层次分析法模型

合集下载

评估模型研究_层次分析法

评估模型研究_层次分析法

2•评估方法概述2.1层次分析法(AHP)层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty教授于20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法,其基本思路是评价者通过将复杂问题分解为若干层次和若干要素,并在同一层次的各要素之间简单地进行比较、判断和计算。

这样就可以得出不同替代方案的重要度,从而为选择最优方案提供决策依据。

运用层次分析法建模,大体上可按下面四个步骤进行:(1)建立递阶层次结构模型;(2)构造出各层次中的所有判断矩阵;(3)层次单排序及一致性检验;(4)层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

2.1.1递阶层次结构的建立与特点应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类:(1)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(2)中间层:这一层次中包11 1 1 1 1 1 1 1 1 1 1Yl ¥2....Yr 21 222t采翌曰标图1 AHP评估层次结构示意图评住项目第一自讦估碘目班I第Z尉含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(3)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

层次分析法与层次分析模型

层次分析法与层次分析模型

b15
1b11 2b12 5b15
b25
1b21 2b22 5b25
b35
1b31 2b32 5b35
4 层次总排序的一致性检验
设 最下层对最上层中因素的层次单排序一致性指标为 CIj, 随机一致性指为 RIj,则层次总排序的一致性比率为:
CR
a1CI1 a1RI1
a2CI 2 a2 RI 2
amCI m am RI m
当 CR 0.1时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
三 层次分析法建模举例
(1)建模
一、旅游问题
Z
A1, A2 , A3, A4 , A5
分别分别表示景色、费用、
A1
A2 A3 A4 A5 居住、饮食、旅途。
B1
B2
计算 CR可k知 B1, B2 , B通3, 过B4一, B致5 性检验。
(4)计算层次总排序权值和一致性检验
B1 对总目标的权值为: 0.595 0.263 0.082 0.475 0.429 0.055 0.633 0.099 0.166 0.110 0.3
饮食 1/3 1/5 2 1 1
旅途 1/3 1/5 3 1 1
由上表,可得成对比较矩阵
1
1 2
4
3
3
2 1 7 5 5
A
1 4
1 7
1
1 1 2 3
1 3
1 3
1 5
1 5
2 3
1 1
1
1
问题:两两进行比较后,怎样才能定量求出到底去哪个地 方旅游最合理?
3 层次单排序
层次分析法用权值表示各个因素的优劣性,那 如何求权值呢?

层次分析法

层次分析法

(一)层次分析法1、层次分析法的概念“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。

”12、层次分析法的主要步骤(1)构建层次分析的结构模型首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次.其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。

准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。

层次分析法的结构模型在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指1张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年标,C层次为方案层元素,也可称为二级指标。

(2)专家评分建立层次分析法判断矩阵为了建立指标权重评判标准和构造判断矩阵,Saaty提出相对重要性比例标度,即1~9 层次比例标度,相对重要性比例标度的含义如表2—3所示。

假设有n个元素C1、C2,。

,C n给定一个准则,利用上表所给的相对重要性比例标度方,对元素C i和C j做两两比较判断,获得相对重要度的值a ij,构成矩阵。

专家根据评判准则对各个因素的权重两两比较并进行了打分之后,经过整理,可以得到因素权重的判断矩阵A:矩阵 A 中的各元素a ij 表示行指标A i 对列指标A j 相对重要性的比例标度,则判断矩阵A 中指标两两比较的特点有a ij >0,a ij =1,a ij =1/a ji (i ,j=1,2,。

..。

..n )。

如果a ij <1,表示A j 比A i 重要; 如果a ij >1,表示A i 比A j 重要; 如果a ij =1,表示A j 与A i 同样重要.根据判断矩阵A 在选择上的一致性要求,理想情况下,a ik*a jk =a ij (代表相对重要性所具有的传递性原理,满足该性质的矩阵A 称为一致矩阵),虽然在构造判断矩阵A 时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。

层次分析法

层次分析法

bn1
bn2 ……
bnn
bij是对于Ak而言,Bi对Bj的相对重要性的数值表示。
Bij通常取1、3、5、7、9及其他们的倒数,其含义为:
尺度
1 3 5 7 9
含义
第i个因素与第j个因素的影响相同 第i个因素比第j个因素的影响稍强 第i个因素比第j个因素的影响强 第i个因素比第j个因素的影响明强 第i个因素比第j个因素的影响绝对地强
层次分析法
一 问题的提出
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、
外形等方面的因素选择某一支钢笔。 下馆子,则要依据馆子的饭菜质量、区位条件、档
次、饭菜价格、服务质量等方面因素来选择。
例2 旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的
北戴河,或者是去山水甲天下的桂林,一般会依据景 色、费用、食宿条件、旅途等因素选择去哪个地方。
课题D2
课题可行性B3

研财

究政

周支

期持
c3
c4
c5
课题D3
层次分解时注意事项:
如果所选的要素不合理,其含义混淆不清,或 要素间的关系不正确,都会降低AHP法的结果质量, 甚至导致AHP法决策失败。 为保证递阶层次结构的合理性,需注意以下问题: 1、要对问题的影响因素有充分的理解,必要的时 候可以咨询相关的专家; 2、分解简化问题时把握主要因素,不漏不多 3、注意相比较元素之间的强度关系,相差太悬殊 的要素不能在同一层次比较。 4、以上均为完全层次
层次总排序的一致性检验
(1)
(2)
(3)
在(1)式中,CI为层次总排序的一致性指标,CIj为与aj对应 的B层次中判断矩阵的一致性指标;在(2)式中,RI为层次总排 序的随机一致性指标,RIj为与aj对应的B层次中判断矩阵的随 机一致性指标;在(3)式中,CR为层次总排序的随机一致性比例。

