互感和自感课件
合集下载
电工学自感互感ppt课件
分。
变压器
在交流电路中,电感元件可以组 成变压器,实现电压和电流的变
换,以及电气隔离。
无功补偿
在交流电网中,电感元件可以用 于无功补偿,提高电网的功率因
数,改善电能质量。
电感元件在滤波电路中的应用
低通滤波器
电感与电容元件可以组成低通滤波器,允许低频信号通过,抑制 高频信号。
高通滤波器
利用电感元件,可以组成高通滤波器,用于消除低频噪声,提取高 频信号。
电工学自感互感ppt课件
• 自感现象 • 互感现象 • 电感元件的特性 • 电感元件的应用 • 自感和互感的实验研究
01 自感现象
自感现象的定义
自感现象
当一个线圈中的电流发生变化时 ,会在自身产生一个感应电动势 ,阻碍电流的变化,这种现象称 为自感现象。
产生原因
由于磁场的变化导致线圈中的磁 通量发生变化,从而产生感应电 动势。
03 电感元件的特性
电感元件的电压电流关系
总结词
电感元件的电压和电流之间存在相位差,即电压超前电流90 度。
详细描述
当交流电通过电感元件时,由于磁场的变化,会产生感应电 动势,这个电动势会阻碍电流的变化。因此,电感元件的电 压和电流之间存在相位差,即电压超前电流90度。
电感元件的功率损耗
总结词
带通滤波器与带阻滤波器
通过调整电感与电容的参数,还可以实现带通或带阻滤波,允许或 抑制特定频段的信号通过。
电感元件在谐振电路中的应用
1 2 3
串联谐振
在串联谐振电路中,电感与电容的阻抗相互抵消 ,使得整个电路呈现纯阻性。此时,电流最大, 而电压与电阻成正比。
并联谐振
在并联谐振电路中,电感与电容的电流相互抵消 ,总电流为零。此时,电压最大,而电流与电阻 成正比。
变压器
在交流电路中,电感元件可以组 成变压器,实现电压和电流的变
换,以及电气隔离。
无功补偿
在交流电网中,电感元件可以用 于无功补偿,提高电网的功率因
数,改善电能质量。
电感元件在滤波电路中的应用
低通滤波器
电感与电容元件可以组成低通滤波器,允许低频信号通过,抑制 高频信号。
高通滤波器
利用电感元件,可以组成高通滤波器,用于消除低频噪声,提取高 频信号。
电工学自感互感ppt课件
• 自感现象 • 互感现象 • 电感元件的特性 • 电感元件的应用 • 自感和互感的实验研究
01 自感现象
自感现象的定义
自感现象
当一个线圈中的电流发生变化时 ,会在自身产生一个感应电动势 ,阻碍电流的变化,这种现象称 为自感现象。
产生原因
由于磁场的变化导致线圈中的磁 通量发生变化,从而产生感应电 动势。
03 电感元件的特性
电感元件的电压电流关系
总结词
电感元件的电压和电流之间存在相位差,即电压超前电流90 度。
详细描述
当交流电通过电感元件时,由于磁场的变化,会产生感应电 动势,这个电动势会阻碍电流的变化。因此,电感元件的电 压和电流之间存在相位差,即电压超前电流90度。
电感元件的功率损耗
总结词
带通滤波器与带阻滤波器
通过调整电感与电容的参数,还可以实现带通或带阻滤波,允许或 抑制特定频段的信号通过。
电感元件在谐振电路中的应用
1 2 3
串联谐振
在串联谐振电路中,电感与电容的阻抗相互抵消 ,使得整个电路呈现纯阻性。此时,电流最大, 而电压与电阻成正比。
并联谐振
在并联谐振电路中,电感与电容的电流相互抵消 ,总电流为零。此时,电压最大,而电流与电阻 成正比。
《自感与互感》课件
理解电感在交流电路中的重要 作用
互感耦合器
深入了解互感耦合器的工作原 理和应用
总结
1 基本概念
自感和互感的定义及其关系
3 应用场景比较
了解自感和互感在不同领域的应用区别
2 电路中的应用
自感和互感在电路设计中的实际应用
4 对电路理解的帮助
掌握自感和互感对电路行为的影响
《自感与互感》PPT课件
自感与互感 简介 本课程将深入介绍自感与互感的概念及其在电路中的应用。学习本课程后, 你将全面理解自感和互感的关系以及它们在电路中的作用。
自感
1
概念- 自感的定义源自- 自感的单位- 自感的计算公式
2
特性
- 自感电压的方向
- 自感对电流的影响
- 自感对变化速率的影响
互感
概念
- 互感的定义 - 互感的单位 - 互感的计算公式
特性
- 互感电压的方向 - 互感对电流的影响 - 互感对变化速率的影响
自感与互感的关系
定义比较
自感和互感的区别及共性
数学表达式比较
自感和互感在电路方程中的 表示方法
应用场景比较
自感和互感在不同领域中的 具体应用
自感和互感在电路中的应用
电感器与感性元件
学习如何使用电感器和感性元 件构建电路
交流电路中的电感
互感耦合器
深入了解互感耦合器的工作原 理和应用
总结
1 基本概念
自感和互感的定义及其关系
3 应用场景比较
了解自感和互感在不同领域的应用区别
2 电路中的应用
自感和互感在电路设计中的实际应用
4 对电路理解的帮助
掌握自感和互感对电路行为的影响
《自感与互感》PPT课件
自感与互感 简介 本课程将深入介绍自感与互感的概念及其在电路中的应用。学习本课程后, 你将全面理解自感和互感的关系以及它们在电路中的作用。
自感
1
概念- 自感的定义源自- 自感的单位- 自感的计算公式
2
特性
- 自感电压的方向
- 自感对电流的影响
- 自感对变化速率的影响
互感
概念
- 互感的定义 - 互感的单位 - 互感的计算公式
特性
- 互感电压的方向 - 互感对电流的影响 - 互感对变化速率的影响
自感与互感的关系
定义比较
自感和互感的区别及共性
数学表达式比较
自感和互感在电路方程中的 表示方法
应用场景比较
自感和互感在不同领域中的 具体应用
自感和互感在电路中的应用
电感器与感性元件
学习如何使用电感器和感性元 件构建电路
交流电路中的电感
互感和自感-PPT课件
5
再思考
断电自感中 A在熄灭前一定会 闪亮一下吗?
