山东省济南市中考数学试题汇编

合集下载

中考数学2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ)(精选)

中考数学2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ)(精选)

2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一个运算程序,若x 的值为1-,则运算结果为( ) A .4- B .2- C .2 D .42、如图,在ABC 中,AB AC =,30A ∠=︒,D 、E 分别在AB 、AC上,1CE =,且BED 是等腰直角三角形,其中90BED ∠=︒,则AD 的值是( ) ·线○封○密○外A .1BC 1D 3、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是().A .28B .54C .65D .754、在Rt ABC 中,90C ∠=︒,12BC =,5AC =,那么cot B 等于( )A .513B .1213 C .125 D .5125、如图,①13∠=∠,②23∠∠=,③14∠=∠,④25180+=︒∠∠可以判定b c ∥的条件有( ).A .①②④B .①②③C .②③④D .①②③④6、用下列几组边长构成的三角形中哪一组不是直角三角形( )A .8,15,17B .6,8,10 CD.1,7、如图,在单位为1的方格中,有标号为①、②、③、④的四个三角形,其中直角三角形的个数为( )A .1个B .2个C .3个D .4个 8、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( ) A .16 B .19 C .24 D .36 9、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P 点照射到抛物线上的光线,PA PB 等反射以后沿着与直线PF 平行的方向射出,若CAP α∠=︒,DBP β∠=︒,则APB ∠的度数为( )°·线○封○密○外A .2αB .2βC .αβ+D .5()4αβ+ 10、下列各条件中,不能够判定两个三角形必定全等的是( )A .两边及其夹角对应相等B .三边对应相等C .两角及一角的对边对应相等D .两边及﹣边的对角对应相等第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、a 、b 所表示的有理数如图所示,则22(1)a b a -++=________.2、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C =90°,AC =BC =10,AB ,点C 关于折痕AD 的对应点E 恰好落在AB 边上,小明在折痕AD 上任取一点P ,则△PEB 周长的最小值是___________.3、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________.4、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在Rt PBC△中,90PCB ∠=︒,点A 在边BP 上,点D 在边CP 上,如果11BC =,12tan 5PBC ∠=,13AB =,四边形ABCD 为“对等四边形”,那么CD 的长为_____________. 5、如图,E 是正方形ABCD 的对角线BD 上一点,连接CE ,过点E 作EF AD ⊥,垂足为点F .若3AF =,5EC =,则正方形ABCD 的面积为______. 三、解答题(5小题,每小题10分,共计50分) 1、已知:如图,在Rt ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为点D ,E 为边AC 上一点,联结BE 交CD 于点F ,并满足2BC CD BE =⋅.求证:·线○封○密○外∽;(1)BCE ACB⋅=⋅.(2)过点C作CM BE⊥,交BE于点G,交AB于点M,求证:BE CM AB CF2、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在∆ABC中,若AB2+AC2-AB⋅AC=BC2,则∆ABC是“和谐三角形”.(1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).(2)若Rt∆ABC中,∠C=90︒,AB=c,AC=b,BC=a,且b>a,若∆ABC 是“和谐三角形”,求a:b:c.3、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.4、计算:(﹣310)2021×(313)2020×(﹣1)2022.5、【数学概念】如图1,A 、B 为数轴上不重合的两个点,P 为数轴上任意一点,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.如图①,点A 表示的数是-4,点B 表示的数是2.(1)【概念理解】若点P 表示的数是-2,则点P 到线段AB 的“靠近距离”为______; (2)【概念理解】若点P 表示的数是m ,点P 到线段AB 的“靠近距离”为3,则m 的值为______(写出所有结果); (3)【概念应用】如图②,在数轴上,点P 表示的数是-6,点A 表示的数是-3,点B 表示的数是2.点P 以每秒2个单位长度的速度沿数轴向右运动,同时点B 以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t 秒,当点P 到线段AB 的“靠近距离”为2时,求t 的值.-参考答案- 一、单选题1、A【解析】 【分析】 ·线○封○密·○外根据运算程序,根据绝对值的性质计算即可得答案.【详解】∵1-<3, ∴31---=4-,故选:A .【点睛】本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.2、C【解析】【分析】根据等腰三角形的性质可得:75BEC C ∠=︒=∠,BE BC =,BEC ∆为等腰三角形,过点D 作DG AC ⊥于G ,过点B 作BH AC ⊥于H ,利用全等三角形的判定和性质可得BHE EGD ∆≅∆,EG BH =,12HE DG EC ==,在Rt ADG ∆中,利用30︒角的特殊性质即可得. 【详解】解:在ABC ∆中,AB AC =,30A ∠=︒,∴75ABC C ∠=∠=︒,∵BED ∆是等腰直角三角形,∴45DBE BDE ∠=∠=︒,∴30CBE ∠=︒,∴75BEC C ∠=︒=∠,∴BE BC =,∴BEC ∆为等腰三角形,如图所示:过点D 作DG AC ⊥于G ,过点B 作BH AC ⊥于H ,∵90BED ∠=︒, ∴90BEH DEG BEH EBH ∠+∠=∠+∠=︒, ∴EBH DEG ∠=∠ 在BHE ∆与EGD ∆中, 90EBH DEG EHB DGE BE DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴BHE EGD ∆≅∆,∴EG BH =,12HE DG EC ===, 在Rt ADG ∆中,30A ∠=︒,∴21AD DG ==, 故选:C . 【点睛】 题目主要考查等腰三角形的判定和性质,全等三角形的判定和性质,直角三角形中30︒角的特殊性质,理解题意,作出辅助线,综合运用这些知识点是解题关键. 3、B 【解析】·线○封○密○外【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可【详解】设中间的数是x,则上面的数是x-7,下面的数是x+7,则这三个数的和是(x-7)+x+(x+7)=3x,∴3x=28,解得:283x=不是整数,故选项A不是;∴3x=54,解得:18x=,中间的数是18,则上面的数是11,下面的数是28,故选项B是;∴3x=65,解得:653x=不是整数,故选项C不是;∴3x=75,解得:25x=,中间的数是25,则上面的数是18,下面的数是32,日历中没有32,故选项D不是;所以这三个数的和可能为54,故选B .【点睛】本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点. 4、C 【解析】 【分析】 作出直角三角形,结合余切函数的定义(邻边比对边)可直接得出. 【详解】 解:直角三角形ABC 中,12BC =,5AC =,则12cot 5BC B AC ==, 故选:C . 【点睛】 本题考查的是锐角三角函数的定义,理解余切函数的定义是解题关键.5、A【解析】【分析】 ·线○封○密○外根据平行线的判定定理逐个排查即可.【详解】解:①由于∠1和∠3是同位角,则①可判定b c ∥;②由于∠2和∠3是内错角,则②可判定b c ∥;③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定b c ∥;④①由于∠2和∠5是同旁内角,则④可判定b c ∥;即①②④可判定b c ∥.故选A .【点睛】本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.6、C【解析】【分析】由题意根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形进行分析即可.【详解】解:A 、∵82+152=172,∴此三角形为直角三角形,故选项错误;B 、∵2226810+=,∴此三角形是直角三角形,故选项错误;C 、∵2222+≠,∴此三角形不是直角三角形,故选项正确;D 、∵22212+=,∴此三角形为直角三角形,故选项错误.故选:C .【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系. 7、D 【解析】 【分析】 结合网格及勾股定理分别确定图中每个三角形中三条边的平方,然后结合直角三角形的判别条件判断即可. 【详解】 解:在①中,三边长分别为:2,32,∴①是直角三角形; 在②中,三边长分别为:222(10)(25),∴②是直角三角形;在③中,三边长分别为:222+=,∴③是直角三角形;5,∵2225+=,∴④是直角三角形; 综上所述,直角三角形的个数为4. 故选D . 【点睛】 本题考查了勾股定理及其逆定理的应用,解题的关键是灵活运用勾股定理解决问题. 8、C 【解析】 【分析】 分别求出各视图的面积,故可求出表面积. ·线○封○密○外【详解】由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5故表面积为2×(4+3+5)=24故选C .【点睛】此题主要考查三视图的求解与表面积。

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共3小题)1.(2023•济南)计算:|﹣|+()﹣1+(π+1)0﹣tan60°.2.(2022•济南)计算:|﹣3|﹣4sin30°++()﹣1.3.(2021•济南)计算:.二.一元一次不等式组的整数解(共3小题)4.(2023•济南)解不等式组:,并写出它的所有整数解.5.(2021•济南)解不等式组:并写出它的所有整数解.6.(2022•济南)解不等式组:,并写出它的所有整数解.三.一次函数的应用(共1小题)7.(2022•钢城区)为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍.则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.四.反比例函数综合题(共1小题)8.(2023•济南)综合与实践如图1,某兴趣小组计划开垦一个面积为8m2的矩形地块ABCD种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为am.【问题提出】小组同学提出这样一个问题:若a=10,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB为xm,BC为ym.由矩形地块面积为8m2,得到xy=8,满足条件的(x,y)可看成是反比例函数y=的图象在第一象限内点的坐标;木栏总长为10m,得到2x+y=10,满足条件的(x,y)可看成一次函数y=﹣2x+10的图象在第一象限内点的坐标,同时满足这两个条件的(x,y)就可以看成两个函数图象交点的坐标.如图2,反比例函数y=(x>0)的图象与直线l1:y=﹣2x+10的交点坐标为(1,8)和 ,因此,木栏总长为10m时,能围出矩形地块,分别为:AB=1m,BC =8m;或AB= m,BC= m.(1)根据小颖的分析思路,完成上面的填空;【类比探究】(2)若a=6,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由;【问题延伸】当木栏总长为am时,小颖建立了一次函数y=﹣2x+a.发现直线y=﹣2x+a可以看成是直线y=﹣2x通过平移得到的,在平移过程中,当过点(2,4)时,直线y=﹣2x+a与反比例函数y=(x>0)的图象有唯一交点.(3)请在图2中画出直线y=﹣2x+a过点(2,4)时的图象,并求出a的值;【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“y=﹣2x+a与y=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB和BC的长均不小于1m,请直接写出a的取值范围.五.平行四边形的性质(共1小题)9.(2023•济南)已知:如图,点O为▱ABCD对角线AC的中点,过点O的直线与AD,BC分别相交于点E,F.求证:DE=BF.六.切线的性质(共1小题)10.(2021•济南)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.(1)求证:∠DAB=2∠ABC;(2)若tan∠ADC=,BC=4,求⊙O的半径.七.频数(率)分布直方图(共2小题)11.(2022•钢城区)某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a:七年级抽取成绩的频数分布直方图如图.(数据分成5组,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)b:七年级抽取成绩在70≤x<80这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c:七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m八年级78.279请结合以上信息完成下列问题:(1)七年级抽取成绩在60≤x<90的人数是 ,并补全频数分布直方图;(2)表中m的值为 ;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则 (填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.12.(2023•济南)2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A组:1≤m<12;B组:12≤m<23;C组:23≤m<34;D组:34≤m<45;E组:45≤m<56.下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b .不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如图:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为 度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是 百万;(4)各组“五一”假期的平均出游人数如表:组别A 1≤m <12B 12≤m <23C 23≤m <34D 34≤m <45E 45≤m <56平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.八.扇形统计图(共1小题)13.(2021•济南)为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:方便筷使用数量在5≤x <15范围内的数据:5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.不完整的统计图表:方便筷使用数量统计表组别使用数量(双)频数A0≤x <514B 5≤x <10C10≤x <15D 15≤x <20aE x ≥2010合计50请结合以上信息回答下列问题:(1)统计表中的a = ;(2)统计图中E 组对应扇形的圆心角为  度;(3)C 组数据的众数是 ;调查的50名居民5月份使用方便筷数量的中位数是  ;(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共3小题)1.(2023•济南)计算:|﹣|+()﹣1+(π+1)0﹣tan60°.【答案】3.【解答】解:|﹣|+()﹣1+(π+1)0﹣tan60°==3.2.(2022•济南)计算:|﹣3|﹣4sin30°++()﹣1.【答案】6.【解答】解:原式=3﹣4×+2+3=3﹣2+2+3=6.3.(2021•济南)计算:.【答案】6.【解答】解:=4+1+3﹣2×1=8﹣2=6.二.一元一次不等式组的整数解(共3小题)4.(2023•济南)解不等式组:,并写出它的所有整数解.【答案】0,1,2.【解答】解:解不等式①,得x>﹣1,解不等式②,得x<3,在数轴上表示不等式①②的解集如下:∴原不等式组的解集是﹣1<x<3,∴它的所有整数解有:0,1,2.5.(2021•济南)解不等式组:并写出它的所有整数解.【答案】解集为﹣2≤x<1,整数解有﹣2、﹣1、0.【解答】解:解不等式①,得x≥﹣2,解不等式②,得x<1,∴不等式组的解集为﹣2≤x<1,∴不等式组的整数解有﹣2、﹣1、0.6.(2022•济南)解不等式组:,并写出它的所有整数解.【答案】1≤x<3;1,2.【解答】解:解不等式①得:x<3,解不等式②得:x≥1,∴原不等式组的解集为:1≤x<3,∴整数解为1,2.三.一次函数的应用(共1小题)7.(2022•钢城区)为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍.则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.【答案】(1)甲种树苗每棵的价格是40元,乙种树苗每棵的价格是30元;(2)购买甲种树苗25棵,则购买乙种树苗75棵,花费最少.【解答】解:(1)设甲种树苗每棵的价格是x元,乙种树苗每棵的价格是y元,根据题意得:,解得,答:甲种树苗每棵的价格是40元,乙种树苗每棵的价格是30元;(2)购买甲种树苗25棵,乙种树苗75棵,花费最少,理由如下:设购买两种树苗共花费w元,购买甲种树苗m棵,则购买乙种树苗(100﹣m)棵,∵购买乙种树苗的数量不超过甲种树苗的3倍,∴100﹣m≤3m,解得m≥25,根据题意:w=40m+30(100﹣m)=10m+3000,∵10>0,∴w随m的增大而增大,∴m=25时,w取最小值,最小值为10×25+3000=3250(元),此时100﹣m=75,答:购买甲种树苗25棵,乙种树苗75棵,花费最少.四.反比例函数综合题(共1小题)8.(2023•济南)综合与实践如图1,某兴趣小组计划开垦一个面积为8m2的矩形地块ABCD种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为am.【问题提出】小组同学提出这样一个问题:若a=10,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB为xm,BC为ym.由矩形地块面积为8m2,得到xy=8,满足条件的(x,y)可看成是反比例函数y=的图象在第一象限内点的坐标;木栏总长为10m,得到2x+y=10,满足条件的(x,y)可看成一次函数y=﹣2x+10的图象在第一象限内点的坐标,同时满足这两个条件的(x,y)就可以看成两个函数图象交点的坐标.如图2,反比例函数y=(x>0)的图象与直线l1:y=﹣2x+10的交点坐标为(1,8)和 (4,2) ,因此,木栏总长为10m时,能围出矩形地块,分别为:AB=1m,BC=8m;或AB= 4 m,BC= 2 m.(1)根据小颖的分析思路,完成上面的填空;【类比探究】(2)若a=6,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由;【问题延伸】当木栏总长为am时,小颖建立了一次函数y=﹣2x+a.发现直线y=﹣2x+a可以看成是直线y=﹣2x通过平移得到的,在平移过程中,当过点(2,4)时,直线y=﹣2x+a与反比例函数y=(x>0)的图象有唯一交点.(3)请在图2中画出直线y=﹣2x+a过点(2,4)时的图象,并求出a的值;【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“y=﹣2x+a与y=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB和BC的长均不小于1m,请直接写出a的取值范围.【答案】(1)(4,2);4;2;(2)不能围出;(3)a=8;(4)10≤a≤17.【解答】解:(1)将反比例函数y=与直线l1:y=﹣2x+10联立得,∴=﹣2x+10,∴x2﹣5x+4=0,∴x1=1,x2=4,∴另一个交点坐标为(4,2),∵AB为xm,BC为ym,∴AB=4,BC=2.故答案为:(4,2);4;2;(2)不能围出;y=﹣2x+6的图象,如答案图中l2所示:∵l2与函数图象没有交点,∴不能围出面积为8m2的矩形.(3)如答案图中直线l3所示:将点(2,4)代入y=﹣2x+a,解得a=8.(4)∵AB和BC的长均不小于1m,∴x≥1,y≥1,∴≥1,∴x≤8,∴1≤x≤8,∵直线y=﹣2x+a在点(1,8)和点(8,1)上面或两点之间移动,把(1,8)代入y=﹣2x+a得a=10,把(8,1)代入y=﹣2x+a得a=17,∴10≤a≤17.五.平行四边形的性质(共1小题)9.(2023•济南)已知:如图,点O为▱ABCD对角线AC的中点,过点O的直线与AD,BC 分别相交于点E,F.求证:DE=BF.【答案】证明见解答过程.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAO=∠FCO,∠OEA=∠OFC,∵点O为对角线AC的中点,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF,∴AD﹣AE=BC﹣CF,∴DE=BF.六.切线的性质(共1小题)10.(2021•济南)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.(1)求证:∠DAB=2∠ABC;(2)若tan∠ADC=,BC=4,求⊙O的半径.【答案】(1)证明见解答过程;(2).【解答】(1)证明:连接OC,∵EC是⊙O的切线,∴OC⊥CE,∵DE⊥CE,∴OC∥DE,∴∠DAB=∠AOC,由圆周角定理得:∠AOC=2∠ABC,∴∠DAB=2∠ABC;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,由圆周角定理得:∠ABC=∠ADC,∴tan∠ABC=tan∠ADC=,即=,∵BC=4,∴AC=2,由勾股定理得:AB===2,∴⊙O的半径为.七.频数(率)分布直方图(共2小题)11.(2022•钢城区)某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a:七年级抽取成绩的频数分布直方图如图.(数据分成5组,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)b:七年级抽取成绩在70≤x<80这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c:七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m八年级78.279请结合以上信息完成下列问题:(1)七年级抽取成绩在60≤x<90的人数是 38 ,并补全频数分布直方图;(2)表中m的值为 77 ;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则 甲 (填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.【答案】(1)38;(2)77;(3)甲;(4)64人.【解答】解:(1)成绩在60≤x<90的人数为12+16+10=38,故答案为:38;(2)第25,26名学生的成绩分别为77,77,所以m==77,故答案为:77;(3)∵78大于七年级的中位数,而小于八年级的中位数.∴甲的成绩在本年级抽取成绩中排名更靠前;故答案为:甲;(4)400×=64(人),即估计七年级竞赛成绩90分及以上的学生人数为64.12.(2023•济南)2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A组:1≤m<12;B组:12≤m<23;C组:23≤m<34;D组:34≤m<45;E组:45≤m<56.下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b .不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如图:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为 36 度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是 15.5 百万;(4)各组“五一”假期的平均出游人数如表:组别A 1≤m <12B 12≤m <23C 23≤m <34D 34≤m <45E 45≤m <56平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.【答案】(1)36;(2)见解答;(3)15.5;(4)20百万.【解答】解:(1)统计图中E 组对应扇形的圆心角为360°×=36°,故答案为:36;(2)D 组个数为30×10%=3(个),所以C 组地区个数为30﹣(12+8+3+3)=4(个),补全图形如下:(3)这30个地区“五一”假期出游人数的中位数是=15.5(百万),故答案为:15.5;答:这30个地区“五一”假期的平均出游人数是20百万.八.扇形统计图(共1小题)13.(2021•济南)为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:方便筷使用数量在5≤x<15范围内的数据:5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.不完整的统计图表:方便筷使用数量统计表频数组别使用数量(双)A0≤x<514B5≤x<10C10≤x<15D15≤x<a20E x≥2010合计50请结合以上信息回答下列问题:(1)统计表中的a= 9 ;(2)统计图中E组对应扇形的圆心角为 72 度;(3)C组数据的众数是 12 ;调查的50名居民5月份使用方便筷数量的中位数是 10 ;(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.【答案】(1)9;(2)72;(3)12,10;(4)估计该社区2000名居民5月份使用方便筷数量不少于15双的人数为760人.【解答】解:(1)方便筷使用数量在5≤x<15范围内的数据有17个,∴a=50﹣14﹣17﹣10=9,故答案为:9;(2)360°×=72°,故答案为:72;(3)将方便筷使用数量在10≤x<15范围内的数据按从小到大的顺序排列为10,10,11,12,12,12,13,由上述数据可得C组数据的众数是12,B组的频数是10,C组的频数为7,D组的频数为9,∴第25,26个数均为10,∴调查的50名居民5月份使用方便筷数量的中位数是=10.故答案为:12,10;(4)2000×=760(人),答:估计该社区2000名居民5月份使用方便筷数量不少于15双的人数为760人.。

2023年山东省济南市中考数学真题(含解析)

2023年山东省济南市中考数学真题(含解析)

2023年山东省济南市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列几何体中,主视图是三角形的为( )A .B .C .D .2.2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为( )A .80.6865310⨯B .86.865310⨯C .76.865310⨯D .768.65310⨯3.如图,一块直角三角板的直角顶点放在直尺的一边上.如果170=︒∠,那么2∠的度数是( )A .20︒B .25︒C .30︒D .45︒4.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .0ab >B .0a b +>C .33a b +<+D .33a b-<-5.下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是( )A . .. ..下列运算正确的是( ).248a a a ⋅=43a a a -=A .36BCE ∠=︒15.学校提倡“低碳环保,绿色出行各自从家同时同向出发,沿同一条路匀速前进.如图所示,家的距离()km s 和时间16.如图,将菱形纸片ABCD 折痕CP 交AD 于点P .若三、解答题17.计算:()10131π-⎛⎫-+++20.图1是某越野车的侧面示意图,折线段0.6m BC =,123ABC ∠=︒,该车的高度AO 落在AB C ''处,AB '与水平面的夹角B AD '∠请根据以上信息完成下列问题:(1)统计图中E组对应扇形的圆心角为____________度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是___________百万;(4)各组“五一”假期的平均出游人数如下表:∠的度数;(1)求OCB直径的长.(2)若3EF=,求O23.某校开设智能机器人编程的校本课程,购买了机器人模型单价比B型机器人模型单价多【问题提出】小组同学提出这样一个问题:若【问题探究】小颖尝试从“函数图象”的角度解决这个问题:(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图说明理由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数是直线2y x =-通过平移得到的,在平移过程中,当过点比例函数()80y x x=>的图象有唯一交点.(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线()220y ax ax c a =-+<与正方形ABCD 恰有两个交点,求26.在矩形ABCD 中,2AB =,23AD =,点E 在边BC 上,将射线参考答案: ,∥AB CD∴∠=∠=︒,13702180903907020∴∠=︒-︒-∠=︒-︒=︒故选:A.【点睛】本题考查了平行线性质,三角形平角的定义,利用三角板的特点求出结果是解答本题的关键.4.D【分析】根据题意可得32,2b a -<<-=,然后根据数的乘法和加法法则以及不等式的性质进行判断即可.【详解】解:由题意可得:32,2b a -<<-=,所以b a <,∴,30,033,3a b ab a b a b <+-<><-++,观察四个选项可知:只有选项D 的结论是正确的;故选:D.【点睛】本题考查了实数与数轴以及不等式的性质,正确理解题意、得出32,2b a -<<-=是解题的关键.5.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,是中心对称图形,故此选项符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.将一个图形沿着一条直线翻折后,直线两侧能完全重合的图形是轴对称图形,将一个图形绕一点旋转180度后能与自身重合的图形是中心对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.D【分析】根据同底数幂的乘除法、合并同类项、幂的乘方等运算法则逐项判断即得答案.【详解】解:A 、246a a a ⋅=,故本选项运算错误,不符合题意;B 、4a 与3a -不是同类项,不能合并,故本选项运算错误,不符合题意;C 、()326a a =,故本选项运算错误,不符合题意;D 、422a a a ÷=,故本选项运算正确,符合题意;故选:D.∴一共有12种情况,被抽到的2名同学都是男生的情况有∵CE平分ACB∠,EG ∴EG EH=∴1212AECBECAC EH SS BC EG⋅⋅==⋅⋅△△故选:C.【点睛】本题主要考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是熟练掌握菱形和折叠的性质,正确画出辅助线,构造直角三角形求解.17.3【分析】根据绝对值的意义、负整数指数幂、再根据二次根式加减运算法则求解即可得到答案.原不等式组的解集是13x -<<,∴整数解为0,1,2.在Rt AB E '△中∵27B AD '∠=︒,AB ∴sin 27B EAB '︒='∴sin 27B E AB ''=︒≈∵平行线间的距离处处相等(3)共30个数,中位数为第15和16∴中位数为151615.52+=百万,故答案为:15.5;(4)5.51216832.5442330⨯+⨯+⨯+⨯+直径,∵CD是O∴90∠=︒,DEC∵点E是 BD的中点,∴=,DE EB(4)根据题意可得∶ 若要围出满足条件的矩形地块,内交点的存在问题,即方程()820x a a x-+=>有实数根,整理得:2280x ax -+=,∴()24280a ∆=--⨯⨯≥,解得:8a ≥,把1x =代入8y =得:88y ==,把()8,1代入2y x a =-+得:解得:17a =,∴817a ≤≤.【点睛】本题主要考查了反比例函数和一次函数综合,意得出等量关系,掌握待定系数法,会根据函数图形获取数据.25.(1)233384y x x =-++,(2)()4,6--;13点P在直线CE上,∴9390aa-<⎧⎨->⎩,解得:13-②如图,当抛物线与直线有两个交点,()()22222831218a a a a a a ⎧⨯-⨯->⎪∴⎨⨯--⨯--<⎪⎩综上所述,a 的取值范围为【点睛】本题是二次函数综合题,【点睛】本题考查矩形的性质,三角函数,旋转的性质,相似三角形的判定与性质,正确理解题意是解题的关键.答案第23页,共23页。

