反比例函数的图像和性质-第一课时-课件

合集下载

人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】

人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】
60° 缩小 A1 60°
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正六边形 AF
120° B
放大 B1 E
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
性 的两个分支分别在第 的两个分支分别在第

一、三象限,在每个 二、四象限,在每个 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
1.反比例函数y= -
5 x
的图象大致是(
D)
y
y
A.
o
x B.
o x
y
y
C.
o
x D.
y
6
6y
5 4
y
=
6 x
3
y=
6 x
5 4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描一 些点,这样既可以方便连线,又可以使图象精确. 2.描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错. 3.线连时一定要养成按自变量从小到大的顺序依次画线,连 线时必须用光滑的曲线连接各点,不能用折线连接. 4.图象是延伸的,注意不要画的有明确端点. 5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.

反比例函数的图像和性质课件

反比例函数的图像和性质课件

曲线运动问题
通过给定物体的速度和运 动轨迹的曲率半径,利用 反比例关系求解物体在不 同位置的速度。
浓度问题建模与求解
溶液稀释问题
通过给定溶液的初始浓度 和稀释后的体积,利用反 比例关系求解稀释后的浓 度。
溶液混合问题
通过给定两种不同浓度的 溶液的体积和浓度,利用 反比例关系求解混合后的 浓度。
物质溶解问题
通过给定三角形的面积和底边长度,利用反比例关系求解高。
平行四边形面积问题
03
通过给定平行四边形的面积和一组对边的长度,利用反比例关
系求解另一组对边的长度。
速度问题建模与求解
01
02
03
匀速直线运动问题
通过给定物体的速度和运 动时间,利用反比例关系 求解物体运动的距离。
变速直线运动问题
通过给定物体的加速度和 运动时间,利用反比例关 系求解物体在不同时间点 的速度。
在第一象限和第三象限内,随着 $x$ 的增大 ,$y$ 值逐渐减小。
函数图像关于原点对称。
函数值变化规律
01
当 $k < 0$ 时
在第二象限和第四象限内,随着 $x$ 的增大,$y$ 值逐渐增大。
无论 $k$ 取何值,反比例函数 在其定义域内总是连续的,且在 其定义域内没有极值点。
02
03
04
函数图像关于原点对称。
2
反比例型复合函数图像
反比例型复合函数的图像形状和位置取 决于 $f(x)$ 的性质和取值范围。一般来 说,其图像可能不再是双曲线,但仍然 具有一些反比例函数的特性。
3 反比例型复合函数性质
反比例型复合函数具有一些特殊的性质 ,如单调性、奇偶性等,这些性质与 $f(x)$ 的性质和取值范围密切相关。在 实际应用中,需要根据具体情况进行分 析和判断。

反比例函数的图象和性质(1)PPT课件

反比例函数的图象和性质(1)PPT课件

2
复习提问
下列函数中哪些是反比例函数?
① y = 3x-1 ② y = 2x2
③ y=
1 x

y
=
2x 3
⑤ y = 3x
⑥ y=
1 x

y
=
1 3x

y=
3 2x
反比例函数的图象又会是什么样子呢?
你还记得作函数图象的一般步骤吗?
用图象法表示函数关系时,首先在自变 量的取值范围内取一些值,列表,描点, 连线(按自变量从小到大的顺序,用一 条平滑的曲线连接起来).
7
讨 论 反比例函数的性质
实验 请 1.当大k家>0结时合,图反象比的例两函个数 的 分 限y 函 支 内= 数 分 ;6x图 别和象在,第y围一= 绕、以三x6 下象 两个问题分析反比例函 数的性质。
2①.当当kk<>00时时,图,象双的曲两线个两分分支支分 别各在在第哪二个、象四限象?限内。
y
0x
(A) y = -5x -1
( B)y=
x 2
(C)y=-2x+2; (D)y=4x.
2020年10月2日
17
2020年10月2日
18
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
10
例1
已知反比例函数y=k/x(k≠0)的图象的 一支如图。

