外文翻译---汽车覆盖件冲压模辅助设计系统的开发

合集下载

基于CATIA的汽车覆盖件成形模拟后处理系统

基于CATIA的汽车覆盖件成形模拟后处理系统

基于CATIA的汽车覆盖件成形模拟后处理系统李巧敏;柳玉起;章志兵;杜亭【摘要】基于 CATIA 平台提出了汽车覆盖件大规模后处理结果虚拟显示技术,采用 CATIA CAA (component application architecture)动态响应技术、三角形面积坐标法和空间格搜索算法解决了大规模有限元模拟结果的查询响应难题,设计开发了完全集成于 CATIA 平台的汽车覆盖件冲压成形模拟后处理系统。

该系统可以快速显示和动态查询大型汽车覆盖件冲压成形模拟中的应力、应变、厚度、收缩线、滑移线、回弹量等信息,解决了在 CATIA 平台上难以实现大规模 CAE 数据后处理的问题。

%An automobile panel virtual display technology based on CATIA platform was proposed herein,CATIA CAA(component application architecture)dynamic response technology,triangle area coordinates method and spatial grid searching algorithm were adopted aiming to settle the response speed problem for searching large scale FE simulation results.Therefore,an automobile panel stam-ping simulation post-processing system was designed and developed totally based on CATIA platform. The system was endowed with the ability to display and dynamic query comprehensive information such as stress,strain,thickness,shrink lines,skid lines and springback rapidly in large automobile pan-el stamping simulation.Thus the difficulties in the application of large scale CAE data post-processing on CATIA platform was successfully solved.【期刊名称】《中国机械工程》【年(卷),期】2015(000)006【总页数】6页(P831-836)【关键词】汽车覆盖件;CATIA二次开发;后处理系统;虚拟显示;动态查询【作者】李巧敏;柳玉起;章志兵;杜亭【作者单位】华中科技大学材料成形与模具技术国家重点实验室,武汉,430074;华中科技大学材料成形与模具技术国家重点实验室,武汉,430074;华中科技大学材料成形与模具技术国家重点实验室,武汉,430074;华中科技大学材料成形与模具技术国家重点实验室,武汉,430074【正文语种】中文【中图分类】TG386;TP391.9汽车覆盖件冲压成形数值模拟技术已经广泛应用于产品开发和模具制造流程中,以预测产品设计缺陷,缩短模具制造周期,从而提高生产效率,扩大产品利润空间。

基于DYNAFORM的汽车覆盖件成形分析

基于DYNAFORM的汽车覆盖件成形分析
W ANG J u n — h o n g ,GONG Xi n — y o n g ,L AI De n g — l i a n g,F E NG Ha i — me i
( S c h o o l o /Me c h a n i c a 2 a n d E l e c t r i c a E n g i n e e r i n g ,N o n h C h i n a l mt  ̄ u t e o J S c i e n c e a n d T e c h n o l o g y ,Y a  ̄ j i a o , 0 6 5 2 0 1 , i n a )
o f s i mu l a t i o n a n a l y s i s,wh i c h c a n r e d uc e t h e p r o d u c t i o n c y c l e,p r o d u c t i o n c o s t a n d t h e c o mp l i c a t e d mu l t i p l e
t e s t a n d r e p a i r ,S O a s t o i mp r o v e t h e p r o d u c t i o n e f i f c i e n c y a n d ma r k e t c o mp e t i t i v e n e s s . Ke y wo r d s :a u t o mo b i l e p a n e l ;d r a w b e a d s ;f o r mi n g a n a l y s i s ;D YNAF ORM
Ab s t r a c t :F o r t h e d e s i g n a n d ma n u f a c t u r e o f t h e ma i n a u t o mo b i l e p a n e l d i e s i n a u t o mo b i l e b o d y d i e s ,DY - NAF O RM s o f t w a r e i s u s e d f o r t h e f o r mi n g a n a l y s i s o f t h e e n g i n e h o o d o u t e r p a n e 1 . T h e i n f l u e n c e o f s e t t i n g u p d i f f e r e n t d r a wb e a d s a n d n o n — 。 d r a wb e a d _ 。 s e t t i n g o n a u t o mo b i l e e n g i n e h o o d o u t e r p a n e l i s s i mu l a t e d a n d a n a — l y z e d,d e f e c t s a r e p r e d i c t e d . T h e d i e s d e s i g n a n d p r o d u c t i o n p r o c e s s c a n b e mo d i i f e d a c c o r d i n g t o t h e r e s u l t s

汽车制造工艺的发展外文文献翻译、中英文翻译、外文翻译

汽车制造工艺的发展外文文献翻译、中英文翻译、外文翻译

( 4 )计算机模拟冲压成形及虚拟试模技术:(5)模具制造技术,模块式冲压的突出优点在于能把冲压加工系统的柔性与高效生产有机的结合在一起。

柔性的含义较广, 如冲压件的几何形状的多种要求, 只要通过自由编程就可获得, 体现了加工形状的柔性。

又如既适用大批量单品种冲压件的生产, 更对小批量多品种加工发挥也表性。

概括而言,模块式冲压的持点是:(1)在冲压成形过程中可快速更換组合模具以提高生产效率,(2)由于具有带材的供带和矫带装置, 可省却另设上料下料工序,(3 )实现了大工件的不停机加工;(4)既能独立又能成系列的控制组合冲模动作, 能连续进行冲压加工;( 5)冲模具有可编和的柔性特点。

一种模块式冲压加工系统由一台带有控制功能模块式冷冲压的压力机、卷材带材送进装轩、带材矫正机及可编程进给装置等构成。

这种冲压系统在运行时可进行冲模横向位移、带材进给定位、冲模重复运行及自动调整下工步的冲模调整等多项功能。

由于在冲压过程中进行可编程冲压, 使这种模块式冲压系统能柔性地适应生产需求,能在相同带材上进行曲不同工件及批次的混合生产,实现不停机的串接式加工,还同时在工件西面冲压加工,极大地提高了工作效率,有资料表明, 模块式冲压成形使加工费用能下降至40%-50%。

当前模块式冲压装置的集成度是很高的, 在宽度为300MM 尺寸范围内可安排达35个模具, 通过冲模上端的顶板可对冲模进行独立式系列控制, 即形成冲模的集成控制。

整个系统的编程可在windows用户界面和菜単下实现,编程涉及模具沿者横向定位納的何服驱动定位,带材的检验矫正及纵向进给定位, 冲模的质量跟踪检验, 冲模的调整及状况监控等多功能。

