m m t F m m t F ∆++∆+∆5.(1)系统在水平方向动量守恒。
大学物理练习册与大题答案
大学物理(一)练习册 参考解答3. 质点作曲线运动,r 表示位置矢量,v表示速度,a 表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中,(1) a t d /d v , (2) v t r d /d , (3) v t S d /d , (4) t a t d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. 答案: (D) 参考解答:质点作曲线运动,应该考虑速度v,加速度a 的矢量性。
注意正确书写矢量公式,例如:.d d ,d d v vtr a t速度和速率是两个不同概念。
前者为矢量,后者为标量;瞬时速度的大小和瞬时速率相同:v t S d /d . 所以只有(3)是对的。
大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(B),6(D),7(D),8(E),9(B),10(B), 二、填空题 (1).1221n (n = 0,1,… ), t A sin 2 (2). 8 m ,10 m. (3). 23 m/s. (4). 16Rt 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R . (7). 2.24 m/s 2,104o(8).)5cos 5sin (50j t i tm/s ,0,圆. (9). K m x /0max v(10). 02121v v kt三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/ t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S其中b 、c 是大于零的常量,求从0 t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S d /d v c t a t d /d v R ct b a n /2根据题意: a t = a n 即 R ct b c /2解得 cb c R t3. 一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m 处,初速度v 0.试求其位置和时间的关系式.解: a d v /d t 4 t , d v 4 t d tvv 0d 4d tt t v = 2t 2v d x /d t 2 t 2t t x txx d 2d 020x 2 t 3 /3+x 0 (SI)4. 一物体悬挂在弹簧上作竖直振动,其加速度为 a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt y y t a d d d d d d d d v v v v又 a ky ∴ -k y v d v / d yC ky y ky 222121 , d d v v v已知 y y 0 , v v 0 则 20202121ky C v)(220202y y k v v5. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v vAE v 、 AF v 、EE v 构成直角三角形,可得 km/h 17022 v v v FE AF AE 4.19/tg 1 AE FE v v(飞机应取向北偏东19.4 的航向).四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答: (1)、(3)、(4)是不可能的. (1) 曲线运动有法向加速度,加速度不可能为零; (3) 曲线运动法向加速度要指向曲率圆心;(4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x ,)(t y y 在计算质点的速度和加速度时:第一种方法是,先求出22y x r ,然后根据 t d d rv 及 22d d tr a 而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即22)d d ()d d (t y t x v 和 222222)d d ()d d (ty t x a .你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。
大学物理第一学期练习册答案
