角平分线-课件
合集下载
角平分线的性质教学课件
![角平分线的性质教学课件](https://img.taocdn.com/s3/m/efd6bb6adc36a32d7375a417866fb84ae45cc3e5.png)
三角形中的角平分线与相对边 成比例,这是三角形中一个重 要的性质。
利用这个性质,可以解决与三 角形相关的问题,例如求边长 、角度等。
此外,三角形中的角平分线还 是三角形内切圆和外接圆的半 径的角平分线。
在日常生活中的应用
角平分线在日常生活中也有广泛的应用,例如在建筑设计、机械制造等领域。
在建筑设计方面,可以利用角平分线来设计建筑物的外观和结构,使其更加美观和 稳固。
THANK YOU
角平分线的性质教学课件
• 角平分线的定义 • 角平分线的性质定理 • 角平分线的应用 • 角平分线的相关定理 • 习题与解答
01
角平分线的定义
什么是角平分线
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分的 一条射线。
02
角平分线将相对边分为两等份, 形成的两个小角相等。
角平分线的作法
通过角的顶点,作一条射线,使得该 射线和角的两边相交形成的两个小角 相等。
使用量角器或三角板等工具辅助作图 。
角平分线的性质
角平分线上的点到角的两边距离 相等。
角平分线将相对边分为两等份。
角平分线上的任意一点到角的两 边的距离之和等于从角的顶点到
该点的距离。
02
角平分线的性质定理
定理内容
01
02
答案: $AB = AC$
解析:由于$AD$是$angle BAC$的角平分线,且$BD = CD$,根据等 腰三角形的性质,我们可以得出$triangle ABD cong triangle ACD$( SAS),所以$AB = AC$。
习题答案与解析
01
答案与解析3:
02
答案: AC是$angle BCD$的角平分线。
【精品课件二】1.4角平分线
![【精品课件二】1.4角平分线](https://img.taocdn.com/s3/m/2c04c8be534de518964bcf84b9d528ea80c72f6a.png)
1.4 角平分线(2)
用尺规作角的平分线.
已知:∠AOB,如图. 求作:射线OC,使∠AOC=∠BOC. 作法:
1.在OAT和OB上截取OD,OE,使OD=OE.
2.分别以点D和E为圆心,以大于DE/2长为半径作弧, 两弧在 ∠AOB内交于点C.
O 3.作射线OC.
则射线OC就是∠AOB的平分线.
P C
的点,在这个角的平分线上).
E
B
老师提示:这个结论又是经常用来证明点在 直线上(或直线经过某一点)的根据之一.
从这个结果出发,你还能联想到什么?
剪一个三角形纸片通过折叠 找出每个角的平分线.
视察这三条角平分线, 你发现了什么?
结论:三角形三个角的平 分线相交于一点. 你想证明这个命题吗?
老师期望: 你能写出规范的证明过程.
到三边的距离相等. 如图,在△ABC中,
∵BM,CN,AH分别是△ABC的三
A
条角平分线,且 PD⊥AB,PE⊥BC,PF⊥AC(已知),
ND M PF
∴BM,CN,AH相交于一点P,且 PD=PE=PF(三角形的三条角平分 B 线相交于一点,并且这一点到三边
EC
的距离相等).
老师提示:
这又是一个证明三条直线交于一点的根
据之一这个交点叫做三角形的内心.
如图,在△ABC中,已知
A
AC=BC,∠C=900,AD是△ABC
的角平分线,DE⊥AB,垂足为E.
(1)如果CD=4cm,AC的长;
E
(2)求证:AB=AC+CD.
C
B
D
老师期望:
你能正确地解答并规范地写出其过程.
1.如图,已知△ABC,作△ABC一个内角和与它不相邻 的两个外角的平分线,看它们是否交于一点?这样的点 有几个?如果以这个点为圆心,这一点到三角形一边的 距离为半径作圆,你能作出这个图形吗?
用尺规作角的平分线.
已知:∠AOB,如图. 求作:射线OC,使∠AOC=∠BOC. 作法:
1.在OAT和OB上截取OD,OE,使OD=OE.
2.分别以点D和E为圆心,以大于DE/2长为半径作弧, 两弧在 ∠AOB内交于点C.
O 3.作射线OC.
则射线OC就是∠AOB的平分线.
P C
的点,在这个角的平分线上).
E
B
老师提示:这个结论又是经常用来证明点在 直线上(或直线经过某一点)的根据之一.
从这个结果出发,你还能联想到什么?
剪一个三角形纸片通过折叠 找出每个角的平分线.
视察这三条角平分线, 你发现了什么?
结论:三角形三个角的平 分线相交于一点. 你想证明这个命题吗?
老师期望: 你能写出规范的证明过程.
到三边的距离相等. 如图,在△ABC中,
∵BM,CN,AH分别是△ABC的三
A
条角平分线,且 PD⊥AB,PE⊥BC,PF⊥AC(已知),
ND M PF
∴BM,CN,AH相交于一点P,且 PD=PE=PF(三角形的三条角平分 B 线相交于一点,并且这一点到三边
EC
的距离相等).
老师提示:
这又是一个证明三条直线交于一点的根
据之一这个交点叫做三角形的内心.