当冲模重新配置成更換时,这些变化则会被参数并被控制系统所贮存, 以务下次査询和调用。

冲模数据包括有冲头及其组合标记, 冲头组合在模具中的 X、Y坐标位置及模具轴编号等信息。

l毫米冲压是指汽车车身冲压件的精度控制在0-1. OMM 的范围内,与过去制造业通行的误差2MM 相比, 是个非常大的提高。

冲压工艺与外文翻译文档

冲压工艺与外文翻译文档

12.外文翻译1. The mold designing and manufacturingThe mold is the manufacturing industry important craft foundation, in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold, but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods, the Chinese mold industry only then drives into the development speedway. Recent years, not only the state-owned mold enterprise had the very big development, the three investments enterprise, the villages and towns (individual) the mold enterprise's development also rapid quietly.Although the Chinese mold industrial development rapid, but compares with the demand, obviously falls short of demand, its main gap concentrates precisely to, large-scale, is complex, the long life mold domain. As a result of in aspect and so on mold precision, life, manufacture cycle and productivity, China and the international average horizontal and the developedcountry still had a bigger disparity, therefore, needed massively to import the mold every year .The Chinese mold industry must continue to sharpen the productivity, from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement. The structure adjustment aspect, mainly is the enterprise structure to the specialized adjustment, the product structure to center the upscale mold development, to the import and export structure improvement, center the upscale automobile cover mold forming analysis and the structure improvement, the multi-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application, the high-speed cutting, the super finishing and polished the technology, the information direction develops .The recent years, the mold profession structure adjustment and the organizational reform step enlarges, mainly displayed in, large-scale, precise, was complex, the long life, center the upscale mold and the mold standard letter development speed is higher than the common mold product; The plastic mold and the compressioncasting mold proportion increases; Specialized mold factory quantity and its productivity increase; "The three investments" and the private enterprise develops rapidly; The joint stock system transformation step speeds up and so on. Distributes from the area looked, take Zhejiang Delta and Yangtze River delta as central southeast coastal area development quickly to mid-west area, south development quickly to north. At present develops quickest, the mold produces the most centralized province is Guangdong and Zhejiang, places such as Jiangsu, Shanghai, Anhui and Shandong also has a bigger development in recent years.1.模具设计及制造模具是制造业的重要工艺基础,在我国模具制造属于专用设备制造业。

(精品)冲压毕业论文设计

(精品)冲压毕业论文设计

系别机电工程系专业班级机械工程及自动化1班学生姓名周剑楠指导教师王辉提交日期 2010 年 6 月18日华南理工大学广州汽车学院毕业设计(论文)任务书兹发给06级机械工程及自动化 1 班学生周剑楠毕业设计(论文)任务书,内容如下:1.毕业设计(论文)题目:汽车冲压覆盖件质量检测2.应完成的项目:(1)了解汽车冲压覆盖件工艺过程和工艺过程的质量要求(2)对常用质量检测技术进行分析,选取合理的检测技术(3)完成某覆盖件的检测设计,确定质量检测方案(4)检测设计中,选定质量检测设备3.参考资料以及说明:(1)姚贵升,景立媛.汽车用钢应用技术[M].北京:机械工业出版社,2007 (2)刘贵民,无损检测技术[M].国防工业出版社,2006(3)吴平川,等.钢板表面缺陷的无损检测技术与应用[J].无损检测2000,22(7)(4)李申.超声兰姆液探伤研究与应用[J].机械设计与制造,2001,(6)(5)鲍文华.汽车外覆盖件钢板表面缺陷及改进[J].轻型汽车技术,2004(8)(6)刘镇清.无损检测中的超声兰姆波[J].无损检测,1999,21(9)4.本毕业设计(论文)任务书于2010 年1月25 日发出,应于2010年5 月30 日前完成,然后提交毕业考试委员会进行答辩。

专业教研组(系)负责人审核年月日指导教师(导师组)签发年月日毕业设计(论文)评语:课题结合自身实际的工作情况,开展了汽车的覆盖件在冲压工艺过程的质量检测方案设计工作。

论文分析了目前开展的人工质量检测的技术能力、不足等,并在此提出上,提出了结合人工检测和仪器表面检测、仪器内部检测为一体的零件冲压工艺过程质量检测的方案。

实现了多层次质量检测,能在较高程度上发现汽车覆盖件坯板和冲压成品的各类质量问题。

论文研究内容具体,结构合理,分析设计较严密。

课题研究工作与实际工作结合的较为密切,能够对实际工作有较好的参考价值。

论文已达到本科毕业论文水平。

基于CATIA平台的汽车覆盖件冲压成形模拟系统FASTAMP

基于CATIA平台的汽车覆盖件冲压成形模拟系统FASTAMP
快速翻边成形模拟缺陷与现场实验验结果比较
FASTAMP系统特点(八)
改进有限元逆算法,可以进行钣金产品的可制造性分析
Es σ Es P 1ε 修正割线模量
o 自适应初应变
f k U f = kU
弹簧单元
改全量形变本构理论
提出了自适应初应变概念 修正割线模量软化过快问题 从本质提高了有限元逆算法精度
FASTAMP系统特点(一)
产品设计
产品分析
辅助设计
统一CAD平台 统一数据格式
成形仿真
成形仿真
工艺设计
实现设计与成形模拟同步更新
FASTAMP系统特点(二)
成形模拟速度快
▪ 基于动力显式算法模拟成形过程,隐式算法模拟回弹,支持多 CPU并行计算,支持多核CPU并行计算
▪ 独创二分式自适应加密-减密算法,计算速度与AUTOFORM壳单 元相当
FASTAMP系统特点(六)
等效筋和实体筋成形模拟结果与实验结果比较
FASTAMP系统特点(七)
修边线展开与翻边成形性快速分析
模型准备: 6 min 计算时间: 8.14s
精确展最终展开开修修边线边线
模型准备: 4 min 计算时间: 9.35s
模型准备: 8 min 计算时间: 9.68s
模型准备: 5 min 计算时间: 5.44s
FASTAMP系统特点(五)
起皱
准确模拟成形过程中的起皱现象
FASTAMP系统特点(五)
起皱
准确模拟成形过程中的起皱现象
FASTAMP系统特点(五)
Section A-A Section B-B Section C-C
DP590
Section D-D
autoform Fastamp 修边数模

汽车覆盖件冲压工艺及模具设计技术研究

汽车覆盖件冲压工艺及模具设计技术研究

汽车覆盖件冲压工艺及模具设计技术研究摘要:汽车覆盖件是我国汽车车身设计中不可缺少的组成部分。

随着我国汽车制造业的快速发展和人们生活质量的不断提高,人们对家用汽车车身设计的基本要求也越来越高。

如何追求高品质、低成本、实用的智能汽车已逐渐成为直接影响我国汽车产品选择的重要因素之一。

高度重视我国汽车整体覆盖件冲压制造工艺、模具设计等新技术的深入研究,可以大大提高我国汽车车身的整体设计质量,增强我国汽车加工产品的市场实力和竞争力,促进加工企业汽车产品的不断升级,为汽车企业的发展创造更大的社会效益和经济效益。

关键词:汽车覆盖件;汽车覆盖件冲压工艺;模具设计技术1.汽车覆盖件概述所谓汽车覆盖件,是指构成车身或驾驶室,覆盖发动机和底盘的异形表面和汽车零部件。

由于车内部及其覆盖件不仅需要具有较强的车身整体性和装饰性,还需要能够同时承受一定的地面力和冲击力,因此车内部及其覆盖件的整体结构和功能非常复杂。

除了我们经常直接看到的一些车外板,如车门外板、侧壁外板、发动机罩等,车上的内盖件也可能包括一些小型车内板,例如一些可以隐藏在车内的车辆地板和左右两侧的异形纵梁。

2.覆盖件冲压工艺特点在车身的设计中,需要从整体形状和结构功能两个方面进行设计,而汽车罩是完成汽车形状和结构功能的重要部件,所以汽车设计师往往十分重视它。

然而,尽管面板是汽车的重要组成部分,但由于设计师专业知识的限制,一些制造工艺可能没有得到充分考虑,导致了面板制造过程中的一些问题。

盖板件的冲压工艺对盖板件的制造具有重要意义,必须给予足够的重视。

设计面板时必须考虑冲压工艺。

3汽车覆盖件冲压工艺与设计方案本文主要以某汽车生产公司的一辆小型货车的后门为分析对象。

后门内板尺寸大,形状多样,是典型的汽车覆盖件。

3.1汽车覆盖件冲压工艺分析汽车后门内板分为后窗内板和后门外板。

后车门的内板和外板通过内板的焊接边缘和冲压工艺相互连接,形成汽车的后车门,后车门直接安装在汽车的行李箱上。

汽车覆盖件模具工艺前期流程的优化设计策略分析

汽车覆盖件模具工艺前期流程的优化设计策略分析

MANUFACTURING AND PROCESS | 制造与工艺时代汽车 汽车覆盖件模具工艺前期流程的优化设计策略分析刘勇重庆元创汽车整线集成有限公司 重庆市 401120摘 要: 在我国,汽车工业在国民经济的支柱产业中占有非常重要的位置,近年来,发展速度正在逐步提高。