反比例函数的图象和性质 课件PPT

反比例函数的图象和性质 课件PPT
一次函数图象在反比例函数图象的上方,即y1>y2 ,
而当 x 1或0 时 x,一2 次函数图象在反比例函数图
象的下方,即y1<y2
4.(益阳·中考)如图,反比例函 数 y= k 的图象位于第一、三象限,
x 其中第一象限内的图象经过点A(1,2),
请在第三象限内的图象上找一个你喜
欢的点P,你选择的P点坐标为_____.
【解析】∵
y=
2k+4
的x 图象在第一、三象限,
∴∴综2k上-k3+,<4k> 0需. 0满.由足于y2k=k-3+kx4-在30解x0>得0:-时2<,ky<随3x.的增大而增大,
答案:-2<k<3
6.设函数y=(m-2)xm-4.当m取何值时,它是反比例函数? 它的图象位于哪些象限内? 在每个象限内,当x的值增大时,对应的y值是随 着增大,还是随着减小?
反比例函数的图象又是什么?它又有什么性质呢?
画函数图象的一般步骤是什么? 列表、 描点、 连线.
例题
【例】画出反比例函数 解:
y=
6 x

y=-
6 x
的图象.
一、列表:
x
y
=
6
x
y=
6
x
注意:①列表时自变量取值要均 匀和对称②x≠0③选整数较好计
算和描点.
x
… -4 -3 -2 -1 1 2 3 4 …
且图象在第二、四象限内,则m的值是( )
(A)2
(B)-2
(C)±2
【解析】选B.由题意得:
m2
-5=-1 ,
m+1 0
解得m=-2.
(D) - 1
2
2.(绍兴·中考)已知(x1,y1),(x2,y2),(x3,y3)是反比例

反比例函数图像和性质ppt课件

反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。

湘教版九年级数学 1.2 反比例函数的图象与性质(学习、上课课件)

湘教版九年级数学  1.2 反比例函数的图象与性质(学习、上课课件)

知3-讲
已知函数 y=kx (k ≠ 0).
感悟新知
知3-讲
特别提醒
◆在利用反比例函数y=kx(k ≠ 0)中k的几何性质确定k的值 时,不仅要注意矩形面积的大小,还要注意函数图象 的位置.
感悟新知
k 值与矩形面积的关系 k 值与三角形面积的关系知3-讲
图形
条件
过图象上任意一点 P 分别作PM ⊥ x 轴于
2-2. [ 中考·天门] 在反比 例函数 y= 4-x k的图象上有两
点 A( x1,y1), B( x2, y2),当 x1 <0 < x2 时,有 y1 < y2,则 k 的取值范围是( C )
A. k < 0
B. k > 0
C. k < 4
D. k > 4
感悟新知
知识点 3 反比例函数 y=kx (k ≠ 0)中k的几何性质
过图象上任意一点 E 作 M,EF ⊥ y 轴于 F,连接 OE
PN ⊥ y 轴于 N
结论
S 矩形 OMPN=|k|
S

OEF=
|k| 2
感悟新知
知3-讲
矩形 OMPN 的面积S=PM·PN=|yP|·|xP|= |xPyP|.所以 S=|k|.同理,S △ OEF= |k2|.
感悟新知
知3-练
示意图(如图1.2-1).
知1-讲
感悟新知
活学巧记 点越多,越精确, 平滑曲线把点过, 两个分支不能少, 对称关系很奇妙.
知1-讲
感悟新知
知1-练
例1 [母题 教材 P7 探究]在同一平面直角坐标系中画出反
比例函数y=8x和y=-8x的图象.
解题秘方:紧扣画图象的“一列、二描、三连” 的步骤作图.

6.2 反比例函数的图像和性质(1)课件(共31张ppt)

6.2 反比例函数的图像和性质(1)课件(共31张ppt)
问题1:
对于一次函数 y = kx + b (k、b为常数, k ≠ 0 ),我们是如何研究的?
问题2:
对于反比例函数
y
k x
(
k是常数,k

0
)
,我们能否像一次函数那样进行研究呢?
杭州育才中学 黄有宇
知识回顾
作一次函数图象的一般步骤:
y 6x
一条直线
描点法 列




线
反比例函数的图象是怎样的?
求m的取值范围.
5. 已知反比例函数
y k (k 0) x
与正比例函数
y=-2x的图象的一个公共点的纵坐标为-4,
求这个反比例函数的解析式,
并求出另一个公共点的坐标.
适度拓展,用药熏消毒法进
行消毒。已知药物燃烧时,室内每立方米空气中的
含药量 y(mg)与时间x(min)成正比例,药物燃烧
(2)
杭州育才中学 黄有宇
观察反比例函数 y k ( k 0 )的图象,说出y与x之
间的变化关系:
x
k 0
k 0
y
O
( x3,y(3xC)4,yD4 )
A ( x1,y1 ) B ( x2,y2 )
x
y
( x1,y1 ) A
( x2,y2 ) B
O
x
D ( x4,y4 )
C ( x3,y3 )
当k>0时,在一、三象限; 当k<0时,在二、四象限