如图,在△ABC中,已知
A
AC=BC,∠C=900,AD是△ABC
的角平分线,DE⊥AB,垂足为E.
(1)如果CD=4cm,AC的长;
E
(2)求证:AB=AC+CD.
C
B
D
老师期望:
你能正确地解答并规范地写出其过程.
1.如图,已知△ABC,作△ABC一个内角和与它不相邻 的两个外角的平分线,看它们是否交于一点?这样的点 有几个?如果以这个点为圆心,这一点到三角形一边的 距离为半径作圆,你能作出这个图形吗?
1.4角平分线课件
![1.4角平分线课件](https://img.taocdn.com/s3/m/07cc19112a160b4e767f5acfa1c7aa00b52a9da1.png)
(1)如图,∵AD平分∠BAC,PE⊥AB,PF⊥AC
∴PE = PF(角平分线上的点到这个角的
两边距离相等) (对)
(2)如图,∵ PE = PF
∴ AD平分∠BAC (到角两边距离相等的
点在 这个角的平分线上)
(错)
(3)如图,∵ 点P在∠BAC 的平分线上 ∴ PE = PF(角平分线上的点到 这个角的两边距离相等)(错)
第1课时
角平分线
复习旧知
1、什么叫角平分线? 如果一条射线把一个角分成两个相等的角, 那么这条射线叫角的平分线。
2、你还记得角平分线上的点有什么性质吗?你是怎 样得到的?
角平分线上的点到角的两边的距离相等
条件:一个点在一个角的平分线上
结论:它到角的两边的距离相等
你能证明这一结论吗?
已知:如图OC是∠AOB的平分线,点P在
的一半)
随堂练习 1
如图,AD,AE分别是△ABC中∠A的内角平分线 外角平分线,它们有什么关系?
C E
D
B
老师期望:
你能说出结论并能证明它.
A
F
课堂小结
1.角平分线的性质定理: 在角平分线上的点到角的两边的距离相等
2.角平分线的判定定理: 在角的内部,到一个角的两边的距离相等的点,在这个 角平分线上。
3.性质定理和判定定理的关系
点在角平分线上
点到角两边的距离相等
4.角平分线的性质定理是证明角相等、线段相等 的新途径.角平分线的判定定理是证明点在直线 上(或直线经过某一点)的根据之一.
布置作业
6:作业布置 课堂作业:习题1.9第1,2,3,4题.
家庭作课业堂:学作习业之:友习p1题5-116.9第1,2,3,4题 . 家庭作业:学习之友p15-16
角的平分线课件(共16张PPT)
![角的平分线课件(共16张PPT)](https://img.taocdn.com/s3/m/ac8ee79b6037ee06eff9aef8941ea76e58fa4a8f.png)
6.3.2.2 角的平分线
思考 如何能得到角平分线呢? 量角器度量、折叠.
在一张半透明的纸上通过折纸作角的平分线.
6.3.2.2 角的平分线
例1 把一个周角 7 等分,每一份是多少度的角 (精确到分)?
解:360°÷7 = 51° + 3°÷7 = 51° + 180'÷7 ≈ 51°26'.
精确到分,要先取到 小数点后 1 位,然后 再四舍五入.
6.3.2.2 角的平分线
2.如图,O 是直线AB 上一点,OC 是∠AOB 的平分线,若∠COD = 31°28',求∠AOD 的度数.
解:∵OC 是∠AOB 的平分线,∠AOB是平角. C
∴∠AOC = ∠AOB = × 180°=90°.
∴∠AOD = 12∠AOB - ∠COD.
D
=90°- 31°28' =89°60' - 31°28'
2
1
O
A
6.3.2.2 角的平分线
新知学习
思考
如图,如果∠1 =∠2,那么射线 OB 把∠AOC分成两个相等的角.你可
以写出∠AOC 和∠1 、∠2的关系式吗?
C B
∠AOC = 2∠1 = 2∠2, ∠1 = ∠2 = 1 ∠AOC
2
2
1
O
A
6.3.2.2 角的平分线
一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线, 叫作这个角的平分线.
注意:度、分、秒是60进制的,要把剩余的度数化成分.
6.3.2.2 角的平分线
随堂练习
1.如图,把一个蛋糕等分成8份,每份中的角是多少度?如果 要使每份中的角是15°,这个蛋糕应等分成多少份?