但是,我国对汽车制造技术的发展水平有一定的限制,并且汽车的年产量仍然较低。

中国汽车工业的大发展至关重要。

汽车冲压件是汽车制造中非常重要的零件,例如车身,车架和车架,全部由钢冲压件制成。

车身面板是汽车冲压件的关键组件。

本文主要对汽车车身板件冲压生产工艺的发展进行具体的研究和分析,希望为相关人员提供具体的理论支持和实用参考材料。

关键词:车身 面板 冲压 生产工艺 开发 摘要冲压件的制造工艺水平和质量与汽车制造质量和制造成本密切相关。

冲压生产厂的生产过程及其技术在实际应用过程中有很高的要求,在实际生产中,经常需要计数过于繁琐以及需要相应工具的设备,且制造时间长。

如何利用一定的资金和先进的科学技术逐步降低现代冲压厂的制造成本,同时在一定程度上保证产品质量。

这个问题是所有企业家现在都应该关注的主题,工厂设计部门也需要进行一些关键研究。

因此,正确使用新材料,新工艺,扩展比例等是工厂设计部门的主要任务,以使技术水平有所提高,不断提高零件质量并实现合理的设计。

1 冲压工艺和产品的经济性分析目前我国汽车产品开发等方面具有在实际应用过程中开发相关卡车的能力,汽车产品开发处于开发的初期,并且仍处于开发阶段。

无论是哪种车身冲压件,在实际应用和开发过程中都必须具有良好的加工技能和经济效益。

冲压零件中的工序数量在测量冲压工序的水平方面起着非常重要的作用。

机体和介质中压力零件的处理数量与压力机数量,工具数量,输送设备数量,占地面积,人力和动能消耗密切相关。

因此,冲压工序的数目对冲压厂的投资规模及相关的制造成本有一定的影响我国汽车冲压零件的加工技术数目不是任意制定的,主要是冲压技术人员使用中压零件。

毕业设计(论文)-汽车车门上玻璃升降器的外壳冲压模具设计[管理资料]

毕业设计(论文)-汽车车门上玻璃升降器的外壳冲压模具设计[管理资料]

目录第一章绪论 (1) (1)冲压的概念 (1)冲压加工及分类 (1)冲压及其模具技术发展 (1)冲压设备的选用及制造特点 (2)冲压设备的选用 (2)制造的特点和模具材料选用的原则 (2)模具CAD/CAE/CAM技术 (3)模具的发展与现状 (3)第二章产品分析 (5) (5)升降器外壳的说明 (5)第三章设计方案分析 (7) (7) (7) (7) (9) (9) (11) (12)第四章工艺分析计算 (20)工艺计算 (20)、裁板方案 (20)、选用压力机 (25) (28)第五章模具设计 (29) (29)模具工作零件设计 (32)模具其他零件的选取和设计 (34)第六章设计心得 (36)致谢 (37)参考文献 (38)第一章绪论冲压的概念冷冲压是在室温条件下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需冲件的一种压力加工方法。

在冷冲压加工中,将材料(金属或非金属)加工成冲件(或零件的一种特殊工艺装备,称为冷冲模。

合理的冲压成形工艺,先进的模具,高效的冲压设备是必不可少的三要素。

冲压成形作为现代工业中一种十分重要的加工方法,用以生产各种板料零件,具有很多独特的优势,其成形件具有自重轻、刚度大、强度高、互换性好、成本低、生产过程便于实现机械自动化及生产效率高等优点,是一种其它加工方法所不能相比和不可替代的先进制造技术,在制造业中具有很强的竞争力,被广泛应用于汽车、能源、机械、信息、航空航天、国防工业和日常生活的生产之中。

冲压加工及分类冲压加工因冲件的形状,尺寸和精度的不同,所采用的工序也不同,概括起来可以分为分离工序和成形工序。

分离工序是指坯料在模具刃口做用下,沿一定的轮廓线分离而获得冲件的加工方法。

分离工序主要有冲孔、落料、切断等。

成形工序是指坯料在模具压力作用下,使坯料产生塑性变形,但不产生分离而获得具有一定形状的尺寸的冲件的加工方法。

成形工序主要有弯曲、拉深、翻边、胀形等。

冲压工艺及模具课程设计说明书(冲孔模)(终稿前稿)

冲压工艺及模具课程设计说明书(冲孔模)(终稿前稿)

储油油柜端盖冲压工艺及模具课程设计说明书(冲孔模)(终稿前稿)目录设计任务书及零件图 (2)绪论 (4)第一章设计要求 (7)第二章零件工艺性分析 (8)第三章冲压零件工艺方案的确定 (9)第四章工艺参数计算 (10)第五章模具的总体设计及装配 (15)第六章模具的动作过程和操作要求 (18)总结 (19)设计参考文献 (20)设计任务书及零件图任务书专业班级:材料成型及控制工程xxxx设计人:xxx设计题目:储油油柜端盖冲压工艺及模具设计设计参数:1。

零件尺寸如产品图所示。

2。

大批量生产.设计要求:1。

确立合理的工艺流程。

2。

保证材料的利用率及工件的精度3.如原产品设计不合理或工艺性差可提出修改方案.4。

保证模具的实用性和经济性.设计时间:X年X月X日——X年X月X日设计人:xxxx指导老师:xxx零件图如下图所示绪论改革开放以来,随着国民经济的高速发展,市场对模具的需求量不断增长。

近年来,模具工业一直以15%左右的增长速度快速发展,模具工业企业的所有制成分也发生了巨大变化,除了国有专业模具厂外,集体、合资、独资和私营也得到了快速发展。

浙江宁波和黄岩地区的“模具之乡”;广东一些大集团公司和迅速崛起的乡镇企业,科龙、美的、康佳等集团纷纷建立了自己的模具制造中心;中外合资和外商独资的模具企业现已有几千家。

近年许多模具企业加大了用于技术进步的投资力度,将技术进步视为企业发展的重要动力。

一些国内模具企业已普及了二维CAD,并陆续开始使用UG、Pro/Engineer、I-DEAS、Euclid-IS等国际通用软件,个别厂家还引进了Moldflow、C—Flow、DYNAFORM、Optris和MAGMASOFT等CAE软件,并成功应用于冲压模的设计中。

以汽车覆盖件模具为代表的大型冲压模具的制造技术已取得很大进步,东风汽车公司模具厂、一汽模具中心等模具厂家已能生产部分轿车覆盖件模具。

此外,许多研究机构和大专院校开展模具技术的研究和开发.经过多年的努力,在模具CAD/CAE/CAM技术方面取得了显著进步;在提高模具质量和缩短模具设计制造周期等方面做出了贡献。

模具CAD_CAE_CAM的发展概况及趋势_李德群

模具CAD_CAE_CAM的发展概况及趋势_李德群

模具CAD /CAE /CAM 的发展概况及趋势李德群,肖祥芷(华中科技大学,湖北武汉430074)摘要:介绍了级进模、汽车覆盖件模和塑料注射模CAD /CAE /CAM 的发展概况并论述了这三种模具CAD /CAE /CAM 的最新开发成果和发展趋势。