减 当k>0时,y随x的增大而增大 性 当k<0时,y随x的增大而减小
当k>0时,在每一象限内,y 随x的增大而减小
当k<0时,在每一象限内, y随x的增大而增大

反比例函数的图像和性质ppt课件

反比例函数的图像和性质ppt课件
增大而增大.
探究新知
k
一般地,反比例函数 y 的图象是双曲线,它具有以下性质:
x
(1)当k>0时,图象的两个分支分别在第一、三象限内,在
每一象限内,y的值随x值的增大而减小;
(2)当k<0时,图象的两个分支分别在第二、四象限内,在
每一象限内,y的值随x值的增大而增大.
k 的正负决定反比例函数所在的象限和增减性
大而减小.
探究新知
k
当k=-2,-4,-6时,反比例函数 y
的图象(如图),它们有哪
x
些共同特征?
y
6
2
y=
x
6
4
y=
4
x
2
–6
–4
–2 O
–2
y
y
y=
4
6
x
2
4
6
–6
–4
–2 O
–2
4
2
2
ቤተ መጻሕፍቲ ባይዱ
x
6
x
2
4
6
–6
–4
–2 O
–2
–4
–4
–4
–6
–6
–6
追问(1):函数图象分别位于哪几个象限内?
函数的图象都位于二、四象限.
随堂练习
1.(1)已知点(-6,y1), (-4,y2)在反比例函数 =
试比较 y1, y2的大小
(2)已知点(6,y3), (4,y4)在反比例函数 =
比较 y3, y4的大小
函数 =
−6
的图像上,试

y
(3)已知点(-4,y5), (6,y6)在反比例
−6
的图像上,试比较

人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件

人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件

y k(k>0)的图象上, x
若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y随x的增大而减小.
①当这两点在图象的同一支上时,
∵y1<y2,∴a-1>a+1, 无解; ②当这两点分别位于图象的两支上时,
∵y1<y2,∴必有y1<0<y2. ∴a-1<0,a+1>0, 解得:-1<a<1.
,4
4 5
),D(2,5)是否在这个函数的图象上?
解:设这个反比例函数的解析式为 y k ,因为点A(2,6)在其图象上,所
x
以有 6 k ,解得k=12.
2
所以反比例函数的解析式为 y 12 .
x
因为点B,C的坐标都满足该解析式,而点 D的坐标不满足,所以点B,C在
这个函数的图象上,点D不在这个函数的图象上.
结论吗?
一般地,当k>0时,对于反比例函数
y
k x
,由函数图象,并结合解析式,
我们可以发现:
(1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y随x的增大而减小.
归纳: 反比例函数 y k (k>0) 的图象和性质:
x
●由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;
例1 画出反比例函数y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
6 x
… -1
-1.2
-1.5
-2
-3
-6
6

27.2 反比例函数的图象和性质 - 第1课时课件(共18张PPT)

27.2 反比例函数的图象和性质 - 第1课时课件(共18张PPT)
解:(1)把点P(-6,8)的坐标代入 ,得 .解得k=-48.所以这个反比例函数的表达式为 .(2)当x=4时,y=-12.当x=2时,y=-24≠24.所以,点M(4,-12)在这个反比例函数的图像上,点N(2,24)不在这个反比例函数的图像上.
课堂巩固
1. 下列图象中是反比例函数的是( ).
C
.
(-3,-4)
拓展提升
1.如果一个正比例函数图象与反比例函数 的图象交于A( ),B( )两点,那么( )( )的值为_____.2.在平面直角坐标系中,直线y=x与双曲线 交于A,B两点.若点A,B的横坐标分别为x1,x2,则x1+x2的值为 .
第 二十七章 反比例函数
27.2 反比例函数的图像和性质第1课时
学习目标
1.会用描点法画出反比例函数的图像.2.了解双曲线的定义.
学习重难点
理解并掌握画反比例函数的图像的方法.
重点
难点
理解反比例函数性质.
回顾复习
1.反比例函数
2.一次函数、二次函数的图象
一次函数的图象是一条直线.
二次函数的图象是一条抛物线.
24
0
课堂小结
描点法画反比例函数图像的步骤:列表、描点、连线 反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成,这样的曲线叫做双曲线. 反比例函数的图像关于直线y=±x对称,关于原点成中心对称.
同学们再见!
授课老师:
时间:2024年9月15日
它们的图像都由两条曲线组成;都关于y=±x对称,关于原点成中心对称;同时都与坐标轴不存在交点,且图像无限贴近坐标轴.
归纳总结
反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成已知点P(-6,8)在反比例函数 的图像上.(1)求这个反比例函数的表达式.(2)判断点M(4,-12)和N(2,24)是否在这个反比例函数的图像上.