角平分线课件
![角平分线课件](https://img.taocdn.com/s3/m/2901e973ef06eff9aef8941ea76e58fafbb0455a.png)
角平分线的性质定理的证明
第四步,根据全等三角形的性质,我们知道全等 三角形的对应边相等,所以$AD = AD$,$DM = DN$,$\angle MAD = \angle NAD$。
第六步,根据全等三角形的对应边相等,我们知 道$AM = AN$。
第五步,根据三角形的全等判定定理,我们知道 如果两个三角形的三边分别相等,那么这两个三 角形全等。因此,$\triangle MAD \cong \triangle NAD$。
第七步,根据角平分线的性质定理的证明结论, 我们知道角平分线上的点到角的两边的距离相等 ,所以$DM = DN$。
05
角平分线的应用举例
利用角平分线求角度的大小
角平分线定理
角平分线将一个角分为两个相等 的角,即$\angle A = \angle B$ 。
实际应用
在几何图形中,可以利用角平分 线求角度的大小,例如在三角形 中,通过作高或利用已知角度求 解未知角度。
第二步,根据角平分线的性质定理,我们知道角平分线上的点到角的两边的距离相等,所以 $DM = DN$。
第三步,根据直角三角形的全等判定定理,我们知道如果两个直角三角形的一条直角边和斜 边分别相等,那么这两个直角三角形全等。因此,我们可以证明$\triangle MAD \cong \triangle NAD$。
角平分线与平行四边形
在平行四边形中,对角线互相平分, 因此可以利用角的平分线将平行四边 形划分为两个全等的三角形,从而简 化求解平行四边形的问题。
角平分线与梯形
在梯形中,可以利用角的平分线将梯 形划分为一个平行四边形和一个三角 形,从而利用已知的平行四边形和三 角形性质求解梯形的问题。
03
角平分线的作法
三角形的角平分线和中线-PPT课件
![三角形的角平分线和中线-PPT课件](https://img.taocdn.com/s3/m/e025914e7275a417866fb84ae45c3b3567ecdd27.png)
OBC OCB 1 (1800 800 ) 500 ,BOC 1300
2
3
任意画一个三角形,用刻度尺画BC的中 A 点D,连接AD。
在三角形中,连结一个顶 点与它对边中点的线段, 叫做三角形的中线。
B
D
C
书写形式:∵AD是△ABC中的BC边上的中线。 ∴BD=CD
特别提醒:(1)三角形的中线是一条线段;(2)三角
形的中线的一端平分这条边。
4
Байду номын сангаас
操作归纳:
任意画一个三角形, 然后利用刻度尺画 出这个三角形的三 条中线,你有什么 发现?
三角形的三条中线相交于一点,交点在三角形内部。
5
巩固提升:
A
1.如图,AF是ΔABC的角平分线,AE是BC边
上的中线,选择“>”“<”或“=”号填空:
(1)BE_=__EC
(2)∠CAF_=__
点, CF C,D如果 ACB 7,0那么下列说法中错误的
是( B) A.CF 平分 ACE B.B、 55 C.1 4 90
D.3 4 55
5.如图,E、 F、G 分别是 AB 、BC AC 边上的中点,则
S SABC __4___ SBEF ___4_____ FGC
9
大家有疑问的,可以询问和交流
形,这两个小三角形的周长的差是2cm。你能求出AB的长吗?
解 ABD的周长 AB AD BD
A
ACD的周长 AC AD DC
AD是中线 BD DC,两三角形
的周长差为: AB AC 2, AB 7
B
C D
7
课堂巩固:
1. 如图,在 ABC 中,若 BD平分 ABC
则下列说法中不正确的是( D )
角平分线的性质教学课件
![角平分线的性质教学课件](https://img.taocdn.com/s3/m/fa12307582c4bb4cf7ec4afe04a1b0717ed5b352.png)
解析
首先利用角平分线的性质求出$angle OCP = 65^circ$,然后根据直角三角形的性质求出 $angle CPO = 90^circ$,最后利用角的和的性质求出$angle OCD = 155^circ$。
= frac{1}{2} angle AOB = 30^circ$;当点$C$在$angle AOB$外部
时,$angle BOC = angle AOB - angle AOC = 150^circ$。
进阶练习题
01
题目:已知$angle AOB = 70^circ$,点$P$是$angle AOB$的角平分线上一 点,且$PC perp OA$,$PD perp OB$,垂足分别为点$C,D$,则$angle CPD = ($ )
详细描述
首先,以角的顶点为圆心,任意长为半径画一个圆。然后,将圆规的针脚放在圆周上,取半径长度将圆周分为两 个等分。接着,连接等分点和角的顶点,这条直线即为角的平分线。
利用角的和差作角平分线
总结词
通过角的和差性质,可以将一个角分为两个相等的角,从而作出角的平分线。