关键词:级进模;汽车覆盖件模;塑料注射模;CAD /CAE /CAM 中图分类号:T G76文献标识码:A 文章编号:1001-2168(2005)07-0009-04General Situation and Develo p ment Tendenc y ofCAD /CAE /CAM for Die &MouldLI De _qun ,XIAO Xiang _zhi(Huazhon g Univers it y of Science an d Techn olo gy ,Wuhan ,Hubei 430074,Ch ina )Abstract :General sit uat ion of t he develo p ment of C AD /CAE /CAM for die &mould ,in cludin g p ro -gressive die ,automobile sheet metal parts die and p last ic inject ion mould was introduced .The latest ach ievements and develo p in g trends of C AD /CAE /CAM for these t hree kinds of die &mould were d iscussed .Ke ywords :progressive die ;auto mobile sheet met al parts die ;plast ic injection mo uld ;C AD /CAE /C AM——————————————————————作者简介:李德群(1945-),男,江苏泰县人,教授,博士生导师,主要研究方向为模具CAD /CAE /CAM 。

冲压模具 英文论文

冲压模具 英文论文

Computational published quarterly by the Association
Materials Science of Computational Materials Science
The optimal design of micro-punching
die by using abductive and SA methods
J.-Ch. Lin a, K.-S. Lee b, W.-S. Lin c,*
a Department of Mechanical Design Engineering, National Formosa University,
64 Wunhua Road, Huwei, Yunlin ,Taiwan
of the punch and die has been a common topic for scholars.
Design/methodology/approach: The input parameters (punching times, clearance) and output results (wear)
MANUFACTURING AND PROCESSING OF ENGINEERING MATERIALS
92 (C) Copyright by International OCSCO World Press. All rights reserved. 2009
As a result, the mathematics model is difficult to converge and the neural network will inaccurately predict wear.

修边冲孔复合模毕业设计(论文)

修边冲孔复合模毕业设计(论文)

毕业论文题目汽车右后轮挡泥板修边冲孔模设计摘要本文分析了汽车右后轮外挡泥板的冲压工艺方案,详细说明了汽车右后轮外挡泥板修边冲孔模的结构和设计过程,具体内容包括冲压工艺的确定、工艺参数的计算、压力机的选择等。

并且对模具结构中的辅助设计进行了说明,对模具制造、操作及维护要点进行了阐述。

关键词:修边冲孔模具设计ABSTRACTThis article analyzes the right near wheel fender of car tamping process; Detailed description of the right near wheel fender trimming and punching mold design and structure. lncluding specific the certain of trimming process 、process of parameters calculation, the choice of press, and so on.and explain the mold structure of computer-aided design, Mold on the manufacture, operation and maintenance of the main points discussed.Keywords: trimming punching die design目录第一章概论 (5)1.1课题来源,目的及意义 (5)第二章当前国内外模具工业的现状与发展 (6)2.1国内外模具技术现状 (6)第三章工艺分析及模具设计方案的确定 (9)3.1零件结构工艺性分析 (9)3.2工艺方案的选择 (10)3.3冲压方向和送料方向示意图 (11)第四章工艺计算及主要参数确定 (13)4.1凸、凹模刃口尺寸计算 (13)4.2冲压力的计算 (14)4.2.1压边力的计算 (14)4.2.2 冲裁力计算 (14)4.2.3卸料力[9] (14)4.2.4顶出力[9] (15)4.3压力机的选用 (15)4.4模架闭合高度的校核 (15)第五章模具结构方案的确定 (17)5.1修边模的总体结构设计 (17)5.1.1修边模设计的基本原则[6] (17)5.1.2模具结构方案 (17)5.2模具功能分析 (17)5.3模具总体结构 (19)5.4修边凸凹模设计 (21)5.5废料刀设计 (23)5.6压件器设计 (24)5.7模具的导向机构 (24)5.8起重装置的设计 (25)5.9连接板 (25)第六章模具操作及维护要点 (26)致谢 (27)参考文献 (28)第一章概论1.1 课题来源,目的及意义1.1 课题背景及意义本课题内容为来自于东风汽车股份有限公司汽车分公司的汽车右后轮外挡泥板冲压工艺分析与修边冲孔模设计。

全球整车开发流程(GVDP)详细解读!

全球整车开发流程(GVDP)详细解读!

全球整车开发流程(GVDP)详细解读!整车开发流程是界定一辆汽车从概念设计经过产品设计、工程设计到制造,最后转化为商品的整个过程中各业务部门责任和活动的描述。

整车产品开发流程也是构建汽车研发体系的核心,直接体现研发模式的思想;然而具体的研发项目操作时,国内厂家经常需要花大量时间和资源构架研发计划,项目执行过程中计划更改频繁,造成管理上有难度。