反比例函数的图象与性质-ppt课件

反比例函数的图象与性质-ppt课件
方 ■ 方法:利用数形结合思想解决反比例函数与几何的综

技 合问题

解决这类问题,一般先设出几何图形中未知边的长,然

拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质

如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]


∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内

混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2

析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质






■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质






2. 反比例函数图象的特点
反比例函数 y=

(k

为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限

读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质

反比例函数的图象及性质PPT授课课件

反比例函数的图象及性质PPT授课课件

黄河
讨论
请完成课本P30活动
分析黄河为什么多泥沙?
发源地:巴颜喀拉山脉 注入海:渤海 长 度:5464千米,是我国第二长河
黄 河“ 地 上 河”
地上河
课前小测
1.我国湖泊分布特点是:西部以_青__藏__高_原__较
为 地
集区中最为,多集为中咸__,水_都__是_淡__湖_水_;_东_青_部湖海以。长_江__中_下__游____
C C. 喜马拉雅山
D. 冈底斯山
3、黄河中游流经的地形区是(

A. 内蒙古高原
B. 华北平原
C. 黄土高原
D. 河套平原
A 4、黄河的哪一河段水能资源丰富(

A. 上游
B. 中游
C. 下游
D 5、黄河下游流域狭窄,没有支流的原因是(

A. 降水量少
B. 水流缓慢
C. 地势低平
D. 形成地上河
B
中游: 保持水土,种草植树 固堤分流
下治游理:黄河的根本措施: 在中游黄土高原地区植树种草


⑤ ④ ⑦⑥



知识反馈 一、单项选择题
C 1、黄河是我国(

A. 流程最长的河流
B. 我国第二大河
C. 我国第二长河 2、黄河的发源地( A. 唐古拉山
D. 水能资源和含沙量最大的河流
B)
B. 巴颜喀拉山
6 x
的图象,如图所示.
感悟新知
归纳
知1-讲
图象的画法(描点法): (1) 列表:先取一些自变量的值,在原点的两边取三对
或三对以上互为相反数的值,如1和 -1,2 和 -2,3 和 -3 等.求 y 值时, 只需计算原点一侧的函数值, 另一侧的函数值可以随之得出.

反比例函数图像和性质教学课件

反比例函数图像和性质教学课件
幂函数和反比例函数在性质上有一些相似之处,例如它们 都是连续的、可微的、有界但无界的。然而,它们的导数 和积分有不同的形式和性质。
THANK YOU
反比例函数图像和性质教学 课件
contents
目录
• 反比例函数简介 • 反比例函数的图像绘制 • 反比例函数的性质分析 • 反比例函数的应用举例 • 反比例函数与其他知识点的关联
01
反比例函数简介
反比例函数的定义
1 2
反比例函数
形如 (f(x) = frac{k}{x}) (其中 (k neq 0)) 的函数 被称为反比例函数。
反比例函数的渐近线
反比例函数的图像没有界限,但可以无限接近两条渐近线,分别是 (y = 0) 和 (x = 0)。
反比例函数的应用
在物理学、工程学和其他科学领域中,反比例函数有广泛的应用,例如电阻、电容和电感 之间的关系。
02
反比例函数的图像绘 制
使用数学软件绘制反比例函数图像
软件选择
选择适合的数学软件,如 GeoGebra、Desmos等,这些
运动与减肥的关系
在减肥过程中,运动量与减肥效果之 间存在反比关系,即当运动量增大时 ,减肥效果不一定更明显,需要合理 控制饮食和运动量。
05
反比例函数与其他知 识点的关联
与一次函数的关联
一次函数是形如y=kx+b的函数,其中k和b是常数,且k≠0。当b=0时,一次函数退化为正比例函数 ,其图像是一条过原点的直线。反比例函数与正比例函数在形式上相似,只是自变量x的次数为-1。 因此,反比例函数的图像也位于坐标轴的两侧,并随着x的增大而趋近于无穷远。
一次函数和反比例函数在图像上都是单调的,但方向相反。一次函数随着x的增大而增大或减小,而 反比例函数则随着x的增大而减小或增大。