详细描述
首先,在角的内部作一条射线,使其与角的两边相交于两点。然后,利用角的和差性质,将这两个交 点与角的顶点连接起来,形成两个相等的角。最后,连接这两个相等角的顶点,这条直线即为角的平 分线。
02
答案:B
03
解析:由于点$P$是$angle AOB$的角平分线上一点,根据角平分线的性质, 我们有$angle OPC = angle OPD = frac{1}{2} angle AOB = 35^circ$。再根 据直角的性质,$angle CPD = 180^circ - angle OPC - angle OPD = 110^circ$。
首先利用角平分线的性质求出$angle OCP = 65^circ$,然后根据直角三角形的性质求出 $angle CPO = 90^circ$,最后利用角的和的性质求出$angle OCD = 155^circ$。
= frac{1}{2} angle AOB = 30^circ$;当点$C$在$angle AOB$外部
时,$angle BOC = angle AOB - angle AOC = 150^circ$。
进阶练习题
01
题目:已知$angle AOB = 70^circ$,点$P$是$angle AOB$的角平分线上一 点,且$PC perp OA$,$PD perp OB$,垂足分别为点$C,D$,则$angle CPD = ($ )
详细描述
首先,以角的顶点为圆心,任意长为半径画一个圆。然后,将圆规的针脚放在圆周上,取半径长度将圆周分为两 个等分。接着,连接等分点和角的顶点,这条直线即为角的平分线。
利用角的和差作角平分线
总结词
通过角的和差性质,可以将一个角分为两个相等的角,从而作出角的平分线。
详细描述
首先,在角的内部作一条射线,使其与角的两边相交于两点。然后,利用角的和差性质,将这两个交 点与角的顶点连接起来,形成两个相等的角。最后,连接这两个相等角的顶点,这条直线即为角的平 分线。
02
答案:B
03
解析:由于点$P$是$angle AOB$的角平分线上一点,根据角平分线的性质, 我们有$angle OPC = angle OPD = frac{1}{2} angle AOB = 35^circ$。再根 据直角的性质,$angle CPD = 180^circ - angle OPC - angle OPD = 110^circ$。
角平分线判定课件
![角平分线判定课件](https://img.taocdn.com/s3/m/a08274b2aff8941ea76e58fafab069dc5022479e.png)
详细描述
在三角形中,角平分线通常与中线重合。这意味着,如果一 个线段同时是角平分线和中线,那么它将对角进行平分,并 将相对的顶点连接。这种性质在等腰三角形和直角三角形中 尤为明显。
角平分线与高的关联
总结词
角平分线与高在几何图形中也有关联,它们在特定条件下可以相互影响。
详细描述
在三角形中,角平分线和高经常交汇于一点,即三角形的内心。这一点也是三角形的三个内角的角平分线的交点 。高和角平分线的这种关系在等腰三角形和直角三角形中尤为显著。
03
角平分线的应用
在几何图形中的应用
角平分线与平行线
在几何图形中,角平分线常常与平行 线一起出现。利用角平分线可以证明 两条线平行,或者通过平行线来找到 角平分线。
角平分线与等腰三角形
角平分线与等腰三角形有着密切的联 系。在等腰三角形中,底边的两个角 相等,而角平分线可以将这个等腰三 角形分为两个相等的部分。
05
角平分线的习题与解析
基础习题
基础习题1
已知三角形ABC中,AD是角BAC的平分线,DE垂直于AB于E,DF垂直于AC于F, BD=CD,求证:BE=CF。
基础习题2
在三角形ABC中,AD是角BAC的平分线,M是BC的中点,过点D作DM垂直于BC交AB 于P,交AC于Q,求证:BP=CQ。
进阶习题
判定定理的表述
• 角平分线的判定定理:如果一个角的平分线与另 一个角的对边平行,那么这个角被判定为另一个 角的平分角。
判定定理的证明
• 证明过程:首先,根据平行线的性质,我们知道平行线之间的 同位角相等。然后,由于角的平分线将角平分,所以与平分线 相交的两边对应的同位角相等。结合这两个性质,我们可以证 明出角平分线的判定定理。
角平分线的性质 课件
![角平分线的性质 课件](https://img.taocdn.com/s3/m/3981d7fe64ce0508763231126edb6f1afe007113.png)
05
角平分线的习题与解析
基础习题
1 3
基础习题1
已知角平分线AD,点E在AD上,若∠BAC=50°, ∠CAD=25°,求∠BCA的度数。
基础习题2
2
在△ABC中,AD是∠BAC的平分线,若∠B=40°,∠C=70°,
求∠BAD的度数。
基础习题3
在△ABC中,AD是∠BAC的平分线,若∠BAC=120°, ∠C=30°,求∠BAD的度数。
03
角平分线将一个多边形分成面积相等的两部分。
02
角平分线的性质证明