山东省济南市中考数学试卷含答案解析版

山东省济南市中考数学试卷含答案解析版

山东省济南市中考数学试卷含答案解析版TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0 B.﹣2 C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.×104B.×104C.×103D.×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.6.(3分)化简a2+aba−b÷aba−b的结果是()A .a 2B .a2a−bC .a−b bD .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要着作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm11.(3分)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A .x >﹣1B .x >1C .x >﹣2D .x >212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE=,又量的杆底与坝脚的距离AB=3m ,则石坝的坡度为( )A .34B .3C .35D .4 13.(3分)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√2,E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )A .3√105B .2√2C .3√54D .3√2214.(3分)二次函数y=ax 2+bx +c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a +c <0.其中正确结论的个数是( )A .1B .2C .3D .415.(3分)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x 2﹣4x +4= .17.(3分)计算:|﹣2﹣4|+(√3)0= .18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是 .19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 cm .20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.21.(3分)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q (2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为.三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.23.(4分)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.24.(4分)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a618714b88合计c1(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017?济南)在实数0,﹣2,√3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017?济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017?济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.×104B.×104C.×103D.×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017?济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017?济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形. 【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:B 是轴对称图形又是中心对称图形, 故选:B .【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 6.(3分)(2017?济南)化简a 2+ab a−b ÷aba−b 的结果是( )A .a 2B .a2a−bC .a−b bD .a+b b【考点】6A :分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b a−b ab =a+bb,故选:D .【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017?济南)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( ) A .﹣6B .﹣3C .3D .6【考点】AB :根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣ba,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n , 则有﹣2+n=﹣5,解得:n=﹣3. 故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于ca是解题的关键.8.(3分)(2017济南)《九章算术》是中国传统数学的重要着作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( ) A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组. 【解答】解:设合伙人数为x 人,物价为y 钱,根据题意, 可列方程组:{8x −y =3y −7x =4,故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017?济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得: 由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P , ∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13.故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017?济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( ) A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=ODAD,即OD6=√3,∴OD=6√3cm,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017?济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017?济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE=,又量的杆底与坝脚的距离AB=3m ,则石坝的坡度为( )A .34B .3C .35D .4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C 作CF ⊥AB 于F ,根据DE ∥CF ,可得AD AC =DECF,进而得出CF=3,根据勾股定理可得AF 的长,根据CF 和BF 的长可得石坝的坡度. 【解答】解:如图,过C 作CF ⊥AB 于F ,则DE ∥CF ,∴AD AC =DE CF ,即15=0.6CF, 解得CF=3,∴Rt △ACF 中,AF=√52−32=4, 又∵AB=3, ∴BF=4﹣3=1,∴石坝的坡度为CF BF =31=3,故选:B .【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017?济南)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√2,E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )A .3√105B .2√2C .3√54D .3√22【考点】LE :正方形的性质;KD :全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO ≌△EBO ,得到OG=OE=1,证明△BFG ∽△BOE ,根据相似三角形的性质计算即可. 【解答】解:∵四边形ABCD 是正方形,AB=3√2, ∴∠AOB=90°,AO=BO=CO=3, ∵AF ⊥BE , ∴∠EBO=∠GAO , 在△GAO 和△EBO 中, {∠GAO =∠EBO AO =BO ∠AOG =∠BOE , ∴△GAO ≌△EBO , ∴OG=OE=1, ∴BG=2,在Rt △BOE 中,BE=√OB 2+OE 2=√10, ∵∠BFG=∠BOE=90°,∠GBF=∠EBO , ∴△BFG ∽△BOE ,∴BF OB =BG BE ,即BF 3=√10, 解得,BF=3√105,故选:A .【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017?济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b>0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017?济南)如图1,有一正方形广场ABCD,图形中的线段均表示直̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的行道路,BDA处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017?济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017?济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017?济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017?济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20cm.【考点】MO:扇形面积的计算.【分析】设AD=x,则AB=3x.由题意300π=120π(3x)2360,解方程即可.【解答】解:设AD=x,则AB=3x.由题意300π=120π(3x)2360,解得x=10,∴BD=2x=20cm.故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017?济南)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为8.【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=kx 的图象上,∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12,∴y=12x ,解方程组{y =12x y =2x得:{x 1=2y 1=1,{x 2=−2y 2=−1,∴B (﹣2,﹣1), ∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3,∴BC=3﹣(﹣1)=4,∴△ABC 的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017?济南)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M 到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017?济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.【考点】4J:整式的混合运算—化简求值;CB:解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a+3)2﹣(a+2)(a+3)=a2+6a+9﹣a2﹣5a﹣6=a+3,当a=3时,原式=3+3=6;(2){3x−5≥2(x−2)①x2>x−1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017?济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∵{∠AEB=∠DAE ∠AFD=∠B AD=AE∴△ABE≌△DFA,∴AB=DF.【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017?济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017?济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017?济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示: 本数(本)频数(人数)频率5 a6 187 14 b8 8合计c1(1)统计表中的a= 10 ,b= ,c= 50 ; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a 组人数,画出直方图即可; (3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷=50, ∴a=50×=10,b=1450=, 故答案为10,,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型. 27.(9分)(2017济南)如图1,OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=kx(x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=kx (x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由. 【考点】GB :反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B 的坐标即可解决问题; (2)根据两直线垂直的条件,求出直线MN 的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn,DM=km.由△EDM∽△EBN,推出EMEN=DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,∵四边形OABC是平行四边形,∴AB=OC=3,∵A(2,1),∴B(2,4),把B(2,4)代入y=kx中,得到k=8,∴反比例函数的解析式为y=8 x .(2)如图2中,设K是OB的中点,则K(1,2).∵直线OB的解析式为y=2x,∴直线MN的解析式为y=﹣12x+52,∴N(0,52),∴ON=5 2.(3)结论:BF=DE.理由如下:如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn,DM=km.∵△EDM∽△EBN,∴EMEN=DMBN,。

【真题】山东省济南市数学中考试题含答案(Word版)

【真题】山东省济南市数学中考试题含答案(Word版)

山东济南中考试题一、选择题(本大题共15小题,每小题3分,共45分)1.(济南,1,3分)在实数0,-2,5,3中,最大的是( ) A .0 B .-2 C .5 D .3【答案】D2.(济南,2,3分)如图所示的几何体,它的左视图是( )A .B .C .D .【答案】A3.(济南,3,3分)5月5日国产大型客机C 919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0.555×104 B .5.55×104 C .5.55×103 D .55.5×103 【答案】C4.(济南,4,3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40° B .45° C .50° D .60°【答案】C5.(济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .正面a b l21CBA【答案】B6.(济南,6,3分)化简a 2+ab a -b ÷aba -b 的结果是( )A .a 2B .a 2a -bC .a -b bD .a +b b【答案】D7.(济南,7,3分)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( ) A .-6 B .-3 C .3 D .6 【答案】B8.(济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .⎩⎨⎧y -8x =3y -7x =4B .⎩⎨⎧y -8x =37x -y =4C .⎩⎨⎧8x -y =3y -7x =4D .⎩⎨⎧8x -y =37x -y =4【答案】C9.(济南,9,3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23【答案】B10.(济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6cm ,则圆形螺母的外直径是( ) A .12cmB .24cmC .63cmD .123cm出口出口A E DB C【答案】C11.(济南,11,3分)将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( ) A .x >-1 B .x >1 C .x >-2 D .x >2 【答案】A12.(济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE =0.6m ,又量的杆底与坝脚的距离AB =3m ,则石坝的坡度为( ) A .34B .3C .35D .4【答案】B13.(济南,13,3分)如图,正方形ABCD 的对角线AC ,BD 相较于点O ,AB =32,E 为OC 上一点, OE =1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( ) A .3105B .2 2C .354D .322A BCD ED CAG FO ABE14.(济南,14,3分)二次函数y =ax 2+bx +c (a ≠0)的图象经过点(-2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c <0.其中正确结论的个数是( ) A .1 B .2 C .3 D .4 【答案】C15.(济南,15,3分)如图,有一正方形广场ABCD ,图形中的线段均表示直行道路, ⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( ) A .A →B →E →G B .A →E →D →C C .A →E →B →F D .A →B →D →C【答案】D二、填空题(本大题共6小题,每小题3分,共18分)16.(济南,16,3分)分解因式:x 2-4x +4=__________. 【答案】(x -2)217.(济南,17,3分)计算:│-2-4│+(3)0=________________. 【答案】718.(济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.第15题图1FE AB第15题图2GFEB Oxy第15题图3O19.(济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm . 【答案】2020.(济南,20,3分)如图,过点O 的直线AB 与反比例函数y =kx 的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y =-3kx (x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.【答案】821.(济南,21,3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿综或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3),C (-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______________.DE CxyCA OB【答案】(1,-2)三、解答题(本大题共7小题,共57分)22.(济南,22,7分)(1)先化简,再求值:(a +3)2-(a +2)(a +3),其中a =3. 【解】原式=a 2+6a +9-(a 2+2a +3a +6) = a 2+6a +9-a 2-2a -3a -6) =a +3. 当a =3时, 原式=3+3=6.(2)解不等式组:⎩⎪⎨⎪⎧3x -5≥2(x -2) ①x 2>x -1 ②【解】由①,得x ≥1.由②,得x <2.∴不等式组的解集为:1≤x <2.23.(济南,23,7分)(1)如图,在矩形ABCD ,AD =AE ,DF ⊥AE 于点F .求证:AB =DF .证明:∵四边形ABCD 是矩形,∴∠B =90°,AD ∥B C. ∴∠DAF =∠BE A . ∵DF ⊥AE , ∴∠AFD =90°.∴∠B =∠AFD =90°. 又∵AD =AE , ∴△ADF ≌△EB A. ∴AB =DF .xy –1123–1123QS TPO FECAB(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.【解】∵AB 是⊙O 的直径,∴∠ADB =90°.∵∠B =∠C =25°,∴∠BAD =90°-25°=65°.24.(济南,24,8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【解】设银杏树的单价是x 元,玉兰树的单价是1.5x 元,则12000x +90001.5x=150. 解得x =120.经检验x =120是方程的解. ∴1.5x =180.答:银杏树的单价是120元,玉兰树的单价是180元, 25.(济南,25,8分)电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数; (4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数. 【解】(1)a =10,b =0.28,c =50;(2)将频数分布表直方图补充完整,如图所示:AOCD8141887652015105人数0(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本). (4)该校八年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).26.(济南,26,9分)如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A (2,1),反比例函数y =kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =kx (x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【解】(1)过点A 作AP ⊥x 轴于点P ,则AP =1,OP =2.又∵AB =OC =3, ∴B (2,4).∵反比例函数y =kx (x >0)的图象经过的B ,∴4=k2.∴k =8.∴反比例函数的关系式为y =8x.108141887652015105人数本0xyyy第26题图3第26题图2第26题图1FEDB CAONMBC AO BCAO(2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=25.∵点H 是OB 的中点,∴点H (1,2).∴OH =12+22=5. ∵∠OHN =∠OGB =90°,∠HON =∠GOB , ∴△OHN ∽△OGB ,∴ON OB =OH OG .∴ON 25=54.∴ON =2.5. (3)ED =BF .理由:由点A (2,1)可得直线OA 的解析式为y =12x .解方程组⎩⎨⎧y =12x y =8x,得⎩⎨⎧x 1=4y 1=2,⎩⎨⎧x 2=-2y 2=-4.∵点D 在第一象限,∴D (4,2).由B (2,4),点D (4,2)可得直线BD 的解析式为y =-x +6. 把y =0代入上式,得0=-x +6.解得x =6. ∴E (6,0).∵ED =(6-4)2+(0-2)2=22,BF =(0-2)2+(6-4)2=22. ∴ED =BF .27.(济南,27,9分)某学习小组的学生在学习中遇到了下面的问题: 如图1,在△ABC 和△ADE 中,∠ACB =∠AED =90°,∠CAB =∠EAD =60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF 的两条边是否相等,如EF =CF ,以下是她的证明过程y第26题答案图1PBCAOy第26题答案图2G HNMBC AO证明:延长线段EF 交CB 的延长线于点G . ∵F 是BD 的中点, ∴BF =DF .∵∠ACB =∠AED =90°, ∴ED ∥CG .∴∠BGF =∠DEF . 又∵∠BFG =∠DFE ,∴△BGF ≌△DEF ( ). ∴EF =FG . ∴CF =EF =12EG .①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS ,ASA ,AAS ,SSS 中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF 的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE 绕点A 逆时针旋转某个角度时,连接CE ,延长DE 交BC 的延长线于点P ,其他条件不变,判断△CEF 的形状并给出证明.【解】(1)①证明中所叙述的辅助线如下图所示:②证明的括号中的理由是:AAS. (2)△CEF 是等边三角形.证明如下:设AE =a ,AC =b ,则AD =2a ,AB =2b ,DE =3a ,BC =3b ,CE =a +b . ∵△BGF ≌△DEF ,∴BG =DE =3a .∴CG =BC +BG =3(a +b ).第27题图2第27题图1FEDF E CC A第27题答案图1GF C E A∵CB CG =3b 3(a +b )=b a +b ,CA CE =b a +b,∴CB CG =CACE .又∵∠ACB =∠ECG ,∴△ACE ∽△ECG .∴∠CEF =∠CAB =60°. 又∵CF =EF (已证), ∴△CEF 是等边三角形. (3)△CEF 是等边三角形.证明方法一: 如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FN B.又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN .设AC =a ,AE =b ,则BC =3a ,DE =3b .∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°.∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EA C . 在△AEC 和△BNC 中, ∵AE BN =AE DE =AC BC =33,∠CBN =∠EAC , ∴△AEC ∽△BN C .∴∠ECA =∠NC B .∴∠ECN =90°. 又∵EF =FN , ∴CF =12EN =EF .又∵∠CEF =60°,∴△CEF 是等边三角形.证明方法二:如答案图3,取AB 的中点M ,并连接CM ,FM ,则CM =12AB =A C.又∵∠CAM =60°,∴△ACM 是等边三角形. ∴∠ACM =∠AMC =60°.∵AM =BM ,DF =BF ,∴MF 是△ABD 的中位线.∴MF =12AD =AE 且MF ∥A D .∴∠DAB +∠AMF =180°.∴∠DAB +∠AMF +∠AMC =180°+60°=240°. 即∠DAB +∠CMF =180°+60°=240°.又∵∠CAE +∠DAB =360°-∠DAE -∠BAC =360°-60°-60=240°, ∴∠DAB +∠CMF =∠CAE +∠DAB ∴∠CMF =∠CAE .第27题答案图2NFEB A第27题答案图3M FDEA又∵CM =AC ,MF =AE ,∴△CAE ≌△CMF .∴CE =CF ,∠ECA =∠FCM . 又∵∠ACM =∠ACF +∠FCM =60°, ∴∠ACF +∠ECA =60°.即∠ECF =60°. 又∵CE =CF ,∴△CEF 是等边三角形.28.(济南,28,9分)如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交B C 于点D ,tan ∠OAD =2,抛物线M 1:y =ax 2+bx (a ≠0)过A ,D 两点.(1)求点D 的坐标和抛物线M 1的表达式;(2)点P 是抛物线M 1对称轴上一动点,当∠CP A =90°时,求所有符合条件的点P 的坐标;(3)如图2,点E (0,4),连接AE ,将抛物线M 1的图象向下平移m (m >0)个单位得到抛物线M 2.①设点D 平移后的对应点为点D ′,当点D ′ 恰好在直线AE 上时,求m 的值; ②当1≤x ≤m (m >1)时,若抛物线M 2与直线AE 有两个交点,求m 的取值范围.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DFAF=2,∴AF =3.∴OF =1.∴D (1,6).把A (4,0),D (1,6)分别代入 y =ax 2+bx (a ≠0),得⎩⎨⎧0=16a +4b 6=a +b .解得⎩⎨⎧a =-2b =8. ∴抛物线M 1的表达式为:y =-2x 2+8x .xy xy xy图3图2图1EEDBC AODBC AODB CAO(2)连接AC ,则AC =42+62=213.∵y =-2x 2+8x =-2(x -2)2+8, ∴抛物线M 1的对称轴是直线x =2. 设直线x =2交OA 于点N ,则N (2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2. ∵点M 是AC 的中点,∴点M (2,3).∴MN =2. ∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13.∴P 1N =MN + P 1M =3+13. ∴点P 1(2,3+13).同理可得点P 2(2,3-13).(3)由A (4,0),点E (0,4)可得直线AE 的解析式为y =-x +4. ①点D (1,6)平移后的对应点为点D ′(1,6-m ),∵点D ′ 恰好在直线AE 上 ∴6-m =-1+4. 解得m =3.∴D ′(1,3),m =3.xy F答案图1DBCAOxy 答案图2P 2P 1MNDBCAO②如答案图4,作直线x =1,它与直线AE 的交点就是点D ′(1,3).作直线x =m 交直线AE 于点Q (m ,-m +4).设抛物线M 2的解析式为y =-2x 2+8x -m .若要直线AE 与抛物线M 2有两个交点N 1、N 2,则关于x 的一元二次方程-2x 2+8x -m =-x +4有两个不相等的实数根,将该方程整理,得2x 2+9x +m +4=0. 由△=92-4×2(m +4)>0,解得m <498.又∵m >1,∴1<m <498.…………………………………………………………………………①∵1≤x ≤m (m >1),∴抛物线M 2与直线AE 有两个交点N 1、N 2要在直线x =1与直线x =m 所夹的区域内(含左、右边界).当点N 1与点D ′(1,3)重合时,把D ′(1,3)的坐标代入y =-2x 2+8x -m ,可得m =3. ∴m ≥3…………………………………………………………………………②当点N 2与点Q (m ,-m +4)重合时,把点Q (m ,-m +4)的坐标代入y =-2x 2+8x -m ,可得-m +4=-2m 2+8m -m .解得m 1=2+2,m 2=2-2(不合题意,舍去). ∴m ≥2+2…………………………………………………………………………③ 由①、②、③可得符合题意的m 的取值范围为:2+2≤m <498..xy答案图3D'EDBC AOxy答案图4N 2N 1Q D 'O 'EDBCAO。

山东省济南市中考数学试卷含答案解析版

山东省济南市中考数学试卷含答案解析版

山东省济南市中考数学试卷含答案解析版It was last revised on January 2, 20212017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0 B.﹣2 C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.×104B.×104C.×103D.×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.6.(3分)化简a2+aba−b÷aba−b的结果是()A .a 2B .a2a−bC .a−b bD .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要着作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm11.(3分)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A .x >﹣1B .x >1C .x >﹣2D .x >212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE=,又量的杆底与坝脚的距离AB=3m ,则石坝的坡度为( )A .34B .3C .35D .4 13.(3分)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√2,E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )A .3√105B .2√2C .3√54D .3√2214.(3分)二次函数y=ax 2+bx +c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a +c <0.其中正确结论的个数是( )A .1B .2C .3D .415.(3分)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x 2﹣4x +4= .17.(3分)计算:|﹣2﹣4|+(√3)0= .18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是 .19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 cm .20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.21.(3分)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q (2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为.三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.23.(4分)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.24.(4分)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a618714b88合计c1(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017?济南)在实数0,﹣2,√3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017?济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017?济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.×104B.×104C.×103D.×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017?济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017?济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B 是轴对称图形又是中心对称图形,故选:B .【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017?济南)化简a 2+ab a−b ÷ab a−b 的结果是( ) A .a 2 B .a2a−b C .a−b bD .a+b b 【考点】6A :分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b a−b ab =a+b b, 故选:D .【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017?济南)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .6【考点】AB :根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键.8.(3分)(2017济南)《九章算术》是中国传统数学的重要着作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017?济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13. 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017?济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=ODAD,即OD6=√3,∴OD=6√3cm,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017?济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017?济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE=,又量的杆底与坝脚的距离AB=3m ,则石坝的坡度为( )A .34B .3C .35D .4 【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C 作CF ⊥AB 于F ,根据DE ∥CF ,可得AD AC =DE CF,进而得出CF=3,根据勾股定理可得AF 的长,根据CF 和BF 的长可得石坝的坡度.【解答】解:如图,过C 作CF ⊥AB 于F ,则DE ∥CF ,∴AD AC =DE CF ,即15=0.6CF, 解得CF=3,∴Rt △ACF 中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CF BF =31=3, 故选:B .【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017?济南)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√2,E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )A .3√105B .2√2C .3√54D .3√22【考点】LE :正方形的性质;KD :全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO ≌△EBO ,得到OG=OE=1,证明△BFG ∽△BOE ,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD 是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF ⊥BE ,∴∠EBO=∠GAO ,在△GAO 和△EBO 中,{∠GAO =∠EBO AO =BO ∠AOG =∠BOE,∴△GAO ≌△EBO ,∴OG=OE=1,∴BG=2,在Rt △BOE 中,BE=√OB 2+OE 2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO ,∴△BFG ∽△BOE ,∴BF OB =BG BE ,即BF 3=√10, 解得,BF=3√105, 故选:A .【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017?济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b>0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017?济南)如图1,有一正方形广场ABCD,图形中的线段均表示直̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的行道路,BDA处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017?济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017?济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017?济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017?济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20cm.【考点】MO:扇形面积的计算.【分析】设AD=x,则AB=3x.由题意300π=120π(3x)2360,解方程即可.【解答】解:设AD=x,则AB=3x.由题意300π=120π(3x)2360,解得x=10,∴BD=2x=20cm.故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017?济南)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为8.【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=kx 的图象上,∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12,∴y=12x ,解方程组{y =12x y =2x得:{x 1=2y 1=1,{x 2=−2y 2=−1,∴B (﹣2,﹣1), ∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3,∴BC=3﹣(﹣1)=4,∴△ABC 的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017?济南)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M 到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017?济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.【考点】4J:整式的混合运算—化简求值;CB:解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a+3)2﹣(a+2)(a+3)=a2+6a+9﹣a2﹣5a﹣6=a+3,当a=3时,原式=3+3=6;(2){3x−5≥2(x−2)①x2>x−1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017?济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∵{∠AEB=∠DAE ∠AFD=∠B AD=AE∴△ABE≌△DFA,∴AB=DF.【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017?济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017?济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017?济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示: 本数(本)频数(人数)频率5 a6 187 14 b8 8合计c1(1)统计表中的a= 10 ,b= ,c= 50 ; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a 组人数,画出直方图即可; (3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷=50, ∴a=50×=10,b=1450=, 故答案为10,,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型. 27.(9分)(2017济南)如图1,OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=kx(x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=kx (x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由. 【考点】GB :反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B 的坐标即可解决问题; (2)根据两直线垂直的条件,求出直线MN 的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn,DM=km.由△EDM∽△EBN,推出EMEN=DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,∵四边形OABC是平行四边形,∴AB=OC=3,∵A(2,1),∴B(2,4),把B(2,4)代入y=kx中,得到k=8,∴反比例函数的解析式为y=8 x .(2)如图2中,设K是OB的中点,则K(1,2).∵直线OB的解析式为y=2x,∴直线MN的解析式为y=﹣12x+52,∴N(0,52),∴ON=5 2.(3)结论:BF=DE.理由如下:如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn,DM=km.∵△EDM∽△EBN,∴EMEN=DMBN,。

济南中考数学试题及答案

济南中考数学试题及答案

济南中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. \(2^3 = 6\)B. \(3^2 = 9\)C. \(4^1 = 3\)D. \(5^0 = 1\)答案:B2. 哪个图形是轴对称图形?A. 圆B. 矩形C. 三角形D. 正方形答案:A3. 以下哪个数是无理数?A. \(\sqrt{4}\)B. \(\pi\)C. \(0.5\)D. \(\frac{1}{3}\)答案:B4. 已知函数 \(y = 2x + 3\),当 \(x = 1\) 时,\(y\) 的值是多少?A. 5B. 4C. 3D. 2答案:A5. 以下哪个选项是等腰三角形?A. 三条边长分别为3、4、5B. 三条边长分别为2、2、3C. 三条边长分别为1、2、3D. 三条边长分别为4、4、4答案:B6. 计算 \((-2)^2\) 的结果是?A. 4B. -4C. 2D. -2答案:A7. 哪个选项是正确的因式分解?A. \(x^2 - 4 = (x + 2)(x - 2)\)B. \(x^2 + 4 = (x + 2)(x - 2)\)C. \(x^2 - 4 = (x + 4)(x - 4)\)D. \(x^2 + 4 = (x + 2)(x + 2)\) 答案:A8. 以下哪个选项是正确的不等式?A. \(2x > 3\) 当 \(x > 1.5\)B. \(2x < 3\) 当 \(x < 1.5\)C. \(2x \leq 3\) 当 \(x \leq 1.5\)D. \(2x \geq 3\) 当 \(x \geq 1.5\)答案:A9. 计算 \(\sqrt{9}\) 的结果是?A. 3B. -3C. 3 或 -3D. 9答案:A10. 以下哪个选项是正确的比例?A. \(3:4 = 6:8\)B. \(3:4 = 6:9\)C. \(3:4 = 9:12\)D. \(3:4 = 9:8\)答案:C二、填空题(每题3分,共30分)1. 一个数的相反数是它自己,这个数是 ________。