反比例函数的图象和性质(1)课件

反比例函数的图象和性质(1)课件
当 $k > 0$ 时,在每个象限内,随着 $x$ 的增大, $y$ 值逐渐减小。
反比例函数的图象永远不会与坐标轴相交。
易错难点剖析指导
错误理解反比例函数的定义
学生容易将反比例函数与正比例函数混淆。正比例函数的形式是 $y = kx$,而反比例函 数的形式是 $y = frac{k}{x}$。在理解反比例函数时,要注意区分这两种函数形式。
分段连接
根据点的分布情况,可以将曲线分成 若干段进行连接。每一段都可以用一 条平滑的曲线来表示。
保持连续性
在连接各段曲线时,要确保它们之间 的连续性,避免出现断点或尖角。
调整和优化
连接完成后,可以对曲线进行调整和 优化,使其更加符合反比例函数的性 质和要求。
03
反比例函数性质分析
对称性特点
反比例函数的图象关于原点对称,即如果函数图象上有点(x, y),则点(-x, -y)也 在函数图象上。
04
反比例函数在实际问题中应用举例
面积问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知量求 解未知量。
过程
首先明确题目中的已知量和未知量,然后根据面积公式建立 反比例函数关系式,通过代入已知量求解未知量,最后进行 答案的验证和解释。
速度问题求解思路及过程展示
思路
根据题目所给条件,设立反比例函数关系式,通过已知速度和时间求解未知路 程。
工程中的应用
在工程领域中,反比例函数可以用来描述一些工程问题。例如,在电阻、电感、电容等电子元件的参数 计算中,经常涉及到反比例关系。通过利用反比例函数的性质进行计算和分析,可以简化问题的求解过 程。
THANKS
感谢观看
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。

《反比例函数的图象和性质》反比例函数PPT教学课件(第1课时)

《反比例函数的图象和性质》反比例函数PPT教学课件(第1课时)

《反比例函数的图象和性质》反比例函数PPT教学课件(第
1课时)
人教版九年级数学下册《反比例函数的图象和性质》反比例函数PPT教学课件(第1课时),共27页。

学习目标
1. 会用描点法画出反比例函数的图象.
2. 结合图象分析并掌握反比例函数的性质.
3. 体会函数的三种表示方法,领会数形结合的思想方法.
探究新知
反比例函数的图象和性质
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出各点.
连线:用光滑的曲线顺次连接各点,即可得y=6/x 的图象.
观察这两个函数图象,回答问题:
(1) 每个函数图象分别位于哪些象限?
(2) 在每一个象限内,随着x的增大,y 如何变化?你能由它们的解析式说明理由吗?
反比例函数y=k/x (k>0) 的图象和性质:
(1)由两条曲线组成,且分别位于第一、三象限,它们与 x 轴、y 轴都不相交;
(2)在每个象限内,y 随 x 的增大而减小.
反比例函数的图象和性质
由两支曲线组成的.因此称它的图象为双曲线;
当k>0时,两支双曲线分别位于第一、三象限内;
当k0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.
反比例函数的图象无限接近于x、y轴,但永远不能到达x、y轴.
... ... ...
关键词:反比例函数的图象和性质PPT课件免费下载,反比例函数PPT下载,.PPTX格式;。