层次分析法模型

层次分析法模型

二、模型的假设1、假设我们所统计与分析的数据,都就是客观真实的;2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性与普遍性,基本上能够集中反映毕业生就业实际情况;3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略、三、符号说明四、模型的分析与建立1、问题背景的理解随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻、为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析与评价毕业生就业的若干主要因素,并将它们从主到次依秩排序、针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略、2、方法模型的建立(1)层次分析法层次分析法介绍:层次分析法就是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题、特别就是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法、通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重、这些权重在人的思维过程中通常就是定性的,而在层次分析法中则要给出得到权重的定量方法、我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T、L、Saaty教授提出的AHP法、(2)具体计算权重的AHP 法AHP法就是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据W、计算成对比较矩阵的特征值获得权重向量kStep1、 构造成对比较矩阵假设比较某一层k 个因素12,,,k C C C L 对上一层因素ο的影响,每次两个因素i C 与j C ,用ij C 表示i C 与j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵、*()k k ij C C =,0ij C >,1ij jiC C=, 1ii C =、若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵、标度ij C含义1i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5 i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9i C 比j C 的影响绝对地强2,4,6,8i C 与j C 的影响之比在上述两个相邻等级之间11,,29Li C 与j C 影响之比为上面ij a 的互反数 Step2、 计算该矩阵的权重通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量12 = [ , ,..., ]T kkkkkQ q qq ,其中的ikq 就就是i C 对ο的相对权重、由特征方程A-I=0λ,利用Mathematica 软件包可以求出最大的特征值max λ与相应的特征向量、Step3、 一致性检验1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :max1kCI k λ-=-其中maxλ表示矩阵C 的最大特征值,式中k 正互反矩阵的阶数,CI 越小,说明权重的可靠性越高、2)平均随机一致性指标RI ,下表给出了1-14阶正互反矩阵计算1000次得到3)当0.1CR RI=<时,(CR 称为一致性比率,RI 就是通过大量数据测出来的随机一致性指标,可查表找到)可认为判断就是满意的,此时的正互反矩阵称之为一致性矩阵、进入Step4、 否则说明矛盾,应重新修正该正互反矩阵、转入Step2、 Step4、 得到最终权值向量将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量、计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可以按权重大小将进行排序了、 (3)组合权向量的计算成对比较矩阵显然非常好体现了我们研究对象——各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也就是矩阵数学模型的重要应用价值、 因素往往就是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的、一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面、这就就是决策分析的数学模型的真正的意义之所在、定理1:对于三决策问题,假设第一层只有一个因素,即这就是总的目标,决策总就是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较、又假设第二层与第三层因素各有n 、m 个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:(2)(2)(2)(2)12(,,,)Tn w w w w =L , 而第3层对第2层的全向量分别就是:(3)(3)(3)(3)12(,,,)Tk k k km w w w w =L ,这表示第3层的权重大小,具体表示的就是第2层中第k 个因素所拥有的面对下一层次的m 个同类因素进行分析对比所产生的数量指标、那么显然,第三层的因素相对于第一层的因素而言,其权重应当就是:先构造矩阵,用 (3)k w 为列向量构造一个方阵 (3)(3)(3)(3)12(,,)nWw w w=L,这个矩阵的第一行就是第3层次的m 个因素中的第1个因素,通过第2层次的n 个因素传递给第1层次因素的权重,故第3层次的m 个因素中的第i 个因素对第1层次的权重为 (2)(3)1nkkik w w=∑,从而可以统一表示为:(1)(3)(2)wWw=,它的每一行表示的就就是三层(一般就是方案层)中每一个因素相对总目标的量化指标、定理2:一般公式如果共有s 层,则第k 层对第一层(设只有一个因素)的组合权向量为()()(1),3,4,k k k k s wWw-==L ,其中矩阵 ()k W的第i 行表示第k 层中的第i 个因素,相对于第1k -层中每个因素的权向量;而列向量 (1)k w-则表示的就是第1k -层中每个因素关于第一层总目标的权重向量、于就是,最下层对最上层的的组合权向量为:()()(1)(3)(2)s s s wWWWw-=L ,实际上这就是一个从左向右的递推形式的向量运算、逐个得出每一层的各个因素关于第一层总目标因素的权重向量、 (4)灰色关联度综合评价法灰色系统的关联分析主要就是对系统动态发展过程的量化分析,它就是根据因素之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大、关联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优、因此,可利用关联序对所要评价的对象进行排序比较、利用灰色关联度进行综合评价的步骤如下:1)用表格方式列出所有被评价对象的指标、2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理、3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值、4)计算指标关联系数、其计算公式为:min max imax()()ik k ρρξ+=+∆∆∆∆其中min()()minminiikk k x x =-∆,max()()maxmaxiikk k x x =-∆,()ik ∆=()()ik k x x -,1,2,i n =L ,1,2,k m =L 、式中n 为评价对象的个数;m 为评价对象指标的个数;()ik ξ为第i 个对象第k 个指标对理想对象同一指标的关联系数;A 表示在各评价对象第k 个指标值与理想对象第k 个指标值的最小绝对差的基础上,再按1,2,,i n =L 找出所有最小绝对差中的最小值;max ∆表示在评价对象第k 个指标值与理想对象第k 个指标值的最大绝对差的基础上,再按1,2,,i n =L 找出所有最大绝对差中的最大值;min ∆为评价对象第k 个指标值与理想对象第k 个指标值的绝对差、ρ为分辨系数,ρ越小分辨力越大,一般ρ的取值区间[0,1],更一般地取ρ=0、5、5)确立层次分析模型、6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公式为:()mk iikk γξω=∑,式中7为第i 个评价对象对理想对象的加权关联度,kω为第k 个指标的权重、7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好、 (5)线性回归分析法假如对象(因变量)y 与p 个因素(自变量)12,,,p x x x L 的关系就是线性的,为研究她们之间定量关系式,做n 次抽样,每一次抽样可能发生的对象之值为12,,ny y yL它们就是在因素(1,2,,)i i p x =L 数值已经发生的条件下随机发生的、把第j 次观测的因素数值记为:12,,,jjpj x xx L (1,2,j n =L )那么可以假设有如下的结构表达式:1111011212201213011p p p p n np p y x x y x x y x x βββεβββεβββε⎧=++++⎪⎪=++++⎪⎨⎪⎪=++++⎪⎩L L L L L L L L L L L L L L L L L L 其中,01,,,pβββL 就是1p +个待估计参数,12,,,n εεεL 就是n 个相互独立且服从同一正态分布2(0,)N σ的随机变量、这就就是多元线性回归的数学模型、若令12n y y y y ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ,111212122212111p p n n np x xx x xx x xxx ⎛⎫ ⎪ ⎪=⎪ ⎪⎪⎝⎭L L L LLL L L,012p βββββ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭M ,12n εεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M则上面多元线性回归的数学模型可以写成矩阵形式:y x βε=+在实际问题中,我们得到的就是实测容量为n 的样本,利用这组样本对上述回归模型中的参数进行估计,得到的估计方法称为多元线性回归方程,记为%011p p y b b x b x =+++L式中,012,,,,p b b b b L 分别为01,,,p βββL 的估计值、 (6)主成分分析法1)主成分的定义设有p 个随机变量12,,,p x x x L ,它们可能线性相关,通过某种线性变换,找到p 个线性无关的随机变量12,,,pz z zL ,称为初始向量的主成分、设12(,,,)Tp αααα=L为p 维空间pR 中的单位向量,并记所有单位向量的集合为{}0|1TR ααα==,且记X =12(,,,)Tp X X X L 、2)用相关矩阵确定的主成分令*i E X -=,**(,),ij i j E r X X =1,2,,j p =L 、*X=***12(,,)Tp X X X L ,则1212121211()1pp ij p p R r r r rr r r⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭L LL L LLL 为*X 的协方程、类似地,我们可对R 进行相应的分析、3)主成分分析的一般步骤 第一步、选择主成分设X 的样本数据经过数据预处理后计算出的样本相关矩阵为121*21212111*()11()()pT p p p R ij n r r r rr XX r r⎛⎫ ⎪ ⎪=== ⎪- ⎪ ⎪⎝⎭L LL L LLL %%、 由特征方程0R I λ-=,求出p 个非负实根,并按值从大到小进行排列:120p λλλ≥≥≥≥L 、将iλ带入下列方程组,求出单位特征向量iα()0,1,2,,i i R I i m λα-==L确定m的方法就是使前m个主成分的累计贡献率达到85%左右、第二步、利用主成分进行分析在实际分析时,通常把特征向量的各个分量的取值大小与符号(正负)进行对照比较,往往能对主成分的直观意义作出合理的解释、利用主成分可以进行以下分析:a)对原指标进行分类;b)对原指标进行选择;c)对样品进行分类;d)对样品进行排序;e)预测分析、。