性质1的证明
总结词
角平分线将相对边分成两段相等 的线段
详细描述
根据角平分线的定义,我们知道 角平分线将一个角分为两个相等 的子角。因此,相对边被角平分 线分成两段相等的线段。
性质2的证明
总结词
角平分线上的点到角的两边距离相等
详细描述
总结词
基于角平分线定理,我们可以推导出 一些重要的推论,这些推论在解决几 何问题时非常有用。
详细描述
推论一,若AD为角BAC的角平分线,则有 AB/BD = AC/CD。这个推论可以直接从角平 分线定理得出。推论二,若AD为角BAC的角平 分线,且在点D上作线段DE平行于AB交AC于 点E,则有AE =EB。这个推论可以用于证明线 段的等分。
角平分线定理的应用
要点一
总结词
角平分线定理在实际问题中有着广泛的应用,它可以用于 解决各种与角度和线段比例相关的几何问题。
要点二
详细描述
应用一,在建筑设计时,可以利用角平分线定理来确定建 筑物的位置和角度,以确保建筑物的美观和功能性。应用 二,在地图绘制时,可以利用角平分线定理来确定道路、 河流等地理要素的走向和分布,以保证地图的准确性和实 用性。应用三,在土地测量时,可以利用角平分线定理来 确定土地的边界和面积,以确保土地测量的准确性和公正性。
《角平分线的性质》课件
![《角平分线的性质》课件](https://img.taocdn.com/s3/m/5f7cf804f6ec4afe04a1b0717fd5360cbb1a8d50.png)
在解决பைடு நூலகம்际问题中的应用
实际应用
在建筑设计、工程绘图等领域, 角平分线性质可以帮助确定物体 的位置和方向,从而保证设计的 准确性和施工的顺利进行。
案例分析
在设计桥梁、建筑或管道时,可 以利用角平分线性质来确定结构 的支撑点或固定点,以确保结构 的稳定性和安全性。
在数学竞赛中的应用
竞赛题特点
数学竞赛中常常出现与角平分线性质相关的题目,这类题目 通常涉及多个知识点,需要学生具备较高的逻辑思维和推理 能力。
角平分线的表示方法
在几何图形中,通常用符号“∟”表 示角平分线。
例如,若射线OA是∠AOB的角平分线 ,则标记为“OA∟∠AOB”。
角平分线的性质
角平分线上的点到这个角的两边的距 离相等。
角平分线定理:对于三角形中的角平分线 ,它所对的边与该角的对边之比等于其他 两边之比。即,在△ABC中,若AD是 ∠BAC的角平分线,则BD/DC=AB/AC。
在其他领域的应用
农业灌溉
在农田灌溉中,可以利用 角平分线性质优化灌溉管 道和水渠的布局,提高灌 溉效率。
航空导航
在航空导航中,可以利用 角平分线性质确定航向和 飞行高度,确保航行安全 。
军事战略部署
在军事战略部署中,可以 利用角平分线性质优化部 队的驻扎和部署,提高作 战效率。
THANKS
感谢观看
在道路规划中的应用
01
02
03
道路交叉口设计
利用角平分线性质,合理 规划道路交叉口的位置和 形状,提高交通流畅度和 安全性。
道路指示牌设置
根据角平分线性质,合理 设置道路指示牌的位置, 确保驾驶员能够清晰地获 取指示信息。
道路排水设计
在道路规划中,可以利用 角平分线性质优化排水系 统的布局,提高道路的排 水性能。
角平分线的性质 课件
![角平分线的性质 课件](https://img.taocdn.com/s3/m/e1eb3d68492fb4daa58da0116c175f0e7cd119ad.png)
角的平分线与等边三角形的关系
角的平分线与等边三角形的联系
在等边三角形中,角的平分线也是中垂线,因此,角的 平分线与等边三角形也有密切的联系。
角的平分线与等边三角形的应用
利用这一性质,可以解决一些几何问题,如证明等边三 角形、求角度等。
THANKS
谢谢
角平分线的表示方法
在几何图形中,通常用虚线表示角平 分线,并在角平分线上标注相应的字 母。
例如,若角平分线为AD,则可以表示 为AD平分∠BAC。
角平分线的性质定理
角平分线上的点到该角的两边的距离相等。 这一性质是角平分线的基本性质,也是证明其他角平分线性质的基础。
02
CHAPTER
角平分线的性质
04
CHAPTER
角平分线的作法
通过角的顶点作角的平分线
总结词
角的顶点是角的两条边的交汇点,通过角的顶点作角的平分线的方法是常用的方法之一 。
详细描述
首先,确定角的顶点,然后使用直尺或圆规等工具,从角的顶点出发,作一条与角的一 边平行的线段,线段的长度可以根据需要自行确定。接着,将线段的中点与角的另一边
角的平分线与平行线相交形成的交点,到角的两边的距离 相等。
利用这一性质,可以解决一些几何问题,如求距离、证明 角相等等。
角的平分线与等腰三角形的关系
角的平分线与等腰三角形 的联系
角的平分线是等腰三角形底边上的中垂线, 因此,角的平分线与等腰三角形有密切的联 系。
角的平分线与等腰三角形 的应用
利用这一性质,可以解决一些几何问题,如 证明等腰三角形、求角度等。
角平分线上的点到这个角的两边的距 离相等。
利用角平分线定理,可以证明线段的 比例关系。
证明三角形全等
角平分线的性质和判定(共张)课件