反比例函数的图象和性质-完整版PPT课件

反比例函数的图象和性质-完整版PPT课件
和y=-x对称。 • 思考:反比例函数、正比例、一次函数的性质有何
异同?(课后填充表格)来自填表分 析正比 例函数 和反比 例函数 的区别
反比例函数的图象和性质
函数
正比例函数
反比例函数
解析式
y=kx ( k≠0 )
y
=
k x
( k是常数,k≠0 )
图象形状
直线
双曲线
K>0
用对比K的<0 方法去记 忆效果如
何?
位 一三 置 象限
增 减 y随x的增大而增大 性
位 二四 置 象限
增 减 y随x的增大而减小 性
一三象限
在每个象限, y随x的增 大而减小 二四象限
在每个象限, y随x的增 大而增大
反比例函数的图象和性质
反比例函数的图象和性质
• 1、反比例函数Y=K/X(K≠0)的图象是双曲线。 • 2、当K 〉0时,图象的两个分支分布在第一、三象
限内;在每个象限内Y随X的增大而减小。 • 3、当K〈 0时,图象的两个分支分布在第二、四象
限内;在每个象限内Y随X的增大而增大。 • (囗诀:K大一三减,K小二四增) • 4、反比例函数图像关于原点对称,且关于直线y=x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
(((((((((((((5345353442534))))))))))y)yx))yyyxyxyyyyxyy1y2x1112xx11x1222x1xx1xx
2
x不具备 y k 的形式,所以y不是x的反比例
函数.
x
可以改写成 y 1,所以y是x的反比例函数, 比例系数k=1. x
3x x
3
5.(衢州·中考)若点(4,m)在反比例函数 y= 8 (x≠0)
x
的图象上,则m的值是_______.
【解析】将(4,m)代入 y= 8 得,m= 8 =2.
x
4
答案:2
6.(陕西·中考)已知A(x1,y1),B(x2,y2)都在 y= 6 的图象上.若x1x2=-3,则y1y2的值为______
1000 x
s=
1.68×104 n
2.上面的函数解析式形式上有什么的共同点?
都是
y=
k x
的形式,其中k是常数.
3.反比例函数的定义
一般地,形如 y= 函数.
k x
(k为常数 ,k≠ 0)
的函数称为反比例
4.反比例函数的自变量x的取值范围是_不__等__于__0__的__一__切__实__数
等价形式:(k≠0)
一次函数
x 2.
下列解析式中的y是x的反比例函数吗?如果是,比例系
数k是多少?
((((((1112212)))))yyyy)yyy4x44xx214xx1
y是x的反比例函数,比例系数k=4.
1可以改写成 y ( 1)(1)
2x
2 x比例函数,比例系数k=
所以y是x的反
xy=-6;满足条件的是C.
4.下列关系中是反比例函数的是( )
(A) y= k
x
(B) y= x
2
(】选C.∵B、D都不符合 y= k (k≠0)的形式,因而它们都
x
不是反比例函数;A不一定是反比例函数,因为k可能为零;C是
5
反比例函数,因为 y= 5 = 3 ,其中k= 5 .
【解析】
y=
1000 x

y·x
=
1000
3.已知北京市的总面积为1.68×104平方千米,人均
占有的土地面积s(单位:平方千米/人)随全市总人口
n(单位:人)的变化而变化.
1.68×104
【解析】 s=
或 s·n = 1.68×104
n
1.由上面的问题我们得到这样的三个函数
v=
1463 t
y=
(B)6
(C)-5
(D)5
【解析】选A.把(-3,2)代入 y= k 中,
x
得k=-3×2=-6.
3.(威海·中考)下列各点中,在函数 y 6 的图象上的
x
是(
)
(A)(-2,-4) (B)(2,3) (C)(-6,1) (D)(- 1 ,3) 2
【解析】选C.∵点在函数 y 6 的图象上,∴点的坐标应满足 x
2
1.若函数y=(m+1)x|m|-2是反比例函数,则m的值为( ) (A)-1 (B)1 (C)2或-2 (D)-1或1 【解析】选B.当|m|-2=-1,且m+1≠0时,即m=1时,函数为 反比例函数.
2.(桂林·中考)若反比例函数 y= k 的图象经过点(-3,2),
x
则k的值为( )
(A)-6
y k
y=kx-1
x
xy=k
y是x的反比例函数
记住这三种 形式
练习:
下列函数中哪些是反比例函数?哪些是一次函数?
y = 3x-1 y = 2x
y
=
3 2x
反比例函数
y = 3x
y=
1 x
1 y = 3x
y

5
y
y50y.4y 0.4x
yxy-xx2y.xy
2
2.
3x6yx xy3xy 7x6yxx7yy3xxx5xy52225xyyy7152y015xx.4xxy52y2xx15y
第二十六章 反比例函数
26.1 反比例函数 26.1.1 反比例函数的意义
下列问题中,变量间的对应关系可以用怎样的函 数关系表示?这些函数有什么共同特点?
1.京沪铁路全程为1 463km,某次列车的平均速度 v(km/h)随此次列车的全程运行时间t(h)的变化而 变化.
【解析】 v
=
1463 t
2.某住宅小区要种植一个面积为1 000m2的矩形草坪, 草坪的长y(单位:m)随宽x (单位:m)的变化而变化.
x
【解析】∵y1·y2=
6· x1
6 x2
=
36 x·1 x2
,
又∵x1·x2=-3,
∴y1·y2=
36 -3
=-12.
答案:-12
通过本课时的学习,需要我们 1.掌握反比例函数的定义,并以此判断是否是反比例函 数. 2.能根据实际问题中的条件或待定系数法确定反比例函 数的解析式.
相关文档
最新文档