6
思考与讨论
自感电动势的大小与什么因素有关? 对同一个线圈:穿过线圈的磁通量变化的快 慢跟电流变化快慢有关系。
E∝△I/△t 对不同的线圈:电流变化快慢相同的情况下, 产生的自感电动势是不相同的
7
自感系数
自感电动势 E 与线圈本身的特性有关 ——用自感系数L来表示线圈的这种特性. 自感系数简称自感或是电感.跟线圈的
互感和自感
问题: 发生电磁感应现象、产生感应电动
势的条件是什么?如何满足此条件? 如果通过线圈本身的电流有变化,
使它里面的磁通量改变,能不能产生电 动势?
1
实验探究——通电自感
用图1电路作演示实验。 A1和A2是规格相同的两个灯泡.合上开关K,调 节R1,使A1和A2亮度相同,再调节R2,使A1和 A2正常发光,然后打开K再合上开关K的瞬间, 同学们看到了什么?(实验要反复几次) 现象:A2比A1先亮.
2
实验探究——断电自感
用图2电路作演示实验. 合上开关K,调节R使A正常发光.打开K的 瞬间,同学们看到了什么?(实验要反复 几次)
现象:A在熄灭前闪 亮一下.
3
分析与讨论
实验(1)和实验(2)中的两种现象
现象:A2比A1先亮.
现象:A在熄灭前闪 亮一下.
4自Leabharlann 现象当导体中的电流发生变化时,导体本身 就产生感应电动势,这个电动势总是阻碍导 体中原来电流的变化.像这种由于导体本身 的电流发生变化而产生的电磁感应现象叫做 自感现象,在自感现象中产生的感应电动势, 叫做自感电动势.
三、自感现象的应用---日光灯的工作原理
归纳出日光灯的工作过程 通电——启动器氖气放电——U形触片受热膨胀——接通镇流
再思考
断电自感中 A在熄灭前一定会 闪亮一下吗?
6
思考与讨论
自感电动势的大小与什么因素有关? 对同一个线圈:穿过线圈的磁通量变化的快 慢跟电流变化快慢有关系。
E∝△I/△t 对不同的线圈:电流变化快慢相同的情况下, 产生的自感电动势是不相同的
7
自感系数
自感电动势 E 与线圈本身的特性有关 ——用自感系数L来表示线圈的这种特性. 自感系数简称自感或是电感.跟线圈的
互感和自感
问题: 发生电磁感应现象、产生感应电动
势的条件是什么?如何满足此条件? 如果通过线圈本身的电流有变化,
使它里面的磁通量改变,能不能产生电 动势?
1
实验探究——通电自感
用图1电路作演示实验。 A1和A2是规格相同的两个灯泡.合上开关K,调 节R1,使A1和A2亮度相同,再调节R2,使A1和 A2正常发光,然后打开K再合上开关K的瞬间, 同学们看到了什么?(实验要反复几次) 现象:A2比A1先亮.
2
实验探究——断电自感
用图2电路作演示实验. 合上开关K,调节R使A正常发光.打开K的 瞬间,同学们看到了什么?(实验要反复 几次)
现象:A在熄灭前闪 亮一下.
3
分析与讨论
实验(1)和实验(2)中的两种现象
现象:A2比A1先亮.
现象:A在熄灭前闪 亮一下.
4自Leabharlann 现象当导体中的电流发生变化时,导体本身 就产生感应电动势,这个电动势总是阻碍导 体中原来电流的变化.像这种由于导体本身 的电流发生变化而产生的电磁感应现象叫做 自感现象,在自感现象中产生的感应电动势, 叫做自感电动势.