练习一 质点运动学一、选择题1.【 A 】2. 【 D 】3. 【 D 】4.【 C 】 二、填空题1. (1) 物体的速度与时间的函数关系为cos dyv A t dt ωω==; (2) 物体的速度与坐标的函数关系为222()vy A ω+=.2. 走过的路程是m 34π; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3πα=3.在第3秒至第6秒间速度与加速度同方向。
4.则其速度与时间的关系v=32031Ct dt Ct v v t==-⎰, 运动方程为x=400121Ct t v x x +=-. 三、计算题1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2-+=分别以m 和s 为单位,求:(1) 质点的轨迹方程,并作图;(2) t=0s 和t=2s 时刻的位置矢量;(3) t=0s 到t=2s 质点的位移?v ,?r ==∆✉ (1)轨迹方程:08y 4x 2=-+; (2) j 2r 0=,j 2i 4r 2-=(3) j 4i 4r r r 02-=-=∆,j 2i 2tr v -==∆∆ 2. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图5所示。
如用速度V 0收绳,计算船行至离岸边x 处时的速度和加速度。
✉ 选取如图5所示的坐标,任一时刻小船满足:222h x l +=,两边对时间微分 dt dx x dt dl l=,dt dl V 0-=,dtdx V = 022V xh x V +-=方向沿着X 轴的负方向。
方程两边对时间微分:xa V V 220+=,xV V a 220-=5图3220xh V a -=,方向沿着X 轴的负方向。
3. 质点沿X 轴运动,其加速度和位置的关系是)SI (x 62a 2+=。
如质点在x=0处的速度为1s m 10-⋅,求质点在任意坐标x 处的速度。
✉ 由速度和加速度的关系式:dt dv a =,dxdvv dt dx dx dv a ==vdv adx =,vdv dx )x 62(2=+,两边积分,并利用初始条件:0x =,10s m 10v -⋅=vdv dx )x 62(v102x⎰⎰=+,得到质点在任意坐标x 处的速度:25x x 2v 3++=练习二 曲线运动和相对运动一、 选择题1. 【 B 】2.【 D 】3. 【 C 】4.【 B 】 二、填空题其速度j t 5c o s 50i t 5sin 50v+-=;其切向加速度0a =τ;该质点运动轨迹是100y x 22=+。
大学物理学练习册答案
大物练习册参考答案二、判断题01. × 02. × 03. × 04. √ 05. √ 06. × 07. × 08. √ 09. √ 10. √ 11. √ 12. √ 13. √ 14. × 15. √三、计算题1. 解:根据连续性原理可知,出口处流速为:112221120.16)010.0()020.0(0.4--•=•⨯==s m s m S S v v 选流入处为参考平面,即令01=h ,根据伯努利方程可求的高处的压强为:22222112121gh v p v p ρρρ++=+ Pa gh v v p p 52222112103.22121⨯=--+=ρρρ2. 解:以油滴为研究对象, 设油滴的半径为r ,不存在竖直向下的匀强电场时,其受力情况为:竖直向下的重力:g r mg G ρπ334== 竖直向上的浮力:g r F 0334ρπ=竖直向上的黏滞阻力:rv f πη6= 三力达到平衡时,即:G=F+f,油滴以最大速度0v 下降。
由受力平衡:003363434rv g r g r πηρπρπ+=(1) 当存在竖直向下的匀强电场时,仍然以油滴为研究对象, 其受力情况为:竖直向下的重力:g r mg G ρπ334== 竖直向上的浮力:g r F 0334ρπ=竖直向上的黏滞阻力:rv f πη6= 竖直向上的电场力:qE F =1四力达到平衡时,即:f F F G ++=1时,油滴以最大速度v 下降。
由受力平衡:rv qE g r g r πηρπρπ63434033++=(2) 由方程(1)和(2)可以求出q 为:E v v v g q 210021023)((1)29(34-⎥⎦⎤⎢⎣⎡-=ρρηπ 3. 解:设总的水滴数目为N 个,根据融合前后水的体积不变,可得: 6333420105010(1.010)3N π--⨯⨯⨯=⨯g(1) 则融合前后水的表面积改变量为:3264(1.010)2010S N π-∆=⨯-⨯g (2) 释放出的能量为E S α∆=∆ (3) 根据(1),(2),(3)方程可得 82.1810E J ∆=⨯4. 解:将虹吸管取为一流管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(B) x 8cos5t SI