山东省济南市2021-2023三年中考数学真题分类汇编-01选择题知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-01选择题知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.相反数(共1小题)1.(2022•济南)﹣7的相反数是( )A.﹣7B.7C.D.﹣二.科学记数法—表示较大的数(共3小题)2.(2023•济南)2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为( )A.0.68653×108B.6.8653×108C.6.8653×107D.68.653×1073.(2022•钢城区)神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为( )A.3.56×105B.0.356×106C.3.56×106D.35.6×104 4.(2021•济南)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km.将数字55000000用科学记数法表示为( )A.0.55×108B.5.5×107C.5.5×106D.55×106三.算术平方根(共1小题)5.(2021•济南)9的算术平方根是( )A.3B.﹣3C.±3D.四.实数与数轴(共3小题)6.(2023•济南)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是( )A.ab>0B.a+b>0C.a+3<b+3D.﹣3a<﹣3b 7.(2022•钢城区)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是( )A.ab>0B.a+b>0C.|a|<|b|D.a+1<b+18.(2021•济南)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.a+b>0B.﹣a>b C.a﹣b<0D.﹣b<a五.同底数幂的除法(共1小题)9.(2023•济南)下列运算正确的是( )A.a2•a4=a8B.a4﹣a3=a C.(a2)3=a5D.a4÷a2=a2六.分式的加减法(共1小题)10.(2021•济南)计算的结果是( )A.m+1B.m﹣1C.m﹣2D.﹣m﹣2七.分式的化简求值(共1小题)11.(2022•钢城区)若m﹣n=2,则代数式•的值是( )A.﹣2B.2C.﹣4D.4八.一次函数的定义(共1小题)12.(2022•钢城区)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系九.反比例函数的性质(共1小题)13.(2021•济南)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx﹣k的图象大致是( )A.B.C.D.一十.反比例函数图象上点的坐标特征(共1小题)14.(2023•济南)已知点A(﹣4,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系为( )A.y3<y2<y1B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1一十一.二次函数图象与系数的关系(共1小题)15.(2022•钢城区)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y 轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M (m﹣1,y1),N(m+1,y2)为图形G上两点,若y1<y2,则m的取值范围是( )A.m<﹣1或m>0B.<m<C.0≤m<D.﹣1<m<1一十二.二次函数图象上点的坐标特征(共2小题)16.(2023•济南)定义:在平面直角坐标系中,对于点P(x1,y1),当点Q(x2,y2)满足2(x1+x2)=y1+y2时,称点Q(x2,y2)是点P(x1,y1)的“倍增点”.已知点P1(1,0),有下列结论:①点Q1(3,8),Q2(﹣2,﹣2)都是点P1的“倍增点”;②若直线y=x+2上的点A是点P1的“倍增点”,则点A的坐标为(2,4);③抛物线y=x2﹣2x﹣3上存在两个点是点P1的“倍增点”;④若点B是点P1的“倍增点”,则P1B的最小值是;其中,正确结论的个数是( )A.1B.2C.3D.4 17.(2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m ≤3时,其限变点P′的纵坐标n'的取值范围是( )A.﹣2≤n′≤2B.1≤n′≤3C.1≤n′≤2D.﹣2≤n′≤318.(2023•济南)如图,一块直角三角板的直角顶点放在直尺的一边上.如果∠1=70°,那么∠2的度数是( )A.20°B.25°C.30°D.45°19.(2022•钢城区)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为( )A.45°B.50°C.57.5°D.65°20.(2021•济南)如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为( )A.45°B.60°C.75°D.80°一十四.作图—基本作图(共1小题)21.(2022•济南)如图,矩形ABCD中,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN分别交AD,BC于点E,F,连接AF,若BF=3,AE=5,以下结论错误的是( )A.AF=CF B.∠FAC=∠EAC C.AB=4D.AC=2AB22.(2023•济南)如图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.23.(2022•钢城区)下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A.B.C.D.24.(2021•济南)以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.一十六.黄金分割(共1小题)25.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是( )A.∠BCE=36°B.BC=AEC.D.一十七.相似三角形的判定与性质(共1小题)26.(2021•济南)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB 的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是( )A.BE=DE B.DE垂直平分线段ACC.D.BD2=BC•BE一十八.解直角三角形的应用-仰角俯角问题(共2小题)27.(2022•济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)A.28m B.34m C.37m D.46m 28.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M 处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)A.188m B.269m C.286m D.312m一十九.简单几何体的三视图(共2小题)29.(2023•济南)下列几何体中,主视图是三角形的为( )A.B.C.D.30.(2021•济南)下列几何体中,其俯视图与主视图完全相同的是( )A.B.C.D.二十.由三视图判断几何体(共1小题)31.(2022•钢城区)如图是某几何体的三视图,该几何体是( )A.圆柱B.球C.圆锥D.正四棱柱二十一.列表法与树状图法(共3小题)32.(2023•济南)从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为( )A.B.C.D.33.(2022•钢城区)某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是( )A.B.C.D.34.(2021•济南)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )A.B.C.D.山东省济南市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.相反数(共1小题)1.(2022•济南)﹣7的相反数是( )A.﹣7B.7C.D.﹣【答案】B【解答】解:根据概念,(﹣7的相反数)+(﹣7)=0,则﹣7的相反数是7.故选:B.二.科学记数法—表示较大的数(共3小题)2.(2023•济南)2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为( )A.0.68653×108B.6.8653×108C.6.8653×107D.68.653×107【答案】B【解答】解:686530000=6.8653×108,故选:B.3.(2022•钢城区)神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为( )A.3.56×105B.0.356×106C.3.56×106D.35.6×104【答案】A【解答】解:356000=3.56×105,故选:A.4.(2021•济南)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km.将数字55000000用科学记数法表示为( )A.0.55×108B.5.5×107C.5.5×106D.55×106【答案】B【解答】解:将55000000用科学记数法表示为5.5×107.故选:B.三.算术平方根(共1小题)5.(2021•济南)9的算术平方根是( )A.3B.﹣3C.±3D.【答案】A【解答】解:∵32=9,∴9的算术平方根是3.故选:A.四.实数与数轴(共3小题)6.(2023•济南)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是( )A.ab>0B.a+b>0C.a+3<b+3D.﹣3a<﹣3b【答案】D【解答】解:从图中得出:a=2,﹣3<b<﹣2.(1)a和b相乘是负数,所以ab<0,故A选项错误;(2)a和b相加是负数,所以a+b<0,故B选项错误;(3)因为a>b,所以a+3>b+3,故C选项错误;(4)因为a是正数,所以﹣3a<0,又因为b是负数,所以﹣3b>0,即﹣3a<﹣3b,故选项D正确,所以选择D;答案为:D.7.(2022•钢城区)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是( )A.ab>0B.a+b>0C.|a|<|b|D.a+1<b+1【答案】D【解答】解:A选项,∵a<0,b>0,∴ab<0,故该选项不符合题意;B选项,∵a<0,b>0,|a|>|b|,∴a+b<0,故该选项不符合题意;C选项,|a|>|b|,故该选项不符合题意;D选项,∵a<b,∴a+1<b+1,故该选项符合题意;故选:D.8.(2021•济南)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.a+b>0B.﹣a>b C.a﹣b<0D.﹣b<a【答案】B【解答】解:∵b<0<a,且|b|>|a|∴a+b<0,选项A错误;﹣a>b,选项B正确;a﹣b>0,选项C错误;﹣b>a,选项D错误;故选:B.五.同底数幂的除法(共1小题)9.(2023•济南)下列运算正确的是( )A.a2•a4=a8B.a4﹣a3=a C.(a2)3=a5D.a4÷a2=a2【答案】D【解答】解:A、a2•a4=a6,原式计算错误,故A不符合题意;B、a4与a3不是同类项,不能合并,故B不符合题意;C、(a2)3=a6,原式计算错误,故C不符合题意;D、a4÷a2=a2,原式计算正确,故D符合题意;故选:D.六.分式的加减法(共1小题)10.(2021•济南)计算的结果是( )A.m+1B.m﹣1C.m﹣2D.﹣m﹣2【答案】B【解答】解:原式====m﹣1.故选:B.七.分式的化简求值(共1小题)11.(2022•钢城区)若m﹣n=2,则代数式•的值是( )A.﹣2B.2C.﹣4D.4【答案】D【解答】解:原式==2(m﹣n).当m﹣n=2时.原式=2×2=4.故选:D.八.一次函数的定义(共1小题)12.(2022•钢城区)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系【答案】B【解答】解:由题意得,y=40﹣2x,所以y与x是一次函数关系,故选:B.九.反比例函数的性质(共1小题)13.(2021•济南)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx﹣k的图象大致是( )A.B.C.D.【答案】D【解答】解:∵反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象图象经过第一、三、四象限,故选:D.一十.反比例函数图象上点的坐标特征(共1小题)14.(2023•济南)已知点A(﹣4,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系为( )A.y3<y2<y1B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【答案】C【解答】解:∵,k<0,∴函数图象的两个分支分别在第二、四象限内,且在每一个象限内y随x的增大而增大,又∵点A(﹣4,y1),B(﹣2,y2),C(3,y3),∴点A,B在第二象限内,点C在第四象限内,∴y1>0,y2>0,y3<0,又∵﹣4<﹣2,∴y1<y2,∴y3<y1<y2.故选:C.一十一.二次函数图象与系数的关系(共1小题)15.(2022•钢城区)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y 轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M (m﹣1,y1),N(m+1,y2)为图形G上两点,若y1<y2,则m的取值范围是( )A.m<﹣1或m>0B.<m<C.0≤m<D.﹣1<m<1【答案】D【解答】解:在y=﹣x2+2mx﹣m2+2中,令x=m﹣1,得y=﹣(m﹣1)2+2m(m﹣1)﹣m2+2=1,令x=m+1,得y=﹣(m+1)2+2m(m+1)﹣m2+2=1,∴(m﹣1,1)和(m+1,1)是关于抛物线y=﹣x2+2mx﹣m2+2对称轴对称的两点,①若m﹣1≥0,即(m﹣1,1)和(m+1,1)在y轴右侧(包括(m﹣1,1)在y轴上),则点(m﹣1,1)经过翻折得M(m﹣1,y1),点(m+1,1)经过翻折得N(m+1,y2),如图:由对称性可知,y1=y2,∴此时不满足y1<y2;②当m+1≤0,即(m﹣1,1)和(m+1,1)在y轴左侧(包括(m+1,1)在y轴上),则点(m﹣1,1)即为M(m﹣1,y1),点(m+1,1)即为N(m+1,y2),∴y1=y2,∴此时不满足y1<y2;③当m﹣1<0<m+1,即(m﹣1,1)在y轴左侧,(m+1,1)在y轴右侧时,如图:此时M(m﹣1,1),(m+1,1)翻折后得N,满足y1<y2;由m﹣1<0<m+1得:﹣1<m<1,故选:D.一十二.二次函数图象上点的坐标特征(共2小题)16.(2023•济南)定义:在平面直角坐标系中,对于点P(x1,y1),当点Q(x2,y2)满足2(x1+x2)=y1+y2时,称点Q(x2,y2)是点P(x1,y1)的“倍增点”.已知点P1(1,0),有下列结论:①点Q1(3,8),Q2(﹣2,﹣2)都是点P1的“倍增点”;②若直线y=x+2上的点A是点P1的“倍增点”,则点A的坐标为(2,4);③抛物线y=x2﹣2x﹣3上存在两个点是点P1的“倍增点”;④若点B是点P1的“倍增点”,则P1B的最小值是;其中,正确结论的个数是( )A.1B.2C.3D.4【答案】C【解答】解:依据题意,由“倍增点”的意义,∵2(1+3)=8+0,2(1﹣2)=﹣2+0,∴点Q1(3,8),Q2(﹣2,﹣2)都是点P1的“倍增点”.∴①正确.对于②,由题意,可设满足题意得“倍增点”A为(x,x+2),∴2(x+1)=x+2+0.∴x=0.∴A(0,2).∴②错误.对于③,可设抛物线上的“倍增点”为(x,x2﹣2x﹣3),∴2(x+1)=x2﹣2x﹣3.∴x=5或﹣1.∴此时满足题意的“倍增点”有(5,12),(﹣1,0)两个.∴③正确.对于④,设B(x,y),∴2(x+1)=y+0.∴y=2(x+1).∴P1B===.∴当x=﹣时,P1B有最小值为.∴④正确.故选:C.17.(2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m ≤3时,其限变点P′的纵坐标n'的取值范围是( )A.﹣2≤n′≤2B.1≤n′≤3C.1≤n′≤2D.﹣2≤n′≤3【答案】D【解答】解:由题意可知,当m≥0时,n′=﹣m2+4m+2﹣4=﹣(m﹣2)2+2,∴当0≤m≤3时,﹣2≤n′≤2,当m<0时,n′=m2﹣4m﹣2=(m﹣2)2﹣6,∴当﹣1≤m<0时,﹣2<n′≤3,综上,当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是﹣2≤n′≤3,故选:D.一十三.平行线的性质(共3小题)18.(2023•济南)如图,一块直角三角板的直角顶点放在直尺的一边上.如果∠1=70°,那么∠2的度数是( )A.20°B.25°C.30°D.45°【答案】A【解答】解:如图,∵a∥b,∴∠1=∠3=70°,∴∠2=180°﹣90°﹣70°=20°,故选:A.19.(2022•钢城区)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为( )A.45°B.50°C.57.5°D.65°【答案】B【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.20.(2021•济南)如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为( )A.45°B.60°C.75°D.80°【答案】B【解答】解:∵AB∥CD,∠A=30°,∴∠ADC=∠A=30°,∠CDE=∠DEB,∵DA平分∠CDE,∴∠CDE=2∠ADC=60°,∴∠DEB=60°.故选:B.一十四.作图—基本作图(共1小题)21.(2022•济南)如图,矩形ABCD中,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN分别交AD,BC于点E,F,连接AF,若BF=3,AE=5,以下结论错误的是( )A.AF=CF B.∠FAC=∠EAC C.AB=4D.AC=2AB【答案】D【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠FCA=∠EAC,根据作图过程可知:MN是AC的垂直平分线,∴AF=CF,故A选项正确,不符合题意;∴∠FAC=∠FCA,∴∠FAC=∠EAC,故B选项正确,不符合题意;∵MN是AC的垂直平分线,∴∠FOA=∠EOC=90°,AO=CO,在△CFO和△AEO中,,∴△CFO≌△AEO(ASA),∴AE=CF,∴AF=CF=AE=5,∵BF=3,在Rt△ABF中,根据勾股定理,得AB==4,故C选项正确,不符合题意;∵BC=BF+FC=3+5=8,∴BC=2AB,故D选项错误,符合题意,故选:D.一十五.中心对称图形(共3小题)22.(2023•济南)如图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】A【解答】解:A.该图形既是轴对称图形,又是中心对称图形,符合题意;B.该图形是轴对称图形,不是中心对称图形,不符合题意;C.该图形既不是轴对称图形,也不是中心对称图形,不符合题意;D.该图形不是中心对称图形,是轴对称图形,不符合题意.故选:A.23.(2022•钢城区)下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】B【解答】解:A.不是轴对称图形,也不是中心对称图形,故A选项不合题意;B.既是轴对称图形又是中心对称图形,故B选项符合题意;C.不是轴对称图形,是中心对称图形,故C选项不合题意;D.是轴对称图形,不是中心对称图形,故D选项不合题意;故选:B.24.(2021•济南)以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】A【解答】解:A.是轴对称图形,又是中心对称图形,符合题意;B.是轴对称图形,不是中心对称图形,不符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,又不是中心对称图形,不符合题意.故选:A.一十六.黄金分割(共1小题)25.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是( )A.∠BCE=36°B.BC=AEC.D.【答案】C【解答】解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB==72°,由题意得:CP平分∠ACB,∴∠BCE=∠ACE=∠ACB=36°,∴∠A=∠ACE=36°,∴AE=CE,∵∠CEB=∠A+∠ACE=72°,∴∠B=∠CEB=72°,∴CB=CE,∴AE=CE=CB,∵△BCE是顶角为36°的等腰三角形,∴△BCE是黄金三角形,∴=,∴=,∴==,∴==,故A、B、D不符合题意,C符合题意;故选:C.一十七.相似三角形的判定与性质(共1小题)26.(2021•济南)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB 的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是( )A.BE=DE B.DE垂直平分线段ACC.D.BD2=BC•BE【答案】C【解答】解:由题意可得∠ABC=90°,∠C=30°,AB=AD,AP为BD的垂直平分线,∴BE=DE,∴∠BAE=∠DAE=30°,∴△AEC是等腰三角形,∵AB=AD,AC=2AB,∴点D为AC的中点,∴DE垂直平分线段AC,故选项A,B正确,不符合题意;在△ABC和△EDC中,∠C=∠C,∠ABC=∠EDC=90°,∴△ABC∽△EDC,∴,∵,DC=,∴,∴,∴,故选项C错误,符合题意;在△ABD中,∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°,∴∠DBE=∠BDE=30°,在△BED和△BDC中,∠DBC=∠EBD=30°,∠BDE=∠C=30°,∴△BED∽△BDC,∴,∴BD2=BC•BE,故选项D正确,不符合题意.故选:C.一十八.解直角三角形的应用-仰角俯角问题(共2小题)27.(2022•济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)A.28m B.34m C.37m D.46m【答案】C【解答】解:由题意可知:AB⊥BC,在Rt△ADB中,∠B=90°,∠ADB=58°,∵tan∠ADB=tan58°=,∴BD=≈(m),在Rt△ACB中,∠B=90°,∠C=22°,∵CD=70m,∴BC=CD+BD=(70+)m,∴AB=BC×tan C≈(70+)×0.40(m),解得:AB≈37m,答:该建筑物AB的高度约为37m.故选:C.28.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M 处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)A.188m B.269m C.286m D.312m【答案】C【解答】解:由题意得:∠N=43°,∠M=35°,AO=135m,BO=AO﹣AB=95m,在Rt△AON中,tan N==tan43°,∴NO=≈150m,在Rt△BOM中,tan M==tan35°,∴MO=≈135.7m,∴MN=MO+NO=135.7+150≈286m.故选:C.一十九.简单几何体的三视图(共2小题)29.(2023•济南)下列几何体中,主视图是三角形的为( )A.B.C.D.【答案】A【解答】解:A、圆锥的主视图是三角形,故此选项符合题意;B、球的主视图是圆,故此选项不符合题意;C、立方体的主视图是正方形,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条虚线,故此选项不符合题意;故选:A.30.(2021•济南)下列几何体中,其俯视图与主视图完全相同的是( )A.B.C.D.【答案】C【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B不符合题意;正方体的主视图、俯视图都是正方形,因此选项C符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D不符合题意;故选:C.二十.由三视图判断几何体(共1小题)31.(2022•钢城区)如图是某几何体的三视图,该几何体是( )A.圆柱B.球C.圆锥D.正四棱柱【答案】A【解答】解:该几何体的主视图、左视图都是长方形,而俯视图是圆形,因此这个几何体是圆柱,故选:A.二十一.列表法与树状图法(共3小题)32.(2023•济南)从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为( )A.B.C.D.【答案】B【解答】∴一共有12种等可能的情况,其中被抽到的2名同学都是男生的情况有6种情况,∴被抽到的2名同学都是男生的概率==.故选:B.33.(2022•钢城区)某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是( )A.B.C.D.【答案】C【解答】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中小明和小亮恰好选择同一个主题的结果有3种,∴小明和小亮恰好选择同一个主题的概率为=,故选:C.34.(2021•济南)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )A.B.C.D.【答案】C【解答】解:把“垃圾分类”“文明出行”“低碳环保”三个宣传队分别记为A、B、C,画树状图如下:共有9种等可能的结果,小华和小丽恰好选到同一个宣传队的结果有3种,∴小华和小丽恰好选到同一个宣传队的概率为=,故选:C.。

【真题汇编】2022年山东省济南市中考数学真题汇总 卷(Ⅱ)(含答案及解析)

【真题汇编】2022年山东省济南市中考数学真题汇总 卷(Ⅱ)(含答案及解析)