而国际汽车厂商在国内的合资企业,研发流程已有成熟模板,在成本进度方面估算比较准确,项目执行后期容易控制,项目风险也相对较低。

一、开发流程框架1、架构阶段架构阶段:架构开发是整车开发(GVDP )过程中的先导过程。

全新架构开发过程约为18 个月,由4 个里程碑组成,架构开发启动(A4)、架构策略意图确定(A3)、架构方案批准(A2 )和架构开发完成(A1)。

A4 之前主要识别初始的架构目标,A4-A3 定义架构的性能和带宽,从架构策略意图确定(A3)开始与架构主导的整车项目开发并行开展。

A3-A2 确定架构方案, A2-A1 完成架构开发。

架构策略批准(A3)之后启动整车项目战略立项(G9)、架构方案批准(A2)之后启动项目启动(G8)、架构开发完成(A1)之后启动整车方案批准( G7)。

2、战略阶段产品战略阶段是产品型谱向产品项目的转化阶段,在这个阶段,需要完成公司对原有产品型谱和未来产品战略的再平衡,决定是否启动产品项目的开发工作。

这一阶段的工作重点是更为深入地分析产品在产品型谱中的定位。

产品项目需要达到的边界条件,比如销量、投资、成本、产品特征、开发周期、赢利能力等。

产品战略阶段从G10 至 G8,约为 9 个月,分别为战略准备 G10 、战略立项 G9 和项目启动G8。

业务规划项目管理部业务规划科(BPD )牵头各业务部门为产品项目的批准进行战略准备,包括市场的调研,产品定位、竞争对手的分析及各部门策略研究等。

3、概念阶段概念阶段是在产品战略明确并且可行性得到批准的基础上,完成产品项目方案的开发。

汽车发动机油底壳冲压模具毕业设计论文

汽车发动机油底壳冲压模具毕业设计论文

太原科技大学毕业设计任务书学院(直属系):材料科学与工程时间: 2010-3-29说明:一式两份,一份装订入学生毕业设计(论文)内,一份交学院(直属系)。

太原科技大学毕业设计设计题目:汽车发动机油箱底壳零件冲压工艺分析及其模具设计姓名 _ 陈翔宇___学院(系)_ 材料科学与工程学院专业 _ 材料成型及控制工程(模具)年级 __ 06级____________指导教师曹建新2010年 6月10日目录摘要 (I)Abstract......................................................... I I 第一章序言 (1)1.1 概述 (1)1.2 冲压技术的发展 (1)1.3 模具的发展与现状 (2)1.4 模具CAD/CAE/CAM技术 (2)1.5设计的主要特点及意义 (4)1.6 汽车油底壳的相关知识补充 (4)1.6.1 前言 (4)1.6.2 汽车发动机油底壳材料的发展历史 (5)第二章发动机油底壳成型工艺的总体分析 (6)2.1油底壳结构及工艺难点分析 (6)2.2油底壳冲压工艺分析及方案确定 (7)2.2.1工艺流程初定 (7)2.2.2 拉深次数的确定 (7)2.2.2.1 常规计算模式: (7)2.2.2.2 有限元模拟分析 (10)2.2.2.3工艺流程的最终确定 (11)2.2.2.4 落料毛坯尺寸确定 (11)第三章拉深及法兰面冲孔的工艺分析和模具设计 (14)3.1落料 (14)3.1.1工艺分析 (17)3.1.2 工艺方案的确定 (18)3.1.3冲裁间隙的确定 (18)3.1.4凸模与凹模刃口尺寸的确定 (18)3.1.4.1凸、凹模具刃口尺寸计算原则 (18)3.1.4.2凸、凹模刃口尺寸计算方法 (20)3.1.5 冲裁工艺力的计算 (20)3.2 拉深 (23)3.2.1油底壳的拉深工艺分析 (24)3.2.1.1对拉深件形状的要求 (24)3.2.1.2对拉深件的圆角半径和拉深件精度的要求 (25)3.2.2拉深工艺力的计算 (25)3.2.2油底壳拉深模具设计及其结构设计要点 (27)3.2.2.1结构设计要点 (27)3.2.2.2模具工作过程 (28)3.2.2.3模具的导向 (28)3.2.2.4凹模圆角半径及凸凹模间隙参数的确定 (28)3.2.2.5成型凹模及顶件块的设计 (29)3.2.2.6模具材料及热处理要求 (29)3.3整形 (32)3.4切边 (32)3.5翻边、校平 (32)3.6冲法兰面孔 (33)3.6.1冲压模具的基本结构组成 (33)3.6.2 模具结构特点 (33)3.6.3 模具工作过程 (33)3.6.4 模具零部件的结构设计与相关冲裁力及部件尺寸的计算.. 343.6.4.1凸、凹模刃口尺寸的计算 (34)3.6.4.2凸、凹模的设计 (35)3.6.4.3模板的设计 (37)3.6.4.4卸料弹簧的选用 (37)3.6.4.5冲压设备的选用 (38)3.6.4.6 压力中心的计算 (41)3.7冲放油塞孔 (42)第四章总结 (43)第五章结束语 (43)参考文献 (44)附录 (45)附录一:外文文献 (45)附录二:外文翻译 (52)油箱底壳零件冲压工艺分析及模具设计材料学院成型061404 陈翔宇指导教师:曹建新摘要本设计应用本专业所学课程的理论和生产实际知识进行一次冷冲压模具设计工作的实际训练从而培养和提高学生独立工作能力,巩固与扩充了冷冲压模具设计等课程所学的内容,掌握冷冲压模具设计的方法和步骤,掌握冷冲压模具设计的基本的模具技能懂得了怎样分析零件的工艺性,怎样确定工艺方案,了解了模具的基本结构,提高了计算能力,绘图能力,熟悉了规范和标准,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。

汽车覆盖件冲压工艺设计系统及其应用

汽车覆盖件冲压工艺设计系统及其应用

统重点研究了实际拉延筋与模拟拉延筋对冲压成形的影
响。
为实现确定等效拉延筋力并将其施加十板料成形仿
真, 应首先确定单位长度的拉延筋在材料拉深变形过程
中对材料 产生 怎样 的约束阻力 ,也就是需要进行物理仿
() 2 利用逆向工程技术对主要影响因子系数进行修
正。
( 针对不同制件,确定对应的不同C E 3 ) A 软件仿真 主要影响因子系数。
中设计人员可通过类比查询直接使用, 从而形成比现有 CE A 软件更加实用、 可靠的全新的汽车覆盖件冲压工艺
设计 系统 。系统框架如 图 1 。
天津新技术产业园区众石科技有限公司承担的国家 科技部中小企业创新基金项目 “ 汽车覆盖件冲压工艺设 计系统”是应用于汽车模具设计与制造领域的工艺设计 , 辅助软件。 该项目针对当前C E A 应用中的诸多缺陷, 在
性地建立了仿真参数库和工艺事例库, 将汽车覆盖件按 特征分类, 实现了工艺 设计方案的类比查询功能,可以 大幅度提高模具设计制造效率, 缩短模具设计制造周期, 降低制造成本。 ( 自行研制了拉延筋阻力测试的试验装置, 3 ) 有效地 降低了试模成本和试模周期, 为利用逆向工程技术修正
维普资讯

堕. .
J I l 口
汽车覆盖件 冲压工艺设计系统及其应用
天津新技 术产业园区众石科技 有限公 司 (0 3 4 刘绪功 王洪志 康 剑 308 )
摘耍 介绍了天津新技术产业团区众石科技有限公 司承担 的国家科技部中小企业创新基金 项 目“ 汽车覆盖件冲压工艺设计系统” 并通过本 系统在 国内外多家企业 的汽车覆盖件模具设计 ,
三维数据的异地协同设计与管理。
2 系统创新点 .