层次分析法

层次分析法

e1
1 4.511
0.778
0.172
,
3 0.665
0.4 6 7 e2 Ae1 0.565, e2 3.014,
1.9 9 1
01.55 0.471 e2 0.184, e3 0.559, e3 3.018,
0.661 1.988
0.156 0.473 e3 0.185, e4 0.561,
(4)定义未知参数 在这种问题中,运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程,产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。
例5 弹性系数的确定 经济学中有名的Cobb-Douglas生产函 数是
e (1,2,,n )T ,则权系数可取: wi i ,i 1,2,, n
在具体计算中,当
ek 与ek 1
接近到一定程度时,就取 e ek
例1 评价影视作品的水平, 用以下三个变量作评价指标 :
x1 教育性,x2 艺术性,x3 娱乐性
设有一名专家赋值:
x2 1, x3 5, x3 3
w1, w2 ,, wn
这 n 个常数便是权系数, 层次分析法给出了确定它们 的量化方法,其过程如下:
1.成对比较
从x1, x2,, xn中任取xi , xj ,比较它们
对y贡献的大小,给xi xj 赋值如下:
xi
xj
1,当认为“xi与x
贡献程度相同”时
j
xi
xj
3,当认为“xi比x
的贡献略大”时
x1
的概率估值为0.134+0.219+0.026=0.379,

多目标决策模型:层次分析法(AHP)、代数模型、离散模型

多目标决策模型:层次分析法(AHP)、代数模型、离散模型
2
程中常是定性的。 例如:经济好,身体好的人:会将景色好作为第一选择; 中老年人:会将居住、饮食好作为第一选择; 经济不好的人:会把费用低作为第一选择。 而层次分析方法则应给出确定权重的定量分析方法。 (S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。 (S4)最终得出方案层对目标层的权重,从而作出决策。 以上步骤和方法即是 AHP 的决策分析方法。 三、确定各层次互相比较的方法——成对比较矩阵和权向量 在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因 而 Santy 等人提出:一致矩阵法 ..... 即:1. 不把所有因素放在一起比较,而是两两相互比较 2. 对此时採用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。 因素比较方法 —— 成对比较矩阵法: 目的是,要比较某一层 n 个因素 C1 , C 2 , , C n 对上一层因素 O 的影响(例如:旅游决策解 中,比较景色等 5 个准则在选择旅游地这个目标中的重要性) 。 採用的方法是:每次取两个因素 C i 和 C j 比较其对目标因素 O 的影响,并用 aij 表示,全部 比较的结果用成对比较矩阵表示,即:
分析:
W1 W2 若重量向量 W 未知时, 则可由决策者对物体 M 1 , M 2 , , M n 之间两两相比关系, W n 主观作出比值的判断,或用Delphi(调查法)来确定这些比值,使 A 矩阵(不一定有一致性)
为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵 A ,并且此 A (不一致)在不一致 的容许范围内,再依据: A 的特征根或和特征向量 W 连续地依赖于矩阵的元素 aij ,即当 aij 离 一致性的要求不太远时, A 的特征根 i 和特征值(向量)W 与一致矩阵 A 的特征根 和特征向 量 W 也相差不大的道理:由特征向量 W 求权向量 W 的方法即为特征向量法,并由此引出一致 性检查的方法。 问题:Remark 以上讨论的用求特征根来求权向量 W 的方法和思路,在理论上应解决以下问题: 1. 一致阵的性质 1 是说:一致阵的最大特征根为 n (即必要条件) ,但用特征根来求特征向量 时, 应回答充分条件: 即正互反矩阵是否存在正的最大特征根和正的特征向量?且如果正互 反矩阵 A 的最大特征根 max n 时, A 是否为一致阵? 2. 用主观判断矩阵 A 的特征根 和特征向量 W 连续逼近一致阵 A 的特征根 和特征向量 W 时,即: 由 lim k