2022年山东省济南市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若ABC 中,30cm AB =,26cm AC =,高24cm AD =,则BC 的长为( )cmA .28或8B .8C .28D .以上都不对 2、下列几何体中,截面不可能是长方形的是( ) A .长方体 B .圆柱体 C .球体 D .三棱柱3、纳米(nm )是非常小的长度单位,1nm 0.000000001m =.1nm 用科学记数法表示为( ) A .7110m -⨯ B .8110m -⨯ C .91m 10-⨯ D .10110m -⨯4、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形·线○封○密○外的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.1 B.2020 C.2021 D.20225、下面的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为()A.B.10米C.D.12米7、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是()A .AFB ∠ B .EAF ∠C .EAC ∠D .EFC ∠8、如图,点C 为AOB ∠的角平分线l 上一点,D ,E 分别为OA ,OB 边上的点,且CD CE =.作CF OA ⊥,垂足为F ,若5OF =,则+OD OE 的长为( )A .10B .11C .12D .159、如图,点()1,1A ,()2,3B -,若点P 为x 轴上一点,当PA PB -最大时,点P 的坐标为( )A .1,02⎛⎫⎪⎝⎭ B .5,04⎛⎫⎪⎝⎭ C .1,02⎛⎫- ⎪⎝⎭ D .()1,010、如图是一个运算程序,若x 的值为1-,则运算结果为( )·线○封○密○外A .4-B .2-C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、农机厂计划用两年时间把产量提高44%,如果每年比上一年提高的百分数相同,这个百分数为 ______.2、已知249y my -+是完全平方式,则m 的值为______.3、已知3x ﹣3•9x =272,则x 的值是 ___.4、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点(10,7)B -,则点A 的坐标是__________.5、如图,在边长相同的小正方形组成的网格中,点A 、B 、O 都在这些小正方形的顶点上,那么sin∠AOB 的值为______.三、解答题(5小题,每小题10分,共计50分) 1、如图,D 、E 、F 分别是△ABC 各边的中点,连接DE 、DF 、CD .(1)若CD 平分∠ACB ,求证:四边形DECF 为菱形; (2)连接EF 交CD 于点O ,在线段BE 上取一点M ,连接OM 交DE 于点N .已知CE =a ,CF =b ,EM =c ,求EN 的值. 2、某校兴趣小组想了解球的弹性大小,准备了A 、B 两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图.·线○封○密○外请你根据图中提供的信息解答下列问题:(1)当起始高度为80cm 时,B 球的反弹高度是起始高度的____________%.(2)比较两个球的反弹高度的变化情况,____________球弹性大.(填“A ”或“B ”)(3)下列的推断合理的是____________(只填序号)①根据统计图预测,如果下落的起始高度继续增加,A 球的反弹高度可能会继续增加;②从统计图上看,两球的反弹高度不会超过它们的起始高度.3、如图,在ABC 中,AB AC =,AD BC ⊥于点D ,E 为AC 边上一点,连接BE 与AD 交于点F .G 为ABC 外一点,满足ACG ABE ∠=∠,FAG BAC ∠=∠,连接EG .(1)求证:ABF ACG ≅△△;(2)求证:BE CG EG =+.4、如图,等腰直角△ABC 中,∠BAC =90°,在BC 上取一点D ,使得CD =AB ,作∠ABC 的角平分线交AD 于E ,请先按要求继续完成图形:以A 为直角顶点,在AE 右侧以AE 为腰作等腰直角△AEF ,其中∠EAF =90°.再解决以下问题:(1)求证:B ,E ,F 三点共线;(2)连接CE ,请问△ACE 的面积和△ABF 的面积有怎样的数量关系,并说明理由.5、计算:(﹣3a 2)3+(4a 3)2﹣a 2•a 4.-参考答案-一、单选题1、A【解析】【分析】 本题应分两种情况,①如果角C 是钝角,此时高AD 在三角形的外部,在RT △ABD 中利用勾股定理求出BD ,在RT △ACD 中利用勾股定理求出CD ,然后可得出BC =BD -CD ,继而可得出△ABC 的周长;②如果角C 是锐角,利用勾股定理求出BD 、BC ,根据BC =BD +CD 求出BC ,进而可求出周长. 【详解】 解:①如果角C 是钝角,在RT △ABD 中,BD,在RT △ACD 中,CD, ∴BC =18-10=8; ②如果角C 是锐角,此时高AD 在三角形的内部,在RT △ABD 中,BD,在RT △ACD 中,CD, ∴BC =18+10=28; 综上可得BC 的长为28或8. ·线○封○·密○外故选:A .【点睛】本题考查了勾股定理及三角形的知识,分类讨论是解答本题的关键,如果不细心很容易将∠C 为钝角的情况忽略,有一定的难度.2、C【解析】【分析】根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.【详解】解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,故选:C .【点睛】此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.3、C【解析】【分析】根据科学记数法的特点即可求解.【详解】解:91nm 0.000000001=110m -=⨯.故选:C【点睛】本题考查了用科学记数法表示绝对值小于1的数,绝对值小于1的数用科学记数法可以写为10na -⨯的形式,其中1≤|a |<10,n 为正整数,n 的值为从第一个不为0的数向左数所有0的个数,熟知科学记数法的形式并准确确定a 、n 的值是解题关键. 4、D 【解析】 【分析】 根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和. 【详解】 解:如图, 由题意得:SA =1, 由勾股定理得:SB +SC =1, 则 “生长”了1次后形成的图形中所有的正方形的面积和为2, 同理可得: “生长”了2次后形成的图形中所有的正方形面积和为3, “生长”了3次后形成的图形中所有正方形的面积和为4, …… “生长”了2021次后形成的图形中所有的正方形的面积和是2022, 故选: D·线○封○密○外【点睛】本题考查了勾股数规律问题,找到规律是解题的关键.5、D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项不符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【解析】【分析】以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.【详解】以O 点为坐标原点,AB 的垂直平分线为y 轴,过O 点作y 轴的垂线,建立直角坐标系, 设抛物线的解析式为y =ax 2, ∵O 点到水面AB 的距离为4米, ∴A 、B 点的纵坐标为-4, ∵水面AB 宽为20米, ∴A (-10,-4),B (10,-4), 将A 代入y =ax 2, -4=100a , ∴125a =-, ∴2125y x =-, ∵水位上升3米就达到警戒水位CD , ∴C 点的纵坐标为-1, ∴21125x -=- ∴x =±5, ·线○封○密○外∴CD =10,故选:B .【点睛】本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.7、D【解析】【分析】根据SAS 证明△AEF ≌△ABC ,由全等三角形的性质和等腰三角形的性质即可求解.【详解】解:在△AEF 和△ABC 中,AB AE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△ABC (SAS ),∴AF =AC ,∠AFE =∠C ,∴∠C =∠AFC ,∴∠EFC =∠AFE +∠AFC =2∠C .故选:D .【点睛】本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.8、A【解析】【分析】过点C 作CM OB ⊥于点M ,根据角平分线上的点到角两边的距离相等,得到CF CM =,再通过证明Rt CFD Rt CME ≅和Rt OCF Rt OCM ≅,得到210OD OE OF +==. 【详解】 如图所示,过点C 作CM OB ⊥于点M , ∵点C 为AOB ∠的角平分线l 上一点, ∴CF CM =, 在Rt CFD △和Rt CME 中, ∵CD CE CF CM =⎧⎨=⎩, ∴()Rt CFD Rt CME HL ≅, ∴DF EM =, 在Rt OCF 和Rt OCM △中, ∵OC OCCF CM =⎧⎨=⎩, ∴()Rt OCF Rt OCM HL ≅, ∴OF OM =, ∴2OD OE OF FD OE OF EM OE OF OM OF +=++=++=+=, ∵5OF =,·线○封○密○外∴210OD OE OF +==.故答案选:A .【点睛】本题考查角平分线的性质和全等三角形的判定和性质.角平分线上的点到角两边的距离相等.一条直角边和斜边对应相等的两个直角三角形全等.9、A【解析】【分析】作点A 关于x 轴的对称点A ',连接BA '并延长交x 轴于P ,根据三角形任意两边之差小于第三边可知,此时的PA PB -最大,利用待定系数法求出直线BA '的函数表达式并求出与x 轴的交点坐标即可.【详解】解:如图,作点A 关于x 轴的对称点A ',则PA =PA ', ∴PA PB -≤BA '(当P 、A '、B 共线时取等号),连接BA '并延长交x 轴于P ,此时的PA PB -最大,且点A '的坐标为(1,-1),设直线BA '的函数表达式为y=kx+b ,将A '(1,-1)、B (2,-3)代入,得:132k b k b -=+⎧⎨-=+⎩,解得:21k b =-⎧⎨=⎩, ∴y =-2x +1,当y =0时,由0=-2x +1得:x =12,∴点P 坐标为(12,0),故选:A【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x 轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键. 10、A 【解析】 【分析】 根据运算程序,根据绝对值的性质计算即可得答案. 【详解】 ∵1-<3, ∴31---=4-, 故选:A . 【点睛】 本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键. 二、填空题 1、20% 【分析】 ·线○封○密○外设每年比上一年提高的百分数为x ,根据农机厂计划用两年时间把产量提高44%,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年比上一年提高的百分数为x ,依题意得:(1+x )2=1+44%,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意).故答案为:20%.【点睛】此题考查了一元二次方程的实际应用—增长率问题,熟记增长率问题的计算公式是解题的关键. 2、12±【分析】根据完全平方式的特点“两数的平方和加(或减)这两个数的积的2倍”即可求出m 的值.【详解】解:∵249y my -+是完全平方式,∴-m =±2×2×3=±12,∴m =±12.故答案为:12±【点睛】本题考查完全平方式的定义,熟知完全平方式的特点是解题关键,注意本题有两个答案,不要漏解. 3、3【分析】根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加,计算后再根据指数相等列式求解即可.【详解】解:∵3x -3•9x =3x -3•32x =3x -3+2x =36,∴x -3+2x =6,解得x =3.故答案为:3.【点睛】 此题考查同底数幂的乘法以及幂的乘方与积的乘方,关键是等式两边均化为底数均为3的幂进行计算. 4、(-3,9) 【分析】 设长方形纸片的长为x ,宽为y ,根据点B 的坐标,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再结合点A 的位置,即可得出点A 的坐标. 【详解】解:设长方形纸片的长为x ,宽为y ,依题意,得:2107x x y =⎧⎨+=⎩, 解得:52x y =⎧⎨=⎩, ∴x -y =3,x +2y =9,∴点A 的坐标为(-3,6). 故答案为:(-3,9). 【点睛】 本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键. ·线○封○密○外5【分析】如图,过点B 向AO 作垂线交点为C ,勾股定理求出OB ,OA 的值,1122AOB SAB h AO BC =⨯=⨯求出BC 的长,sin BC AOB OB∠=求出值即可. 【详解】解:如图,过点B 向AO 作垂线交点为C ,O 到AB 的距离为h∵2AB =,2h =,222425OA ,OB ==1122AOB S AB h AO BC =⨯=⨯BC ∴=∴sinBC AOB OB ∠===【点睛】 本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.三、解答题1、 (1)见解析(2)EN =2bc a c + 【解析】 【分析】 (1)根据三角形的中位线定理先证明四边形DECF 为平行四边形,再根据角平分线+平行证明一组邻边相等即可; (2)由(1)得//DE AC ,所以要求EN 的长,想到构造一个“A “字型相似图形,进而延长MN 交CA 于点G ,先证明ENO FGO ∆≅∆,得到EN FG =,再证明MEN MCG ∆∆∽,然后根据相似三角形对应边成比例,即可解答. (1) 证明:D 、E 、F 分别是ABC ∆各边的中点,DF ∴,DE 是ABC ∆的中位线, //DF BC ∴,//DE AC , ∴四边形DECF 为平行四边形, CD 平分ACB ∠, ACD DCE ∴∠=∠, //DF BC , CDF DCE ∴∠=∠, ACD CDF ∴∠=∠,DF CF ∴=, ∴四边形DECF 为菱形; (2) 解:延长MN 交CA 于点G , ·线○封○密○外//DE AC ,MED MCA ∴∠=∠,NEO GFO ∠=∠,ENO FGO ∠=∠,四边形DECF 为平行四边形,OE OF ∴=,()ENO FGO AAS ∴∆≅∆,EN FG ∴=,EMN CMG ∠=∠,MEN MCG ∴∆∆∽, ∴EN ME CG MC=, ∴EN c b EN c a=-+, 2bc EN a c ∴=+. 【点睛】本题考查了菱形的判定与性质,三角形的中位线定理,相似三角形的判定与性质,解题的关键是根据题目的已知并结合图形.2、 (1)62.5%(2)A(3)①②【解析】【分析】(1)根据折线统计图可知起始高度为80cm 时,B 球的反弹高度,由此可得百分比;(2)根据折线统计图可知A 球每次反弹的高度都比B 球高,由此即可得到答案;(3)①由折线统计图可知4球的反弹高度变化趋势还非常明显,从而可判断A 球的反弹高度可能会继续增加;②从折线统计图可知,反弹的高度是不会超过下路的起始高度的. (1) 解:由折线统计图可知当起始高度为80cm 时,B 球的反弹高度是50cm ,是起始高度的62.5%, 故答案为:62.5%. (2) 解:比较两个球反弹高度的变化情况可知,A球每次反弹的高度都比B 球高,所以A球的弹性大, 故答案为:A . (3) 解:①根据统计图可知,如果下落的起始高度继续增加,A 球的反弹高度可能会继续增加; ②从统计图上看,两个球的反弹高度一直低于起始高度,并且差距越来越大,因此不会超过起始高度. 故答案为:①②. 【点睛】 本题主要考查了折线统计图,能正确准确读懂统计图是解题关键. 3、 (1)见解析 (2)见解析 【解析】 【分析】 (1)如图,先证明1=2∠∠,再根据全等三角形的判定证明结论即可; ·线○封○密○外(2)根据全等三角形的性质和等腰三角形的三线合一证明2=3∠∠,再根据全等三角形的判定与性质证明()AEF AEG SAS ≅△△即可.(1)证明:(1)证明:∵BAC FAG ∠=∠,∴33BAC FAG ∠-∠=∠-∠,即1=2∠∠,在ABF 和ACG 中,∵12AB AC ABF ACG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABF ACG ASA ≅△△;(2)证明:∵ABF ACG ≅△△,∴AF AG =,BF CG =,∵AB AC =,AD BC ⊥于点D ,∴1=3∠∠.∵1=2∠∠,∴2=3∠∠,在AEF 和AEG △中,∵32AF AG AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()AEF AEG SAS ≅△△, ∴EF EG =, ∴BE BF FE CG EG =+=+. 【点睛】 本题考查全等三角形的判定与性质、等腰三角形的性质,熟练掌握全等三角形的判定与性质是解答的关键. 4、 (1)见解析 (2)△ACE 的面积和△ABF 的面积相等.理由见解析 【解析】 【分析】 (1)利用等腰直角三角形的性质得到∠CAD =∠CDA =67.5°,利用角平分线的性质得到∠ABE =∠DBE =22.5°,∠BEA =135°,即可推出∠BEA +∠AEF =180°; (2)证明Rt △AEG ≌Rt △AFH ,利用全等三角形的性质得到EG = FH ,则△ACE 和△ABF 等底等高,即可证明结论. (1) 证明:∵等腰直角△ABC 中,∠BAC =90°, ·线○封○密·○外∴∠ABC=∠C=45°,AB=AC,∵CD=AB,则CD=AC,=67.5°,∴∠CAD=∠CDA=180°−45°2∴∠BAE=90°-∠CAD=22.5°,∵AD平分∠ABC,∴∠ABE=∠DBE=22.5°,∴∠BEA=180°-∠ABE-∠BAE=135°,∵△AEF是等腰直角三角形,且∠EAF=90°,∴∠AEF=∠F=45°,∴∠BEA+∠AEF=180°,∴B,E,F三点共线;(2)解:△ACE的面积和△ABF的面积相等.理由如下:过点E作EG⊥AC于点G,过点F作FH⊥BA交BA延长线于点H,∵∠HAF =180°-∠BAE -∠EAF =180°-22.5°-90°=67.5°,∠CAE =67.5°, ∴∠HAF =∠CAE , ∵△AEF 是等腰直角三角形, ∴AE =AF , ∴Rt △AEG ≌Rt △AFH , ∴EG = FH , ∵AB =AC , ∴△ACE 和△ABF 等底等高, ∴△ACE 的面积和△ABF 的面积相等. 【点睛】 本题考查了等腰直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键. 5、612a 【解析】 【分析】原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【详解】解:(﹣3a 2)3+(4a 3)2﹣a 2•a 4 ·线○封○密○外=6662716a a a -+-=()627161a -+- =612a -【点睛】本题主要考查了幂的乘方与积的乘方运算,熟练掌握运算法则是解答本题的关键.。

山东省济南市2023中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)

山东省济南市2023中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)

山东省济南市2023年各地区中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)②一.分式方程的应用(共1小题)1.(2023•市中区二模)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成,已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装18间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天400元,乙公司安装费每天200元,现需安装教室60间,若想尽快完成安装工作且安装总费用不超过7000元,则最多安排甲公司工作多少天?二.一元一次不等式的应用(共1小题)2.(2023•天桥区二模)“4G改变生活,5G改变社会”,不一样的5G手机给人们带来了全新的体验,某营业厅现有A,B两种型号的5G手机出售,售出1部A型、1部B型手机共获利600元,售出3部A型、2部B型手机共获利1400元.(1)求A,B两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A,B两种型号手机共20部,其中B型手机的数量不超过A型手机数量的,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.三.一元一次不等式组的整数解(共1小题)3.(2023•天桥区二模)解不等式,并写出它的所有整数解.四.反比例函数综合题(共3小题)4.(2023•历下区二模)如图,矩形ABCD的边BC在平面直角坐标系中的x轴上,矩形对角线交于点M(2,2),过点M的反比例函数与矩形的边AD交于点E (1,a),AE=3,直线EM交x射于点F.(1)求反比例函数的表达式和点B的坐标;(2)若点P为x轴上一点,当PM+PD最小时,求出点P的坐标;(3)若点Q为平面内任意一点,若以点B,E,F,Q为顶点的四边形是平行四边形,请直接写出点Q的坐标.5.(2023•长清区二模)如图,一次函数y=x+8的图象与反比例函数的图象交于A(a,6),B两点.(1)求此反比例函数的表达式及点B的坐标;(2)在y轴上存在点P,使得AP+BP的值最小,求AP+BP的最小值.(3)M为反比例函数图象上一点,N为x轴上一点,是否存在点M、N,使△MBN是以MN为底的等腰直角三角形?若存在,请求出M点坐标;若不存在,请说明理由.6.(2023•济南二模)矩形OACB中,OB=4,OA=3,分别以OB、OA为x轴、y轴,建立如图1所示的平面直角坐标系,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,试探究:随着点F的运动,∠EFC的正切值是否发生变化?若不变,求出这个值;若变化,请说明理由;(3)如图2,将△CEF沿EF折叠,点C恰好落在OB边上的点G处,求此时点F的坐标.五.二次函数综合题(共1小题)7.(2023•济南二模)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C,当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当点E、F重合时,P、Q 两点同时停止运动,设运动时间为t秒(t>0),问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形,若能,请求出t的值;若不能,请说明理由.六.切线的性质(共3小题)8.(2023•天桥区二模)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)若AD=8,,求线段BE的长.9.(2023•商河县二模)如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB延长线于点D,E为CD上一点,BE为⊙O的切线.(1)求证:BE=DE;(2)若AM=4,tan A=2,求BE的长.10.(2023•济南二模)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.七.解直角三角形的应用(共1小题)11.(2023•长清区二模)为给人们的生活带来方便,共享单车的租赁在我市正方兴未艾.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB =75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)(1)求AD的长;(2)求点E到AB的距离(结果保留整数).八.解直角三角形的应用-仰角俯角问题(共2小题)12.(2023•历城区二模)如图,有甲乙两座建筑物,从甲建筑物顶部A点处测得乙建筑物顶部D点的俯角α为45°,底部C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为8m,求甲建筑物的高度AB.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数)13.(2023•天桥区二模)如图,某建筑物AD楼顶立有高为6米的广告牌DE,小雪准备利用所学的三角函数知识估测此建筑物的高度.她从地面点B处沿坡度为i=3:4的斜坡BC 步行15米到达点C处,测得广告牌底部点D的仰角为45°,广告牌顶部点E的仰角为53°.(小雪的身高忽略不计,坡面的铅直高度与水平宽度的比称为坡度,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)求点C距离水平地面的高度;(2)求建筑物AD的高度.九.解直角三角形的应用-方向角问题(共1小题)14.(2023•济南二模)如图,某旅游景区为方便游客,修建了一条东西走向的栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西45°方向,在D处测得栈道另一端B位于北偏东32°方向.已知AC=60m,CD=46m,求栈道AB的长(结果保留整数).参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,≈1.414.一十.频数(率)分布直方图(共1小题)15.(2023•平阴县二模)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:75≤x<80,B组:80≤x<85,C 组:85≤x<90,D组:90≤x<95,E组:95≤x<100,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)频数分布直方图中m= ,所抽取学生成绩的中位数落在 组;(2)补全学生成绩频数分布直方图;(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?一十一.列表法与树状图法(共1小题)16.(2023•济南二模)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名生按要求都上交了一份征文,学校为了解选择各种征文主题的生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了 名学生的征文,并把条形统计图补充完整;(2)求扇形统计图中“爱国”所对应扇形的圆心角度数;(3)本次抽取的3份以“诚信”为主题的征文分别是甲、乙、丙的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求甲和乙征文同时被选中的概率.山东省济南市2023年各地区中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)②参考答案与试题解析一.分式方程的应用(共1小题)1.(2023•市中区二模)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成,已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装18间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天400元,乙公司安装费每天200元,现需安装教室60间,若想尽快完成安装工作且安装总费用不超过7000元,则最多安排甲公司工作多少天?【答案】(1)甲公司每天安装3间教室,乙公司每天安装2间教室;(2)10天.【解答】解:(1)设乙公司每天安装x间教室,则甲公司每天安装1.5x间教室,根据题意得:,解得:x=2,经检验,x=2是所列方程的解,且符合题意,则1.5x=1.5×2=3,答:甲公司每天安装3间教室,乙公司每天安装2间教室;(2)设安排甲公司工作y天,则乙公司工作天,根据题意得:400y+×200≤7000,解得:y≤10,答:最多安排甲公司工作10天.二.一元一次不等式的应用(共1小题)2.(2023•天桥区二模)“4G改变生活,5G改变社会”,不一样的5G手机给人们带来了全新的体验,某营业厅现有A,B两种型号的5G手机出售,售出1部A型、1部B型手机共获利600元,售出3部A型、2部B型手机共获利1400元.(1)求A,B两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A,B两种型号手机共20部,其中B型手机的数量不超过A型手机数量的,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.【答案】(1)A种型号手机每部利润是200元,B种型号手机每部利润是400元;(2)营业厅购进A种型号的手机12部,B种型号的手机8部时获得最大利润,最大利润是5600元.【解答】解:(1)设A种型号手机每部利润是a元,B种型号手机每部利润是b元,由题意得:,解得.答:A种型号手机每部利润是200元,B种型号手机每部利润是400元;(2)设购进A种型号的手机x部,则购进B种型号的手机(20﹣x)部,获得的利润为w 元,w=200x+400(20﹣x)=﹣200x+8000,∵B型手机的数量不超过A型手机数量的,∴20﹣x≤x,解得x≥12,∵w=﹣200x+8000,k=﹣200,∴w随x的增大而减小,∴当x=12时,w取得最大值,此时w=﹣2400+8000=5600,20﹣x=20﹣12=8.答:营业厅购进A种型号的手机12部,B种型号的手机8部时获得最大利润,最大利润是5600元.三.一元一次不等式组的整数解(共1小题)3.(2023•天桥区二模)解不等式,并写出它的所有整数解.【答案】2<x≤5,3,4,5.【解答】解:,解不等式①,得x≤5,解不等式②,得x>2,所以不等式组的解集是2<x≤5,所以不等式组的整数解是3,4,5.四.反比例函数综合题(共3小题)4.(2023•历下区二模)如图,矩形ABCD的边BC在平面直角坐标系中的x轴上,矩形对角线交于点M(2,2),过点M的反比例函数与矩形的边AD交于点E (1,a),AE=3,直线EM交x射于点F.(1)求反比例函数的表达式和点B的坐标;(2)若点P为x轴上一点,当PM+PD最小时,求出点P的坐标;(3)若点Q为平面内任意一点,若以点B,E,F,Q为顶点的四边形是平行四边形,请直接写出点Q的坐标.【答案】(1)y=,点B(﹣2,0);(2)点P(,0);(3)点Q的坐标为:(﹣4,4)或(0,﹣4)或(6,4).【解答】解:(1)将点M的坐标代入反比例函数表达式得:k=2×2=4,则反比例函数表达式为:y=,将点E的坐标代入上式得:a==4,即点E(1,4),∵AE=3,则点A(﹣2,4),则点B(﹣2,0);(2)作点M关于x轴的对称点N(2,﹣2),连接DN交x轴于点P,则点P为所求点,由矩形的性质知,点M是BD的中点,由中点坐标公式得,点D(6,4),由点D、N的坐标得,直线DN的表达式为:y=x﹣5,令y=x﹣5=0,则x=,则点P(,0);(3)由点E、M的坐标得,直线EM的表达式为:y=﹣2x+6,当y=﹣2x+6=0时,则x=3,即点F(3,0),设点Q(x,y),当BE是对角线时,由中点坐标公式得:,解得:,即点Q的坐标为:(﹣4,4);当BF或BQ是对角线时,由中点坐标公式得:,解得:,则点Q的坐标为:(0,﹣4)或(6,4);综上,点Q的坐标为:(﹣4,4)或(0,﹣4)或(6,4).5.(2023•长清区二模)如图,一次函数y=x+8的图象与反比例函数的图象交于A(a,6),B两点.(1)求此反比例函数的表达式及点B的坐标;(2)在y轴上存在点P,使得AP+BP的值最小,求AP+BP的最小值.(3)M为反比例函数图象上一点,N为x轴上一点,是否存在点M、N,使△MBN是以MN为底的等腰直角三角形?若存在,请求出M点坐标;若不存在,请说明理由.【答案】(1)y=﹣,B(﹣6,2);(2)4;(3)存在,M(﹣4,3)或.【解答】解:(1)将A(a,6)代入y=x+8得:6=a+8,解得:a=﹣2,所以,A(﹣2,6),将A(﹣2,6)代入得:k=xy=﹣12,即反比例函数的表达式为:y=﹣,联立,解得:,所以,B(﹣6,2);(2)作点A关于y轴的对称点A'(2,6),连接A'B交y轴于点P,此时AP+BP的周长最小,则AP+BP的最小值=;(3)存在,理由:设,N(n,0)当点M在点B的右侧时,如图:过点B作BF⊥x轴于点F,交过点M和x轴的平行线于点H,∵△MBN是以MN为底的等腰直角三角形,则∠MBN=90°,MB=NB,∴∠FBN+∠HBM=90°,∠HBM+∠HMB=90°,∴∠FBN=∠HMB,∵∠MHB=∠BFN=90°,MB=NB,∴△MHB≌△BFN(AAS),∴HM=BF,HB=FN,即a﹣(﹣6)=2﹣0且﹣﹣2=n﹣(﹣6),解得:a=﹣4,n=﹣5,即点M(﹣4,3);当M在B点左侧时,同理可得,∴M(﹣4,3)或.6.(2023•济南二模)矩形OACB中,OB=4,OA=3,分别以OB、OA为x轴、y轴,建立如图1所示的平面直角坐标系,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,试探究:随着点F的运动,∠EFC的正切值是否发生变化?若不变,求出这个值;若变化,请说明理由;(3)如图2,将△CEF沿EF折叠,点C恰好落在OB边上的点G处,求此时点F的坐标.【答案】(1)E(2,3);(2)tan∠EFC=;(3)F(4,).【解答】解:(1)∵OB=4,OA=3,∴点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),点F运动到边BC的中点时,点F(4,),将点F的坐标代入y=并解得:k=6,故反比例函数的表达式为:y=,当y=3时,x==2,故E(2,3),故答案为:(2,3);(2)∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC﹣BF=3﹣=,∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==;(3)如图,由(2)知,CF=,CE=,=,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=∵BC=OA=3,∴CF=3﹣BF,∵折叠,∴GF=CF=3﹣BF,由勾股定理得GF2=GB2+BF2,∴BF=,∴F(4,).五.二次函数综合题(共1小题)7.(2023•济南二模)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C,当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当点E、F重合时,P、Q 两点同时停止运动,设运动时间为t秒(t>0),问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形,若能,请求出t的值;若不能,请说明理由.【答案】(1)y=﹣x2+x;(2)m=4;(3)以A、E、F、Q四点为顶点构成的四边形能是平行四边形,t=4或6.【解答】解:(1)由题意得,c=0,将点(8,0)的坐标代入y=﹣x2+bx得:0=﹣82+8b,解得:b=,则二次函数的表达式为:y=﹣x2+x①;(2)设点A的坐标为:(x,﹣x2+x),则点B(8﹣x,﹣x2+x),∵矩形ABCD为正方形,则AB=CD,即8﹣x﹣x=﹣x2+x,解得:x=2(不合题意的值已舍去),当x=2时,m=y=﹣x2+x=4;(3)以A、E、F、Q四点为顶点构成的四边形能是平行四边形,理由:当m=2时,点A的坐标为:(2,4)、点C(6,0),由点A、C得,直线AC的表达式为:y=﹣x+6②,联立①②并解得:x=9,即当x=9时,P、Q停止运动.∵以A、E、F、Q四点为顶点构成的四边形,则EF=AQ,由点A的坐标知,x=2+t,当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,设点E(2+t,﹣t2+t+4),则点F(2+t,﹣t+4),则EF=﹣t2+t+4+t﹣4=﹣t2+t,当0<t≤4时,∵AQ=t,则t=﹣t2+t,解得:t=0(舍去)或4;当4<t≤7时,则AQ=8﹣t,则8﹣t=﹣t2+t,解得:t=4(舍去)或6;综上,t=4或6.六.切线的性质(共3小题)8.(2023•天桥区二模)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)若AD=8,,求线段BE的长.【答案】(1)证明见解析部分;(2)5.【解答】(1)证明:如图,∵CD为⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠1=∠3,∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平分∠DAB;(2)解:连接AE,如图,∵AB是⊙O的直径,∴∠ACB=90°,∠AEB=90°,∵CE平分∠ACB,∴∠ACE=∠BCE=45°,∴∠BAE=∠ABE=45°,∴△AEB为等腰直角三角形,∴BE=AB,∵∠D=∠ACB=90°,∠DAC=∠CAB,∴△ADC∽△ACB,∴=,∴=,∴AB=10,∴BE=×10=5.9.(2023•商河县二模)如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB延长线于点D,E为CD上一点,BE为⊙O的切线.(1)求证:BE=DE;(2)若AM=4,tan A=2,求BE的长.【答案】(1)证明见解析部分;(2).【解答】(1)证明:∵BE为⊙O的切线,∴OB⊥BE,∴∠ABC+∠EBD=90°,∵CD⊥AC,∴∠ACD=90°,∴∠A+∠D=90°,∵AC=BC,∴∠A=∠ABC,∴∠EBD=∠D,∴BE=DE;(2)解:连接BM,∵BC为⊙O的直径,∴BM⊥AC,∵AM=4,tan A==2,∴BM=2AM=8,∵AC=BC,∴CM=BC﹣AM=BC﹣4,∵BC2=BM2+CM2,∴BC2=82+(BC﹣4)2,∴BC=10,∴AC=BC=10,∵BM⊥AC,AC⊥CD,∴BM∥CD,∴∠MBC=∠BCE,∵∠BMC=∠CBM=90°,∴△BMC∽△CBE,∴,∴=,∴BE=,∴DE=BE=,故DE的长为.10.(2023•济南二模)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【答案】见试题解答内容【解答】解:(1)证明:连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.七.解直角三角形的应用(共1小题)11.(2023•长清区二模)为给人们的生活带来方便,共享单车的租赁在我市正方兴未艾.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB =75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)(1)求AD的长;(2)求点E到AB的距离(结果保留整数).【答案】(1)18cm;(2)66cm.【解答】解:(1)在Rt△ADF中,由勾股定理得;(2)过点E作EM⊥AB,垂足为M.AE=AD+CD+EC=18+35+15=68(cm),在Rt△AEM中,∵sin∠EAM=,∴EM=sin∠EAM•AE=sin75°×68≈0.97×68=65.96≈66(cm).答:点E到AB的距离为66cm.八.解直角三角形的应用-仰角俯角问题(共2小题)12.(2023•历城区二模)如图,有甲乙两座建筑物,从甲建筑物顶部A点处测得乙建筑物顶部D点的俯角α为45°,底部C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为8m,求甲建筑物的高度AB.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数)【答案】甲建筑物的高度AB约为21m.【解答】解:延长CD交AE于点F,由题意得:AB=CF,CF⊥AE,设AF=xm,在Rt△AFD中,∠FAD=45°,∴FD=AF•tan45°=x(m),在Rt△AFC中,∠FAC=58°,∴CF=AF•tan58°≈1.6x(m),∵CF﹣DF=CD,∴1.6x﹣x=8,解得:x=,∴AB=CF=1.6x≈21(m),∴甲建筑物的高度AB约为21m.13.(2023•天桥区二模)如图,某建筑物AD楼顶立有高为6米的广告牌DE,小雪准备利用所学的三角函数知识估测此建筑物的高度.她从地面点B处沿坡度为i=3:4的斜坡BC 步行15米到达点C处,测得广告牌底部点D的仰角为45°,广告牌顶部点E的仰角为53°.(小雪的身高忽略不计,坡面的铅直高度与水平宽度的比称为坡度,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)求点C距离水平地面的高度;(2)求建筑物AD的高度.【答案】(1)点C距离水平地面的高度为9米;(2)建筑物AD的高度约为29米.【解答】解:(1)过点C作CF⊥AB,垂足为F,由题意得:BC=15米,∵斜坡BC的坡度为i=3:4,∴=,∴设CF=3x米,则BF=4x米,在Rt△CFB中,BC===5x(米),∴5x=15,∴x=3,∴CF=3x=9(米),∴点C距离水平地面的高度为9米;(2)过点C作CG⊥AE,垂足为G,由题意得:AG=CF=9米,设CG=x米,在Rt△CDG中,∠DCG=45°,∴DG=CG•tan45°=x(米),在Rt△ECG中,∠ECG=53°,∴EG=CG•tan53°≈1.3x(米),∵EG﹣DG=ED,∴1.3x﹣x=6,解得:x=20,∴DG=20米,∴AD=AG+DG=9+20=29(米),∴建筑物AD的高度约为29米.九.解直角三角形的应用-方向角问题(共1小题)14.(2023•济南二模)如图,某旅游景区为方便游客,修建了一条东西走向的栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西45°方向,在D处测得栈道另一端B位于北偏东32°方向.已知AC=60m,CD=46m,求栈道AB的长(结果保留整数).参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,≈1.414.【答案】栈道AB的长度约为115m.【解答】解:如图,过C作CH⊥AB于点H,过点D作DG⊥AB于点G,∵AB∥CD,∴CH∥DG.∴四边形CHGD是矩形.∴CH=DG,HG=CD.在Rt△ACH中,∠ACH=45°,AC=60m,∴CH=AC•cos45°=60×=(m),AH=AC•sin45°=60×=(m).在Rt△BDG中,∠DBG=32°,DG=CH=m,∴BG=DG•tan32°=×tan32°.∴AB=AH+HG+BG≈+46+×0.62≈115(m).答:栈道AB的长度约为115m.一十.频数(率)分布直方图(共1小题)15.(2023•平阴县二模)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:75≤x<80,B组:80≤x<85,C 组:85≤x<90,D组:90≤x<95,E组:95≤x<100,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)频数分布直方图中m= 60 ,所抽取学生成绩的中位数落在 D 组;(2)补全学生成绩频数分布直方图;(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?【答案】(1)60,D;(2)见解答;(3)1680人.【解答】解:(1)本次调查一共随机抽取的学生总人数为:96÷24%=400(名),∴B组的人数为:m=400×15%=60(名),∴m=60,∵所抽取学生成绩的中位数是第200个和第201个成绩的平均数,20+96+60=176,∴所抽取学生成绩的中位数落在D组,故答案为:60,D;(2)E组的人数为:400﹣20﹣60﹣96﹣144=80(人),补全学生成绩频数分布直方图如下:(3)3000×=16800(人),答:估计该校成绩优秀的学生有1680人.一十一.列表法与树状图法(共1小题)16.(2023•济南二模)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名生按要求都上交了一份征文,学校为了解选择各种征文主题的生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了 50 名学生的征文,并把条形统计图补充完整;(2)求扇形统计图中“爱国”所对应扇形的圆心角度数;(3)本次抽取的3份以“诚信”为主题的征文分别是甲、乙、丙的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求甲和乙征文同时被选中的概率.【答案】(1)50,统计图见解答;(2)144°;(3).【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图和扇形统计图如图所示,故答案为:50;(2)“爱国”占,40%×360°=144°;(3)树状图如图所示:共有6种等可能的结果,小义和小玉同学的征文同时被选中的有2种情形,甲和乙同学的征文同时被选中的概率=.。