三、自感现象的应用---日光灯的工作原理
归纳出日光灯的工作过程 通电——启动器氖气放电——U形触片受热膨胀——接通镇流
自感和互感 课件
洛仑兹力与动生电动势 1、动生电动势:磁场不变,由导体运动引起磁通量的变化而产生的感应电动势 2、产生机理: 问题1:自由电荷会随着导线棒运动,并因此受到洛伦兹力,导体中自由电荷的合运动在空间大致沿什么方向运动?(为正电荷) 由左手定则可知,自由电荷将受到由C到D的力,所以自由电荷沿导线向下运动
互感和自感
一、感应电场与感生电动势 1、感应电场:变化的磁场在其周围空间激发的电场称为感应电场 特征:由于磁场的强弱变化,闭合电路中产生了感应电流,电路中的自由电荷是在感应电场作用下定向移动的,即由于感应电场的变化,在电路中形成了感应磁场,感应电场为涡旋电场。 注:静止的电荷激发的电场叫静电场,静电场电场线是由正电荷出发,终于负电荷,电场线是不闭合的,而感应电场是一种涡旋电场,电场线是闭合的。
R A2
S R1
实验二: 1、把灯泡A和带铁芯 的线圈L并联在直流电路中。 2、接通电路,待灯泡正常发光,断开电路。
A
L
S
实验1
A1、A2 使用规格完全一样的灯泡。 闭合电键S,调节变阻器 R 和 R1 ,使A1、 A2亮度相同且正常发光. 然后断开开关S。 重新闭合S,观察到什么现象?
反馈训练 1、实验一中,当电键闭合后,通过灯泡A1的电流随时间变化的图像为 图;通过灯泡A2的电流随时间变化的图像为 图。
I
t
I
t
I
t
I
t
A B C D
C
A
L A1
灯泡A2立刻正常发光, 跟线圈L串联的灯泡A1逐渐亮起来。
电路接通时,电流由零开始增加,穿过线圈L的磁通量逐渐增加,L中产生的感应电动势的方向与原来的电流方向相反,阻碍L中电流增加,即推迟了电流达到正常值的时间。
互感和自感 课件
1.对互感现象的理解 (1)互感现象是一种常见的电磁感应现象,它不仅 发生于绕在同一铁芯上的两个线圈之间,而且可以发生 于任何相互靠近的电路之间。 (2)互感现象可以把能量由一个电路传到另一个电路。 变压器就是利用互感现象制成的。 (3)在电力工程和电子电路中,互感现象有时会影响 电路的正常工作,这时要求设法减小电路间的互感。
2.对自感现象的理解 (1)对自感现象的理解: 自感现象是一种电磁感应现象,遵守法拉第电磁感应 定律和楞次定律。 (2)对自感电动势的理解: ①产生原因: 通过线圈的电流发生变化,导致穿过线圈的磁通量发 生变化,因而在原线圈上产生感应电动势。
②自感电动势的方向: 当原电流增大时,自感电动势的方向与原电流方向相 反;当原电流减小时,自感电动势方向与原电流方向相同 (即:增反减同)。 ③自感电动势的作用: 阻碍原电流的变化,而不是阻止,原电流仍在变化, 只是使原电流的变化时间变长,即总是起着推迟电流变化 的作用。
体开始放电,于是日光灯管成为电流的通路开始发光。启 动器相当于一个自动开关。日光灯正常工作后处于断开状 态,启动器损坏的情况下可将连接启动器的两个线头作一 个短暂接触也可把日光灯启动。启动时电流流经途径是镇 流器、启动器、灯丝,启动后电流流经途径是镇流器、灯 丝、日光灯管。
4.日光灯正常工作时镇流器的作用 由于日光灯使用的是交流电源,电流的大小和方向做 周期性变化。当交流电的大小增大时,镇流器上的自感电 动势阻碍原电流增大,自感电动势与原电压反向;当交流 电的大小减小时,镇流器上的自感电动势阻碍原电流减小, 自感电动势与原电压同向。可见镇流器的自感电动势总是 阻碍电流的变化,正常工作时镇流器就起着降压、限流的 作用。
2.自感现象的分析思路 (1)明确通过自感线圈的电流的变化情况(增大还是减小)。 (2)根据楞次定律,判断自感电动势方向。 (3)分析线圈中电流变化情况,电流增强时(如通电时), 由于自感电动势方向与原电流方向相反,阻碍电流增加,因此 电流逐渐增大;电流减小时(如断电时),线圈中电流逐渐减小。
《互感和自感》课件
互感和自感的相互作用
互感和自感的相互作用
当电流通过一个线圈时,会产生磁场,这个磁 场会影响到周围的线圈。当电流在这些线圈之 间变化时,就会引起它们之间的互感。
利用互感和自感构建电路
互感和自感的相互作用可以用来构建各种电路, 如共振电路、变压器、电感器等。
互感和自感的功率损耗
铜损
线圈中的电流会随着时间变化而导致磁场的变化, 这会在线圈中产生感应电动势,从而产生铜损。
互感和自感的衍生概念及应用
1
互感感应
利用互感关系来产生感应电动势。
高频晶振
2
利用线圈的自感和电容的容抗来构成高
精度的谐振电路。
3
超导体材料
超导体的电学特性很大程度上是由于其 自感的降低和互感的增加。
互感和自感的常见误区
1 互感和感应电动势等同
互感和感应电动势虽然有关联,但并不等同。
2 互感和自感不会相互影响