冲压模具外文翻译

冲压模具外文翻译

Punching die has been widely used in industrial production.In the traditional industrial production,the worker work very hard,and there are too much work,so the efficiency is low.With the development of the science and technology nowadays,the use of punching die in the industial production gain more attention, and be used in the industrial production more andmore.Self-acting feed technology of punching die is also used in production, punching die could increase the efficience of production and could alleviate the work burden,so it has significant meaning in technologic progress and economic value.The article mainly discussed the classification,feature and the developmental direction of the pnnching technology. Elaborated the punching components formation principle, the basic dies structure and the rate process and the principle of design; and designed some conventional punching die:the die for big diameter three direction pipe which solved the problom of traditional machining,the drawing and punching compound die with float punch-matrix,the drawing and cutting compound dies with unaltered press,the compound die for the back bowl of the noise keeper,the design of the compound die which could produce two workpieces in one punching,the bending die for the ring shape part ,the bending die which used the gemel ,automate loading die for cutting, the drawing,punching and burring compound dies with sliding automated loading,the punching die for the long pipe with two row of hole,the drawing die for the square box shape workpiece and the burring die for the box shape workpiece.The punching dies that utilized the feature of the normal punch shaped the workpiece in the room temperature,and its efficiency and economic situation is excellent.The dies here discussed can be easily made,conveniently used, and safely operated.And it could be used as the reference in the large scale production of similar workpieces.CAD and CAM are widely applied in mould design and mould making. CAD allows you to draw a model on screen, then view it from every angle using 3-D animation and, finally, to test it by introducing various parameters into the digital simulation models(pressure, temperature, impact, etc.) CAM, on the other hand, allows you to control the manufacturing quality. The advantages of these computer technologies are legion: shorter design times(modifications can be made at the speed of the computer),lower cost, faster manufacturing, etc. This new approach also allows shorter production runs, and to makelast-minute changes to the mould for a particular part. Finally, also, these new processes can be used to make complex parts.Computer-Aided Design(CAD)of MouldTraditionally, the creation of drawings of mould tools has been atime-consuming task that is not part of the creative process. Drawings are an organizational necessity rather than a desired part of the process.Computer-Aided Design(CAD) means using the computer and peripheral devices to simplify and enhance the design process .CAD systems offer an efficient means of design, and can be used to create inspection programs when used in conjunction with coordinate measuring machines and other inspection equipment.CAD data also can play a critical role in selecting process sequence.A CAD system consists of three basic components: hardware, software, users. The hardware components of a typical CAD system include a processor, a system display, a keyboard, a digitizer, and a plotter. The software component of a CAD system consists of the programs which allow it to perform design and drafting functions. The user is the tool designer who uses the hardware and software to perform the design process.Based on the 3-D data of the product, the core and cavity have to be designed first. Usually the designer begins with a preliminary part design, which means the work around the core and the cavity could change. Modern CAD systems can support this with calculating a split line for a defined draft direction, splitting the part in the core and cavity side and generating therun-off or shut-off surfaces. After the calculation of the optimal draft of the part, the position and direction of the cavity, slides and inserts have to bedefined .Then in the conceptual stage, the positions and the geometry of the mould components---such as slides, ejection system, etc.----are roughly defined. With this information, the size and thickness of the plates can be defined and the corresponding standard mould can be chosen from the standard catalog. If no standard mould fits these needs, the standard mould that comes nearest to the requirements is chosen and changedaccordingly---by adjusting the constraints and parameters so that any number of plates with any size can be used in the mould. Detailing the functional components and adding the standard components complete themould(Fig.23.1).This all happens in 3-D. Moreover, the mould system provides functions for the checking, modifying and detailing of the part .Already in this early stage, drawings and bill of materials can be created automatically. Through the use of 3-D and the intelligence of the mould design system, typical 2-D mistakes---such as a collision between cooling andcomponents/cavities or the wrong position of a hole---can be eliminated at the beginning. At any stage a bill of materials and drawings can becreated---allowing the material to be ordered on time and always having an actual document to discuss with the customer or a bid for a mould base manufacturer.The use of a special 3-D mould design system can shorten development cycles, improve mould quality, enhance teamwork and free the designer from tedious routine work. The economical success, however, is highly dependentupon the organization of the workflow. The development cycles can be shortened only when organizational and personnel measures are taken. The part design, mould design, electric design and mould manufacturing departments have no consistently work together in a tight relationship. Computer-Aided Manufacturing(CAM)of MouldOne way to reduce the cost of manufacturing and reduce lead-time is by setting up a manufacturing system that uses equipment and personnel to their fullest potential. The foundation for this type of manufacturing system is the use of CAD data to help in making key process decisions that ultimately improve machining precision and reduce non-productive time. This is called as computer -aided manufacturing (CAM).The objective of CAM is to produce, if possible, sections of a mould without intermediate steps by initiating machining operations from the computer workstation.With a good CAM system , automation does not just occur within individual features. Automation of machining processes also occurs between all of the features that make up a part, resulting in tool-path optimization. As you create features ,the CAM system constructs a process plan for you .Operations are ordered based on a system analysis to reduce tool changes and the number of tools used.On the CAM side, the trend is toward newer technologies and processes such as milling to support the manufacturing of high-precision injection moulds with 3-D structures and high surface qualities. CAM software will continue to add to the depth and breadth of the machining intelligence inherent in the software until the CNC programming process becomes completely automatic. This is especially true for advanced multifunction machine tools that require a more flexible combination of machining operations. CAM software will continue to automate more and more of manufacturing's redundant work that can be handled faster and more accurately by computers , while retaining the control that machinists need.With the emphasis in the mould making industry today on producing moulds in the most efficient manner while still maintaining quality, moludmakers need to keep up with the latest software technologies-packages that will allow them to program and cut complex moulds quickly so that mould production time can be reduced. In a nutshell, the industry is moving toward improving the quality of data exchange between CAD and CAM as well as CAM to the CNC, and CAM software is becoming more "intelligent" as it relates to machining processes_resulting in reduction in both cycle time and overall machining time. Five-axis machining also is emerging as a "must-have" on the shop floor-especially when dealing with deep cavities.And with the introduction of electronic data processing(EDP)into the mould making industry, new opportunities have arisenin mould-making to shorten production time, improve cost efficiencies and higher quality.冲压模具已广泛应用于工业,在传统的工业生产,工人工作很辛苦,有太多的工作,所以效率是很低.在科学和技术的今天,使用的冲压模具开发在实业生产获得更多的关注,并在工业生产中越来越被关注.冲压模具用饲料技术也可用于生产,冲压模具可提高生产的有效性,可以减轻工作负担,因此在科技进步和经济价值具有重要意义。

汽车覆盖件冲压模具设计研究

汽车覆盖件冲压模具设计研究

汽车覆盖件冲压模具设计研究摘要:汽车车身冲压工艺与冲压模具的设计是影响汽车行业车型更新换代的关键技术,它不仅影响汽车更新的周期和研发的成本,也间接促进了新的冲压技术和模具设计技术的发展。

尽管国内汽车行业发展迅速,但冲压工艺和模具设计与国外技术仍存在较大的差距,无法生产高端的汽车冲压件,严重阻碍了我国高端汽车行业的发展。

对冲压工艺与冲压模具设计技术的研究对我国高端汽车行业的发展具有重要意义。

关键词:汽车覆盖件;冲压模具;设计1汽车车身冲压工艺冲压工艺具有以下特点:用于形状复杂的薄壁零件,且经过冲压工序后零件的强度提高、质量变轻、刚度增大。

冲压件表面光滑且具有较高的精度尺寸,可满足一般互换性要求,在同一批冲压件中可互相替换。

简化了操作,提高了自动化程度。

进行大批量生产时可有效节约成本,提高生产效率。

1.1冲压材料冲压工艺对冲压材料的要求极为严格,冲压用材料必须具有良好的延展性、塑性、弯曲性、凸缘拉伸性等性能。

如果所选的材料与零件形状、冲压模具设计和加工条件不相适应时,将产生断裂、折皱、成型不完整(开裂、凸包、拉毛、波浪、回弹)等缺陷。

目前,常用的冲压材料包括冷轧钢板、热轧钢板、表面处理钢板等材料。

1.2冲压工艺方案冲压工艺一般包括冲裁设计、切边设计、弯曲、翻遍等工序。

各个工序阶段都有严格的工艺要求保证冲压的质量。

以汽车发动机箱盖为例,其冲压工艺如下:下料拉伸——切边、冲孔——竖边——翻边——压印、冲孔——检验;工艺流程为:拉伸——切割——整形——翻边——冲孔——切割——检验。

正常工艺可能无法完成零件的加工,需要工艺补充。

工艺补充的设计原则如下:内孔封闭的原则;简化拉伸件结构形状原则;保证良好的塑性变形条件,有些冲压件深度较浅、曲率较小,但轮廓尺寸较大(发动机箱盖),必须保证坯料在拉伸过程中具有足够的塑性变形量,才能保证冲压件满足形状精度要求和刚度要求;外工艺补充部分尽量小;方便后续工序加工的原则。