2023年山东省济南市中考数学真题

2023年山东省济南市中考数学真题

济南市2023年九年级学业水平考试数学试题本试卷共8页,满分150分.考试时间为120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列几何体中,主视图是三角形的为A. B.C. D.2.2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为 A.80.6865310⨯ B.86.865310⨯ C.76.865310⨯D.768.65310⨯3.如图,一块直角三角板的直角顶点放在直尺的一边上.如果∠1=70°,那么∠2的度数是 A.20°B.25°C.30°D.45°4.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是A.0ab >B.0a b +>C.33a b +<+D.33a b -<-5.下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是A. B.C.D.6.下列运算正确的是 A.248a a a ⋅=B.43a a a -=C.()325aa =D.422a a a ÷=7.已知点()14,A y -,()22,B y -,()33,C y 都在反比例函数()0ky k x=<的图象上,则1y ,2y ,3y 的大小关系为 A.321y y y << B.132y y y << C.312y y y <<D.231y y y <<8.从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为 A.13B.12C.23D.349.如图,在ABC △中,AB AC =,36BAC ∠=︒,以点C 为圆心,以BC 为半径作弧交AC 于点D ,再分别以B ,D 为圆心,以大于12BD 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确...的是A.36BCE ∠=︒B.BC AE =C.12BE AC =D.12AEC BEC S S =△△ 10.定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y 的“倍增点”,已知点()11,0P ,有下列结论:①点()13,8Q ,()22,2Q --都是点1P 的“倍增点”;②若直线2y x =+上的点A 是点1P 的“倍增点”,则点A 的坐标为()2,4; ③抛物线223y x x =--上存在两个点是点1P 的“倍增点”; ④若点B 是点1P 的“倍增点”,则1PB其中,正确结论的个数是 A.1B.2C.3D.4二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:216m -=_________.12.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则4盒中棋子的总个数是_________. 13.关于x 的一元二次方程2420x x a -+=有实数根,则a 的值可以是_________(写出一个即可). 14.如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留π).15.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l 和2l 分别表示两人到小亮家的距离()km s 和时间()h t 的关系,则出发__________h 后两人相遇.16.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ∠=︒,2AP =,则PE 的长等于__________.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)计算:()1011tan 602π-⎛⎫+++-︒ ⎪⎝⎭.18.(本小题满分6分)解不等式组:()223,2.35x x x x +>+⎧⎪⎨+<⎪⎩①②,并写出它的所有整数解.19.(本小题满分6分)已知:如图,点O 为ABCD □对角线AC 的中点,过点O 的直线与AD ,BC 分别相交于点E ,F . 求证:DE BF =.20.(本小题满分8分)图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m AB =,0.6m BC =,123ABC ∠=︒,该车的高度 1.7m AO =.如图2,打开后备箱,车后盖ABC 落在AB C ''处,AB '与水平面的夹角27B AD '∠=︒.(1)求打开后备箱后,车后盖最高点B '到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C '处经过,有没有碰头的危险?请说明理由.(结果精确到.....0.01m .....,参考数据:sin 270.454︒≈,cos270.891︒≈,tan 270.510︒≈ 1.732≈)21.(本小题满分8分)2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m 表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A 组:112m ≤<;B 组:1223m ≤<;C 组:2334m ≤<;D 组:3445m ≤<;E 组:4556m ≤<. 下面给出了部分信息:a.B 组的数据:12,13,15,16,17,17,18,20.b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为____________度; (2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是___________百万; (4)各组“五一”假期的平均出游人数如下表:求这30个地区“五一”假期的平均出游人数. 请将答案写在答题卡指定区域内 22.(本小题满分8分)如图,AB ,CD 为O e 的直径,C 为O e 上一点,过点C 的切线与AB 的延长线交于点P ,2ABC BCP ∠=∠,点E 是»BD的中点,弦CE ,BD 相交于点E . (1)求OCB ∠的度数;(2)若3EF =,求O e 直径的长.23.(本小题满分10分)某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同. (1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?24.(本小题满分10分)综合与实践如图1,某兴趣小组计划开垦一个面积为28m 的矩形地块ABCD 种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为2m a .【问题提出】小组同学提出这样一个问题:若10a =,能否围出矩形地块? 【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为m x ,BC 为m y .由矩形地块面积为28m ,得到8xy =,满足条件的(),x y 可看成是反比例函数8y x=的图象在第一象限内点的坐标;木栏总长为10m ,得到210x y +=,满足条件的(),x y 可看成一次函数210y x =-+的图象在第一象限内点的坐标,同时满足这两个条件的(),x y 就可以看成两个函数图象交点的坐标.如图2,反比例函数()80y x x=>的图象与直线1l :210y x =-+的交点坐标为()1,8和_________,因此,木栏总长为10m 时,能围出矩形地块,分别为:1m AB =,8m BC =;或AB =___________m ,BC =__________m.(1)根据小颖的分析思路,完成上面的填空. 【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由. 【问题延伸】当木栏总长为m a 时,小颖建立了一次函数2y x a =-+.发现直线2y x a =-+可以看成是直线2y x =-通过平移得到的,在平移过程中,当过点()2,4时,直线2y x a =-+与反比例函数()80y x x=>的图象有唯一交点.(3)请在图2中画出直线2y x a =-+过点()2,4时的图象,并求出a 的值. 【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“2y x a =-+与8y x=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于1m ,请直接写出a 的取值范围. 25.(本小题满分12分)在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 在x 轴上,()2,3C ,()1,3D -.抛物线()220y ax ax c a =-+<与x 轴交于点()2,0E -和点F .(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段CF ,使点C 的对应点P 落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线()220y ax ax c a =-+<与正方形ABCD 恰有两个交点,求a 的取值范围.26.(本小题满分12分)在矩形ABCD 中,2AB =,AD =E 在边BC 上,将射线AE 绕点A 逆时针旋转90°,交CD 延长线于点G ,以线段AE ,AG 为邻边作矩形AEFG . (1)如图1,连接BD ,求BDC ∠的度数和DGBE的值; (2)如图2,当点F 在射线BD 上时,求线段BE 的长;(3)如图3,当EA EC =时,在平面内有一动点P ,满足PE EF =,连接PA ,PC ,求PA PC +的最小值.济南市2023年九年级学业水平考试 数学试题参考答案及评分意见一、选择题:本题共10小题,每小题4分,共40分.二、填空题:本题共6小题,每小题4分,共24分.11.()()44m m +-12.1213.2a ≤的一个实数 14.65π15.0.35 三、解答题:本题共10小题,共86分.17.解:原式213=+= 18.解:解不等式①,得1x >- 解不等式②,得3x <在同一条数轴上表示不等式①②的解集原不等式组的解集是13x -<< ∴整数解为0,1,2.19.证明:∵四边形ABCD 是平行四边形∴AD BC =,AD BC ∥.∴EAO FCO ∠=∠,OEA OFC ∠=∠. ∵点O 为对角线AC 的中点∴AO CO =∴AOE COF ≌△△ ∴AE CF =∴AD AE BC CF -=-∴DE BF = 20.解:(1)如答案图,作B E AD '⊥,垂足为点E在Rt AB E '△中∵27B AD '∠=︒,1AB AB '== ∴sin 27B E AB '︒='∴sin 2710.4540.454B E AB ''=︒≈⨯= ∵平行线间的距离处处相等∴0.454 1.7 2.154 2.15B E AO '+=+=≈答:车后盖最高点B '到地面的距离为2.15m.(2)如答案图,没有危险,理由如下:过C '作C F B E ''⊥,垂足为点F∵27B AD '∠=︒,90B EA '∠=︒∴63AB E '∠=︒∵123AB C ABC ''∠=∠=︒∴60C B F AB C AB E '''''∠=∠-∠=︒在Rt B FC ''△中,0.6B C BC ''==∴cos600.3B F B C '''=⋅︒=.∵平行线间的距离处处相等∴C '到地面的距离为2.15-0.3=1.85.∵1.85>1.8∴没有危险.21.解:(1)36(2)(3)15.5(4)5.51216832.544235032030⨯+⨯+⨯+⨯+⨯=(百万) 答:这30个地区“五一”假期的平均出游人数是20百万.22.解:(1)∵PC 与O e 相切于点C∴OC PC ⊥.∴90OCB BCP ∠+∠=︒∵OB OC =∴OCB OBC ∠=∠∵2ABC BCP ∠=∠∴2OCB BCP ∠=∠∴390BCP ∠=︒∴30BCP ∠=︒∴60OCB ∠=︒.(2)如答案图,连接DE∵CD 是直径∴90DEC ∠=︒∵点E 是»BD的中点∴»»DEEB =∴1302DCE ECB FDE DCB ∠=∠=∠=∠=︒ 在Rt FDE △中,3EF =,30FDE ∠=︒∴tan 30EF DE ==︒在Rt DEC △中,30DCE ∠=︒2CD DE ==∴O e 的直径的长为23.解:(1)设A 型编程机器人模型单价是x 元,B 型编程机器人模型单价是()200x -元. 根据题意,得20001200200x x =- 解这个方程,得500x =经检验,500x =是原方程的根.200300x -=答:A 型编程机器人模型单价是500元,B 型编程机器人模型单价是300元.(2)设购买A 型编程机器人模型m 台,购买B 型编程机器人模型()40m -台,购买A 型和B 型编程机器人模型共花费w 元,由题意得403m m -≤解得10m ≥.()5000.83000.840w m m =⨯⋅+⨯⋅-1609600w m =+∵160>0∴w 随m 的减小而减小.当10m =时,w 取得最小值112004030m -=答:购买A 型机器人模型10台和B 型机器人模型30台时花费最少,最少花费是11200元.24.解:(1)(4,2);4;2.(2)不能围出.26y x =-+的图象,如答案图中2l 所示∵2l 与函数8y x=图象没有交点 ∴不能围出面积为28m 的矩形(3)如答案图中直线3l 所示将点(2,4)代入2y x a =-+,解得8a =(4)817a ≤≤25.解:(1)∵抛物线22y ax ax c =-+过点()2,3C ,()2,0E - 得443440a a c a a c -+=⎧⎨++=⎩解得383a c ⎧=-⎪⎨⎪=⎩ ∴抛物线表达式为233384y x x =-++. 当0y =时,2333084x x -++=解得12x =-(舍去),24x =∴()4,0F .(2)设直线CE 的表达式为y kx b =+∵直线过点()2,3C ,()2,0E -得2320k b k b +=⎧⎨-+=⎩ 解得3432k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线CE 的表达式为3342y x =+如答案图1,设点233,384Q t t t ⎛⎫-++ ⎪⎝⎭,则点Q 向左平移2个单位,向上平移3个单位得到点2332,684P t t t ⎛⎫--++ ⎪⎝⎭ 将2332,684P t t t ⎛⎫--++ ⎪⎝⎭代入3342y x =+解得14t =-,24t =(舍去)∴Q 点坐标为(-4,-6).(3)将()2,0E -代入22y ax ax c =-+得8c a =-∴()222819y ax ax a a x a =--=--∴顶点坐标为()1,9a -如答案图2,①当抛物线顶点在正方形内部时,与正方形有两个交点∴9390a a -<⎧⎨->⎩ 解得103a -<<;如答案图3,②当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,与正方形有两个交点()()222228312183a a a a a a ⎧⨯-⨯->⎪⎨⨯--⨯--<⎪⎩ 解得3358a -<<- 综上所述,a 的取值范围为103a -<<或3358a -<<-.26.解:(1)∵矩形ABCD 中,2AB =,AD =∴90C ∠=︒,2CD AB ==,BC AD ==∴tan BC BDC DC∠==60BDC ∠=︒ 由矩形ABCD 和矩形AEFG 可得,90ABE BAD EAG ADG ∠=∠=∠=∠=︒∴EAG EAD BAD EAD ∠-∠=∠-∠,即DAG BAE ∠=∠∴ADG ABE ∽△△∴DG AD BE AB==(2)如答案图1,过点F 作FM CG ⊥于点M由矩形ABCD 和矩形AEFG 可得,90ABE AGF ADG ∠=∠=∠=︒AE GF =,∴BAE DAG CGF ∠=∠=∠,90ABE GMF ∠=∠=︒∴ABE GMF ≌△△∴BE MF =,2AB GM == ∴60MDF BDC ∠=∠=︒,FM CG ⊥∴tan tan 60MF MDF MD∠=︒==∴MF =设DM x =,则BE MF ==∴2DG GM MD x =+=+∵DGBE ==解得1x =∴BE ==(3)如答案图2,连接AC∵矩形ABCD 中,AD BC ==2AB =∴则30ACB ∠=︒,24AC AB ==∵EA EC =∴30EAC ACE ∠=∠=︒,120AEC ∠=︒∴903060ACG GAC ∠=∠=︒-︒=︒∴AGC △是等边三角形,4AG AC ==∴4PE EF AG ===将AEP △绕点E 顺时针旋转120°,EA 与EC 重合,得到CEP '△∴PA P C '=,120PEP '∠=︒,4EP EP '==∴PP '==∴当点P ,C ,P '三点共线时,PA PC +的值最小,此时为PA PC PP '+==。