2 磁场的方向
磁场的方向与电流的方向和线圈的结构有关。
互感和自感的影响因素
1
线圈之间的距离
线圈之间的距离越近,互感系数就越大,自感系数就越小。
2
线圈的结构
线圈的结构和线圈的匝数、长度、直径等因素有关。
3
介质和材料
线圈周围的介质和材料对磁场的分布和影响有很大的影响。
互感和自感的实际应用示例
电力传输
互感和自感之间存在相互作用,互相影响。
互感和自感的未来发展方向
应用拓展
互感和自感技术还有很大的应用空间,尤其是 在新兴领域。
效率提升
提高互感和自感技术的效率,实现能源的更好 转换和利用,对于未来发展至关重要。
互感和自感PPT课件
本课件将为您介绍互感和自感的定义、区别、应用、公式、电路图示、相互 作用、功率损耗、频率响应、实际电路模型、磁场特性、影响因素、实际应 用示例、数据测量及分析、发展历程、发展趋势、应用前景、衍生概念及应 用、常见误区、未来发展方向。让你深入了解互感和自感这一有趣的话题。
互感与自感 课件
及电池内阻均可忽略,S 原来断开,电路中电流 I0=2ER. 现将 S 闭合,于是电路中产生自感电动势,此自感电动 势的作用是( )
A.使电路的电流减小,最后由 I0 减到零 B.有阻碍电流增大的作用,最后电流小于 I0 C.有阻碍电流增大的作用,因而电流总保持不变 D.有阻碍电流增大的作用,但电流还是增大,最后 变为 2I0 解析:开关闭合时,一个电阻被短路,电路总电阻由
答案:BC
知识点二 自感现象
提炼知识
1.自感现象 (1)定义:一个线圈中的电流变化时,它所产生的变 化的磁场在它本身激发出感应电动势的现象. (2)自感电动势:由于自感而产生的感应电动势. (3)通电自感和断电自感:
自感 方式
通电 自感
电路
现象
自感电动 势的作用
接通电源的瞬 阻碍电流
间,灯泡 A1 的增加 较慢亮起来
由于 L1 产生的磁场方向与 L2 产生的磁场的方向相同, 可知 L2 产生的磁场的磁通量是减少的,故 PQ 棒做的是向右 的匀减速运动.C 选项是可能的.若 PQ 棒向左运动,则它 产生的感应电流在 L2 中产生的磁场是向下的,与 L1 产生的 磁场方向是相反的,由楞次定律可知 L2 中的磁场是增强的, 故 PQ 棒做的是向左的匀加速运动.B 选项是可能的.
答案:AD
题后反思 (1)分析通、断电自感灯泡的亮度变化的关键是弄清电 路的连接情况,根据自感线圈的自感电动势的方向进行具体 分析. (2)断电自感时灯泡是否闪亮一下再熄灭的判断方法是 通过比较断电前的线圈的电流和灯泡的电流的大小来确定.
断电 自感
断开开关的瞬 阻碍电流
间,灯泡 A 逐 的减小
渐变暗
2.自感系数
(1)自感电动势的大小. ΔI
A.使电路的电流减小,最后由 I0 减到零 B.有阻碍电流增大的作用,最后电流小于 I0 C.有阻碍电流增大的作用,因而电流总保持不变 D.有阻碍电流增大的作用,但电流还是增大,最后 变为 2I0 解析:开关闭合时,一个电阻被短路,电路总电阻由
答案:BC
知识点二 自感现象
提炼知识
1.自感现象 (1)定义:一个线圈中的电流变化时,它所产生的变 化的磁场在它本身激发出感应电动势的现象. (2)自感电动势:由于自感而产生的感应电动势. (3)通电自感和断电自感:
自感 方式
通电 自感
电路
现象
自感电动 势的作用
接通电源的瞬 阻碍电流
间,灯泡 A1 的增加 较慢亮起来
由于 L1 产生的磁场方向与 L2 产生的磁场的方向相同, 可知 L2 产生的磁场的磁通量是减少的,故 PQ 棒做的是向右 的匀减速运动.C 选项是可能的.若 PQ 棒向左运动,则它 产生的感应电流在 L2 中产生的磁场是向下的,与 L1 产生的 磁场方向是相反的,由楞次定律可知 L2 中的磁场是增强的, 故 PQ 棒做的是向左的匀加速运动.B 选项是可能的.
答案:AD
题后反思 (1)分析通、断电自感灯泡的亮度变化的关键是弄清电 路的连接情况,根据自感线圈的自感电动势的方向进行具体 分析. (2)断电自感时灯泡是否闪亮一下再熄灭的判断方法是 通过比较断电前的线圈的电流和灯泡的电流的大小来确定.
断电 自感
断开开关的瞬 阻碍电流
间,灯泡 A 逐 的减小
渐变暗
2.自感系数
(1)自感电动势的大小. ΔI
互感和自感(PPT课件)
10.7 互感与自感
问题引入 互感 变压器 感应圈 自感现象 自感系数
问题引入
我国的市电是电压为220V、频率为50Hz的交变电流, 但发电厂要先用升压变压器将电压升高后再向远距离的用 户输送,到了目的地之后,必须再用降压变压器将电压降 到220V再输送给用户。那末,你知道变压器是怎样升压和 降压的吗?
180
例2 一个线圈的电流在0.01s内变化了0.5 A,所产生
的自感电动势为20V,求线圈的自感系数?