层次分析法简单介绍

层次分析法简单介绍

1

• 每次选取两个因素比较其对目 标A的影响权重;
判断矩阵元素的表示:
b11 b12
B
b21
b22
bn1 bn2
b1n
b2n
2
bnn
• 在 用 的影b影ij来响响表目程示标度yA之i与的比y因j值的素。比yi值、目yj中标,A
• n个被比较的因素构成一个两 两比较(成对比较)的判断 矩阵B
• 在20世纪70年代中期由美国运筹学家托马斯·塞 蒂(T.L.Saaty)正式提出。它是一种定性和定量 相结合的、系统化、层次化的分析方法。
• 应用已遍及经济计划和管理、能源政策和分配、 行为科学、军事指挥、运输、农业、教育、人 才、医疗和环境等领域。
层次分析法的基本思想
寻求层次分析法的生活背景:
综合的思维方式进行决策 。
2.实用型 • 层次分析法把定性和定量方法结合起来,能处理许多用传统
量化技术技术手段无法处理的实际问题。
3.简洁性 • 层次分析法的基本原理和步骤简洁明了,计算也非常简便,
并且所得结果简单明确,容易被决策者了解和掌握。
层次分析法的局限性
1.方案局限性 • 只能从原有的方案中优选一个出来,没有办法得出更好的新
致性检验。(即最下层对最 上层总排序的权向量)
层次结构的模型的建立
将复杂问题分解为被人们称之为元素的组成部分。
这些元素又按其属性分成若干组,形成不同层次。 同一层次的元素作为准则对下一层次的某些元素 起支配作用,同时它又受上一层次元素的支配。
层次分析法的模型
层次分析法的模型
第一类
最高层,又称顶层、目标层
mn
层次排序
层次单排序
• 当判断矩阵满足一致性时,或者判断矩阵不一致 程度可接受时也可以允许特征向量作为权重向量;

多目标决策模型:层次分析法(AHP)、代数模型、离散模型

多目标决策模型:层次分析法(AHP)、代数模型、离散模型

层次分析法建模层次分析法〔AHP -Analytic Hierachy process 〕---- 多目标决策方法70 年代由美国运筹学家T ·L ·Satty 提出的,是一种定性与定量分析相结合的多目标决策分析方法论。

吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标〔因素〕结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。

传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述〔自然现象、社会现象〕现象的规律。

根本内容:〔1〕多目标决策问题举例AHP 建模方法〔2〕AHP 建模方法根本步骤〔3〕AHP 建模方法根本算法〔3〕AHP 建模方法理论算法应用的假如干问题。

参考书: 1、姜启源,数学模型〔第二版,第9章;第三版,第8章〕,高等教育2、程理民等, 运筹学模型与方法教程,〔第10章〕,清华大学3、?运筹学?编写组,运筹学〔修订版〕,第11章,第7节,清华大学一、问题举例:A .大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择〞时,用人单位与毕业生都有各自的选择标准和要求。

就毕业生来说选择单位的标准和要求是多方面的,例如:① 能发挥自己的才干为国家作出较好奉献〔即工作岗位适合发挥专长〕; ② 工作收入较好〔待遇好〕;③ 生活环境好〔大城市、气候等工作条件等〕;④ 单位名声好〔声誉-Reputation 〕;⑤ 工作环境好〔人际关系和谐等〕⑥ 开展晋升〔promote, promotion 〕时机多〔如新单位或单位开展有后劲〕等。

问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?B.假期旅游地点选择 暑假有3个旅游胜地可供选择。

层次分析法

层次分析法

一. 层次分析模型和一般步骤层次分析法是一种定性与定量分析相结合的多因素决策分析方法。

这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。

层次分析的四个基本步骤:(1)在确定决策的目标后,对影响目标决策的因素进行分类,建立一个多层次结构;(2)比较同一层次中各因素关于上一层次的同一个因素的相对重要性,构造成对比较矩阵;(3)通过计算,检验成对比较矩阵的一致性,必要时对成对比较矩阵进行修改,以达到可以接受的一致性;(4)在符合一致性检验的前提下,计算与成对比较矩阵最大特征值相对应的特征向量,确定每个因素对上一层次该因素的权重;计算各因素对于系统目标的总排序权重并决策。

二. 建立层次结构模型将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。

也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。

把各种所要考虑的因素放在适当的层次内。

用层次结构图清晰地表达这些因素的关系。

例1〕购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则研究了统计分位数的一些性质 ,特别是它们与数学期望之间的关系 ,并归纳了统计分位数的求法 ,介绍了统计分位数的一些应用分位数有三种不同的称呼,即α分位数、上侧α分位数与双侧α分位数,它们的定义如下:当随机变量X的分布函数为 F(x),实数α满足0 <α<1 时,α分位数是使P{X< xα}=F(xα)=α的数xα,上侧α分位数是使P{X >λ}=1-F(λ)=α的数λ,双侧α分位数是使P{X<λ1}=F(λ1)=0.5α的数λ1、使P{X>λ2}=1-F(λ2)=0.5α的数λ2。

作为评估依据,建立层次分析模型如下:〔例2〕选拔干部模型对三个干部候选人、、,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人、、,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型〔例3〕评选优秀学校某地区有三个学校,现在要全面考察评出一个优秀学校。