(C) x 4 cos10t SI
2
(D) x 4 cos5t SI
2
4、已知两同方向同频率的简谐振动的振动方程分别为
x1
A1
cos(t
) 3
( SI ),
x2
A2
cos(t
6
)
(SI),则它们的合振幅应为(
)
(A) A1 A2
(B) A1 A2
第十章
练习一
一、选择题
1、下列四种运动(忽略阻力)中哪一种是简谐振动( ) (A)小球在地面上作完全弹性的上下跳动 (B)细线悬挂一小球在竖直平面上作大角度的来回摆动 (C)浮在水里的一均匀矩形木块,将它部分按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动
(C) A12 A22
(D) A12 A22
二、填空题
1、两个同方向同频率的简谐振动,其振动表达式分别为:
x1
6 102
cos(5t
1 2
)
(SI) ,
x2 2 10 2 cos( 5t)
(SI)
它们的合振动的振辐为
,初相为
。
2、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为
x1
2、质点作简谐振动,距平衡位置 2.0cm 时,加速度 a=4.0cm/s2,则该质点从一端运动到另 一端的时间为( )
(A)
(B)
(C)
(D)
3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,若从松
手时开始计时,则该弹簧振子的初相位为( )
(A) 0
(C) 2
(B)
2 (D)
2、已知一平面简谐波的表达式为 y Acos(at bx) (a、b 为正值常量),则( )
(A)波的频率为 a;
(B)波的传播速度为 b/a;
(C)波长为 / b;
(D)波的周期为 2 / a。 u
3、一平面简谐波的波形曲线如右图所示,则( )
ym
(A)其周期为 8s
2
(B)其波长为 10m (C)x=6m 的质点向右运动 (D)x=6m 的质点向下运动
2、设有一平面简谐波
y 0.02cos 2 ( t x ) 0.01 0.3
x,y 以 m 计,t 以 s 计。 (1)求振幅、波长、频率和波速。 (2)求 x=0.1m 处质点振动的初相位。
3、已知一沿 x 轴正向传播的平面余弦波在 t=1/3s 时的波形如右图所示,且周期 T=2s。
(1)写出 O 点和 P 点的振动表达式; (2)写出该波的波动表达式; (3)求 P 点离 O 点的距离。
A 中的波长的两倍,则该简谐波在介质 B 中的传播速度为
。
3、已知一平面简谐波的表达式为 y 0.25cos(125t 0.37x) (SI),则
x1= 10m 点处质点的振动方程为________________________________;
x1= 10m 和 x2 = 25m 两点间的振动相位差为_____________。
2、一质量为 10g 的物体作简谐运动,其振幅为 24 cm,周期为,当 t=0 时,位移为+24cm。 求:
(1)t=时,物体所在位置; (2)t=时,物体所受.力的大小与方向; (3)由起始位置运动到 x=12cm 处所需的最少时间; (4)在 x=12cm 处,物体的速度、动能以及系统的势能和总能量。
(A) 振子的性质
(B) 振子的初始状态
(C) 阻尼的大小
(D) 驱动力的特征
二、填空题
1、实际上,真实的振动系统总会受到阻力作用而作振幅不断减小的阻尼振动,这是因为
阻尼的存在使系统的能量逐渐减少,能量损失的原因通常有两种:
和
。
2、在灵敏电流计等精密仪表中,为使人们能较快地和较准确地进行读数测量,常使电流
练习三
一、选择题
1、下列关于 LC 振荡电路中说法不正确的是( )
(A)电路中电流和电容器上的电量的变化也是一种简谐振动
(B)电容器放电完毕时,电路中的电流达到最大值
(C)电场能和磁场能相互转化,但总的电磁能量保持不变
(D)电容器充电时,由于线圈的自感作用,电流只能逐渐增大
2、LC 振荡电路中电荷和电流的变化,下列描述不正确的是( )
3、一平面简谐波沿 Ox 轴负方向传播,其波长为 ,则位于 x1 的质点的振动与位于
x2 / 2 的质点的振动方程的相位差为( )
(A) 3
(B) 3
(C) 3 / 2
(D) / 2
4、一平面简谐波沿 Ox 轴正方向传播,其波速为 u ,已知在 x1 处的质点的振动方程为