![角平分线的性质和判定(共张)课件](https://img.taocdn.com/s3/m/d8401465492fb4daa58da0116c175f0e7cd11931.png)
作法应用
01
在几何证明题中,常常需要用到 角平分线的作法来构造辅助线, 从而证明某些结论。
02
作法应用可以帮助我们更好地理 解几何图形的性质和判定定理。
作法证明
第一步
根据等腰三角形的性质, 等腰三角形的两个底角相 等。
第二步
由于所作的线段是等腰三 角形的底边,所以这条线 段将角平分。
第三步
证明所作的线段与角的两 边垂直,从而证明这条线 段是角的平分线。
证明方法二
利用相似三角形的性质,通过相似三角形的边长比例关系证明角平分线的性质 。
02
角平分线的判定
判定定理
判定定理
角的平分线上的点到这个角的两边的距离相等。
定理证明
在角的平分线上任取一点,过这点作角的两边的垂线,垂足分别为A、B。根据角 平分线的定义,角平分线上的点到角的两边距离相等,即$PA=PB$。因此,角 平分线上的点满足到角的两边距离相等的性质。
03
角平分线定理的逆定理
逆定理内容
逆定理
如果一条射线将一个角分成两个相等的部分,那么这条射线 就是这个角的角平分线。
证明过程
首先,我们知道角平分线上的点到这个角的两边的距离相等 。反之,如果一条射线上的点到这个角的两边的距离相等, 那么这条射线将这个角平分。因此,我们可以得出上述逆定 理。
逆定理应用
通过角平分线的定义和性质,结合三角形全 等的判定定理,证明推论1的正确性。
证明2
通过反证法和角的平分线的性质,证明推论 2的正确性。
感谢您的观看
THANKS
角平分线的性质和判定(共 张)课件
目录
• 角平分线的性质 • 角平分线的判定 • 角平分线定理的逆定理 • 角平分线的作法 • 角平分线定理的推论
角平分线课件PPT
![角平分线课件PPT](https://img.taocdn.com/s3/m/cef8cca20875f46527d3240c844769eae009a3ed.png)
生活中有趣角平分线现象
建筑设计中的应用
在建筑设计中,角平分线常被用来确保建筑物的对称性和平衡感。例如,古希腊的帕特 农神庙就运用了角平分线的原理来设计其立面和柱子。
自然界的角平分线
在自然界中,角平分线的现象也很常见。例如,当阳光照射在树叶上时,树叶的脉络就 会呈现出角平分线的形状,这是因为树叶在生长过程中会自然地沿着角平分线的方向扩
例题2
已知在△ABC中,∠C=90° ,AD是∠BAC的平分线, DE⊥AB于E,F在AC上, BD=DF。求证:CF=EB 。
解析
过点D作DM⊥AC于M。 根据角平分线的性质,可 得DE=DM。在Rt△FCD 和Rt△EBD中,DF=BD, DE=DM。 ∴Rt△FCD≌Rt△EBD(HL )。∴CF=EB。
的两边分别与OA、OB相交于点C、D。求证: PC=PD。
输入 标题
解析
根据角平分线的性质和直角三角形的性质,可以证明 △OPC和△OPD全等,从而得出PC=PD。具体证明过 程略。
例题1
例题2
根据角平分线的性质和勾股定理,可以求出点D到AB 的距离。具体求解过程略。
解析
在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若 BC=32,且BD:CD=9:7,求点D到AB的距离。
04
角平分线在几何变换中应用
旋转对称性质及应用
旋转对称性质
角平分线将一个角分为两个相等的小角,且两个小角关于角平分线对称。当图形 绕角平分线旋转一定角度时,两个小角能够重合,具有旋转对称性。
应用
利用旋转对称性质,可以解决与角平分线相关的角度计算、线段长度等问题。例 如,通过旋转对称性质可以证明两个三角形全等或相似。
建筑设计中角平分线应用
角平分线性质课件(公开课)-图文
![角平分线性质课件(公开课)-图文](https://img.taocdn.com/s3/m/09adc6926e1aff00bed5b9f3f90f76c660374c59.png)
C 3处
D 4处
l2
l3
N
M
P
B
G
C
巩固
4.如图,△ABC的∠B的外角平分线BD 与∠C的外角平分线CE相交于点P。 求证:点P在∠A的平分线上。
D C
P
A
BG
巩固
5.如图,直线l1、 l2 、 l3 表示三条互相 交叉的公路,现要造一个垃圾中转站,
要求它到这三条公路的距离相等,则可
供选择的地址有( )
A 1处
l1
B 2处
O
A D
C P
EB
巩固
2.如图,要在S区建一个集贸市场,使 它到公路,铁路距离相等,离公路与 铁路的交叉处500米。这个集贸市场应 建于何处(在图上标出它的位置,比例尺 为1:20000)?
公路
S
铁路
范例
例1.已知:如图,BE⊥AC于E, CF⊥
AB于F,BE、CF相交于D,BD=CD。
求证:AD平分∠BAC。
D C
P
A
BE
探究
如图,已知PD⊥OA于D, PE⊥OB于E ,请问:点P的位置有什么特殊性吗?
猜测: 点P在∠AOB的平分线上
O
你能证明你的猜测吗?