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式方程的应用(共2小题)1.(2023•济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?2.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?二.反比例函数综合题(共2小题)3.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.4.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.三.二次函数图象与系数的关系(共1小题)5.(2023•济南)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.四.二次函数综合题(共2小题)6.(2022•钢城区)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.7.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.五.菱形的性质(共2小题)8.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.9.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE =∠CBF.求证:DE=DF.六.四边形综合题(共1小题)10.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.七.切线的性质(共2小题)11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.12.(2022•钢城区)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.八.几何变换综合题(共1小题)13.(2022•钢城区)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为 ;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.九.相似形综合题(共1小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.一十.解直角三角形的应用-坡度坡角问题(共1小题)15.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC 落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式方程的应用(共2小题)1.(2023•济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?【答案】(1)A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.【解答】解:(1)设A型编程机器人模型单价是x元,B型编程机器人模型单价是(x﹣200)元.根据题意:,解这个方程,得:x=500,经检验,x=500是原方程的根,∴x﹣200=300,答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)设购买A型编程机器人模型m台,购买B型编程机器人模型(40﹣m)台,购买A型和B型编程机器人模型共花费w元,由题意得:40﹣m≤3m,解得:m≥10,w=500×0.8•m+300×0.8﹣(40﹣m),即:w=160m+9600,∵160>0∴w随m的减小而减小.当m=10时,w取得最小值11200,∴40﹣m=30答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.2.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)甲种粽子的单价为8元,乙种粽子的单价为4元.(2)最多购进87个甲种粽子.【解答】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,依题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,则2x=8,答:甲种粽子的单价为8元,乙种粽子的单价为4元.(2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,依题意得:8m+4(200﹣m)≤1150,解得:m≤87.5,答:最多购进87个甲种粽子.二.反比例函数综合题(共2小题)3.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)k=6,B(2,3);(2)2;(3)点P的坐标为(,0)或(0,).【解答】解:(1)将点A的坐标为(m,﹣3)代入直线y=x中,得﹣3=m,解得:m=﹣2,∴A(﹣2,﹣3),∴k=﹣2×(﹣3)=6,∴反比例函数解析式为y=,由,得或,∴点B的坐标为(2,3);(2)如图1,作BE⊥x轴于点E,CF⊥x轴于点F,∴BE∥CF,∴△DCF∽△DBE,∴=,∵BC=2CD,BE=3,∴=,∴=,∴CF=1,∴C(6,1),作点B关于y轴的对称点B′,连接B′C交y轴于点G,则B′C即为BG+GC的最小值,∵B′(﹣2,3),C(6,1),∴B′C==2,∴BG+GC=B′C=2;(3)存在.理由如下:①当点P在x轴上时,如图2,设点P1的坐标为(a,0),过点B作BE⊥x轴于点E,∵∠OEB=∠OBP1=90°,∠BOE=∠P1OB,∴△OBE∽△OP1B,∴=,∵B(2,3),∴OB==,∴=,∴a=,∴点P1的坐标为(,0);②当点P在y轴上时,过点B作BN⊥y轴于点N,如图2,设点P2的坐标为(0,b),∵∠ONB=∠P2BO=90°,∠BON=∠P2OB,∴△BON∽△P2OB,∴=,即=,∴b=,∴点P2的坐标为(0,);综上所述,点P的坐标为(,0)或(0,).4.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.【答案】(1)a=4,k=12;(2)①8;②P(3,4)或(6,2).【解答】解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CF⊥x轴于F,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),由y Q′﹣y B=y P′﹣y A得,0﹣1=y P′﹣3,∴y P′=2,当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).三.二次函数图象与系数的关系(共1小题)5.(2023•济南)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.【答案】(1),F(4,0);(2)(﹣4,﹣6);(3)或.【解答】解:(1)∵抛物线y=ax2﹣2ax+c过点C(2,3),E(﹣2,0),得,解得,∴抛物线表达式为,当y=0 时,,解得x1=﹣2 (舍去),x2=4,∴F(4,0);(2)设直线CE的表达式为y=kx+b,∵直线过点C(2,3),E(﹣2,0),得,解得,∴直线CE的表达式为,设点,则点Q向左平移2个单位,向上平移3个单位得到点,将代入,解得t1=﹣4,t2=4 (舍去),∴Q点坐标为(﹣4,﹣6);(3)将E(﹣2,0)代入y=ax2﹣2ax+c得c=﹣8a,∴y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,∴顶点坐标为(1,﹣9a),①当抛物线顶点在正方形内部时,与正方形有两个交点,∴0<﹣9a<3,解得,②当抛物线与直线BC交点在点C上方,且与直线AD交点在点D下方时,与正方形有两个交点,,解得综上所述,a的取值范围为或.四.二次函数综合题(共2小题)6.(2022•钢城区)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.【答案】(1)k=,t=3,y=﹣x2+x﹣6;(2)(10,﹣);(3).【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,∴64a+22﹣6=0,∴a=﹣,∴y=﹣x2+x﹣6,当y=0时,﹣t2+t﹣6=0,解得t=3或t=8(舍),∴t=3,∵B(8,0)在直线y=kx﹣6上,∴8k﹣6=0,解得k=;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P(m,﹣m2+m﹣6),∴PM=m2﹣m+6,AM=m﹣3,在Rt△COA和Rt△AMP中,∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,∴∠OAC=∠APM,∴△COA∽△AMP,∴=,即OA•MA=CO•PM,3(m﹣3)=6(m2﹣m+6),解得m=3(舍)或m=10,∴P(10,﹣);(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,∵PN⊥x轴,∴PN∥OC,∴∠PNQ=∠OCB,∴Rt△PQN∽Rt△BOC,∴==,∵OB=8,OC=6,BC=10,∴QN=PN,PQ=PN,由△CNE∽△CBO,∴CN=EN=m,∴CQ+PQ=CN+NQ+PQ=CN+PN,∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(m﹣)2+,当m=时,CQ+PQ的最大值是.7.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.【答案】(1)y=﹣x2+2x+3;顶点C(1,4);(2)P();(3)﹣1<m≤.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:,解得:.∴抛物线的表达式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C(1,4).(2)设AC交y轴于点F,连接DF,过点C作CE⊥x轴于点E,如图,∵A(﹣1,0),C(1,4),∴OA=1,OE=1,CE=4.∴OA=OE,AC==2.∵FO⊥AB,CE⊥AB,∴FO∥CE,∴OF=CE=2,F为AC的中点.∵△DAC是以AC为底的等腰三角形,∴DF⊥AC.∵FO⊥AD,∴△AFO∽△FDO.∴.∴.∴OD=4.∴D(4,0).设直线CD的解析式为y=kx+m,∴,解得:.∴直线CD的解析式为y=﹣.∴,解得:,.∴P().(3)过点P作PH⊥AB于点H,如图,则OH=,PH=,∵OD=4,∴HD=OD﹣OH=,∴PD==.∴PC=CD﹣PD=5﹣=.由(2)知:AC=2.设AF=x,AE=y,则CE=2﹣y.∵DA=DC,∴∠DAC=∠C.∵∠CAB+∠AEF+∠AFE=180°,∠AEF+∠PEF+∠CEP=180°,又∵∠PEF=∠CAB,∴∠CEP=∠AFE.∴△CEP∽△AFE.∴.∴.∴x=﹣+y=﹣+.∴当y=时,x即AF有最大值.∵OA=1,∴OF的最大值为﹣1=.∵点F在线段AD上,∴点F的横坐标m的取值范围为﹣1<m≤.解法二:∵DC=DA,∴∠DAC=∠DCA,∴∠FAE=∠PEF=∠PCE,∴△CEP∽△AFE,∴=,∵C(1,4),A(﹣1,0),∴直线AC的解析式为y=2x+2,设E(n,2n+2),则AE==(n+1),CE==(1﹣n),CP==.∴=,∴45n2+20m﹣25=0,∵Δ>0,∴02﹣4×45×(20m﹣25)≥0,∴m≤,∴F的横坐标m的取值范围为﹣1<m≤.五.菱形的性质(共2小题)8.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.【答案】证明过程见解答.【解答】证明:∵四边形ABCD是菱形,∴DA=DC,∴∠DAC=∠DCA,∵∠ADF=∠CDE,∴∠ADF﹣∠EDF=∠CDE﹣∠EDF,∴∠ADE=∠CDF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.9.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE =∠CBF.求证:DE=DF.【答案】证明见解析.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,AB=BC,∠A=∠C,又∵∠ABE=∠CBF,∴△ABE≌△CBF(ASA),∴AE=CF,∴AD﹣AE=CD﹣CF,∴DE=DF.六.四边形综合题(共1小题)10.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.【答案】见试题解答内容【解答】解:(1)如图1,当α=180°时,点E在线段BC上,∵BD=BC,∴DE=BD=BC,∴BD=DE=EC,∵△CEF是等腰直角三角形,∴∠CFE=∠BAC=90°,∵∠ECF=∠BCA=45°,∴△ABC∽△FEC,∴==,∴==,∵BC=AC,∴==,∴=,即==,∴=•=×=;(2)①=仍然成立.理由如下:如图2,∵△CEF是等腰直角三角形,∴∠ECF=45°,=,∵在△ABC中,∠BAC=90°,AB=AC,∴∠BCA=45°,=,∴∠ECF=∠BCA,=,∴∠ACF+∠ACE=∠BCE+∠ACE,∴∠ACF=∠BCE,∵=,∴△CAF∽△CBE,∴==,∴=仍然成立.②四边形AECF是平行四边形.理由如下:如图3,过点D作DG⊥BF于点G,由旋转得:DE=BD=BC,∵∠BGD=∠BFC=90°,∠DBG=∠CBF,∴△BDG∽△BCF,∴===,∵BD=DE,DG⊥BE,∴BG=EG,∴BG=EG=EF,∵EF=CF,∴CF=BG=BF,由①知,AF=BE=BG=CF=CE,∵△CAF∽△CBE,∴∠CAF=∠CBE,∠ACF=∠BCE,∵∠CEF=∠CBE+∠BCE=45°,∠BCE+∠ACE=∠ACB=45°,∴∠CBE=∠ACE,∴∠CAF=∠ACE,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.七.切线的性质(共2小题)11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.【答案】(1)证明见解析;(2)6.【解答】解:(1)∵PC与⊙O相切于点C,∴OC⊥PC,∴∠OCB+∠BCP=90°,∵OB=OC,∴∠OCB=∠OBC,∵∠ABC=2∠BCP,∴∠OCB=2∠BCP,∴3∠BCP=90°,∴∠BCP=30°,∴∠OCB=60°.(2)连接DE,∵CD是直径,∴∠DEC=90°,∵点E是的中点,∴,∴∠DCE=∠FDE=∠ECB=∠DCB=30°,∵∠E=90°,EF=3,∠FDE=30°,∴DE=FE=3,∵∠E=90°,∠DCE=30°,∴,∴⊙O的直径的长为.12.(2022•钢城区)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.【答案】(1)证明过程见解答;(2)线段BF的长为3.【解答】(1)证明:连接OC,∵CD与⊙O相切于点C,∴∠OCD=90°,∵∠D=30°,∴∠COD=90°﹣∠D=60°,∴∠A=∠COD=30°,∴∠A=∠D=30°,∴CA=CD;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠A=30°,AB=12,∴BC=AB=6,∵CE平分∠ACB,∴∠BCE=∠ACB=45°,∵BF⊥CE,∴∠BFC=90°,∴BF=BC•sin45°=6×=3,∴线段BF的长为3.八.几何变换综合题(共1小题)13.(2022•钢城区)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为 AE=BE﹣CE ;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.【答案】(1)BD=CE;(2)AE=BE﹣CE;(3)45°.【解答】解:(1)BD=CE,理由如下:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵AE是由AD绕点A逆时针旋转60°得到的,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)①由(1)得:∠DAE=60°,AD=AE,BD=CE,∴△ADE是等边三角形,∴DE=AE,∴AE=DE=BE﹣BD=BE﹣CE,故答案为:AE=BE﹣CE;②如图,∠BAD=45°,理由如下:连接AF,作AG⊥DE于G,∴∠AGD=90°,∵F是BC的中点,△ABC是等边三角形,△ADE是等边三角形,∴AF⊥BC,∠ABF=∠ADG=60°,∴∠AFB=∠AGD,∴△ABF∽△ADG,∴,∠BAF=∠DAG,∴∠BAF+∠DAF=∠DAG+∠DAF,∴∠BAD=∠FAG,∴△ABD∽△AFG,∴∠ADB=∠AGF=90°,由(1)得:BD=CE,∵CE=DE=AD,∴AD=BD,∴∠BAD=45°.九.相似形综合题(共1小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.一十.解直角三角形的应用-坡度坡角问题(共1小题)15.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)【答案】(1)车后盖最高点B′到地面的距离为2.15m;(2)没有危险,详见解析.【解答】解:(1)如图,作B′E⊥AD,垂足为点E,在Rt△AB′E中,∵∠B′AD=27°,AB′=AB=1,∴sin27°=,∴B′E=AB′sin27°≈1×0.454=0.454,∵平行线间的距离处处相等,∴B′E+AO=0.454+1.7=2.154≈2.15,答:车后盖最高点B′到地面的距离为2.15m.(2)没有危险,理由如下:过C′作C′F⊥B′E,垂足为点F,∵∠B′AD=27°,∠B′EA=90°,∴∠AB′E=63°,∵∠AB′C′=∠ABC=123°,∴∠C′B′F=∠AB′C′﹣∠AB′E=60°,在Rt△B′FC′中,B′C′=BC=0.6,∴B′F=B′C′•cos60°=0.3.∵平行线间的距离处处相等,∴C′到地面的距离为2.15﹣0.3=1.85.∵1.85>1.8,∴没有危险.。

真题汇总:2022年山东省济南市中考数学历年真题汇总 (A)卷(含答案详解)

真题汇总:2022年山东省济南市中考数学历年真题汇总 (A)卷(含答案详解)

2022年山东省济南市中考数学历年真题汇总 (A )卷 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若数a 使关于x 的方程433a x x +--=12的解为非负数,使关于y 的不等式组5(2)341225y y y y a +<-⎧⎪--⎨>⎪⎩无解,则所有满足条件的整数a 的值之和为( ) A .7 B .12 C .14 D .18 2、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )A .60.641210⨯B .56.41210⨯C .66.41210⨯D .564.1210⨯ 3、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x 元,则可列方程为( ) A .8374x x +=-B .8374x x -=+C .3487x x -+=D .3487x x +-= 4、将抛物线y =2x 2向下平移3个单位后的新抛物线解析式为( ) A .y =2(x ﹣3)2 B .y =2(x +3)2 C .y =2x 2﹣3 D .y =2x 2+3 ·线○封○密○外5、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话. 小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x 元,由题意可列方程为( )A .(38﹣x )(160+3x ×120)=3640B .(38﹣x ﹣22)(160+120x )=3640C .(38﹣x ﹣22)(160+3x ×120)=3640D .(38﹣x ﹣22)(160+3x ×120)=36406、火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④7、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )A .14B .13 C .12 D .18、如图,在Rt ABC 中,90C ∠=︒,5sin 13A =,则cos A 的值为( )A .512B .125C .1213D .1312 9、有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||||a b >B .0a b +>C .0a b ->D .0ab > 10、对于二次函数y =﹣x 2+2x +3,下列说法不正确的是( )A .开口向下B .当x ≥1时,y 随x 的增大而减小C .当x =1时,y 有最大值3D .函数图象与x 轴交于点(﹣1,0)和(3,0)第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、计算:()32a =_________,2b -=_________,2217x y xy ÷=_________.分解因式:221a a ++=_________,22x x -=_________,21m -=________. 2(a >0)=___; 3、将115(1)12(3)5x x -=--去括号后,方程转化为_______. 4、如果有理数a 满足610a <,在数轴上点A 所表示的数是622a ,点B 所表示的数是2021a ;那么在数轴上_______(填点A 和点B 中哪个点在哪个点)的右边. ·线○封○密○外5、如图,四边形ABCD 中,AB BC ⊥,AD DC ⊥,116BAD ∠=︒,在BC 、CD 上分别找一点M 、N ,当AMN 周长最小时,AMN ANM ∠+∠的度数是______________.三、解答题(5小题,每小题10分,共计50分)1、如图,射线ON 、OE 、OS 、OW 分别表示从点O 出发的向北、东、南、西四个方向,将直角三角尺的直角顶点与点O 重合.(1)图中与AON ∠互余的角是_______;(2)①用直尺和圆规作AOE ∠的平分线OP ;(不写作法,保留作图痕迹)②在①所做的图形中,如果34AON ∠=︒,那么点P 在点O 的_______方向.2、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图.请结合图中信息回答下列问题:(1)本次调查的学生人数为___________.(2)补全频数直方图.(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书.并为读书的时间低于30分钟的学生同学提出一条合理建议. 3、计算:(2. 4、如图,已知二次函数y =ax 2+bx +1的图象经过点A (﹣1,6)与B (4,1)两点. ·线○封○密·○外(1)求这个二次函数的表达式;(2)在图中画出该二次函数的图象;(3)结合图象,写出该函数的开口方向、对称轴和顶点坐标.5、解分式方程:2323422x x x x -=--+.-参考答案-一、单选题1、C【分析】第一步:先用a 的代数式表示分式方程的解.再根据方程的解为非负数,x -3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m 的取值范围进行综合考虑确定最后m 的取值范围,最后根据a 为整数确定最后结果.【详解】解:41332a x x +=--, 2a -8=x -3, x =2a -5, ∵方程的解为非负数,x -3≠0,∴250253a a -≥⎧⎨-≠⎩, 解得a ≥52且a ≠4, 5(2)341225y y y y a +<-⎧⎪--⎨>⎪⎩, 解不等式组得:752y y a <-⎧⎨>-⎩, ∵不等式组无解, ∴5-2a ≥-7, 解得a ≤6, ∴a 的取值范围:52≤a ≤6且a ≠4, ∴满足条件的整数a 的值为3、5、6, ∴3+5+6=14, 故选:C .【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a 的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m 的取值范围是解题关键. 2、B ·线○封○密·○外【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:641200用科学记数法表示为:641200=56.41210⨯,故选择B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、D【分析】设这个物品的价格是x 元,根据人数不变列方程即可.【详解】解:设这个物品的价格是x 元,由题意得3487x x +-=, 故选D .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.4、C【分析】根据“上加下减”的原则进行解答即可.【详解】解:将抛物线y =2x 2向下平移3个单位后的新抛物线解析式为:y =2x 2-3.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.5、D【分析】由这种工艺品的销售价每个降低x 元,可得出每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x 的一元二次方程,此题得解. 【详解】 解:∵这种工艺品的销售价每个降低x 元, ∴每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个. 依题意得:(38-x -22)(160+3x ×120)=3640. 故选:D . 【点睛】 本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 6、D 【分析】 根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案. 【详解】 ·线○封○密·○外解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.7、A【分析】直接根据概率公式求解即可.【详解】解:由题意得,他恰好选到《新中国史》这本书的概率为14,故选:A.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.8、C【分析】由三角函数的定义可知sinA=ac,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可.【详解】解:在直角三角形ABC中,∠C=90°∵sinA =513a c =, ∴可设a =5k ,c =13k ,由勾股定理可求得b =12k , ∴cosA =12121313b k c k ==, 故选:C .【点睛】本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.9、C 【分析】 由数轴可得:0,,b a b a 再逐一判断,,a b a b ab +-的符号即可.【详解】 解:由数轴可得:0,,b a b a 0,0,0,a b a b ab 故A ,B ,D 不符合题意,C 符合题意; 故选C 【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.10、C 【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题. ·线○封○密○外【详解】解:y =-x 2++2x +3=-(x -1)2+4,∵a =-1<0,∴该函数的图象开口向下,故选项A 正确;∵对称轴是直线x =1,∴当x ≥1时,y 随x 的增大而减小,故选项B 正确;∵顶点坐标为(1,4),∴当x =1时,y 有最大值4,故选项C 不正确;当y =0时,-x 2+2x +3=0,解得:x 1=-1,x 2=3,∴函数图象与x 轴的交点为(-1,0)和(3,0),故D 正确.故选:C .【点睛】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题1、6a21b 3x ()21+a ()2x x - ()()11m m +- 【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可 【详解】解:计算:()32a =6a ,2b -=21b ,2217x y xy ÷=3x . 分解因式:221a a ++=()21+a ,22x x -=()2x x -,21m -=()()11m m +-. 故答案为:6a ;21b ;3x ;()21+a ;()2x x -;()()11m m +- 【点睛】 本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键. 2【分析】根据二次根式的性质即可求出答案.【详解】解:原式【点睛】 本题考查二次根式的性质与化简,解题的关键是熟练运用二次根式的除法运算法则,本题属于基础题型. 3、315126x x -=-+【分析】·线○封○密○外根据去括号法则解答即可.【详解】解:原方程去括号,得:315126x x -=-+.故答案为:315126x x -=-+.【点睛】本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键.去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号.4、点A 在点B【分析】利用a 61<0可知a <0,于是可得a 622>0,a 2021<0,根据原点左边的数为负数,原点右边的数为正数可得结论.【详解】解:610a <,0a ∴<.6220a ∴>,20210a <,∴点A 在点B 的右边.故答案为:点A 在点B .【点睛】本题主要考查了有理数的乘方,数轴.利用负数的偶次方是正数,负数的奇数次方是负数的法则是解题的关键.5、128°【分析】分别作点A 关于BC 、DC 的对称点E 、F ,连接EF 、DF 、BE ,则当M 、N 在线段EF 上时△AMN 的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果.【详解】分别作点A 关于BC 、DC 的对称点E 、F ,连接EF 、DF 、BE ,如图 由对称的性质得:AN =FN ,AM =EM ∴∠F =∠NAD ,∠E =∠MAB ∵AM +AN +MN =EM +FN +MN ≥EF ∴当M 、N 在线段EF 上时,△AMN 的周长最小 ∵∠AMN +∠ANM =∠E +∠MAB +∠F +∠NAD =2∠E +2∠F =2(∠E +∠F )=2(180°−∠BAD )=2×(180°−116°)=128° 故答案为:128° 【点睛】 本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A 关于BC 、DC 的对称点是本题的关键. 三、解答题 1、 (1)AOW ∠、BON ∠ (2)①作图见解析;②北偏东28︒或东偏北62︒ 【分析】 (1)由题可知90AON AOW ∠+∠=︒,90AON BON ∠+∠=︒故可知与AON ∠互余的角; ·线○封○密○外(2)①如图所示,以O 为圆心画弧,分别与OE 、OA 相交;以两交点为圆心,大于两点长度的一半为半径画弧,连接两弧交点与O 点的射线即为角平分线;②90124AOE AON ∠=∠+︒=︒,12AOP EOP AOE ∠=∠=∠,NOP AOP AON ∠=∠-∠进而得出P 与O 有关的位置. (1)解:图中与AON ∠互余的角是AOW ∠和BON ∠;故答案为:AOW ∠、BON ∠.(2)①如图,OP 为所作;②34AON ∠=︒,903490124AOE AON ∴∠=∠+︒=︒+︒=︒, OP 平分AOE ∠,111246222AOP EOP AOE ∴∠=∠=∠=⨯︒=︒, 623428NOP AOP AON ∴∠=∠-∠=︒-︒=︒, 即点P 在点O 的北偏东28︒方向或东偏北62︒ 故答案为:北偏东28︒或东偏北62︒.·线【点睛】本题考查了余角,角平分线以及坐标系中的位置.解题的关键在于正确的求解角度.2、(1)60(2)见解析(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)【分析】(1)平均每天读书的时间10—30分钟的人数除以所占的百分比,即可求解;(2)用总人数乘以平均每天读书的时间30—50分钟所占的百分比,即可求解;(3)用300乘以平均每天读书的时间10—30分钟所占的百分比,即可求解.(1)÷=名;解:本次调查的学生人数为610%60(2)⨯=名,解:平均每天读书的时间30—50分钟的人数为6020%12补全频数直方图如下图:(3)解:30010%30⨯=份.建议:开卷有益,要养成阅读的好习惯【点睛】本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键.3﹣1【分析】首先计算二次根式的乘法,利用完全平方公式计算,最后合并同类二次根式.【详解】解:原式=﹣6+(2+3﹣),=﹣6+5﹣,﹣1. 【点睛】 本题主要考查了二次根式的乘法,完全平方公式,合并同类项,熟练运算法则和完全平方公式是解决本题的关键. 4、 (1)241y x x =-+ (2)见解析 (3)开口向上,对称轴为2x =,顶点坐标为()2,3- 【分析】 (1)根据待定系数法求二次函数解析式即可; ·线○封(2)根据顶点,对称性描出点()()(0,1),2,3,5,6-,进而画出该二次函数的图形即可;(3)根据函数图像直接写出开口方向、对称轴和顶点坐标.(1)将点A (﹣1,6)与B (4,1)代入y =ax 2+bx +1即1616411a b a b -+=⎧⎨++=⎩解得14a b =⎧⎨=-⎩241y x x ∴=-+(2)由241y x x =-+()223x =--,确定顶点坐标以及对称轴,根据对称性求得描出点,A B 关于2x =的对称点()()5,6,0,1,作图如下, (3)根据图象可知,241y x x =-+的图象开口向上,对称轴为2x =,顶点坐标为()2,3-【点睛】本题考查了待定系数法求解析式,画二次函数图象,2(0)y ax bx c a =++≠的图象与性质,求得解析式是解题的关键.5、5x =-【分析】先去分母,去括号,然后移项合并同类项,系数化为1,最后进行检验.【详解】 解:2323422x x x x +=--+ 去分母去括号得:32436x x x ++=-解得:5x =-检验:当5x =-时,()()220x x +-≠ ∴分式方程的解为5x =-. 【点睛】本题考查了解分式方程.解题的关键与难点在于将分式方程转化成整式方程.·线○封○。