差为 –1 = /6。若第一个简谐振动的振幅为10 3 cm = 17.3 cm,则第二个简谐振动的振幅为
__
__ cm,第一、二两个简谐振动的相位差 1 2 为
。
三、计算题
1、由一个电容 C=μF 的电容器和一个自感为 L=10mH 的线圈组成的 LC 电路,当电容器上电 荷的最大值 Q0=×10-5C 时开始作无阻尼自由振荡,试求:
计的偏转系统工作在
状态下。
3、试分别写出简谐振动、阻尼振动和受迫振动的运动微分方程
、
、
。
4、在阻尼很小的情况下,受迫振动的频率取决于驱动力的频率,当驱动力的频率逐渐趋
近于振动系统的固有频率时,振幅达到最大值,这种现象叫做
。
三、计算题
1、质量为 m=5.88kg 的物体,挂在弹簧上,让它在竖直方向上作自由振动。在无阻尼情况下,
(假定小球在振动过程中,容器内气体进行的过程可看作准静态绝热过程。)
练习二
一、选择题
1、一弹簧振子,当把它水平放置时,它可以作简谐振动。若把它竖直放置或放在固定的
光滑斜面上,试判断下面哪种情况是正确的:( )
(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动
(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动
其振动周期为 T=πs;在阻力与物体运动速度成正比的某一介质中,它的振动周期为 T=πs。
求当速度为 0.01m/s 时,物体在阻尼介质中所受的阻力。
2、一摆在空中振动,某时刻,振幅为 A0=0.03m,经 t1=10s 后,振幅变为 A1=0.01m。问: 由振幅为 A0 时起,经多长时间,其振幅减为 A2=0.003m
(A) 电荷和电流都作谐振动
(B) 电荷和电流都作等幅振动
(C) 电荷的相位比电流的相位超前π/2
(D) 电荷和电流振动的频率相同
3、两同方向同频率的简谐振动的振动方程为
x1
6 c os(5t
2
)(SI),x2
2 c os(5t
2
)
(SI),则它们的合振动的振动方程应为( )
(A) x 4cos5t SI
(C) 两种情况都可作简谐振动
(D) 两种情况都不能作简谐振动
2、在阻尼振动中,振动系统( )
(A) 只是振幅减小
(B) 只是振动变慢
(C) 振幅既不减小,振动也不变慢
(D) 振幅减小且振动变慢
3、下列选项中不属于阻尼振动基本形式的是( )
(A) 强阻尼
(B) 欠阻尼
(C) 过阻尼
(D) 临界阻尼
4、受迫振动的振幅依赖于( )
x Acos 2.1t cos50.0t
式中 t 以 s 为单位。求各分振动的角频率和合振动的拍的周期。
第十一章
练习一
一、选择题
1、当一列机械波在弹性介质中由近向远传播的时候,下列描述错误的是( ) (A)机械波传播的是介质原子 (B)机械波传播的是介质原子的振动状态 (C)机械波传播的是介质原子的振动相位 (D)机械波传播的是介质原子的振动能量
4、一简谐波的波形曲线如右图所示,若已知
ym
该时刻质点 A 向上运动,则该简谐波的传播方向
A
为
,B、C、D 质点在该时刻的
运动方向为 B ,C ,D 。
OB
C
D
xm
三、计算题 1、一横波沿绳子传播时的波动方程式为
y 0.05cos(10t 4 x)
x,y 的单位为 m,t 的单位为 s。 (l)求此波的振幅、波速、频率和波长; (2)求绳子上各质点振动的最大速度和最大加速度; (3)求 x=0.2m 处的质点在 t=1s 时的相位,它是原点处质点在哪一时刻的相位 (4)分别画出 t=1s,,各时刻的波形。
3、如右图所示,绝热容器上端有一截面积为 S 的玻璃管,管内 放有一质量为 m 的光滑小球作为活塞。容器内储有体积为 V、 压强为 p 的某种气体,设大气压强为 p0。开始时将小球稍向下 移,然后放手,则小球将上下振动。如果测出小球作谐振动时的 周期 T,就可以测定气体的比热容比γ。试证明ຫໍສະໝຸດ 4 2mV pS 2T 2
1、已知简谐振动 x
A
cos(t 0 ) 的周期为 T
,在 t
T 2
时的质点速度为
,
加速度为
。
2、已知月球上的重力加速度是地球的 1/6,若一个单摆(只考虑小角度摆动)在地球上的振
动周期为 T,将该单摆拿到月球上去,其振动周期应为
。
3、一质点作简谐振动,在同一周期内相继通过相距为 11cm 的 A,B 两点,历时 2 秒,速
度大小与方向均相同,再经过 2 秒,从另一方向以相同速率反向通过 B 点。 该振动的振幅
为
,周期为
。
4、简谐振动的总能量是 E,当位移是振幅的一半时,Ek
,EP
,
E
E
当x A
时, Ek EP 。