解:由自感电动势公式
EL
L
I t
得
L
EL
t I
20
0.01 0.5
H
0.4
H
练习
1. 有一个线圈,它的自感系数是0.6 H,当通过它的
电流在0.01s 内由0.5 A增加到2.0 A时,求线圈中产生的自
实验证明:变压器
原、副线圈两端的电压
跟它们的匝数成正比,
即:
U1 n1 U 2 n2
2. 变压器的种类
(1)升压变压器:n2>n1,U2>U1 。 (2)降压变压器: n2<n1,U2<U1 。 3. 电流与匝数的关系
变压器工作的时候,原线圈输入的功率除少量的热损
耗外,大部分从副线圈输出。由于热损耗功率一般很小
,所以,可近似认为变压器副线圈输出的功率等于原线
圈输入的电功率,即 I2U2。 I1U1
I1 I2
U2 U1
n2 n1
I1 n2 I2 n1
可见,变压器原、副线圈的电流I1、I2跟变压器原、
副线圈的匝数成反比。
三、感应圈 1. 感应圈的作用 是一种特殊形式的升压变压器。 2. 感应圈的结构 3. 感应圈的工作原理
一、互感 定义 由于一个线圈中的电流变化,而使邻近另 一 个线圈中产生感应电动势的现象,叫做互感。
问题引入 互感 变压器 感应圈 自感现象 自感系数
问题引入
我国的市电是电压为220V、频率为50Hz的交变电流, 但发电厂要先用升压变压器将电压升高后再向远距离的用 户输送,到了目的地之后,必须再用降压变压器将电压降 到220V再输送给用户。那末,你知道变压器是怎样升压和 降压的吗?
180
例2 一个线圈的电流在0.01s内变化了0.5 A,所产生
的自感电动势为20V,求线圈的自感系数?
解:由自感电动势公式
EL
L
I t
得
L
EL
t I
20
0.01 0.5
H
0.4
H
练习
1. 有一个线圈,它的自感系数是0.6 H,当通过它的
电流在0.01s 内由0.5 A增加到2.0 A时,求线圈中产生的自
实验证明:变压器
原、副线圈两端的电压
跟它们的匝数成正比,
即:
U1 n1 U 2 n2
2. 变压器的种类
(1)升压变压器:n2>n1,U2>U1 。 (2)降压变压器: n2<n1,U2<U1 。 3. 电流与匝数的关系
变压器工作的时候,原线圈输入的功率除少量的热损
耗外,大部分从副线圈输出。由于热损耗功率一般很小
,所以,可近似认为变压器副线圈输出的功率等于原线
圈输入的电功率,即 I2U2。 I1U1
I1 I2
U2 U1
n2 n1
I1 n2 I2 n1
可见,变压器原、副线圈的电流I1、I2跟变压器原、
副线圈的匝数成反比。
三、感应圈 1. 感应圈的作用 是一种特殊形式的升压变压器。 2. 感应圈的结构 3. 感应圈的工作原理
一、互感 定义 由于一个线圈中的电流变化,而使邻近另 一 个线圈中产生感应电动势的现象,叫做互感。
《自感和互感》课件
互感系数:描述互感现象的强 弱,与线圈之间的距离、形状、 材料等因素有关
互感现象:两个或多个线圈之 间通过电磁感应产生的相互影 响
应用:变压器、电感器、电 磁感应加热等
互感现象的影响:可能导致电 路参数变化,影响电路性能和
稳定性
线圈绕组结构:线圈绕组的形状、大小、位置等 线圈材料:线圈的材质、电阻率、磁导率等 线圈电流:线圈中的电流大小、方向、频率等 线圈间距:线圈之间的距离、角度等 线圈环境:温度、湿度、磁场等外部环境因素
线圈形状:线圈的形状和尺寸对自感系数有重要影响 线圈材料:线圈的材料和导电性能对自感系数有影响 线圈匝数:线圈的匝数越多,自感系数越大 线圈放置方式:线圈放置方式对自感系数有影响,如垂直放置、水平放置等 线圈周围环境:线圈周围环境的磁场、温度等对自感系数有影响
自感系数与线圈的匝数、形 状、尺寸、材料等因素有关
互感系数是描述两个线圈之间电磁感应关系的物理量
互感系数的大小与线圈的几何形状、尺寸、材料和位置有关
互感系数的正负号表示两个线圈之间的磁通方向是否相同
互感系数的物理意义在于描述两个线圈之间的电磁感应关系,对于电磁感应现象的研究和应 用具有重要意义。
自感和互感的应用
电流测量:通过自感 现象测量电流大小
感谢您的观看
汇报人:
自感和互感
汇报人:
目录
自感
Байду номын сангаас
互感
自感和互感的应用
自感和互感的区别 与联系
自感
自感是指线圈自身电流变化引起的电磁感应现象
自感现象产生的原因是线圈中的电流变化导致磁场变化,从而产生感应电动势
自感现象在电路中表现为线圈两端的电压变化 自感现象在电磁学中具有重要的应用价值,如电感器、变压器等设备
互感和自感精品课件
动势的方向与原来的电流方向相反,阻碍
L中电流增加,即推迟了电流达到正常值
的时间。
演示2
断电 论:P23
断 电 自 感
.
要 闪 亮 一 下 才 熄 灭
为 什 么 灯 不 是 立 即
熄
灭
,
而
再看一遍
.
现象分析
二、自感现象
1.由于导体本身的电流发生变化而产生的电磁 感应现象,叫自感现象。
第五章《电磁感应》
第六节 《互感和自感》
.