1.3冲压件质量控制冲压件一般满足表面质量良好、复合加工要求的几何尺寸和形状、足够的强度与刚度以及良好的工艺性等要求。

汽车覆盖件模具设计

汽车覆盖件模具设计

本节目录
退出本节
所在位置:工艺设计 > 工艺数模设计
工艺数模的概念
2. 工艺数模各部位名称
4
3 1
2
1
1-拉延筋 2-立面(或称墙面) 3-拉延圆角 4-压料面 5-分模线
本节目录 退出本节
5
所在位置:工艺设计 > 工艺数模设计
工艺数模设计原则
1. 拉延工艺数模设计应考虑以下几个方面: (1)拉延时的进料条件;
退出本节
所在位置:工艺设计 > 工艺数模设计
工艺数模的概念
1. 概念 为了给覆盖件创造一个良好的拉延条件,需要将覆盖件上的窗口填平,开口 部分连接成封闭形状。覆盖件有凸缘的需要平顺改造使之成为有利成型的压料面, 无凸缘的需要增补压料面,这些增添的部分称为工艺补充部分,其与产品数模合 在一起称为工艺数模。
本节目录 退出本节
所在位置:工艺设计 > 工艺数模设计
三、设计步骤
设计常规尺寸范围
立面高度H=15mm 立面角度a=3~15o 拉延圆角Ra=6mm Rb=6mm
本节目录
退出本节
所在位置:工艺设计 > 工艺数模设计
三、设计步骤
合理设计方案示例一
压料面应光滑平整,各处拉延深度不大,因此拉延顺利
本节目录 退出本节
确定方法:使用CAE软件原始数模进行分析时,找到零件重心的坐标值,以此为 依据进行手工调整。 顶盖前横梁的数模基准点坐标为(X900,Y0,Z1150)。
本节目录
退出本节
所在位置:工艺设计 > 工艺数模设计
三、设计步骤
(2)冲压方向确定: ① 该工序的工作内容不能有负角,且工件定位可靠。
② 要考虑后面工序的角度,如拉延之后有修边工序、冲孔工序、翻边工序, 要考虑修边角度、冲孔角度、翻边角度,尽量不用斜楔结构。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)英文翻译课题名称顶盖后雨檐冲压工艺分析与拉延模设计系部材料工程系姓名专业材料成型与控制工程班级学号指导教师签名(校内)指导教师签名(校外)年月日Development of a Design Supporting Systemfor Press Die of Automobile PanelsSang-Jun Lee1, Keun-Sang Park2, Jong-Hwa Kim3, and Seoung-Soo Lee31 Dept. of Automobile, Dongeui Institute of Technology, Busan, South Korealeesj@dit.ac.kr2 Dept. of Industrial Engineering, Konkuk University, Seoul, South Koreaergpark@konkuk.ac.kr3 CAESIT, Konkuk University, Seoul, South Koreajhkim@konkuk.ac.kr,sslee@konkuk.ac.krAbstract.This paper presents the development of a design supporting system for press die of automobile panels. The proposed system supports the design process of press die efficiently and systematically by utilizing standard data, and reflecting knowledge of press die design collected and accumulated through the interviews with design specialists working in a Korean motor company. This paper illustrates a methodology for systematic press die design, automatic checking of dimensions and implementation.In addition the rule-based design system is developed based on the product data. All components of the press die are regarded as product data and the omponents are regarded as the unit of press die. Parametric design using knowledge base and standard database is introduced to make it easier to deal with the complicated design knowledge easily. For implementation, the ule-based design system is programmed with C++ and Motif and the system can be linked with CATIA.1 IntroductionReducing manufacturing cycle time is an important issue in the recent automobile industry with changing customer needs. Although the industry has adopted various new technologies such as CAD/CAM and factory automation, the results do not meet the expected level. The main reason is that the new technologies must be adapted to the industry’s own know-how and knowledge workflow, as well as administrative traits of a particular company. [1]In designing and manufacturing of trim die and draw die, the variety of car panel shapes and the complexity of the structures complicate the problem even more. A lack of consistency in the design may cause weak relationship between the design and manufacturing, and presents difficulties in finding out the errors of designer. Due to these problems, a lot of time and resources are wasted. [1]In spite of the variety and the complexity of the car panel structure, some consistencies can be found in the rules, knowledge and the methods of design, although they are redundant sometimes. [2-3]Hence, it is helpful to develop a design supporting system for trim die and draw die. The design supporting system can be developed by systematically converting the regulation of the design characteristics and the know-how’s of design specialists into the decision rules and knowledge bases. [4]2 The Current Design ProcessSince the dies are essential tools in manufacturing the body panel of an automobile,the design processes and the process plans of the dies determine the cost, quality,processing time and even the safety factors. [5]In the stamping process many kinds of dies such as draw dies, trim dies, flange dies, cam dies, flanking and piercing dies and progressive dies are used. Among them the trim dies are used in the shear forming pressing process which cuts and removes the panel material by the force of fracture made with cast iron or steel die. [1] The main functions of the trim die are as follows: 1) trimming to cut the boundary of a body panel, 2) removing the scraps, 3) piercing to make holes on a body panel.Until now, these three processes were performed manually due to the complexity of rules to determine various design variables even if the designers are experts of commercial CAD system. They use approximate work-piece sizes and tentative methods, and relied on past experience to layout the die sets. Also the resulting designs are prone to errors since it is difficult to figure out 3D free surface from the 2D draft and it is very complicated task to calculate the angles of normal and tangent vectors of the trim line and the heights of the inner shapes. To facilitate the die design process and perform the above three processes in a single step a design supporting system is proposed.The draw die process is to force the flat blank into a cavity of the required shape, and at the same time to confine the metal between the drawing surfaces which is forced to change its form from a flat blank to the desired shape. This process is dependent on the thickness of the metal, depth of the draw, and height of the flange to be formed.Specification of the die for a particular application must be governed by the engineer who has sufficient experience and knowledge about the operation and construction of the various die shapes. In the designing process of draw dies, the designer examines whether the panel geometry data has defects or not. If there is a defect, it should be rearranged. After this process, the designer points out the punch profile and blank curve among the surfaces and curves which consists the geometry of the panel.The first step is to determine die face, offset line, design of wear plate, block lifter and gauge. Next important step is to determine the size and layout of die set. [1] Finally, several components such as balance block, cushion pin, and rib, etc. are designed.3 Development of Design Supporting System for Press DieIn developing the design supporting system the following criteria must be satisfied. First, the design process should be carried out according to the standardized design work flow. Second, the design variables are determined by the rules of design processes. Third, the complex geometry can be checked automatically.For embodiment, the design rule base is programmed using CATGEO, CATMSP in the CATIA version 4.2.1. [13] The program is developed on IBM RS/6000 with C++ and IUA for GUI. The design rules and knowledge are collected by the interviews of design specialists in the press engineering department of H Motor Company.The configuration of the system is presented in Figure 1.3.1 The Structure of the Design Supporting System for Press DieThe design supporting system for trim die and draw die design consists of the user interface module, the design process module, and the rule-base module. The user interface module helps users to design the press die easier and faster. The design process module controls the input data and the data generated at a design stage so that they can be stored or retrieved systematically. The rule-base module helps representing the know-how of design specialists and design rules of the automotive industry. The structure of the developed system is shown in Figure 2. [6]The proposed system enables the design process to be dialogical one and checks the errors in user input to prevent a failed design. Hence, the system can be used as an error checking tool as well asdesign tool.3.2 Representation of the Design RulesWhen designing a panel with prismatic shapes and complicated structure, the resulting design tends to be different from the original design or even faulty even if the same design conditions and design processes are applied. However, no one can clear out the reason due to the inherent complexity of design rules and structure. [6-7] Therefore, it is important to establish robust design system which can give us consistent results especially when designing and manufacturing complex products.To establish robust design system it is necessary to standardize the design process by extracting the design methods and rules through the careful analysis of design processes and variety of special features included in the design process. [8]In developing the press die design system, the design processes and the design rules are standardized by gathering information and know-how from the specialists and then storing them in a database to retrieve the information whenever necessary. [4] The design rules are implemented in three groups:1) Historic Rule:general design knowledge, features of design method for each component, selection of die type, selection of material for each component accordingto the shapes, maximum (or minimum) size of each component, location of each block, bolt location and the number of jig parts in each component, positioning dimension, the number and designing position of reinforcing rigs, etc.2) Heuristic Rule: includes design method and know-how of the design specialists, location of