层次分析模型

层次分析模型

计算判断矩阵的最大特征 值和特征向量,得出各因 素的权重值,并进行一致 性检验。
计算组合权向量,得出各 因素的组合权重值,并进 行一致性检验。
02 建立层次结构
目标层
01
目标层是层次分析模型的最顶层,代表要解决的问题或要实现 的目标。
02
在目标层中,需要明确问题的最终目标,并将其作为层次分析
模型的输出。
特点
简单明了、系统性、灵活性、所需定量数据信息较少、广泛的应用领域。
层次分析模型的应用领域
资源分配
在资源有限的条件下,合理分配资源以达到 最优的效果。
综合评价
对某个事物进行全面的评价。
方案选择
从多个备选方案中选出最优方案。
决策分析
对决策问题进行分析,得出最优的决策方案。
层次分析模型的基本步骤
01
层次分析法软件
使用专门开发的层次分析法软件,如 yaahp、Analytic Hierarchy
Process等,可以方便地构造判断矩 阵
判断矩阵的一致性检验
一致性检验的步骤
先计算判断矩阵的最大特征值λmax,然后根据公式CI=(λmax-n)/(n-1)计算一致性 指标CI,其中n为判断矩阵的阶数。接着查找相应的平均随机一致性指标RI(常见的 RI值有0、0.58、0.90、1.12等),最后计算一致性比例CR=CI/RI。
一致性检验的标准
当CR<0.1时,认为判断矩阵的一致性是可以接受的;当CR≥0.1时,需要对判断矩 阵进行调整。
04 层次单排序与层次总排序
层次单排序
确定比较判断矩阵
根据专家意见或数据,确定各因素之间的相对重 要性,构建比较判断矩阵。
计算权重向量

数学建模层次分析法

数学建模层次分析法
层次分析法(AHP法)
(Analytic Hierarchy Process) 建模
数学建模
模型背景 基本步骤 应用实例
一、模型背景
❖ 美国运筹学家匹兹堡大学教授Saaty在20世纪70 年代初提出的一种层次权重决策分析方法。
❖层次分析法(Analytic Hierarchy Process简称AHP) 是一种定性和定量分析相结合的决策分析方法。
对总目标Z的排序为
A1
A2
Am
a1, a2 ,, am
B层n个因素对上层 A中因素为 Aj
其层次单排序为
B1
B2
Bn b1 j ,b2 j ,,bnj ( j 1,2,, m)
层次 A A1
层次 B a1
B1
b11
B2
b21
.
.
.
.
.
.
Bn
bn1
A2 … Am B 层次总
a2
… am 排序权值
RI 0i RIi 0.58 i 1
CR CI / RI 0.087 / 0.58 0.015 0.1
C5
0.118 0.166 0.166 0.668
层次P的 总排序
0.3 0.246 0.456
层次分析法的优点
系统性——将对象视作系统,按照分解、比较、判断、综合 的思维方式进行决策。成为成为继机理分析、统 计分析之后发展起来的系统分析的重要工具;
w(2) (0.263, 0.475, 0.055, 0.090, 0.110)T
同样求第3层(方案)对第2层每一元素(准则)的权向量
方案层对C1(景色)的 成对比较阵
方案层对C2(费用)的 成对比较阵
…Cn

层次分析法模型

层次分析法模型

层次分析法模型层次分析法模型(AHP)是指采用多角度分析综合决策问题的决策模型。

层次分析法模型也常被称为“综合衡量决策法AHP”,它可以清楚地显示决策问题中各个因素和各种决策目标之间的变化关系,从而协助决策者进行决策分析,尤其是在复杂多样的环境下,可以提供较为准确的分析和决策结果。

一、层次分析法模型的原理及概念层次分析法模型是一种有着多样度的决策方法,它可以帮助决策者从多角度的结果进行综合性的分析,从而有助于提升决策的准确性和鲁棒性。

层次分析法模型的核心思想是将决策问题分解为一系列级联的小问题,在组织问题越来越复杂的情况下,层次分析法模型可以更有效地进行管理。

层次分析法模型主要包括三个层次:目标层、指标层和子指标层。

1.目标层:目标层即分析的主题,是实际分析的核心问题,是总体分析的指导原则。

2.指标层:指标层由各种相关指标组成,用以检测目标层的实现状况。

3.子指标层:子指标层是指标层的进一步分解,包括客观指标与主观指标,用以更加准确地衡量目标层在实现过程中的困难程度。

二、层次分析法模型的特征1.简单易操作:层次分析法模型具有很高的计算简便性,操作简洁,只要决策者能够合理地组织数据,就可以运用层次分析法模型得出准确的结果。

2.易于计算:采用层次分析法模型进行综合性分析时,需要计算一系列不同层面之间的相对权重,这一点使得计算成本较低。

3.考虑多项条件:采用层次分析法模型,进行决策分析的同时可以考虑多个条件,从而利用这些条件完成更加准确的决策。

4.表达性强:层次分析法模型擅长表达决策者的思路,通过具体的分析过程可以更清楚地了解决策者的想法,从而使决策者更容易接受最终的决策结果。

三、层次分析法模型的应用1.组织治理:组织治理是组织管理的重要部分,其中重要的指标也是关键因素,层次分析法分析法模型可以帮助组织管理者准确掌握各个指标的变化,从而进行有效的组织治理。

2.市场营销:市场营销是一项复杂的技术活动,需要分析多个指标,如客户偏好、价格影响因素等,考虑这些因素之间的关系,层次分析法模型可以有效帮助企业发掘潜在市场需求,从而更有效地实现市场营销计划。

层次分析法建模举例

层次分析法建模举例
i1
其中:maxN为单注封顶金额;minN为单注保底 金额;Qij为第 i 种方案得第 j 等奖的单项奖比例; M为当期销售总额;n为低项奖总额; Q为总奖金 比例。
三、层次分析
3.1层次分析模型分为四层:




目标层:即决策目标,在本问题中取彩票的销售规则 及其相应的奖金设置方案的合理性作为决策目标。 中间层:作为目标层的衡量准则,我们取彩票的高项 奖金,低项固定奖金,和中奖面三方面来衡量目标层。 指标层:其中包括高项奖金的3个评价标准(即一, 二,三等奖)和低项固定奖金的4个评价指标(即四, 五,六,七等奖),而位于中间层的中奖面衡量准则 可以单独作为目标层的一个评价指标(即中奖面)。 方案层: 需进行评估的各种分配方案
一、 问题的提出与概率计算
已给的29种方案分为两种类型 1、“传统型”采用“10选6+1”方案: 投注者从0~9十个号码中任选6个基本号码(可 重复),从0~4中选一个特别号码,构成一注 。根 据单注号码与中奖号码相符的个数多少及顺序确定 中奖等级;
表1: “传统型” 中奖办法
中 奖 等 级 10 选 6+1(6+1/10) 基本号码 特别号码 选7中