线圈L1
线圈L2
P G
G D
A
B
S
.
一、互感现象
1、定义:当一个线圈中电流变化,在另一个线 圈中产生感应电动势的现象,称为互感。互 感现象中产生的感应电动势,称为互感电动 势。 2、本质:一种电磁感应现象
.
3、应用:利用互感现象可以把能量从一个线圈传
递到另一个线圈,因此在电工技术和电子技术中有 广泛应用。变压器就是利用互感现象制成的。
2.自感现象中产生的电动势叫自感电动势。 自感电动势的作用:阻碍导体中原来的电流
变化。 注意:“阻碍”不是“阻止”,电流原来怎
么变化还是怎么变,只是变化变慢了,即对电 流的变化起延迟作用。
.
3.自感电动势的方向
导体电流增加时,阻碍电流增加,此 时自感电动势方向与原电流方向相反; 导体电流减小时,阻碍电流减小,此时 自感电动势方向与原电流方向相同。
2、由于导体本身的电流发生变化而产生的电磁感应 现象,叫自感现象。
3、自感现象中产生的电动势叫自感电动势。
(1)自感电动势的作用:阻碍导体中原来的电流变
化。 (2)自感电动势大小:
E L I t
4、自感系数L:与线圈的大小、形状、圈数及有无 铁心有关
L中电流增加,即推迟了电流达到正常值
的时间。
演示2
断电 论:P23
断 电 自 感
.
要 闪 亮 一 下 才 熄 灭
为 什 么 灯 不 是 立 即
熄
灭
,
而
再看一遍
.
现象分析
二、自感现象
1.由于导体本身的电流发生变化而产生的电磁 感应现象,叫自感现象。
第五章《电磁感应》
第六节 《互感和自感》
.
线圈L1
线圈L2
P G
G D
A
B
S
.
一、互感现象
1、定义:当一个线圈中电流变化,在另一个线 圈中产生感应电动势的现象,称为互感。互 感现象中产生的感应电动势,称为互感电动 势。 2、本质:一种电磁感应现象
.
3、应用:利用互感现象可以把能量从一个线圈传
递到另一个线圈,因此在电工技术和电子技术中有 广泛应用。变压器就是利用互感现象制成的。
2.自感现象中产生的电动势叫自感电动势。 自感电动势的作用:阻碍导体中原来的电流
变化。 注意:“阻碍”不是“阻止”,电流原来怎
么变化还是怎么变,只是变化变慢了,即对电 流的变化起延迟作用。
.
3.自感电动势的方向
导体电流增加时,阻碍电流增加,此 时自感电动势方向与原电流方向相反; 导体电流减小时,阻碍电流减小,此时 自感电动势方向与原电流方向相同。
2、由于导体本身的电流发生变化而产生的电磁感应 现象,叫自感现象。
3、自感现象中产生的电动势叫自感电动势。
(1)自感电动势的作用:阻碍导体中原来的电流变
化。 (2)自感电动势大小:
E L I t
4、自感系数L:与线圈的大小、形状、圈数及有无 铁心有关
互感和自感课件
电流减小时,自感线圈中电流大小一定小于原先所通电 流大小,自感电动势可能大于原电源电动势.
如图 4-6-3 所示的电路中,三个相同的灯泡 a、b、c
和电感 L1、L2 与直流电源连接,电感的电阻忽略不计.电键 S 从闭合状态突然断开时,下列判断正确的有( )
A.a 先变亮,然后逐渐变暗
B.b 先变亮,然后逐渐变暗
【答案】 AD
综合解题方略——有线圈电路的分析方法
如图 4-6-5 甲、乙电路中,电阻 R 和电感线 圈 L 的电阻都很小.接通 S,使电路达到稳定,灯泡 A 发光, 则( )
甲
乙
图 4-6-5
A.在电路甲中,断开 S,A 将渐渐变暗 B.在电路甲中,断开 S,A 将先变得更亮,然后渐渐变 暗 C.在电路乙中,断开 S,A 将渐渐变暗 D.在电路乙中,断开 S,A 将先变得更亮,然后渐渐变 暗 【规范解答】 甲图中,电灯 A 与电感线圈 L 在同一个 支路中,流过的电流相同,断开开关 S 时,线圈 L 中的自感 电动势要维持原电流不变,所以,开关断开的瞬间,电灯 A 的电流不变,以后电流渐渐变小.
自感系数和磁场的能量
1.基本知识 (1)自感系数 ①自感电动势的大小 E= LΔΔIt ,其中 L 是自感系数,简称自感或电感. 单位:亨利,符号: H . ②决定线圈自感系数大小的因素 线圈的 大小 、 形状 、圈数 ,以及是否有铁芯等.
(2)磁场的能量 ①线圈中电流从无到有时,磁场从无到有,电源的能量 输送给 线圈 ,储存在 磁场 中. ②线圈中电流减小时, 线圈 中的能量释放出来转化为 电能.
B.I1 开始很小而后逐渐变大
C.I2 开始很小而后逐渐变大 D.I2 开始较大而后逐渐变小
图 4-6-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一致?
4、开关断开后,通过灯泡的感应电流是否有可能比原来的电流更
大,为了使实验的效果更明显,对线圈L应该有什么要求?