2024年济南市中考数学真题试卷及答案

2024年济南市中考数学真题试卷及答案

2024年济南市中考数学真题试卷一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1. 9的相反数是( ) A. 19 B. 19- C. 9 D. 9-2. 黑陶是继彩陶之后中国新石器时代制陶工艺的又一个高峰,被誉为“土与火的艺术,力与美的结晶”.如图是山东博物馆收藏的蛋壳黑陶高柄杯.关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同3. 截止2023年底,我国森林面积约为3465000000亩,森林覆盖率达到24.02%,将数字3465000000用科学记数法表示为( )A. 90.346510⨯B. 93.46510⨯C. 83.46510⨯D. 834.6510⨯4. 一个正多边形,它的每一个外角都等于45°,则该正多边形是( )A. 正六边形B. 正七边形C. 正八边形D. 正九边形5. 如图,已知,60,40ABC DEC A B ∠=︒∠=︒△≌△,则DCE ∠的度数为( ).A. 40︒B. 60︒C. 80︒D. 100︒6. 下列运算正确的是( )A. 336x y xy +=B. ()326xy xy =C. ()3838x x +=+D. 235x x x7. 若关于x 的方程20x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A. 14m <- B. 14m >- C. 4m <- D. 4m >-8. 3月14日是国际数学节、某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参力口其中一个活动,则她们恰好选到同一个活动的概率是( ) A. 19 B. 16 C. 13 D. 239. 如图,在正方形ABCD 中,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 和F ,作直线EF ,再以点A 为圆心,以AD 的长为半径作弧交直线EF 于点G (点G 在正方形ABCD 内部),连接DG 并延长交BC 于点K .若2BK =,则正方形ABCD 的边长为( )A. 1B. 52C. 32+D. 110. 如图1,ABC 是等边三角形,点D 在边AB 上,2BD =,动点P 以每秒1个单位长度的速度从点B 出发,沿折线BC CA -匀速运动,到达点A 后停止,连接DP .设点P 的运动时间为()s t ,2DP 为y .当动点P 沿BC 匀速运动到点C 时,y 与t 的函数图象如图2所示.有以下四个结论:①3AB =;①当5t =时,1y =;①当46t ≤≤时,13y ≤≤;①动点P 沿BC CA -匀速运动时,两个时刻1t ,()212t t t <分别对应1y 和2y ,若126t t +=,则12y y >.其中正确结论的序号是( )A.①①①B.①①C.①①D.①①①二、填空题:本题共5小题,每小题4分,共20分.直接填写答案.11. 若分式12x x-的值为0,则x 的值是________. 12. 如图是一个可以自由转动的转盘,转盘被等分成四个扇形,转动转盘,当转盘停止时,指针落在红色区域的概率为______.13. 如图,已知12l l ∥,ABC 是等腰直角三角形,90BAC ∠=︒,顶点,A B 分别在12,l l 上,当170=︒∠时,2∠=______.14. 某公司生产了,A B 两款新能源电动汽车.如图,12,l l 分别表示A 款,B 款新能源电动汽车充满电后电池的剩余电量()kw h y ⋅与汽车行驶路程()km x 的关系.当两款新能源电动汽车的行驶路程都是300km 时,A 款新能源电动汽车电池的剩余电量比B 款新能源电动汽车电池的剩余电量多______kw h ⋅.15. 如图,在矩形纸片ABCD中,2AB AD==,E为边AD的中点,点F在边CD上,连接EF,将DEF沿EF翻折,点D的对应点为D,连接BD'.若2BD'=,则DF=______.三、解答题:本题共10小题,共90分.解答应写出文字说明、证明过程或演算步骤.16. 计算11(π 3.14)2cos304-⎛⎫-++-︒⎪⎝⎭.17. 解不等式组:()4212523x xx x⎧>-⎪⎨++<⎪⎩①②,并写出它的所有整数解.18. 如图,在菱形ABCD中,AE CD⊥,垂足为,E CF AD⊥,垂足为F.求证:AF CE=.19. 城市轨道交通发展迅猛,为市民出行带来极大方便,某校“综合实践”小组想测得轻轨高架站的相关距离,数据勘测组通过勘测得到了如下记录表:(1)求点C 到地面DE 的距离;(2)求顶部线段BC 的长.(结果精确到0.01m ,参考数据:sin150.259︒≈,cos150.966︒≈,tan150.268︒≈,sin830.993,cos830.122,tan838.144︒≈︒≈︒≈)20. 如图,,AB CD 为O 的直径,点E 在BD 上,连接,AE DE ,点G 在BD 的延长线上,,45AB AG EAD EDB =∠+∠=︒.(1)求证:AG 与O 相切;(2)若13BG DAE =∠=,求DE 的长. 21. 2024年3月25日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校开展了校园安全知识竞赛(百分制),八年级学生参加了本次活动.为了解该年级的答题情况,该校随机抽取了八年级部分学生的竞赛成绩(成绩用x 表示,单位:分) 并对数据(成绩)进行统计整理.数据分为五组:A:5060x ≤<;B:6070x ≤<;C:7080x ≤<;D:8090x ≤<;E:90100x ≤≤.下面给出了部分信息:a :C 组的数据:70,71,71,72,72,72,74,74,75,76,76,76,78,78,79,79.b :不完整的学生竞赛成绩频数直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)求随机抽取的八年级学生人数;(2)扇形统计图中B 组对应扇形的圆心角为______度;(3)请补全频数直方图;(4)抽取的八年级学生竞赛成绩的中位数是______分;(5)该校八年级共900人参加了此次竞赛活动,请你估计该校八年级参加此次竞赛活动成绩达到80分及以上的学生人数.22. 近年来光伏建筑一体化广受关注.某社区拟修建A,B 两种光伏车棚.已知修建2个A 种光伏车棚和1个B 种光伏车棚共需投资8万元,修建5个A 种光伏车棚和3个B 种光伏车棚共需投资21万元.(1)求修建每个A 种,B 种光伏车棚分别需投资多少万元?(2)若修建A,B 两种光伏车棚共20个,要求修建的A 种光伏车棚的数量不少于修建的B 种光伏车棚数量的2倍,问修建多少个A 种光伏车棚时,可使投资总额最少?最少投资总额为多少万元?23. 已知反比例函数(0)k y x x=>的图象与正比例函数()30y x x =≥的图象交于点()2,A a ,点B 是线段OA 上(不与点A 重合)的一点.(1)求反比例函数的表达式;(2)如图1,过点B 作y 轴的垂线,l l 与(0)k y x x=>的图象交于点D ,当线段3BD =时,求点B 的坐标;(3)如图2,将点A 绕点B 顺时针旋转90︒得到点E ,当点E 恰好落在(0)k y x x =>的图象上时,求点E 的坐标.24. 在平面直角坐标系xOy 中,抛物线21:C y x bx c =++经过点()()0,2,2,2A B ,顶点为D ;抛物线()222:221C y x mx m m m =-+-+≠,顶点为Q .(1)求抛物线1C 的表达式及顶点D 的坐标;(2)如图1,连接AD ,点E 是拋物线1C 对称轴右侧图象上一点,点F 是拋物线2C 上一点,若四边形ADFE 是面积为12的平行四边形,求m 的值;(3)如图2,连接,BD DQ ,点M 是抛物线1C 对称轴左侧图像上的动点(不与点A 重合),过点M 作MN ∥DQ 交x 轴于点N ,连接,BN DN ,求BDN 面积的最小值.25. 某校数学兴趣小组的同学在学习了图形的相似后,对三角形的相似进行了深入研究.(一)拓展探究如图1,在ABC 中,90,ACB CD AB ∠=︒⊥,垂足为D .(1)兴趣小组的同学得出2AC AD AB =⋅.理由如下: ACB ∠=A B ∴∠+∠CD AB ⊥ADC ∴∠A ACD ∴∠+∠B ∴∠=①______A ∠=∠ABC∴∽AB AC ∴=①______2AC ∴=请完成填空(2)如图2,F 为线段CD 上一点,连接AF 并延长至点E ,连接CE ,当ACE AFC ∠=∠时,请判断AEB 的形状,并说明理由.(二)学以致用(3)如图3,ABC 是直角三角形,90,2,ACB AC BC ∠=︒==,平面内一点D ,满足AD AC =,连接CD 并延长至点E ,且CEB CBD ∠∠=,当线段BE 的长度取得最小值时,求线段CE 的长.2024年济南市中考数学真题试卷答案一、选择题.1. 【答案】D2. 【答案】A3. 【答案】B4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】B8. 【答案】C9. 【答案】D【解析】连接AG ,设EF 交AB 于点H,正方形边长为2x 由作图知,2AG AD x ==,EF 垂直平分AB ①12AH BH AB x ===,90AHG ∠=︒①GH = ①90BAD ∠=︒①AD GH ∥①AD BC ∥①////AD GH BC ①1DG AH GK HB== ①DG GK =①2BK = ①()112GH AD BK x =+=+1x =+①12x =①21x =.故选:D .10. 【答案】D【解析】解:由图知当动点P 沿BC 匀速运动到点C 时,27DP = 作DE BC ⊥于点EABC 是等边三角形,点D 在边AB 上,2BD =60B ∴∠=︒,AB BC AC ==sin 60DE BD ∴=⋅︒=cos601BE BD =⋅︒=2EP ∴==3AB BC BE EP ∴==+=故①正确;当5t =时,532PC =-=,1AP AD ==60A ∠=︒∴ADP △是等边三角形1DP AP AD ∴===21y DP ∴==故①正确;当46t ≤≤时,且DP AC ⊥时,2DP 最小1AD =,60A ∠=︒sin 60DP AD ∴=⋅︒=∴2DP 最小为34,即y 能取到34故①错误;动点P 沿BC CA -匀速运动时,126t t +=,12t t <∴13t <,23t >,216t t =-当101t ≤≤时,256t ≤≤()222111114y t t t =-+=-+; 当DP AC ⊥时,52CP =,34DP = 22222211111319132421616y t t t t ⎛⎫⎛⎫⎛⎫=-+=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 121351401616y y ∴-=-=> 12y y ∴>; 同理,当113t <<时,235t <<()222111114y t t t =-+=-+ 22222211113191362421616y t t t t ⎛⎫⎛⎫⎛⎫=--+=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121351401616y y ∴-=-=> 12y y ∴>; 故①正确;综上所述,正确的有①①①故选:D .二、填空题.11. 【答案】112. 【答案】1413. 【答案】65︒14. 【答案】1215. 【解析】解:如图:连接BE ,延长FE 交BA 的延长线于H①矩形ABCD 中2AB AD ==,E 为边AD 的中点, ①1AE DE ==,90BAE D ∠=∠=︒①将DEF 沿EF 翻折,点D 的对应点为D①190ED ED ED F D DEF D EF '''==∠=∠=︒∠=∠,, ①()Rt Rt ASA HAE FDE ≌①DF AH =①BE ===①2BD '=①22212+=,即222D E BE BD ''+=①BED '△为直角三角形设DEF α∠=,则2AEH DEF DED αα'∠=∠=∠=,①90290AEB AHE αα∠=︒-∠=︒-,①90HEB AHE α∠=∠=︒-①BHE 为等腰三角形①BH BE ==①AH BH AB =-=①DF AH ==故答案为三、解答题.16. 【答案】617. 【答案】14x -<<,整数解为:0,1,2,3.18. 证明:四边形ABCD 是菱形AD CD ∴=,AE CD CF AD ⊥⊥90AED CFD ∴∠=∠=︒D D ∠=∠AED CFD ∴≌DE DF ∴=AD DF CD DE ∴-=-AF CE ∴=19. 【答案】(1)点C 到地面DE 的距离为6.65m ; (2)顶部线段BC 的长为7.14m .【小问1详解】解:如图,过点C 作CN ED ⊥,交ED 的延长线于点N97CDE ∠=︒83CDN ∴∠=︒在Rt CDN △中,sin sin830.993, 6.7CN CDN CD CD∠=︒=== sin83 6.70.993 6.65CN CD ∴=︒=⨯≈答:点C 到地面DE 的距离为6.65m【小问2详解】解:如图,过点B 作⊥BP CF ,垂足为PCF ∥DE83FCD CDN ∴∠=∠=︒98BCD ∠=︒15BCP BCD FCD ∴∠=∠-∠=︒平行线间的距离处处相等6.65EF CN ∴==①8.5AE =8.5 6.65 1.85BP AF AE EF ∴==-=-=在Rt BCP △中, sin sin150.259BP BCP BC ∠=︒== 1.857.14sin150.259BP BC ∴==≈︒ 答:顶部线段BC 的长为7.14m .20. 【答案】(1)证明见解析; (2. 【小问1详解】解:,EDB EAB ∠∠所对的弧是同弧 EDB EAB ∴∠=∠45EAD EDB ∠+∠=︒45EAD EAB ∴∠+∠=︒即45BAD ∠=︒AB 为直径90ADB ∴∠=︒18045B ADB DAB ∴∠=︒-∠-∠=︒AB AG =45B G ∴∠=∠=︒90GAB ∴∠=︒AG ∴与O 相切.【小问2详解】解: 连接CE,DAE DCE ∠∠所对的弧是同弧DAE DCE ∴∠=∠ DC 为直径90DEC ∴∠=︒在Rt DEC △中,1sin sin 3DE DCE DAE DC∠=∠==445,90BG B BAG =∠=︒∠=︒AB DC ∴===1sin 3DE DC DAE ∴=∠== 21. 【答案】(1)60人 (2)90(3)图见解析 (4)77(5)390人【小问1详解】解:35%60÷=(人); 【小问2详解】153609060︒⨯=︒;故答案为:90;【小问3详解】D 组人数为:6031516620----=;补全直方图如图:【小问4详解】将数据排序后第30个和第31个数据分别为76,78①中位数为:()17678772+=; 【小问5详解】20690039060+⨯=(人). 22. 【答案】(1)修建一个A 种光伏车棚需投资3万元,修建一个B 种光伏车棚需投资2万元(2)修建A 种光伏车棚14个时,投资总额最少,最少投资总额为54万元【小问1详解】解:设修建一个A 种光伏车棚需投资x 万元,修建一个B 种光伏车棚需投资y 万元,根据题意,得285321x y x y +=⎧⎨+=⎩解得32x y =⎧⎨=⎩答:修建一个A 种光伏车棚需投资3万元,修建一个B 种光伏车棚需投资2万元.【小问2详解】解:设修建A 种光伏车棚m 个,则修建B 种光伏车棚()20m -个,修建A 种和B 种光伏车棚共投资W 万元,根据题意,得()220m m ≥- 解得403m ≥ ()322040W m m m =+-=+10>W ∴随m 的增大而增大∴当14m 时,W 取得最小值,此时144054W =+=(万元) 答:修建A 种光伏车棚14个时,投资总额最少,最少投资总额为54万元. 23. 【答案】(1)12y x=; (2)()1,3B ; (3)点()3,4E . 【小问1详解】解:将()2,A a 代入3y x =得326a =⨯= ()2,6A ∴将()2,6A 代入k y x =得62k =,解得12k = ∴反比例函数表达式为12y x= 【小问2详解】解:如图,设点(),3B m m ,那么点()3,3D m m +由12y x=可得12xy = 所以()3312m m +=解得121,4m m ==-(舍)()1,3B ∴;【小问3详解】解:如图,过点B 作FH ∥y 轴,过点E 作EH FH ⊥于点H ,过点A 作AF FH ⊥于点,90F EHB BFA ∠=∠=︒90HEB EBH ∴∠+∠=︒点A 绕点B 顺时针旋转90︒90,ABE BE BA ∴∠=︒=90EBH ABF ∴∠+∠=︒BEH ABF ∴∠=∠EHB BFA ∴△≌△设点(),3,63,2B n n EH BF n BH AF n ==-==-∴点()62,42E n n --()()426212n n ∴--= 解得123,22n n ==∴点()3,4E 或()2,6(舍),此时点()3,4E .24. 【答案】(1)222y x x -=+,()1,1D (2)122,9m m == (3)78时,74n =,根据三角形的面积公式即可得到结论.【小问1详解】解:抛物线2y x bx c =++过点()()0,2,2,2A B得2422c b c =⎧⎨++=⎩解得22b c =-⎧⎨=⎩∴抛物线1C 的表达式为222y x x -=+∴顶点()1,1D ;【小问2详解】解:如图,连接DE ,过点E 作EG ∥y 轴,交AD 延长线于点G ,过点D 作DH EG ⊥,垂足为H ,与y 轴交于H ',设点E 的横坐标为t .设直线AD 的表达式为y kx b =+由题意知21b k b =⎧⎨+=⎩解得12k b =-⎧⎨=⎩∴直线AD 的表达式为2y x =-+()()22,22,,2,E t t t G t t EG t t -+-=- ADFE 的面积为12162ADE ADFE S S ∴==△,162ADE AGE DGE S S S EG H D ==⋅='-△△△ 1H D '=12EG ∴=212t t ∴-=解得124,3t t ==-(舍)()4,10E ∴点E 先向右平移1个单位长度,再向下平移1个单位长度,得到点F ()5,9F ∴将()5,9F 代入()22221y x mx m m m =-+-+≠得211180m m -+=解得122,9m m ==.【小问3详解】解:如图,过M 作MP x ⊥轴,垂足为P ,过点D 作DK ∥y 轴,过点Q 作QK ∥x 轴,与DK 交于点K ,设()2,22,1M h h h h -+<且()0,,0h N n ≠22222()2y x mx m m x m m =-++-=-+- ∴抛物线2C 的顶点(),2Q m m -()121,1DK m m KQ m ∴=--=-=- ,45DK KQ DQK ∴=∠=︒ MN ∥DQ ,KQ ∥NP易得45MNP DQK ∠=∠=︒45NMP ∴∠=︒MP NP ∴=222n h h h ∴-=-+22n h h ∴=-+21724n h ⎛⎫∴=-+ ⎪⎝⎭ ∴当12h =时,74n = ∴点N 横坐标最小值为74n =,此时点N 到直线BD 距离最近,BDN 的面积最小最近距离即边BD 上的高,高为:7428⨯=BDN ∴△面积的最小值为17288BDN S =⨯=△.25. 【答案】(1)①ACD ∠;①AC AD;(2)AEB 是直角三角形,证明见解析;(3)【详解】解:(1)90ACB ∠=︒90A B ∴∠+∠=︒CD AB ⊥90ADC ∴∠=︒90A ACD ∴∠+∠=︒B ACD ∴∠=∠A A ∠=∠ABC ACD ∴∽AB AC AC AD∴= 2AC AD AB ∴=⋅;(2)AEB 是直角三角形;理由如下: ,ACE AFC CAE FAC ∠=∠∠=∠ ACF AEC ∴△∽△AC AE AF AC∴= 2AC AF AE ∴=⋅由(1)得2AC AD AB =⋅ AF AE AD AB ∴⋅=⋅ AF AD AB AE∴= FAD BAE ∠=∠AFD ABE ∴△∽△90ADF AEB ∴∠=∠=︒ AEB ∴是直角三角形. (3),CEB CBD ECB BCD ∠=∠∠=∠ CEB CBD ∴△∽△CE CB CB CD∴= (2224CD CE CB ∴⋅===如图,以点A 为圆心,2为半径作A ,则,C D 都在A 上,延长CA 到0E ,使06CE =,交A 于0D ,连接0E E则04CD = ①0CD 为A 的直径 ①090CDD ∠=︒ 0024CD CE CD CE ∴⋅==⋅ ①00CD CD CE CE = 00ECE D CD ∠=∠ 00ECE D CD ∴∽△△ 0090CDD CE E ∴∠=∠=︒ ∴点E 在过点0E 且与0CE 垂直的直线上运动 过点B 作0BE E E '⊥,垂足为E ',连接CE ' ①垂线段最短 ①当点E 在点E '处时,BE 最小 即BE 的最小值为BE '的长 ①00090CE E E CB BE E ''∠=∠=∠=︒ ①四边形0CE E B '是矩形 ①06BE CE '== 在0Rt CE E '△中根据勾股定理得:CE =='即当线段BE 的长度取得最小值时,线段CE的长为。

山东省济南市中考数学试卷含答案解析版

山东省济南市中考数学试卷含答案解析版

2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是( )A .0B .﹣2C .√5D .32.(3分)如图所示的几何体,它的左视图是( )A .B .C .D .3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( )A .×104B .×104C .×103D .×1034.(3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40° B .45° C .50° D .60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b 的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要着作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.{y−8x=3y−7x=4 B.{y−8x=37x−y=4C.{8x−y=3y−7x=4 D.{8x−y=37x−y=49.(3分)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.12B.13C.16D.2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.413.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√2 C.3√54D.3√2214.(3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a <b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.415.(3分)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x 2﹣4x +4= .17.(3分)计算:|﹣2﹣4|+(√3)0= .18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是 .19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 cm .20.(3分)如图,过点O 的直线AB 与反比例函数y=k x的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 .21.(3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a618714b88合计c1(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,?OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017?济南)在实数0,﹣2,√5,3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017?济南)如图所示的几何体,它的左视图是()A.B. C. D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017?济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.×104B.×104C.×103D.×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017?济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017?济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017?济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b?a−bab=a+bb,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017?济南)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n,根据两根之和等于﹣ba,即可得出关于n的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故选C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.8.(3分)(2017?济南)《九章算术》是中国传统数学的重要着作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.{y−8x=3y−7x=4 B.{y−8x=37x−y=4C.{8x−y=3y−7x=4 D.{8x−y=37x−y=4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x人,物价为y钱,根据题意,可列方程组:{8x−y=3 y−7x=4,故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017?济南)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.12B.13C.16D.23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13. 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017?济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm .故选D .【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017?济南)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A .x >﹣1B .x >1C .x >﹣2D .x >2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017?济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D 点离地面的高度DE=,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017?济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√2 C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017?济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b>0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017?济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x 的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017?济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017?济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案. 【解答】解:|﹣2﹣4|+(√3)0=6+1=7. 故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键. 18.(3分)(2017?济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是 90 . 【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案. 【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90; 故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017?济南)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 20 cm . 【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120?π?(3x)2360,解方程即可.【解答】解:设AD=x ,则AB=3x . 由题意300π=120?π?(3x)2360,解得x=10,∴BD=2x=20cm . 故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017?济南)如图,过点O 的直线AB 与反比例函数y=kx的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3kx(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=kx 的图象上,∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12,∴y=12x ,解方程组{y =12x y =2x得:{x 1=2y 1=1,{x 2=−2y 2=−1,∴B (﹣2,﹣1), ∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3,∴BC=3﹣(﹣1)=4,∴△ABC 的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017?济南)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 (1,﹣2) . 【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A ,B ,C 点的坐标,进而得出答案.【解答】解:由题意可得:M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为(1,﹣2),此时M 到A ,B ,C 的实际距离都为5. 故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键. 三、解答题(本大题共8小题,共57分)22.(6分)(2017?济南)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组. 【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题; (2)根据解不等式组的方法可以解答本题. 【解答】解:(1)(a +3)2﹣(a +2)(a +3) =a 2+6a +9﹣a 2﹣5a ﹣6 =a +3,当a=3时,原式=3+3=6; (2){3x −5≥2(x −2)①x2>x −1② 由不等式①,得 x ≥1,由不等式②,得 x <2故原不等式组的解集是1≤x <2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017?济南)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF . 【考点】LB :矩形的性质;KD :全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD 、∠AFD=∠B ,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD 是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∵{∠AEB=∠DAE ∠AFD=∠B AD=AE∴△ABE≌△DFA,∴AB=DF.【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017?济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017?济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解, ∴=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017?济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示: 本数(本) 频数(人数)频率5 a6 187 14 b8 8合计c1(1)统计表中的a= 10 ,b= ,c= 50 ; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a 组人数,画出直方图即可; (3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可; 【解答】解:(1)由题意c=18÷=50,∴a=50×=10,b=1450=,故答案为10,,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017?济南)如图1,?OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,∵四边形OABC是平行四边形,∴AB=OC=3,∵A(2,1),。

2024年济南市数学中考试题

2024年济南市数学中考试题

选择题在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, -2)B. (-3, 2)C. (3, 2)(正确答案)D. (2, -3)已知等腰三角形的两边长分别为3和5,则它的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = -2x + 1与y = 2x - 3的图象的交点坐标是:A. (1, -1)B. (-1, 1)(正确答案)C. (2, 0)D. (0, 2)下列计算正确的是:A. 3a + 2b = 5abB. a6 ÷ a3 = a2C. (a2)3 = a6(正确答案)D. 2a-2 = 1/4a2若关于x的一元二次方程x2 - 4x + m = 0有两个相等的实数根,则m的值为:A. -4B. 4(正确答案)C. 2D. -2下列图形中,是轴对称图形但不是中心对称图形的是:A. 正三角形(正确答案)B. 平行四边形C. 圆D. 正方形已知|x| = 5,y = 3,则x - y = :A. -8 或-2B. 2 或-8(正确答案)C. 8 或-2D. -8 或2下列不等式组中,解集为x > 2 的是:A. { x > 1, x > 2 }(正确答案)B. { x > 2, x < 3 }C. { x > -2, x < 2 }D. { x > 0, x < 2 }在△ABC中,△A = 60°,△B = 45°,则△C的度数是:A. 75°(正确答案)B. 60°C. 45°D. 30°。