A D
P EB
归纳 角的平分线的判定:
到角的两边的距离相等的点在角的
平分线上。
A D
P
O
EB
OP是∠AOB的平分线。
新授
几何语言描述:
∵ PD⊥OA, PE⊥OB 且PD= PE, ∴ OC平∠AOB
角平分线性质课件(公开课)_图文.ppt
复习
角的平分线的性质:
角的平分线上的点到角的两边的距 离相等。
《角平分线的判定》课件
![《角平分线的判定》课件](https://img.taocdn.com/s3/m/197984baf80f76c66137ee06eff9aef8941e48a4.png)
应用举例
在几何证明题中,常常利用角平分线的性质定理来证明线段相等或 角相等。
角平分线的判定定理的推论
推论1
到角的两边的距离相等的 点在角平分线上。
证明方法
利用反证法进行证明,假 设点不在角平分线上,通 过构造反例来证明假设不 成立。
应用举例
在解题过程中,可以利用 这个推论来寻找角平分线 上的点,从而解决问题。
《角平分线的判定》ppt课件
• 角平分线的定义 • 角平分线的判定方法 • 角平分线的应用 • 角平分线的相关定理和性质 • 练习题与答案
01
角平分线的定义
角平分线的描述
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分, 且与相对边相交的线段。
02
角平分线将角分为两个相等的角 ,这两个角的大小与原角相等。
提高练习题
提高练习题1
在三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF。求证:EB=FC。
提高练习题2
已知三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF,EF平行于BC。求证:EB=FC。
综合练习题与答案
综合练习题1
在三角形ABC中,AD是角BAC的平 分线,E、F分别是AB、AC上的点, 且DE=DF。EF交AD于G。求证: EG=FG。
角平分线与三角形面积的关系
01
角平分线可以将三角形分割成两个面积相等的子三角形。
面积分割定理
02
利用角平分线,可以证明面积分割定理,从而得出其他相关性
质和结论。
面积计算
03
通过角平分线,可以方便地计算三角形的面积,进一步用于解
决实际问题。
在几何证明题中,常常利用角平分线的性质定理来证明线段相等或 角相等。
角平分线的判定定理的推论
推论1
到角的两边的距离相等的 点在角平分线上。
证明方法
利用反证法进行证明,假 设点不在角平分线上,通 过构造反例来证明假设不 成立。
应用举例
在解题过程中,可以利用 这个推论来寻找角平分线 上的点,从而解决问题。
《角平分线的判定》ppt课件
• 角平分线的定义 • 角平分线的判定方法 • 角平分线的应用 • 角平分线的相关定理和性质 • 练习题与答案
01
角平分线的定义
角平分线的描述
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分, 且与相对边相交的线段。
02
角平分线将角分为两个相等的角 ,这两个角的大小与原角相等。
提高练习题
提高练习题1
在三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF。求证:EB=FC。
提高练习题2
已知三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF,EF平行于BC。求证:EB=FC。
综合练习题与答案
综合练习题1
在三角形ABC中,AD是角BAC的平 分线,E、F分别是AB、AC上的点, 且DE=DF。EF交AD于G。求证: EG=FG。
角平分线与三角形面积的关系
01
角平分线可以将三角形分割成两个面积相等的子三角形。
面积分割定理
02
利用角平分线,可以证明面积分割定理,从而得出其他相关性
质和结论。
面积计算
03
通过角平分线,可以方便地计算三角形的面积,进一步用于解
决实际问题。
16.3 角的平分线课件(共23张PPT)
![16.3 角的平分线课件(共23张PPT)](https://img.taocdn.com/s3/m/7fa4555edf80d4d8d15abe23482fb4daa48d1d00.png)
归纳小结
角平分线的性质定理:
角平分线上的点到这个角的两边的距离相等.
角平分线性质定理的逆定理:
到角的两边距离相等的点在角平分线上.
尺规作图:作已知角的平分线
同学们再见!
授课老师:
时间:2024年9月15日
问题
发现:角是轴对称图形,角平分线所在的直线是它的对称轴.
新知探究
一起探究
知识点1 角平分线的性质定理
在一张半透明纸上画出一个角,将纸对折,使这个角的两边重合.你从中能得出什么结论?
思考
如图,OP是∠AOB的平分线,P是OP上的任一点,过点P分别作PC⊥OA,PD⊥OB,点D垂为足,点C为垂足. 你能猜想PC,PD长度间有什么关系吗?证明你的猜想.
随堂练习
1.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,点F在AC上,BE=FC. 求证:BD=DF.
∵ AD平分∠BAC, DE⊥AB, DC⊥AC, ∴ DC=DE.
在△DCF和△DEB中,
证明: ∵ ∠C=90°, ∴ DC⊥AC.
∴ △DCF≌△DEB. (SAS) ∴ BD=DF.
∴ Rt△ APC ≌ Rt△ APD (HL),∴ AC= AD = BC.
3.如图所示,CD⊥AB,BE⊥AC,垂足分别为点 D,E,BE,CD 相交于点O,且 OB = OC.求证:点O在∠BAC的平分线上.
证明:∵CD⊥AB,BE⊥AC, ∴∠BDO=∠CEO=90°. 又∵ OB=OC,(已知) ∠BOD =∠COE,(对顶角相等) ∴△BOD≌△COE(AAS) ∴ OD = OE. ∴点O在∠BAC的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
角平分线的性质定理:
角平分线上的点到这个角的两边的距离相等.
角平分线性质定理的逆定理:
到角的两边距离相等的点在角平分线上.
尺规作图:作已知角的平分线
同学们再见!
授课老师:
时间:2024年9月15日
问题
发现:角是轴对称图形,角平分线所在的直线是它的对称轴.
新知探究
一起探究
知识点1 角平分线的性质定理
在一张半透明纸上画出一个角,将纸对折,使这个角的两边重合.你从中能得出什么结论?
思考
如图,OP是∠AOB的平分线,P是OP上的任一点,过点P分别作PC⊥OA,PD⊥OB,点D垂为足,点C为垂足. 你能猜想PC,PD长度间有什么关系吗?证明你的猜想.
随堂练习
1.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,点F在AC上,BE=FC. 求证:BD=DF.
∵ AD平分∠BAC, DE⊥AB, DC⊥AC, ∴ DC=DE.