each component in trim line and draw die shape, position decision factor, prohibition section of component separation, machining margin, method of pierce separating, width margin of scrap cutter, location of block, etc.3) Procedure Rule:calculation of dimension according to the design formulation, design rule, mutual relation between the comp onent’s height and width, separation length between eachcomponent, calculation of height between each component, etc.The proposed design system has many advantages: The designer dependency can be reduced by saving the special know-how and experiences related to the design. The new design of an object is corresponded quickly by storing the past design rules in the rule base. [9] Also, modification and maintenance can be done easily.3.3 The Process of Design Shape in Trim Die DesignTo design a block in the quadratic domain the position and dimension of the block are determined by the face surface of the product included in the block feature using the enumerating method implemented in the design rule base.The dimension of a block is determined in the sequence of width, height, and length after the designer sets the check gap of height in the shape.When the designer decides the trim line and the start point, the positions of the blocks and the block widths are determined first. The positions and widths of the blocks can be calculated by dividing the trim line into equal parts by the check intervals determined with several rules. Then the block heights bounded by the maximum heights (obtained by the shape checking routine) are calculated so as to minimize the machining volumes. Finally, the length of the block is determined using the width and the height of each block considering the size tolerance and weight of each block.The system stores shapes and parameters of the resulting design as a feature information in the database so that the system can extract those information in case of designing a trim die with similar shapes and parameters. [10-11]3.4 The Process of Design Shape in Draw Die DesignThe next step is to arrange the block using grid line in 2D according to the design rules as mentioned before, and to select rule-base data management method in order to decide the draw die type by die size and body panel shape.There are four major functions in draw die design system. They are 1) selection of components and their dimension and shapes from standard database, 2) determination of layout position, 3) construction of the relations among the components and geometries, and 4) modification of the parts and die size from the past design. These programs cover four different types of draw dies; three single action type (transfer, tandem, and cross bar) and one double action type.Before deciding the height of components feature, user must decide shape checking interval of draw die in the product surface feature and divide surface shape and height of draw die according to the selected checking interval. Positioning of each component is decided by this divided point and an intersecting point on 2-dimensional die shape.The feature information of each components generated as a result of design and design parameters are stored in database and the system can retrieve the data in case of designing draw die with similar features and parameters to save time repeating the same design work. [10-11]3.5 Display of Design InformationThe proposed system controls product design process in a viewpoint of design administrator and provide 2D user-interface to support the detailed concept design with automatic 3D component calculation. Moreover, the system can provide user-friendly interface with graphics and charts and check design error caused by blunders in design step.The system shows the design rules and design methods on the system-display panel and they can be corrected automatically using the built-in tool which can induce design data control module with design-object, design process and user-interface. [10-11]Also the shape and size of the designed block are illustrated as a 3D shape with the material table that includes all the necessary information in the design and production step so that the design results can be passed directly to the production step.4 An ExampleIn this section, an example is presented to demonstrate the effectiveness of the “Design supporting system for press die” using the solid model of a panel in CATIAFig. 3. The shape of Quarter outer panel as input modelFig. 4. Height definition of panel using “CHECK” menuFig. 5. 2D shape of designed trimming blockFig. 6. 3D solid shape of designed trimming blockenvironment. [13-15] The selected model is the "quarter outer panel" of an automobile,which is designed and produced at the H motor company.The feature windows displayed during the execution of the proposed system are illustrated in Figure 3 through Figure 6. Also the materials table created after the final design is shown in Table 1. The materials table is automatically created with the name of “PARTLIST”.The design of draw die includes a lot of variables depending on the design conditions and much of the design process is not standardized yet. This makes the designer to select a particular method in the design process sometimes.Figure 7 shows the feature windows, showing automated execution of draw die design with double action among the press die design process.Table 1. Part-list output of designed trimming blockFig. 7. Top view of drawing for upper die using double action5 ConclusionIn this paper, a design supporting system for press die is developed. The main featuresof the developed system are as follows:1) The number of errors due to the complexity of geometry can be reduced and prevented. Also design accuracy is improved by managing geometrical data mathematically.2) The feature information of a design can be used as manufacturing information such as orders for raw materials. This can shorten the time for designing and manufacturing.3) Beginners can design dies by modifying the design rules and the design knowledge standardizes simple operations and the design process for the specialists. Furthermore, a domestic design system fits to domestic conditions. [13-15]4) Since information of the design feature is represented in a 3D solid feature, it takes enormous memory and handling time.5) The knowledge and design rules are not perfect. Thus, some of them are not considered in the design process.Although the proposed design system has some drawbacks and is not perfect, the design system improves accuracy and saves the time for calculating the complex geometry data of inner shape in the shape gauge compared to the manual method. [4][6]In addition, the information generated in design stage is passed to manufacturing stage so that the efficiency of production is improved. The developed system is currently used for the trim die anddraw die design process in the press department of the H motor company.References1. Jeong, H.Y.: A Fundamental of Press Die Design. Press Engineering Department of Hyundai Motor Co. (1996)2. Durkin, J.: Expert Systems - Design and Development. Prentice Hall In t’l, Inc. (1994)3. Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M. and Gero, J.S.: Knowledge- based Design Systems. Addison-Wesley Publishing Co. (1989)4. Batini, C., Ceri, S. and Navathe, S.B.: Conceptual Database Design. The Benjamin/ Cummings Publishing Co. (1992)5. Serrano, D. and Gossard, D.C.: Tools and Techniques for Conceptual Design. In: Tong, C. and Sriram, D.(ed.): Artificial Intelligence in Engineering Design. Academic Press Inc.(1992)6. Cha, J.H. and Yokoyama, M.: A Knowledge-Based System for Mechanical CAD. Proc. ICED’95 (1995) 1382-13867. Jee, H.S., Kim, T.S. and Lee, S.J.: A Standard Feature Based Mold Design System for CAD/CAPP Interface. Proc. 7th IFAC Symposium on INCOM’92 (1992) 152-1578. Lee, S.J., Lee, S.S., Kim, J.H. and Kwon, Y.J.: Development of Automated Generation Algorithm for Skipped Surface in Die Design. Proc. Int. Conf. Computational Science and Its Applications (ICCSA2006). LNCS 3984 (Part V) (2006) 503-5119. Research of a CAD System of Drawing Die Based on Software Engineering. Mechanical Science and Technology 23(6) (2004) 720-72210. Corbett, J., Dooner, M., Meleka, J. and Pym, C.: Design for Manufacture. Addison-Wesley Publishing Co. (1991)11. Jeoung, H.S., Lee, S.S.: Automatic Design Supporting System for Automobile Stamping Tool. Journal of the Korean Society of Precision Engineering 19(8) (2002) 1225-907112. Park, C.H. and Lee, S.S: A Design of Press Die Components by Use of 3D CAD Library. Transactions of the Society of CAD/CAM Engineers 9(4) (2004) 373-38113. CAD Software: CA TIA-Mold and Die Machining Assistant. Dassault System Co. (1996)14. CAD Software: Computer Aided Die Engineering (CADE). Kelton Graphics Co. (1996)15. CAD Software: devis-V AMOS. Debis Systemhaus Industrie (1994)汽车覆盖件冲压模辅助设计系统的开发Sang-Jun Lee1, Keun-Sang Park2, Jong-Hwa Kim3, and Seoung-Soo Lee31 Dept. of Automobile, Dongeui Institute of Technology, Busan, South Korealeesj@dit.ac.kr2 Dept. of Industrial Engineering, Konkuk University, Seoul, South Koreaergpark@konkuk.ac.kr3 CAESIT, Konkuk University, Seoul, South Koreajhkim@konkuk.ac.kr,sslee@konkuk.ac.kr摘要:本篇论文主要介绍了汽车覆盖件冲压模辅助设计系统的开发。

相关文档
最新文档