Roots: 多项式的零点可用命令roots求的。
例: >> r=roots(p) 得到 r= 0.2500 + 1.5612i 0.2500 - 1.5612i -1.0000 所有零点由一个列向量给出。

Poly: 由零点可得原始多项式的各系数,但可能相差一 个常数倍。 例: >> poly(r)
如“33选7”的方案:投注者从01~33个号码 中任选7个组成一注(不可重复),根据单注号 码与中奖号码相符的个数多少确定相应的中奖等 级,不考虑号码顺序。

层次分析法模型范文

层次分析法模型范文

层次分析法模型范文层次分析法(Analytic Hierarchy Process,简称AHP)是Thomas L. Saaty于1970年提出的一种多准则决策方法,它能够将复杂的问题分解为多个层次,便于分析和决策。

AHP通过建立层次结构模型,将决策问题分解为准则层、方案层和目标层,并通过对准则和方案进行比较和权重计算,最终得出最优方案。

AHP模型包括以下几个重要的步骤:1.建立层次结构:首先,确定决策问题的目标和准则,将其构建为一个层次结构,目标位于最顶层,准则位于中间层,方案位于底层。

层次结构类似于一颗倒置的树,从上到下逐级递减。

2.构建判断矩阵:判断矩阵是AHP模型的核心,用于比较准则和方案之间的重要性。

在判断矩阵中,行表示准则或方案,列表示准则或方案之间的相对重要性。

通过两两比较准则和方案,填写判断矩阵中的元素。

3.计算权重:利用判断矩阵,可以计算出每个准则和方案的权重,即它们在整个决策问题中的相对重要性。

计算权重的方法通常有特征值法和最大特征向量法。

4.一致性检验:在AHP模型中,一致性是一个重要的考虑因素。

一致性检验用于评估判断矩阵的可靠性,判断矩阵的一致性越高,则决策结果越可信。

一致性检验通常采用计算一致性指标CI和随机一致性指标RI,判断矩阵的一致性比率CR=CI/RI。

5.综合决策:最后,利用准则和方案的权重,可以综合计算出每个方案的综合得分。

根据得分,可以进行方案排序和最终决策。

层次分析法模型的主要优势是能够将决策问题分解为多个层次,使问题更加具体化和可操作化;通过比较和权重计算,能够客观地评估准则和方案的重要性;在一致性检验方面,能够对判断矩阵进行可靠性评估,提高决策结果的可信度。

然而,层次分析法模型也有一些局限性。

首先,判断矩阵的构建过程需要专家的主观判断,可能存在信息不准确或不完全的问题。

其次,一致性检验需要进行一致性比率的计算,但并没有明确的标准来判断什么水平的一致性是可接受的。

层次分析法模型

层次分析法模型

例3 科研课题的选择 某研究所现有三个 科研课题,限于人力 及物力,只能研究一 个课题。有三个须考 虑的因素:(1)科研成 果贡献大小(包括实用 价值和科学意义);(2) 人材的培养;(3)课题 的可行性(包括课题的 难易程度、研究周期 及资金)。在这些因素 的影响下,如何选择 课题?
层次分析法的思维过程的归纳
将决策问题分为3个或多个层次: 最高层:目标层。表示解决问题的目的,即层次分析 要达到的总目标。通常只有一个总目标。 中间层:准则层、指标层、…。表示采取某种措施、 政策、方案等实现预定总目标所涉及的中间环节; 一般又分为准则层、指标层、策略层、约束层等。 最低层:方案层。表示将选用的解决问题的各种措施、 政策、方案等。通常有几个方案可选。 每层有若干元素,层间元素的关系用相连直线表示。 层次分析法所要解决的问题是关于最低层对最高层的相 对权重问题,按此相对权重可以对最低层中的各种方案、 措施进行排序,从而在不同的方案中作出选择或形成选择 方案的原则。
三、层次分析法的步骤和方法
运用层次分析法构造系统模型时,大体 可以分为以下四个步骤: 1. 建立层次结构模型 2. 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
1. 建立层次结构模型
• 将决策的目标、考虑的因素(决策准则)和决策 对象按它们之间的相互关系分为最高层、中间层 和最低层,绘出层次结构图。 最高层:决策的目的、要解决的问题。 最低层:决策时的备选方案。 中间层:考虑的因素、决策的准则。 对于相邻的两层,称高层为目标层,低层为因 素层。 下面举例说明。
因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij
目标层
O(选择旅游地)
准则层

层次分析法评价模型

层次分析法评价模型

层次分析法评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。

主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。

层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。

其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。

运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。

步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。

例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。

步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。

层次分析法

层次分析法

层次分析法(AHP )评价模型1.层次分析法简介层次分析法简称AHP (The analytic hierarchy process),由美国的运筹学家T.L.Saaty 提出。

层次分析法要求明确项目的总目标,将其分解为各层子目标、准则层、指标层甚 至指标,构建一种递阶层次结构;构造两两判断矩阵,求解判断矩阵的特征向量,得到 每层的元素相对于上一层次的权重;采用加权的方法确定方案层各指标对总F1标的权 重,反映不同指标的相对重要性。

层次分析法通过制定标准,对难以量化的定性指标标 准化数学运算处理,转化为可以量化的数据,是一个定性和定量结合的方法。

2.层次分析法的一般步骤(1)确定评价目标和范围,构造递阶层次结构。

(2) 构造两两比较矩阵(判断矩阵)对于同一层次的各因素关于上一层中对应准则(目标)的重要性进行两两比较,构造出两两比较的判断矩阵。

用标度法表示比较结果。

如表所示:判断矩阵标注及其含义注:ij C ={2,4,6,8,1/2,1/4,1/6,1/8}表示重要性等级介于 ij C ={l,3,5,7,9,l/3,l/5,l/7,l/9}。