在△DCF和△DEB中,
证明: ∵ ∠C=90°, ∴ DC⊥AC.
∴ △DCF≌△DEB. (SAS) ∴ BD=DF.
∴ Rt△ APC ≌ Rt△ APD (HL),∴ AC= AD = BC.
3.如图所示,CD⊥AB,BE⊥AC,垂足分别为点 D,E,BE,CD 相交于点O,且 OB = OC.求证:点O在∠BAC的平分线上.
证明:∵CD⊥AB,BE⊥AC, ∴∠BDO=∠CEO=90°. 又∵ OB=OC,(已知) ∠BOD =∠COE,(对顶角相等) ∴△BOD≌△COE(AAS) ∴ OD = OE. ∴点O在∠BAC的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
《角平分线》PPT教学课件
![《角平分线》PPT教学课件](https://img.taocdn.com/s3/m/223fcaa6534de518964bcf84b9d528ea80c72f7b.png)
知识讲解
如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角
的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就
是角平分线,你能说明它的道理吗?
两个三角形三边对应相等,两个三角形全
A C
等,两全等三角形的对应角相等.所以AE就
是角平分线 想一想:能够运用这种方法作出任意角的 角平分线吗?
B
(1)∵ 如图,AD平分∠BAC(已知)
× ∴ BD = CD ,
A
D C
( 角的平分线上的点到这个角的两边的距离相等)
理由: 没有垂直,不能确定BD,CD是点D到角两边的距离.
知识讲解
★ 练一练
(2)∵ 如图, DC⊥AC,DB⊥AB (已知).
× ∴ BD = CD ,
(角内任意一条线上的点到这个角的两边的距离相等 )
B
A
D
C
理由:无法确定点D在∠BAC的平分线上.
知识讲解
线段的垂直平分线的性质定理有逆定理,角的平分 线的性质定理是否也有逆定理呢?
如果一个点到角两边的距离相等,那么这个点在 角的平分线上.
知识讲解
角平分线性质定理的逆定理 到角的两边的距离相等的点在角的平分线上.
A
D C
P
O
E
B
用途: 证明点在角平分线上,即可以判定角平分线.
知识讲解
典例讲解 例题 如图,△ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB,BC,CA的距离相等.
A N PM
B
C
知识讲解
证明:
A
D
N
P
F M
B
C
E
知识讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尺规作图
用尺规作角的平分线. 已知:∠AOB 求作:射线OC,使∠AOC=∠BOC
例1: 实际问题
数学化 C
P
┒
O
数学问题源于生活实践,反过来数学又为生活实践服务
பைடு நூலகம்
例2: 已知:如图,E是∠BAC平分线上的一点, EB⊥AB,EC⊥AC,B,C分别是垂足。你能 得到哪些结论?为什么?
B
A
E
C
例3: 已知:如图所示:PA,PC分别是⊿ABC外角∠MAC与 ∠NCA平分线,它们交于P,PD⊥BM于M,PF⊥BN于F
等的点,在这个角的平分线上。
已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,
PD=PE.
求证:点P在∠AOB的平分线上
A
证明: 在Rt⊿ODP和 Rt⊿OEP中,
∠ODP=∠OEP=90°
O
D P
OP=OP, PD=PE Rt⊿OPD≌Rt⊿OPE (HL)
E B
E G
O D
A C
H
B
F
做一做 1
•
15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021
•
16、业余生活要有意义,不要越轨。2021/3/52021/3/5Marc h 5, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/52021/3/52021/3/52021/3/5
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/52021/3/52021/3/53/5/2021 1:01:02 PM
•
11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21
PD⊥OA,PE⊥OB,垂足分别为D,E
A
求证:PD=PE D
证明: ∵∠1=∠2 , OP=OP
∠PDO=∠PEO=90° ∴⊿PDO≌⊿PEO (AAS)
O1
2
P
C
∴PD=PE (全等三角形的对应 边相等)
E B
定理 在角的平分线上的点到这个角的两 边的距离相等。
定理的逆命题该怎么说?
逆定理:在一个角的内部,且 到角的两边距离相
谢谢观赏
You made my day!
我们,还在路上……
求证: 点P在∠MBN的平分线上
M D
A P
E
B
C FN
活动与探究:
已知:如图,∠1=∠2,P为BN上一点,且PD⊥BC 于D,AB+BC=2BD
求证:∠BAP+∠BCP=180°
M E
A
P
N
1
2
B
E' D C
E ''
1 23
结束寄语
• 严格性之于数学家,犹如道德之于人 .
• 证明的规范性在于:条理清晰,因 果相应,言必有据.这是初学证明者 谨记和遵循的原则.
问题引入
如图,浑南新区一个工厂,在公路西侧, 到公路的距离与到河岸的距离相等,并且与河 上公路桥较近桥头的距离为300米。你能尝试确 定工厂的位置吗?并说明理由。
北
比例尺1:20000
问题探究
角平分线性质
角的平分线上的点到这个角 的两边的距离相等。
已知:如图,OP是∠AOB的平分线,点P在OC上,
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/52021/3/52021/3/52021/3/53/5/2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月5日星期 五2021/3/52021/3/52021/3/5