[中考专题]2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

[中考专题]2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

2022年山东省济南市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,AE 交对角线BD 于点G ,BF 交AE 于点H .则GH HE 的值是( )A .12B .23 CD2、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A .1B .2C .3D .4 3、下列运动中,属于旋转运动的是( ) A .小明向北走了 4 米 B .一物体从高空坠下 C .电梯从 1 楼到 12 楼 D .小明在荡秋千 ·线○封○密○外4ABCD中,点E是对角线AC上一点,且EF AB⊥于点F,连接DE,当22.5ADE∠=︒时,EF=()A.1 B.2C1D.1 45、二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若关于x 的方程ax2+bx+c=1 有两个根,则这两个根的和为﹣4;④若关于 x 的方程a(x+5)(x﹣1)=﹣1 有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1.其中正确的结论有()A.1 个B.2 个C.3 个D.4 个6、下列关于x的方程中,一定是一元二次方程的是()A.ax2﹣bx+c=0 B.2ax(x﹣1)=2ax2+x﹣5C.(a2+1)x2﹣x+6=0 D.(a+1)x2﹣x+a=07、下列命题中,真命题是()A.同位角相等B .有两条边对应相等的等腰三角形全等C .互余的两个角都是锐角D .相等的角是对顶角.8、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )A .60°B .120°C .135°D .150° 9、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )A .200(1 + a )2 = 148B .200(1 - a )2 = 148C .200(1 - 2a )2 = 148D .200(1 - a 2)= 148 10、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作·线○封○密○外后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )A .20228B .10128C .5018D .2509第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点P 在线段AB 上,如果AP 2=AB •BP ,AB =4,那么AP 的长是_____.2、已知225a ab +=-,223ab b -=-,则代数式221132a ab b ++的值为____________. 3、如图,在ABC 中,3cm AB =,6cm BC ,5cm AC =,蚂蚁甲从点A 出发,以1.5cm/s 的速度沿着三角形的边按A B C A →→→的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm/s 的速度沿着三角形的边按A C B A →→→的方向行走,那么甲出发________s 后,甲乙第一次相距2cm .4、定义新运算“*”;其规则为a *b =22a b +,则方程(2*2)×(4*x )=8的解为x =___. 5、方程x (2x ﹣1)=2x ﹣1的解是 ___;三、解答题(5小题,每小题10分,共计50分)1、已知顶点为D 的抛物线()()230y a x a =-≠交y 轴于点()0,3C ,且与直线l 交于不同的两点A 、B (A 、B 不与点D 重合).(1)求抛物线的解析式;(2)若90ADB ∠=︒,①试说明:直线l 必过定点;②过点D 作DF l ⊥,垂足为点F ,求点C 到点F 的最短距离.2、如图,一次函数y kx b =+的图象与反比例函数()0m y x x =>的图象相交于A (1,3),B (3,n )两点,与两坐标轴分别相交于点P ,Q ,过点B 作BC OP ⊥于点C ,连接OA . (1)求一次函数和反比例函数的解析式; (2)求四边形ABCO 的面积.3、(数学认识) 数学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系. (构造模型) (1)如图①,已知△ABC ,在直线BC 上用直尺与圆规作点D ,使得∠ADB =12∠ACB . (不写作法,保留作图痕迹) (应用模型)已知△ABC 是⊙O 的内接三角形,⊙O 的半径为r ,△ABC 的周长为c .·线○封○密·○外(2)如图②,若r =5,AB =8,求c 的取值范围.(3)如图③,已知线段MN ,AB 是⊙O 一条定长的弦,用直尺与圆规作点C ,使得c =MN .(不写作法,保留作图痕迹)4、解方程:3471168x x +=+.5()20120204cos 452⎛⎫---︒ ⎪⎝⎭-参考答案-一、单选题1、B【分析】取BD 的中点M ,连接EM ,交BF 于点N ,则12EM DC =,//EM DC ,由BEN BCF ∆∆∽,得1124EN CF DC ==,由//EM AB ,得EMG ABG ∆∆∽,ENH ABH ∆∆∽,则13EG AE =,15EH AE =,从而解决问题. 【详解】 解:矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点, 12BE BC ∴=,//AB CD ,1122CF DF DC AB ===, 取BD 的中点M ,连接EM ,交BF 于点N ,如图,则EM 是BCD ∆的中位线, 12EM DC ∴=,//EM DC , 12EM AB ∴=,//EM AB , BEN BCF ∴∆∆∽, ∴12EN BE CF BC ==, 1124EN CF DC ∴==,14EN AB ∴=, //EM AB , EMG ABG ∴∆∆∽,ENH ABH ∆∆∽, ·线○封○密○外∴12EG EM AG AB ==,14EH EN AH AB ==, 13EG AE ∴=,15EH AE =, 1123515GH EG EH AE AE AE ∴=-=-=, ∴2215135AE GH HE AE ==, 故选:B .【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出GH 和HE 的长是解题的关键.2、A【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.3、D【分析】旋转定义:物体围绕一个点或一个轴作圆周运动,根据旋转定义对各选项进行一一分析即可.【详解】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,故选项A 不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,故选项B 不合题意;C. 电梯从 1 楼到 12 楼,是平移,不属于旋转运动,故选项C 不合题意;D. 小明在荡秋千,是旋转运动,故选项D 符合题意.故选D .【点睛】本题考查图形旋转运动,掌握旋转定义与特征,旋转中心,旋转方向,旋转角度是解题关键.4、C 【分析】 证明67.5CDE CED ∠=∠=︒,则CD CE =AC的长,得2AE =,证明AFE ∆是等腰直角三角形,可得EF 的长. 【详解】 解:四边形ABCD 是正方形,AB CD BC ∴==90B ADC ∠=∠=︒,45BAC CAD ∠=∠=︒, 22AC AB , 22.5ADE ∠=︒,9022.567.5CDE ∴∠=︒-︒=︒, 4522.567.5CED CAD ADE ∠=∠+∠=︒+︒=︒, CDE CED ∴∠=∠,CD CE ∴==2AE ∴= EF AB ⊥,·线○封○密○外90AFE∴∠=︒,AFE∴∆是等腰直角三角形,1EF∴,故选:C.【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.5、C【分析】222494baac baa⎧-=-⎪⎪⎨-⎪=-⎪⎩求解,,a b c的数量关系;将2x=代入①式中求解判断正误;②将45b ac a==-,代入,合并同类项判断正负即可;③中方程的根关于对称轴对称,1222+=-x x求解判断正误;④中求出二次函数与x轴的交点坐标,然后观察方程的解的取值即可判断正误.【详解】解:由顶点坐标知222494baac baa⎧-=-⎪⎪⎨-⎪=-⎪⎩解得45b ac a==-,∵0a>∴当2x=时,4248570a b c a a a a++=+-=>,故①正确,符合题意;554540a b c a a a a-+=--=-<,故②错误,不符合题意;方程的根为2y ax bx c=++的图象与直线1y=的交点的横坐标,即12x x,关于直线2x=-对称,故有1222+=-x x ,即124x x +=-,故③正确,符合题意; ()()()224551y ax bx c a x x a x x =++=+-=+-,与x 轴的交点坐标为()()5,01,0-,,方程()()511a x x +-=-的根为二次函数图象与直线1y =-的交点的横坐标,故可知1251x x -<<<,故④正确,符合题意; 故选C .【点睛】 本题考查了二次函数的图象与性质,二次函数与二次方程等知识.解题的关键与难点在于从图象中提取信息,并且熟练掌握二次函数与二次方程的关系. 6、C 【分析】 根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.【详解】解:A .当a =0时,ax 2+bx +c =0不是一元二次方程,故此选项不符合题意;B .2ax (x -1)=2ax 2+x -5整理后化为:-2ax -x +5=0,不是一元二次方程,故此选项不符合题意;C .(a 2+1)x 2-x +6=0,是关于x 的一元二次方程,故此选项符合题意;D .当a =-1时,(a +1)x 2-x +a =0不是一元二次方程,故此选项不符合题意. 故选:C . 【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax 2+bx +c =0(a ≠0). 7、C ·线○封○密○外【分析】根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.【详解】解:A 、两直线平行,同位角相等,故本选项说法是假命题;B 、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;C 、互余的两个角都是锐角,本选项说法是真命题;D 、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、B【分析】观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.【详解】∠α=6218061()20-⨯︒÷=︒故选:B .【点睛】本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.9、B【分析】第一次降价后价格为()2001a ⨯-,第二次降价后价格为()()20011a a ⨯-⨯-整理即可.【详解】解:第一次降价后价格为()2001a ⨯- 第二次降价后价格为()()()2200112001148a a a ⨯-⨯-=⨯-= 故选B .【点睛】本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.10、B 【分析】 根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128. 【详解】 解:∵第一次操作增加数字:-2,7, 第二次操作增加数字:5,2,-11,9, ∴第一次操作增加7-2=5, 第二次操作增加5+2-11+9=5, 即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128. 故选:B . 【点睛】 此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5. 二、填空题 1、22-+·线○封○密○外【分析】先证出点P 是线段AB 的黄金分割点,再由黄金分割点的定义得到AP AB ,把AB =4代入计算即可.【详解】解:∵点P 在线段AB 上,AP 2=AB •BP ,∴点P 是线段AB 的黄金分割点,AP >BP ,∴AP AB ×4=2,故答案为:2.【点睛】本题考查了黄金分割点,牢记黄金分割比是解题的关键.2、-16.5【分析】先把待求的式子变形,再整体代值即可得出结论.【详解】 解:221132a ab b ++ 221362a ab ab b =+-+ 2213(2)(22)a ab ab b =+--, ∵225a ab +=-,223ab b -=-,∴原式=3×(-5)-12×(-3)=-15-1.5=-16.5.故答案为:-16.5.【点睛】本题考查了整式的加减-化简求值,利用整体代入的思想是解此题的关键.3、4【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,∵3cm AB =,6cm BC ,5cm AC =,∴周长为:35614++=(cm ), ∵甲乙第一次相距2cm ,则甲乙没有相遇, 设甲行走的时间为t ,则乙行走的时间为(1)t -, ∴1.52(1)214t t +-+=, 解得:4t =; ∴甲出发4秒后,甲乙第一次相距2cm . 故答案为:4. 【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.4、23 【分析】 先根据已知新运算求出求出2*2=3,4*x =2+x ,根据(2*2)×(4*x )=8求出答案即可. 【详解】 ·线○封○密○外解:∵2*2=2222+⨯=3,4*x=422x+=2+x,又∵(2*2)×(4*x)=8∴(2*2)×(4*x)=3(x+2)=8,解得:x=23,故答案为:23.【点睛】本题考查了有理数的混合运算和解一元一次方程,能灵活运用新运算进行计算是解此题的关键.5、x1=12,x2=1【分析】移项后提公因式,然后解答.【详解】解:移项,得x(2x-1)-(2x-1)=0,提公因式,得,(2x-1)(x-1)=0,解得2x-1=0,x-1=0,x1=12,x2=1.故答案为:x1=12,x2=1.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.三、解答题1、(1)21233y x x =-+ (2【分析】(1)将点()0,3C 代入()()230y a x a =-≠即可求得a 的值,继而求得二次函数的解析式; (2)①设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x NF x =-=-, 联立直线解析式和抛物线解析式,根据根与系数的关系求得2112,x x x x +进而求得12y y ,证明AMD DNB ∽,根据相似比求得12y y ,进而根据两个表达式相等从而得出b 与k 的关系式,代入直线解析式,根据直线过定点与k 无关,进而求得定点坐标;②设P (3,3),由①可知l 经过点P ,则3DP =, 90DFP ∠=︒,进而根据90°圆周角所对的弦是直径,继而判断F 的轨迹是以DP 的中点G 为圆心,PD 为直径的圆,根据点与圆的位置即可求得CF 最小值. (1)解:∵抛物线()()230y a x a =-≠交y 轴于点()0,3C , ∴39a = 解得13a = ∴抛物线为()221132333y x x x =-=-+ (2) ①如图,过点,A B 分别作x 轴的垂线,垂足分别为,M N , ·线○封○密○外设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x ND x =-=-,则,A B 的坐标即为21233y kx b y x x =+⎧⎪⎨=-+⎪⎩的解 即23(2)930x k x b -++-=∴()()2236493936120k b k k b ∆=+--=++>, 121236,93x x k x x b +=+=-()()2212121212()y y kx b kx b k x x kb x x b ∴=++=+++()()229336k b kb k b =-+++2296k kb b =++()23k b =+ 90,ADB AM x ∠=︒⊥轴,BN x ⊥轴90AMD BND ∴∠=∠=︒ADM MAD ADM BDN ∴∠+∠=∠+∠MAD NDB ∴∠=∠AMD DNB ∴∽AM MD DN NB ∴= 112233y x x y -∴=- ()()121233y y x x ∴=--()121239x x x x =+-- ()()336(93)99333k b k b k b =+---=+=+∴()23k b +()33k b =+ ()()3330k b k b ∴++-= ∴30k b +=或330k b +-= 3b k ∴=-或33b k =- y kx b =+ 当3b k =-时,3(3)y kx k k x =-=- 则l 过定点()3,0 A 、B 不与点D 重合 则此情况舍去; 当33b k =-时, 33(3)3y kx b kx k k x =+=+-=-+ 即过定点()33, l ∴必过定点(3,3) ②如图,设P (3,3), ·线○封○密○外DF l ⊥,90DFP ∠=︒,3DP =F ∴在以DP 的中点G 为圆心,PD 为直径的圆上运动3(3,0),(3,3),(3,)2D P G ∴PG =1322DP =CG ∴==CF CG FG ∴≥-=CF ∴【点睛】本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键.2、(1)一次函数的关系式为y =-x +4,反比例函数的关系式为y =3x ;(2)四边形ABCO 的面积为112. 【分析】(1)将点A 坐标代入,确定反比例函数的关系式,进而确定点B 坐标,把点A 、B 的坐标代入求出一次函数的关系式;(2)将四边形ABCO 的面积转化为S △AOM +S 梯形AMCB ,利用坐标及面积的计算公式可求出结果.【详解】解:(1)A (1,3)代入y =m x得,m =3, ∴反比例函数的关系式为y =3x ; 把B (3,n )代入y =3x 得,n =1, ∴点B (3,1); 把点A (1,3),B (3,1)代入一次函数y =kx +b 得, 331k b k b +=⎧⎨+=⎩, 解得:14k b =-⎧⎨=⎩, ∴一次函数的关系式为:y =-x +4; 答:一次函数的关系式为y =-x +4,反比例函数的关系式为y =3x ; (2)如图,过点B 作BM ⊥OP ,垂足为M , 由题意可知,OM =1,AM =3,OC =3,MC =OC -OM =3-1=2,∴S 四边形ABCO =S △AOM +S 梯形AMCB , =12×1×3+12×(1+3)×2 ·线○封○密○外=112. 【点睛】本题考查了一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,将坐标与线段的长的相互转化是计算面积的关键.3、(1)见解析;(2)16<c ≤8+(3)见解析【分析】(1)可找到两个这样的点:①当点D 在BC 的延长线上时:以点C 为圆心,AC 长为半径,交BC 的延长线于点D ,连接AD ,即为所求;②当点D 在CB 的延长线上时:以点A 为圆心,AD 长为半径,交CB 的延长线于点1D ,连接1AD ,即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;(2)考虑最极端的情况:当C 与A 或B 重合时,则8CA CB AB +==,可得此时16c =,根据题意可得16c >,当点C 为优弧AB 的中点时,连接AC 并延长至D ,使得CD CB =,利用等腰三角形的性质及三角形外角性质可得点D 的运动轨迹为一个圆,点C 为优弧AB 的中点时,点C 即为ABD 外接圆的圆心,AC 长为半径,连接CO 并延长交AB 于点E ,连接AO ,根据垂径定理及勾股定理可得AC =AD 为直径时,c 最大即可得;(3)依照(1)(2)的做法,方法一:第1步:作AB 的垂直平分线交⊙O 于点P ;第2步:以点P 为圆心,PA 为半径作⊙P ;第3步:在MN 上截取AB 的长度;第4步:以A 为圆心,MN 减去AB 的长为半径画弧交⊙P 于点E ;第5步:连接AE 交⊙O 于点C ,即为所求;方法二:第1步:在圆上取点D ,连接AD 、BD ,延长AD 使得ED BD =;第2步:作ABE 的外接圆;第3步:在MN 上截取AB 的长度;第4步:以点A 为圆心,MN 减去AB 的长为半径画弧交△ABE 的外接圆于点F ;第5步:连接AF 交⊙O 于点C ,即为所求.【详解】(1)如图所示:①当点D 在BC 的延长线上时:以点C 为圆心,AC 长为半径,交BC 的延长线于点D ,连接AD ,即为所求;②当点D 在CB 的延长线上时:以点A 为圆心,AD 长为半径,交CB 的延长线于点1D ,连接1AD ,即为所求;证明:①∵AC CD =,∴CDA CAD ∠=∠, ∴12CDA BCA ∠=∠; 同理可证明112CD A BCA ∠=∠; (2)当C 与A 或B 重合时,则8CA CB AB +==, ∴16c CA CB AB =++=, ∵ABC , ∴16c >, ·线○封○密○外如图,当点C为优弧AB的中点时,连接AC并延长至D,使得CD CB=,∴12D ACB ∠=∠,∵同弧所对的圆周角相等,∴ACB∠为定角,∴D∠为定角,∴点D的运动轨迹为一个圆,当点C为优弧AB的中点时,点C即为ABD外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,由垂径定理可得:CE垂直平分AB,∴142AE AB==,在Rt AOE中,3OE==,∴538CE=+=,∴AC=∴AD 为直径时最长,∴AC BC AD +== ∴ABC 的周长最长. ∴c最长为8AB AC BC ++=+,∴c的取值范围为:168c <≤+ (3)方法一: 第1步:作AB 的垂直平分线交⊙O 于点P ; 第2步:以点P 为圆心,PA 为半径作⊙P ; 第3步:在MN 上截取AB 的长度; 第4步:以A 为圆心,MN 减去AB 的长为半径画弧交⊙P 于点E ; 第5步:连接AE 交⊙O 于点C ,即为所求; 方法二:第1步:在圆上取点D ,连接AD 、BD ,延长AD 使得ED BD =;·线○封○密○外第2步:作ABE 的外接圆;第3步:在MN 上截取AB 的长度;第4步:以点A 为圆心,MN 减去AB 的长为半径画弧交△ABE 的外接圆于点F ;第5步:连接AF 交⊙O 于点C ,即为所求.【点睛】题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键.4、6x =-【分析】先去分母,去括号,再移项、合并同类项,最后系数化为1即可得答案.【详解】去分母得:32(47)16x x =++,去括号得:381416x x =++,移项得:381416x x -=+,合并同类项得:530x -=,系数化1得:6x=-.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.5、3 4 -【分析】根据二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值代入进行实数的运算即可【详解】()2120204cos452⎛⎫---︒⎪⎝⎭1144=--114=-34=-【点睛】本题考查了二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值,正确的计算是解题的关键.·线○封○密○外。

山东省济南市中考数学试卷

山东省济南市中考数学试卷

A .17.5°B .35°C .55°D .70° 6.(4 分)下列运算正确的是( )A .a 2+2a =3a 3 2B .(﹣2a 3)2=4a 5 .(a +b )2=a 2+b 2 地点票价 历史博物馆10 元/人 民俗展览馆 20 元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?23.(8 分)如图 AB 是⊙O 的直径,P A 与⊙O 相切于点 A ,BP与⊙O 相交于点 D ,C 为⊙O 上的一点,分别连接 CB 、CD ,∠BCD =60°.(1)求∠ABD 的度数;(2)若 AB =6,求 PD 的长度.24.(10 分)某校开设了“3D ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图 1、图 2 两幅均不完整的统计图表. 请您根据图表中提供的信息回答下列问题: (1)统计表中的 a = ,b = ; (2)“D ”对应扇形的圆心角为 度; (3)根据调查结果,请您估计该校 2000 名学生中最喜欢“数学史”校本课程的人数; (4)小明和小亮参加校本课程学习,若每人从“A ”、“B ”、“C ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率..(10 分)如图,直线 y =ax +2 与 x 轴交于点 A (1,0),与 y 轴交于点 B (0,b ).将线段 AB 先向右平移 1 个单位长度、再向上平移 t (t >0)个单位长度,得到对应线段 CD ,反比例函数 (x >0)的图象恰好经过 C 、D 两点,连接 AC 、BD .(1)求 a 和 b 的值; 校本课程 频数频率A 36 0.45B 0.25C 16 bD 8合计 a 1(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数(x>0)的图象上的一个点,若△CMN 是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.=∠ACB,点D 为射线BC 上任意一点,在射线CM 上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D 落在线段BC 的延长线上时,直接写出∠ADE 的度数;(2)如图2,当点D 落在线段BC(不含边界)上时,AC 与DE 交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF 的最大值.27.(12 分)如图1,抛物线y=ax2+bx+4 过A(2,0)、B(4,0)两点,交y 轴于点C,过点C 作x 轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P 是该抛物线上一动点,设点P 的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB 的正切值;(2)如图2,若∠ACP=45°,求m 的值;(3)如图3,过点A、P 的直线与y 轴于点N,过点P 作PM⊥CD,垂足为M,直线MN 与x 轴交于点Q,试判断四边形ADMQ 的形状,并说明理由.。

济南新中考数学试卷真题

济南新中考数学试卷真题

济南新中考数学试卷真题一、选择题1. 若一元二次方程x^2 + px + q = 0(其中p、q为常数)的两个根相等,则有A. p^2 = 4qB. p^2 = 2qC. p^2 = qD. p^2 = -q2. 已知三角形ABC中,AB = 5,AC = 12,BC = 13,则∠B的大小为A. 30°B. 45°C. 60°D. 90°3. 若a:b = 2:5,b:c = 3:7,求a:c的值为A. 6:35B. 4:15C. 16:35D. 8:214. 甲、乙两地相距320km。

某列直线行驶的汽车要从甲地到乙地,首先以每小时60km的速度行驶了4小时,然后以每小时80km的速度行驶余下的路程。

则该车到达乙地需要的时间是A. 5小时B. 6小时C. 7小时D. 8小时5. 在数列1,3,6,10,15,... 中,第50项是多少?A. 1200B. 1275C. 1325D. 1375二、填空题6. 已知纵坐标为8的点在直线y = 5x - 2上,求该直线的斜率为______。

7. 若两条直线的斜率分别为1/3和6,这两条直线是否平行?(是/否)8. 已知直线2x - 3y + 6 = 0与直线3x + ky - 2 = 0平行,求实数k的值为______。

三、解答题9. 求解方程组:{ 2x + 3y = 7{ 3x - 2y = 1310. 如图所示,三角形ABC中,∠B = 90°,BD ⊥ AC于点D,DE⊥ BC于点E。

已知AB = 8cm,BC = 12cm,DE = 6cm,求AC的长度。

(插入图片)11. 将20g/L的盐水倒入一个容器中,如果每天蒸发2%的水分,经过5天后,容器内剩余盐的浓度为多少?12. 某校足球队A队共有40名队员,B队共有35名队员。

比赛时,A队每5分钟换下4名队员,B队每6分钟换下5名队员。

打完60分钟比赛后,两队各换下了多少名队员?四、应用题13. 甲、乙两辆汽车同时从相距800km的地方出发相向而行,其中甲车的速度为60km/h,乙车的速度为80km/h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年山东省济南市中考试题
数 学
一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(2014山东济南,1,3分)4的算术平方根是( ) A. 2 B. -2 C. ±2 D. 16 2. (2014山东济南,2,3分)如图,点O 在直线AB 上,若∠1=40°,则∠2的度数是(
) A. 50° B. 60° C. 140° D. 150°
3. (2014山东济南,3,3分)下列运算中,结果是a 5的是( )
A. a 2·a 3
B. a 10÷a 2
C. (a 2)3
D. (-a )5
4. (2014山东济南,4,3分)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的的发射总质量约3700千克,3700用科学记数法表示为( )
A. 3.7×102
B. 3.7×103
C. 37×102
D. 0.37×104
5. (2014山东济南,5,3分)下列图案中既是轴对称图形又是中心对称图形( )
6. (2014山东济南,6,3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( ) A. 主视图的面积为5 B. 左视图的面积为3 C. 俯视图的面积为3 D. 三种视图的面积都是4
7. (2014山东济南,7,3分)化简211
m m m m
--÷的结果是( ) A. m
B.
1m
C. m -1
D. 1
1m -
8. (2014山东济南,8,3分)下列命题中,真命题是( ) A. 两对角线相等的四边形是矩形 B. 两对角线互相平分的四边形是平行四边形 C. 两对角线互相垂直的四边形是菱形 D. 两对角线相等的四边形是等腰梯形
9. (2014山东济南,9,3分)若一次函数(3)5y m x =-+的函数值y 随x 的增大而增大,则( )
A. m >0
B. m <0
C. m >3
D. m <3
10. (2014山东济南,10,3分)如图,在□ABCD 中,延长AB 到点E ,使BE =AB ,连接DE 交BC 于点F ,则下列结论不一定成立的是( ) A. ∠E =∠CDF B. EF =DF C. AD =2BF D. BE =2CF
11. (2014山东济南,11,3分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是( ) A
B
C
D
F
E
10题图
6题图
正面 A O B
1
2
2题图
12. (2014山东济南,12,3分)
如图,直线2y =+与x 轴、y 轴分别交于A 、B 两点,把△AOB 沿直线AB 翻折后得到△AO ′B ,则点O ′的坐标是( )
3)
C. (2

D. (4)
13. (2014山东济南,13,3分)如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( )
A. 2.
B. C.
3
2
D.
14. (2014山东济南,14,3分)现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1.例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2).若S 0可以为任意序列,则下列的序列可作为S 1的是( )
A. (1,2,1,2,2)
B. (2,2,2,3,3)
C. (1,1,2,2,3)
D. (1,2,1,1,2)
15. (2014山东济南,15,3分)二次函数2y x bx =+的图象如图,对称轴为直线x =1.若关于x 的一元二次方程20x bx t +-=(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是( )(自己搜搜这个题的图) A . t ≥-1 B . -1≤t <3 C . -1≤t <8 D . 3<t <8 二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.) 16. (2014山东济南,16,3分)|-7-3|=__________.
17. (2014山东济南,17,3分)分解因式:221x x ++=__________.
18. (2014山东济南,18,3分)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个
红球且摸到红球的概率为1
5
,那么口袋中球的总个数为__________.
19. (2014山东济南,19,3分)若代数式12x -和3
21
x +的值相等,则x =__________. 20. (2014山东济南,20,3分)如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A ′B ′C ′,当两个三角形重叠部分的面积为32时,它移动的距离AA ′等于__________.
21. (2014山东济南,21,3分)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =ADB =90°,反比例函数k
y =在第A
B
C
D ′
20题图
13题图
21题图
三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.) 22. (2014山东济南,22,7分) (1)化简:(3)(3)(4)a a a a +-+-
(2)解不等式组:31
442x x x -<⎧⎨-+⎩

23. (2014山东济南,23,7分)
(1)如图1,四边形ABCD 是矩形,点E 是边AD 的中点. 求证:EB =EC .
(2)如图,AB 与⊙O 相切于点C ,∠A =∠B ,⊙O 的半径为6,AB =16. 求OA 的长.
24. (2014山东济南,24,8分)2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?
23题图2
A
B
C
D
E
23题图1
25. (2014山东济南,25,8分)在济南市开展“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:
(1)统计表中的m =_______,x =_______,y =_______. (2)被调查同学劳动时间的中位数是_______时; (3)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间.
26. (2014山东济南,26,9分)如图1,反比例函数k
y x
(x >0)的图象经过点A (3,1),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D . (1)求k 的值;
(2)求tan ∠DAC 的值及直线AC 的解析式;
(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.
劳动时间 (时) 频数
(人数)
频率
0.5 12 0.12
1 30 0.3
1.5 x 0.4
2 18 y
合计 m 1 O A
B
D C
y
x
l
M N
O A
B D C
y
x
26题图1
27. (2014山东济南,27,9分)如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1、l2、l4、l3上,EG过点D且垂直于l1于点E,分别交l2、l4于点F、G,EF=DG=1,DF=2.
(1)AE=__________,正方形ABCD的边长=______________;
(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使点B′、C′分别在直线l2、l4上.
①写出∠B′AD′与α的数量关系并给出证明;
②若α=30°,求菱形AB′C′D′的边长.
A
B
C
D
E
F
G
27题图1
A
B′
C′
D′
E′
27题图2
28. (2014山东济南,28,9分)如图1,抛物线2
316
y x =-
平移后过点A (8,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .
(1)求平移后抛物线的解析式并直接写出阴影部分的面积S 阴影=;
(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,∠PMN 为直角,边MN 与AP 相交于点N .设OM =t ,试探究;
①t 为何值时△MAN 为等腰三角形;
②t 为何值时线段PN 的长度最小,最小长度是多少.
y x
O
A
B
C
M P
N
28题图2
x
y
O
C D
B
28题图1 A。

相关文档
最新文档