根据此表可以得到对于同一层次指标的判断矩阵mm A ,mm ij m a a a a A )(},...,,{21==A 的性质如下: ①0>ij a ②ijij a a 1=③1==ij a j i 时, (3)由比较矩阵计算被比较因素对上一层对应准则的相对权重(归一化特征向量),并进行判断矩阵的一致性检验。

(4)计算指标层对总目标的组合权重和组合一致性检验,得出各指标对总目标的影响权重。

3.一致性检验由于指标采用的两两比较,有可能出现甲的重要性大于乙、乙的重要性大于两、丙 的重要性却大于甲的情况,因此,确定计算相对权重后要进行組阵一致性判断,矩阵一 致性指标记为CI1max --=n nCI λRICI CR =RI 是平均随机一致性指标,判断矩阵的阶数不同,RI 的取值也不同,RI 的取值见表平均随机一致性指标的取值当时,判断矩阵通过一致性检验,得到的权重具有可信性。

风险决策模型层次分析法

风险决策模型层次分析法
层次分析法是对一些较为复杂、较为模糊的问题作出决策的简易方法, 它特别适用于那些难于完全定量分析的问题。社会的发展导致了社会 结构、经济体系及人们之间相互关系的日益复杂,人们希望能在错综 复杂的情况下,利用各种信息,通过理智的、科学的分析,作出最佳 决策。例如,生产者面对消费者的各种喜好或竞争对手的策略要作出 最佳决策;消费者面对琳琅满目的商品要根据它们的性能质量的好坏、 价格的高低、外形的美观程度等选择自己最为满意的商品;毕业生要 根据自己的专业特长、社会的需求情况、福利待遇的好坏等挑选最为 合意的工作;科研单位要根据项目的科学意义和实用价值的大小、项 目的可行性、项目的资助情况及周期长短等选择最合适的研究课 题……。当我们面对这类决策问题时,容易发现,影响我们作决策的 因素很多,其中某些因素存在定量指标,可以给以度量,但也有些因 素不存在定量指标,只能定性地比较它们的强弱。在处理这类比较复 杂而又比较模糊的问题时,如何尽可能克服因主观臆断而造成的片面 性,较系统、全面地比较分析并作出较为明智的决策呢?
在确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困 难是这些比重常常不易定量化。虽然你必须让决策者根据经验提供这 些数据,但假如你提出“调动职工积极性在判断利润利用是否合理中 占百分之几的比例”之类的问题,不仅会让人感到难以精确回答,而 且还会使人感到你书生气十足,不能胜任这一工作。此外,当影响某 因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时, 常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的重要 性程度不相一致的数据,甚至有可能提出一组隐含矛盾的数据。为看 清这一点,可作如下设想:将一块重为1千克的石块砸成n小块,你可 以精确称出它们的质量,设为w1,…, wn。现在,请人估计这n小块的 重量占总重量的比例(不能让他知道各小石块的重量),此人不仅很 难给出精确的比值,而且完全可能因顾此失彼而提供彼此矛盾的数据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
二 报童的诀窍
问题:
报童每天清晨从报社购进报纸零售,晚上将没有
卖掉的报纸退回。设报纸每份的购进价为b,零售 价为a,退回价为c,假设a>b>c。即报童售出一份 报纸赚a-b,退回一份赔b-c。报童每天购进报纸太
多,卖不完会赔钱;购进太少,不够卖会少挣钱。 试为报童筹划一下每天购进报纸的数量,以获得最 大收入。
传送带
挂钩
……
工作台
……
要求构造衡量传送系统效率的指标,并在简化假设下建立模型 描述这个指标与工人数目、钩子数量等参数的关系。
1 模型分析
为了用传送带及时带走的产品数量来表示传送系统的效率,在 工人生产周期(即生产一件产品的时间)相同的情况下,需要 假设工人生产出一件产品后,要么恰好有空钩子经过工作台, 他可以将产品挂上带走,要么没有空钩子经过,他将产品放下 并立即投入下一件产品的生产,以保证整个系统周期性的运转。
概率模型
现实世界的变化受着众多因素的影响,包括确定的和随机 的。如果从建模的背景、目的和手段看,主要因素是确定 的,随机因素可以忽略,或者随机因素的影响可以简单地 以平均值的作用出现,那么就能够建立确定性模型。如果 随机因素对研究对象的影响必须考虑,就应建立随机模型。 本章讨论如何用随即变量和概率分布描述随机因素的影响, 建立随机模型--概率模型。
4 模型评价 这个模型是在理想情况下得到的,其中一些假设,如生产 周期不变,挂不上钩子的产品退出系统等是不现实的,但 模型的意义在于,一方面利用基本合理的假设将问题简化 到能够建模的程度,并用简单的方法得到结果;另一方面
所得到的简化结果具有非常简单的意义:指标 E 1 D 与 n 成正比,与 m 成反比。通常工人数目 n 是固定的,