二、自感现象
1.自感现象 讨论:在如图所示的电路中,当开关S断 开瞬间,灯泡A是否会更亮一下?更亮一
下的条件是什么? 设A、L两端电压为U。
①若RA>RL,有IA<IL,在断开开关的瞬间,通过灯泡的电流 会瞬时增大,灯泡会更亮一下。 ②若RA≤RL,有IA≥IL,断开开关后,通过灯泡的电流减小,灯 泡不会更亮一下。
会过一段时间才熄灭。
二、自感现象
1.自感现象 思考与讨论: 1、电源断开时,通过L的电流会减小,这 时会出现感应电动势。感应电动势的作用 是使L中的电流减小得更快些还是更慢些?
2、产生感应电动势的线圈可以看做是一个电源,它能向外供电。
由于开关已断开,线圈提供的感应电流将沿着什么途径流动? 3、开关断开后通过灯泡的感应电流与原来通过它的电流方向是否
4.6 自感和互感
练习:
2.如图所示,水平放置的两条光滑轨道上有可自由移动的金 属棒PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向 右运动,则PQ所做的运动可能是(BC A.向右匀加速运动 B.向左匀加速运动 C.向右匀减速运动 D.向左匀减速运动 )
ห้องสมุดไป่ตู้
4.6 自感和互感
练习:
3.如图所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻
当电路中的电流发生变化时,电路中每一
个组成部分,甚至连导线,都会产生自感电动
势去阻碍电流的变化,只不过是线圈中产生的
自感电动势比较大,其它部分产生的自感电动
势非常小而已
课堂训练 有关自感现象,下列叙述中正确的是:(
B)
A、有铁芯的多匝金属线圈中,通过的电流强度 不变时,无自感现象发生,线圈的自感系数为零 B、导体中所通电流发生变化时,产生的自感电 动势总是阻碍导体中原来电流的变化 C、线圈中所通电流越大,产生的自感电动势也 越大 D、线圈中所通电流变化越大,产生的自感电动 势也越大
当线圈通电瞬间和断电瞬间,自感电动 势都要阻碍线圈中电流的变化,使线圈中的 电流不能立即增大到最大值或不能立即减小 为零
2、电的“惯性”大小与什么有关?
电的“惯性”大小决定于线圈的自感系数
自感现象 自感现象是指当线圈自身电流发生变化时, 在线圈中引起的电磁感应现象 当线圈中的电流增加时,自感电流的方向 与原电流方向相反 当线圈中的电流减小时,自感电流的方向 与原电流的方向相同 自感电动势的大小与电流的变化率成正比. 自感系数L由线圈自身的性质决定,与线圈 的大小、粗细、匝数、有无铁芯有关
可以忽略.下列说法中正确的是( AD ) A .合上开关S接通电路时,A2先亮,A1后亮,最后一样亮
B .合上开关S接通电路时,A1和A2始终一样亮
C .断开开关S切断电路时,A2立刻熄灭,A1过—会儿熄灭
D .断开开关S切断电路时,A1和A2都要过一会儿才熄灭
4.6 自感和互感
练习:
4.如图所示的电路中,L为电阻很小的线圈,G1 和G2 为零点在表 盘中央的相同的电流表,当开关S闭合时,电流表G1指针偏向右方, 那么当开关S断开时,将出现的现象是( D ) A.G1和G2指针都立刻回到零点
S
课堂训练 如图所示,L为自感系数较大的线圈,电路 稳定后小灯泡正常发光,当断开电键的瞬间会 有( ) L A
A
A.灯A立即熄灭
B.灯A慢慢熄灭
C.灯A突然闪亮一下再慢慢熄灭 D.灯A突然闪亮一下再突然熄灭
课堂训练 如图所示的电路中,电灯A和B与固定电阻
的阻值均为R,L是自感系数较大的线圈.当S1闭
四、磁场的能量
问题:在断电自感的实验中,为什么开关 断开后,灯泡的发光会持续一段时间?甚 至会比原来更亮?试从能量的角度加以讨 论。 开关闭合时线圈中有电流,电流产生磁 场,能量储存在磁场中,开关断开时,线 圈作用相当于电源,把磁场中的能量转化 成电能。
阅读教材最后一段P24,回答问题: 1、线圈能够体现电的“惯性”,应该怎样理 解?
一、互感现象
3、互感现象不仅发生于绕在同一铁芯上的两个线圈之间, 且可发生于任何两个相互靠近的电路之间。在电力工程和 电子电路中,互感现象有时会影响电路的正常工作,这时 要设法减小电路间的互感。
现在,我们再来关注上述的电路: 在A线圈中的电流变化时,B线圈会产生感应 电流,是因为穿过B线圈的磁通量发生了变化, 但我们发现,A线圈是插在B线圈中的,根据这个 情况,你还能想到什么?