r
Gn
n
0
a
b
r
b
c
n
r
pr
dr
n
a
b
npr
dr
计算
dG dn
a
bnpn
n
0
b
cprdr
a
bnpn
n
a
b
pr
dr
b
c n 0
pr dr
a
b n
pr dr
令 dG 0 ,得到 dn
n
0
n
pr dr pr dr
a b
b c
使报童日平均收入达到最大的购进量 n 应满足上式。
因为
0
pr dr
为了得到比较简单的结果,在钩子数 m 相对于工人数 n 较
大,即
n m
较小的情况下,将多项式
1
1
n
m
展开后只取前3
项,则有
D
m n
1
1
n m
nn 1
2m2
1
n 1 2m
如果将一周期内未带走的产品数与全部产品数之比记作 E
再假定 n 1 ,则
D 1 E, E n 2m
当 n 10,m 40 时,上式给出的结果为 D 87.5% 用 D 的精确表达式计算得 D 89.4%
1 ,所以
n
ab
p r dr
0
ac
根据需求量的概率密度 pr 的图形可以确定购进量 n
在图中用 P1, P2 分别表示曲线 pr
下的两块面积,则
pr
P1 a b
P2 b c
P1 P2
O
n
r
因为当购进
n份报纸时,P1
n
0
pr dr
是需求量
r
不超过
n的概率,即卖不完的概率;P2
pr dr是需求量 r
统计模型
如果由于客观事物内部规律的复杂性及人们认识程度的限 制,无法分析实际对象内在的因果关系,建立合乎机理规 律的模型,那么通常要搜集大量的数据,基于对数据的统 计分析建立模型,这就是本章还要讨论的用途非常广泛的 一类随机模型—统计回归模型。
一 传送系统的效率
在机械化生产车间里,排列整齐的工作台旁工人们紧张的生 产同一种产品,工作台上放一条传送带在运转,带上设置若 干钩子,工人将产品挂在经过他上方的钩子上带走,如图。 当生产进入稳定状态后,每个工人生产一件产品所需时间是 不变的,而他挂产品的时刻是随机的。衡量这种传送系统的 效率可以看他能否及时把工人的产品带走。在工人数目不变 的情况下传送带速度越快,带上钩子越多,效率越高。
到一只,在他生产出一件产品的瞬间,如果他能触到的 钩子是空的,则可将产品挂上带走;如果非空,则他只 能将产品放下。放下的产品就永远退出这个传送系统。
3 模型建立
将传送系统效率定义为一周期内带走的产品数与生产的
全部产品数之比,记作 D ,设带走的产品数为 s ,生产的 全部产品数为 n ,则 D s / n 。需求出 s 。
任一只钩子被一名工人触到的概率是1/ m ;
任一只钩子不被一名工人触到的概率是11/ m ;
由工人生产的独立性,任一只钩子不被所有 n 个工人挂上
产品的概率,即任一只钩子为空钩的概率是 1 1 n ;
任一只钩子非空的概率是
p
1 1
1
n

m
m
传送系统的效率指标为
D
mp
m
1
1
1
n
n n m
或大于 n,所以报童每天的收入也是随机的。那么,作为优化
模型的目标函数,不能取每天的收入,而取长期卖报(月,年)
的日平均收入。从概率论大数定律的观点看,这相当于报童每 天收入的期望值,简称平均收入。
记报童每天购进 n份报纸的平均收入为 Gn ,如果这天的需 求量 r n ,则售出 r份,退回 n r 份;如果需求量 r n
一周期内通过的钩子数 m 增加一倍,可使“效率”E 降低 一倍。(可理解为相反意义的效率)
思考: 如何改进模型使“效率”降低?
考虑通过增加钩子数来使效率降低的方法:
在原来放置一只钩子处放置的两只钩子成为一个钩对。一
周期内通过 m 个钩对,任一钩对被任意工人触到的概率
p 1/ m ,不被触到的概率 q 1 p,于是任一钩对为空的概率
n
1
1
n1
n m m m
利用
1
1
n

1
1
n1 的近似展开,可得
m m
n 1n 2 n2
E
6m2
6m2
注意:1
1 m
n
展开取4项,1
1
n
1
展开取3项。而上一模
m
型中的方法有
E1
n 4m

E E1
2nBiblioteka 3m当 m 2n时, 1,所以该模型提供的方法比上一个模型好。
工人生产周期相同,但由于各种因素的影响,经过相 当长的时间后,他们生产完一件产品的时刻会不一致, 认为是随机的,并在一个生产周期内任一时刻的可能 性一样。
由上分析,传送系统长期运转的效率等价于一周期的效 率,而一周期的效率可以用它在一周期内能带走的产品 数与一周期内生产的全部产品数之比来描述。
2 模型假设
1)有 n 个工人,其生产是独立的,生产周期是常数, n 个工作台均匀排列。
2)生产已进入稳态,即每个工人生产出一件产品的时刻 在一个周期内是等可能性的。
3)在一周期内有 m 个钩子通过每一工作台上方,钩子
均匀排列,到达第一个工作台上方的钩子都是空的。
4)每个工人在任何时刻都能触到一只钩子,且之能触
n
超过 n的概率,即卖完的概率,所以上式表明,购进的份数
n 应该使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱
a b 与退回一份赔的钱 b c 之比。
结论:
当报童与报社签订的合同使报童每份赚钱与赔钱之比约大时, 报童购进的份数就应该越多。
练习:
利用上述模型计算,若每份报纸的购进价为0.75元,售出价为 1元,退回价为0.6元,需求量服从均值500份,均方差50份的 正态分布,报童每天应购进多少份报纸才能使平均收入最高, 最高收入是多少?
是 q n,钩对上只挂一件产品的概率是 npqn1 ,一周期内通过
的 2m个钩子中,空钩的平均数是 m 2qn npqn1 带走产品的平均数是 2m m 2qn npqn1
未带走产品的平均数是 n 2m m 2qn npqn1
按照上一模型的定义,有
E
1
D
1
m
2
21
1
n
模型分析:
购进量由需求量确定,需求量是随机的。假定报童已通过自 己的经验或其他渠道掌握了需求量的随机规律,即在他的销
受范围内每天报纸的需求量为 r 份的概率是 f r r 0,1,2, 有了 f r 和 a, b, c 就可以建立关于购进量的优化模型。
模型建立:
假设每天购进量是 n份,需求量 r是随机的,r 可以小于,等于
如果从工人的角度考虑,分析每个工人能将自己的产品挂 上钩子的概率,这与工人所在的位置有关(如第1个工人一定 可挂上),这样使问题复杂化。我们从钩子角度考虑,在稳定 状态下钩子没有次序,处于同等地位。若能对一周期内的 m 只
钩子求出每只钩子非空的概率 p ,则 s mp 。
得到 p 的步骤如下:(均对一周期而言)
则 n份将全部售出。需求量为 r的概率是 f r ,则
n
Gn a br b cn r f r a bnf r
r 0
r n1
问题归结为在 f r, a,b, c 已知时,求 n 使 Gn 最大。
模型求解: 和购进量 n 都相当大,将 r 视为连续变量便于
分析和计算,这时概率 f r 转通化常为需概求率量密度函数 pr
相关文档
最新文档