二、自感现象
1、由于导体本身的电流发生变化而产生的电磁感应 现象,叫自感现象。
2、① 通电自感 产生的感应电动势阻碍自身电流的增大 ② 断电自感 产生的感应电动势阻碍自身电流的减小
一、互感现象
1. 当一个线圈中电流变化,在另一个线圈中产生感应 电动势的现象,称为互感。 2. 应用:变压器
二、自感现象
变化,故通过A1的电流不能立即增大,灯A1的亮度只能慢慢增 加,最终与A2相同。
二、自感现象
1.自感现象 如图所示,断开开关S瞬间,灯泡会有 什么现象呢? 现象:在断开开关S瞬间(灯更亮一
下),灯A过一段时间才熄灭。
原因:开关断开瞬间,由于通过L的磁通量减少,产生的感应 电动势阻碍磁通量的减少,感应电流沿着L→A流动,所以灯A
二、自感现象
1、由于导体本身的电流发生变化而产生的电磁感应 现象,叫自感现象。 2、自感现象中产生的电动势叫自感电动势。
自感电动势的作用:阻碍导体中自身的电流变化。 注意: “阻碍”不是“阻止”,电流原来怎么 变化还是怎么变,只是变化变慢了,即对电流的变 化起延迟作用。
一、互感现象
1. 当一个线圈中电流变化,在另一个线圈中产生感应 电动势的现象,称为互感。 2. 应用:变压器
自感现象 自感现象只有在通过电路的电流发生变化时 才会产生.在判断电路性质时,一般分析方法是: 当流过线圈L的电流突然增大瞬间,我们 可以把L看成一个阻值很大的电阻 当流经线圈L的电流突然减小瞬间,我们 可以把L看作一个电源,它提供一个跟原电流 同向的电流
自感现象
除线圈外,电路的其它部分是否存在自感现象?
B.G1指针立刻回到零点,而G2指针缓慢地回到零点
C.G1指针立刻回到零点,而G2指针先 立即偏向左方,然后缓慢地回到零点 G2 G1
D.G1指针先立即偏向左方,然后缓慢
地回到零点,而G2指针缓慢地回到零点
例3:如图所示,电路甲、乙中,电阻R和自感线圈L的 电阻值都很小,接通S,使电路达到稳定,灯泡D 发光。则( AD )
A.在电路甲中,断开S,D将逐渐变暗 B.在电路甲中,断开S,D将先变得更亮,然后渐渐变暗 C.在电路乙中,断开S,D将渐渐变暗 D.在电路乙中,断开S,D将变得更亮,然后渐渐变暗
二、自感现象
1.自感现象 自感现象:由于导体本身的电流发生变化而产生的电磁感 应现象叫自感现象。
自感电动势:自感现象中产生的感应电动势叫自感电动势。
2.自感的应用和防止
1、应用:日光灯 2、防止:变压器、电动机
一、互感现象
1. 当一个线圈中电流变化,在另一个线圈中产生感应 电动势的现象,称为互感。 2. 应用:变压器
1、由于导体本身的电流发生变化而产生的电磁感应 现象,叫自感现象。
2、① 通电自感 产生的感应电动势阻碍自身电流的增大 ② 断电自感 产生的感应电动势阻碍自身电流的减小
三、自感系数
结合下列问题,自学课本P24自感系数 部分内容。
(1)自感电动势的表达式如何? 式中各符号的代表什么?
(2)自感系数的大小与什么因素有关? 它的主单位是什么?常用单位还有哪些? 各单位的符号怎么写?
合、S2断开且电路稳定时,AB亮度相同,再闭合
S2,待电路稳定后将S1断开时,下列说法正确的
是(
AD
)
a A
S1
A.灯B立即熄灭
b
S2 c R d
B.灯A将比原来更亮一些后再熄灭
C.有电流通过B灯,方向为c-B-d
L
B
D.有电流通过A灯,方向为b-A-a
课堂训练 如图所示,当S闭合时,通过灯A的电流为I, 通过线圈的电流为2I,在某时刻t0,S断开,则能 正确反映灯A中电流变化的图是(
在B线圈中产生电磁感应现象,那么在A线圈 是否也会产生电磁感应现象呢?
二、自感现象
1.自感现象 如图所示,闭合开关S瞬间,两个 灯泡会有什么现象呢? 现象:在闭合开关S瞬间,灯A2立刻 正常发光,A1却比A2迟一段时间才
正常发光。
原因:由于线圈L自身的磁通量增加,而产生了感应电动势,
这个感应电动势总是阻碍磁通量的变化,即阻碍线圈中电流的
例4、如图所示的电路中,D1和D2 是两个相同的小灯泡,L是一个自 感系数相当大的线圈,其阻值与R 相同。在电键接通和断开时,灯 泡D1和D2亮暗的顺序是( A ) A. B. 接通时D1先达最亮,断开时D1后灭 接通时D2先达最亮,断开时D2后灭
D1
D2
L S
R
C.
D.
接通时D1先达最亮,断开时D2后灭
在“探究感应电流的产生条件”的 实验中,改变通过小线圈A的电流大小, 我们会发现大线圈B就能产生感应电流。 对这个现象我们是如何解释的?
小线圈的电流变化 小线圈中电流激发的磁场变化 穿过大线圈的磁通量发生变化
闭合回路产生感应电流。
一、互感现象
1. 当一个线圈中电流变化,在另一个线 圈中产生感应电动势的现象,称为互感。 互感现象中产生的感应电动势,称为 互感电动势。 2. 应用:变压器
课堂训练 如图所示的电路中,A1和A2 是两个相同的小灯泡,线圈L的 电阻可以忽略,下列说法正确 的是( )
L
A2
A1
AD